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ABSTRACT

Optimizing the channel counts for different layers of a convolutional neural net-
work (CNN) to achieve better accuracy without increasing the number of floating-
point operations (FLOPs) required during the forward pass at test time is known as
CNN width optimization. Prior work on width optimization has cast it as a hyper-
parameter optimization problem, which introduces large computational overhead
(e.g., an additional 2× FLOPs of standard training). Minimizing this overhead
could therefore significantly speed up training. With that in mind, this paper sets
out to empirically understand width optimization by sensitivity analysis. Specifi-
cally, we consider the following research question: “Do similar training configu-
rations for a width optimization algorithm also share similar optimized widths?”
If this in fact is the case, it suggests that one can find a proxy training configuration
requiring fewer FLOPs to reduce the width optimization overhead. Scientifically,
it also suggests that similar training configurations share common architectural
structure, which may be harnessed to build better methods. To this end, we con-
trol the training configurations, i.e., network architectures and training data, for
three existing width optimization algorithms and find that the optimized widths
are largely transferable across settings. Per our analysis, we can achieve up to
320× reduction in width optimization overhead without compromising the top-1
accuracy on ImageNet. Our findings not only suggest an efficient way to conduct
width optimization, but also highlight that the widths that lead to better accuracy
are invariant to various aspects of network architectures and training data.

1 INTRODUCTION

Better designs for the number of channels for each layer of a convolutional neural network (CNN)
can lead to improved test performance for image classification without requiring additional floating-
point operations (FLOPs) during the forward pass at test time (Guo et al., 2020; Gordon et al., 2018;
Yu & Huang, 2019). However, designing the width for efficient CNNs is a non-trivial task that of-
ten requires intuition and domain expertise together with trial-and-error to do well. To alleviate the
labor-intensive trial-and-error procedure, designing the width for each layer based on computational
methods has received growing interests. Examples include using reinforcement learning (He et al.,
2018b), evolutionary algorithms (Liu et al., 2019; Chin et al., 2020b), and differentiable parame-
terization (Guo et al., 2020; Dong & Yang, 2019; Ning et al., 2020) to optimize for layer widths.
However, these methods often add a large computational overhead for the width optimization pro-
cedure. Concretely, even for efficient methods that use differentiable parameterization (Guo et al.,
2020), width optimization takes an additional 2× the training time. To contextualize this overhead,
using distributed training on 8 V100 GPUs, it takes approximately 100 GPU hours for training a
ResNet50 on the ImageNet dataset (Radosavovic et al., 2020). That is, it takes 300 GPU hours for
both width optimization using differentiable methods (Guo et al., 2020) and training the optimized
ResNet50. Additionally, width optimization algorithms are often parameterized by some target test-
time resource constraints, e.g., FLOPs. As a result, the computational overhead scales linearly with
the number of target constraint levels considered, which can be exceedingly time-consuming for op-
timizing CNNs for embodied AI applications (Chin et al., 2020b). Reducing the overhead for width
optimization, therefore, would have material practical benefits.

Fundamentally, one of the key reasons why width optimization is so costly is due its limited un-
derstanding by the community. Without assuming or understanding the structure of the problem,
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Figure 1: A schematic view of width transfer. N denotes the network to be optimized,D denotes the
training dataset, N̂ and D̂ denote the projected network and dataset. P (·) is a projection function
parameterized by tunable knobs s. A is the width-optimization algorithm and E(·) is a simple
extrapolation function to match the dimensions of ŵ∗ to w∗.

the best hope is to conduct black-box optimization whenever training configurations, datasets, or
architectures are changed. In this work, we take the first step to empirically understand the structure
underlying the width optimization problem by changing network architectures and the properties of
training datasets, and observing how they affect width optimization. Such sensitivity analysis tech-
niques have been used in various contexts in the deep learning literature for empirically unveiling
the black-box of deep learning (Morcos et al., 2018; Tan & Le, 2019; Li et al., 2018). Similarly,
we manipulate the network architectures and dataset properties to aid in our understanding of the
(in)variances of width optimization.

A width optimization algorithm, A, takes in a training configuration, C = (D,N ), and outputs a
set of optimized widths, w∗, which maxmizes the validation accuracy without additional test-time
FLOPs. A can be seen as neural architecture search algorithms that search for layer-wise channel
counts. C consists of initial network, N , and training dataset, D. In this paper, we systematically
analyze how similar C affects w∗.

If similar inputs to the width optimization algorithms result in similar outputs, one can exploit this
commonality to reduce the width optimization overhead, especially if the two input configurations
have markedly different FLOPs requirements as shown schematically in Figure 1. As a concrete
example, if optimizing the widths of a wide CNN (high FLOPS) and a narrow CNN (low FLOPs)
results in widths that differ only by a multiplier, one can reduce the computational overhead of
width optimization by computing widths for the low FLOPS, narrow CNN and adjusting them to
accommodate the high FLOPs, wide CNN. In addition to the potential efficiency benefits from
understanding the structure of the width optimization problem, such an exploration can also have
scientific benefits. Specifically, via sensitivity analysis, we can provide quantitative results to the
following question: Does the level of overparameterization, number of training samples, and the
resolution of input images affect width optimization? And if so, by how much?

Based on a comprehensive empirical analysis, we provide the following contributions:

• We find that there exist shared structures in the width optimization problem across a wide
variety of network and dataset configurations. Specifically, the outputs of width optimiza-
tion algorithms are largely robust to perturbation of the network’s depth and width via the
multiplier method and to perturbation of the dataset’s sample size and resolution.

• We demonstrate a practical implication of the previous finding by showing that one can
achieve 320× reduction in width optimization overhead for a scaled-up MobileNetV2 and
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ResNet18 on ImageNet without hurting the accuracy improvements brought by width opti-
mization.
• We find that, for ResNet18 on ImageNet, width optimization has limited benefits for very

deep models.

2 RELATED WORK

2.1 WIDTH OPTIMIZATION

The layer-by-layer widths of a deep CNN are often regarded as a hyperparameter optimized to
improve classification accuracy. Specifically, the width multiplier method (Howard et al., 2017) was
introduced in MobileNet to arrive at models with different FLOPs and accuracy profiles and has
been widely adopted in many papers (He et al., 2018a; Tan & Le, 2019; Chin et al., 2020a).

Besides simply scaling the width to arrive at CNNs with different FLOPs, width (or channel) op-
timization has received growing interest recently as a means to improve the efficiency of deployed
deep CNNs. To optimize the width of a CNN, one approach is Prune-then-Grow, which uses chan-
nel pruning methods to arrive at a down-sized CNN with non-trivial layerwise channel counts fol-
lowed by re-growing the CNN to its original FLOPs using the width multiplier method (Gordon
et al., 2018). Another approach is Grow-then-Prune, which uses the width multiplier method to en-
large the CNN followed by channel pruning methods to trim down channels to match its pre-grown
FLOPs (Yu & Huang, 2019; Liu et al., 2019; Guo et al., 2020). The aim of both of these methods
is to improve performance while maintaining a given FLOPs count. The schematic view of the two
approaches is visualized in the left panel of Figure 2.

While there are many papers on channel pruning (Li et al., 2016; Molchanov et al., 2019), they
mostly focus their analysis on down-sizing the pre-trained models whereas we focus on improving
the classification accuracy of a network by optimizing its width without affecting test-time FLOPs.
While one can use either the Prune-then-Grow or Grow-then-Prune strategies to arrive at a CNN
of equivalent FLOPs, it is not clear if such strategies generally improve performance over the un-
optimized baseline as it is not verified in most channel pruning papers. As a result, in this paper, we
focus on analyzing algorithms that have demonstrated the effectiveness over the baseline (uniform)
width configurations in either Prune-then-Grow or Grow-then-Prune settings.

2.2 EMPIRICAL SENSITIVITY ANALYSIS FOR UNDERSTANDING DEEP LEARNING

Controlling the components of deep learning to further shed light on understanding and optimization
is an important direction complementing theoretical understanding for deep learning. While our
work is the first that focuses on empirically understanding the sensitivity of width optimization in
deep CNNs, we discuss efforts in empirically understanding deep learning more generally.

Empirical analysis to gain insight into hyperparameter selection for training deep neural networks
has received great interest. Goyal et al. (2017) have shown that the accuracy can be retained across
a wide range of batch sizes when the number of epochs is held fixed while the batch size is scaled
linearly. Shallue et al. (2019) have conducted a comprehensive analysis that sheds light on the rela-
tionship among batch size, training iterations, and learning rate. Tan & Le (2019) have empirically
controlled the network’s architecture to identify a more cost-efficient way of scaling deep models
with high classification accuracy. Radosavovic et al. (2020) have empirically manipulated the ar-
chitectural choices for CNNs and identified a parameterizable relationship among depth, channel
counts, and group size for ResNets.

There are also papers using analysis as a tool for better understanding deep learning phenomena.
Morcos et al. (2018) have used Canonical Correlation Analysis to empirically understand if net-
works of different architectures and optimization behavior are of different clusters. Li et al. (2018)
have controlled the network’s architecture and observed that networks of different architectures have
different empirical loss landscapes. Frankle et al. (2019) altered the winning ticket generation pro-
cedures in the lottery ticket hypothesis (Frankle & Carbin, 2018) and observed that an empirical
stability measure predicts well the success of winning tickets. Morcos et al. (2019) have empirically
controlled the training configuration for the winning ticket generation in the lottery ticket hypothesis
and discovered the transferability of winning tickets.
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Figure 2: A schematic view of different width optimization strategies in existing algorithms (left)
and a cartoon illustration of the two extrapolation strategies for scaling the optimized width multi-
pliers from lower dimensions to higher dimensions (right). Best view in color.

3 APPROACH

3.1 NOTATION

We use [n] to represent a set {1, 2, ..., n}. A width optimization algorithm, A, is a function that
takes a training configuration, C = (D,N ), which consists of a training dataset, D, and a network
to be optimized, N . The output of A is a vector of width multipliers, w∗, whose dimension is L
(the number of layers). Let Fi denote the channel counts for layer i, it is expected that a network
with optimized channel counts {wiFi ∀ i ∈ [L]} has the same FLOPs as a network with the original
channel counts {Fi ∀i ∈ [L]} but has better test accuracy when trained with D. Following common
terminologies, a CNN is divided into stages where the convolutional blocks in each stage share the
same output resolutions. Within each stage, several convolutional blocks are repeated where a con-
volutional block consists of several convolutional layers such as the bottleneck block in ResNet (He
et al., 2016) and the inverted residual block in MobileNetV2 (Sandler et al., 2018). We use the
concept of stage and block for describing extrapolation mechanisms in Section 3.3.

3.2 WIDTH OPTIMIZATION METHODS

Theoretically, we only care about algorithms A that “solve” the width optimization problem. How-
ever, the width optimization problem is inherently combinatorially hard. As a result, we use state-
of-the-art width optimization algorithms as probes to understand them further. Specifically, we
consider MorphNet (Gordon et al., 2018), AutoSlim (Yu & Huang, 2019), and DMCP (Guo et al.,
2020). Here, we explicitly consider papers that have analyzed width optimization, i.e., improving
the accuracy while maintaining the test time FLOP requirements. We also limited our investigation
to methods with publicly available code to ensure correctness of implementation.

3.3 PROJECTION AND EXTRAPOLATION

We consider various projection to project a large-scale training setting C = (D,N ) into a small-
scale proxy training setting Ĉ = (D̂, N̂ ) and this allows us to understand the structure about A for
all three considered algorithms. More specifically, we consider projecting the network N down to
narrower networks via the width multiplier method and shallower networks via the depth multiplier
method (Tan & Le, 2019). For projection on the dataset D, we consider subsampling the number of
training images and changing the input resolutions.
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The extrapolation function involves two stages: matching dimensions and matching test-time FLOPs
between w∗ and ŵ∗, i.e., E(ŵ)

def
= αMdim(ŵ) where Mdim(ŵ) is a function that matches dimen-

sions and α is responsible for matching test-time FLOPs. If the depth multiplier method is involved
during projection, ŵ∗ and w∗ will have different dimensions. As a result, we propose the following
two Mdim to extrapolate the found width multipliers to higher dimensions.

• Stack-last-block: Stack the width multipliers of the last block of each stage until the de-
sired depth is met.

• Stack-average-block: To avoid mismatches among residual connection, we exclude the
first block of each stage and compute the average of the width multipliers across all the rest
blocks in a stage, then stack the average width multipliers until the desired depth is met.

Note that since existing network designs share the same channel widths for all the blocks in each
stage, the above two Mdim will have the same results when applied to networks with un-optimized
widths. After the dimension is matched, we apply a multiplier α to it such that the resulting network
has a test-time FLOPs similar to that induced by w∗. The schematic views of extrapolation is shown
in the right panel of Figure 2.

3.4 EXPERIMENTAL SETUP

We used the ImageNet dataset (Deng et al., 2009) throughout the experiments. Unless stated other-
wise, we use 224 input resolution. For CNNs, we considered both ResNet18 (He et al., 2016) and
MobileNetV2 (Sandler et al., 2018). Models were each trained on a single machine with 8 V100
GPUs for all the experiments. The width multiplier method applies to all the layers in the CNNs
while the depth-multiplier excludes the first and the last stage of MobileNetV2 as there is only one
block for each of them. After we obtained w∗ orE(ŵ∗) we trained the corresponding network from
scratch using the same hyperparameters to analyze their performance. The training hyperparameters
are detailed in Appendix A. We repeated each experiment three times with different random seeds
and reported the mean and standard deviation.

4 EXPERIMENTS

In this section, we empirically investigate the transferability of the optimized widths across different
projection and extrapolation strategies. Specifically, we study projection across architectures by
evaluating different widths and depths as well as across dataset properties by sub-sampling and
resolution sub-sampling for dataset projection. In addition to analyzing each of these four settings
independently, we also investigate a compound projection that involves all four jointly. To measure
the transferability, we plot the ImageNet top-1 accuracy induced by w∗ and E(ŵ∗) across training
configurations that have different width optimization overhead. Width optimization overhead refers
to the FLOPs needed to carry out width optimization. If transferable, we should observe a horizontal
line across different width optimization overheads, suggesting that performance is not compromised
by deriving w∗ from a smaller FLOP configuation. Moreover, we also plot the ImageNet top-1
accuracy for the un-optimized baseline to characterize whether width optimization or width transfer
is even useful for some configurations.

4.1 PROJECTION: WIDTH

Here, we focus on answering the following question: “Do networks with different initial width
(varied by the width multiplier method) share common structures in their optimized widths?” The
answer to this question is unclear from existing literature as the current practice is to re-run the
optimization across different networks (Guo et al., 2020; Gordon et al., 2018; Liu et al., 2019). If
the optimized widths are similar across different initial widths, it suggests that the quality of the
vector of channel counts are scale-invariant given the current practice of training deep CNNs and
the dataset. Additionally, it also has practical benefits where one can use width transfer to reduce the
overhead incurred in width optimization. On the other hand, if the optimized widths are dissimilar,
it suggests that not only the direction of the vector of channel counts is important, but also its
magnitude. That is, for different magnitudes, we need different orientations. Practically, it suggests
that existing practice, though costly, is empirically proved to be necessary.
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(c) Res18, depth
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Figure 3: We consider transferring the optimized widths obtained from smaller models and extrap-
olate that to the largest model (1.732× wide or 4× deep). We plot the ImageNet top-1 accuracy for
uniform baseline, transferred width E(ŵ∗), and direct optimization w∗ (the leftmost points). On
the x-axis, we plot the width optimization overhead saved by using width transfer.

To empirically study the aforementioned question, we considered the source width multipliers of
{0.312, 0.5, 0.707, 1, 1.414, 1.732} for N̂ and the target width multiplier of 1.732 for N . The
set is chosen based on square roots of width optimization overhead. We analyzed the similarity
between E(ŵ∗) and w∗ in the accuracy space. In Figure 3a and 3b, we plot the ImageNet top-1
accuracy for the baseline (1.732× wide network) and networks induced by E(ŵ∗) and w∗. For
ResNet18, the width optimization overhead can be saved by up to 96% for all three algorithms
without compromising the accuracy improvements gained by the width optimization.

On MobileNetV2, AutoSlim and MorphNet can transfer well and save up to 80% width optimization
overhead. While DMCP for MobileNetV2 results in 0.4% top-1 accuracy loss when using width
transfer, the transferred width can still outperform the uniform baseline, which is encouraging for
applications that allow such accuracy degradation in exchange for 83% width optimization overhead
savings. More specifically, that would reduce compute time from 160 GPU-hours all the way to 30
GPU-hours for MobileNetV2 measured using a batch size of 1024, a major saving. Since E(ŵ∗)
in this case is just applying αŵ∗ to N where α makes the resulting network have the same FLOPs
as the network induced by w∗, our results suggest that a good orientation for the optimized channel
vector continues to be suitable across a wide range of magnitudes.

Since the optimized widths are highly transferable, we are interested in the resulting widths for
both CNNs. We find that the later layers tend to increase a lot compared to the un-optimized ones.
Concretely, in un-optimized networks, ResNet18 has 512 channels in the last layer and MobileNetV2
has 1280 channels in the last layer. In contrast, the average optimized width has 1300 channels for
ResNet18 and 3785 channels for MobileNetV2. We visualize the average widths for ResNet18 and
MobileNetV2 (average across optimized widths) in Appendix (Figure A1).

4.2 PROJECTION: DEPTH
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Figure 4: We compare the two extrapolation
strategies using DMCP for both ResNet18 and
MobileNetV2. We can observe that both stack-
average-block and stack-last-block perform simi-
larly.

Next, we asked whether networks with different
initial depths share common structure in their
optimized widths. Because making a network
deeper will add new layers with no correspond-
ing optimized width, we will need a mecha-
nism to map the vector optimized widths, w∗,
to a vector with far more elements. We em-
pirically investigate two methods for aligning
across depth, which are detailed in Section 3.3.
We considered {1, 2, 3, 4} as the depth mul-
tipliers for N̂ and use 4 for N . Similar to the
analysis done in Section 4.1, we analyzed the
similarity in the accuracy space.

Here, we first compared the two extrapolation
methods proposed in Section 3.3 using DMCP
for ResNet18 and MobileNetV2. As shown in Figure 4, both strategies perform similarly. We focus
on the stack-average-block strategy for the following experiments.
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(b) MBv2, resolution
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(c) Res18, dataset size
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Figure 5: We consider transferring the optimized widths obtained from smaller training data con-
figurations to the largest training data configuration (320 × 320 input resolution or full data size).
We plot the ImageNet top-1 accuracy for uniform baseline, transferred width E(ŵ∗), and direct
optimization w∗ (the leftmost points). On the x-axis, we plot the width optimization overhead saved
by using width transfer.

As shown in Figure 3c and 3d, we find that the optimized widths stay competitive via simple extrap-
olation methods and up to 75% width optimization overhead can be saved if we were to optimize the
width using width transfer for all three algorithms and two networks. This finding also suggests that
the relative values of optimized widths share common structure across networks that differ in depth.
In other words, the pattern of width multipliers across depth is scale-invariant. Interestingly, we
observe that width optimization itself, even when optimized directly for that configuration, has lim-
ited benefits (for all three algorithms) for much deeper ResNet18 models, which suggests that width
optimization may be less useful when the network to be optimized is heavily over-parameterized.

4.3 PROJECTION: RESOLUTION

The input resolution and the channel counts of a CNN are known to be related when it comes to
the test accuracy of a CNN. As an example, it is known empirically that a wider CNN can benefit
from inputs with a higher resolution than a narrower net can (Tan & Le, 2019). As a result, it is not
clear if width optimization algorithms are sensitive to input resolution. We therefore asked whether
networks trained on different input resolutions also share structure in their optimized widths. If
the optimized widths are indeed similar, this suggests that although wider networks benefit more
from a higher resolution inputs, the non-uniform widths that result in better performance are similar.
On the other hand, if the optimized widths are different, it suggests that, when it comes to the test
accuracy, the relationship between channel counts and input resolution is more involved than the
level of over-parameterization.

To empirically study the aforementioned question, we considered the input resolution for D̂ to be
{64, 160, 224, 320} and choose a D of 320. As shown in Figure 5a and 5b, we find that except
for MorphNet targeting ResNet18, all other algorithm and network combinations can achieve up
to 96% width optimization overhead savings with the optimized widths that are still better than the
uniform baseline. By saving 75% width optimization overhead, we can stay close to the performance
obtained via direct optimization. Interestingly, we find that MorphNet had a very different optimized
widths when transferred from resolution 64 for ResNet18, which leads to the worse performance for
ResNet18 compared to direct optimization. The similarity among the optimized widths are detailed
in Figure A2 in Appendix.

4.4 PROJECTION: DATASET SIZE

The dataset size is often critical for understanding the generalization performance of a learn-
ing algorithm. Here, we would like to understand how width optimization algorithms are af-
fected by the size of training data. We considered sub-sampling the ImageNet dataset to result
in {5%, 10%, 20%, 50%, 100%} of the original training data. Similar to previous analysis, we tried
to transfer the optimized widths obtained using the smaller configurations to the largest configura-
tion, i.e., 100% of the original training data. As shown in Figure 5c and 5d, widths optimized for
smaller dataset sizes transfer well to large dataset sizes. That is, 95% width optimization overhead
can be saved and still outperform the uniform baseline for both networks. On the other hand, 90%
width optimization overhead can be saved and still match the performance of direct optimization for
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Figure 6: Width transfer with compound projection. By using width transfer, we can achieve 320×
width optimization overhead reduction for width optimization while remain competitive compared
to direct optimization for the top-performing algorithm, DMCP.

DMCP. This suggests that the amount of training data barely affects width optimization, especially
for DMCP, which is surprising.

We further conducted experiments using CIFAR-100 and have two findings. First, the optimized
widths are similar across these two datasets for DMCP. Second, width optimization results in overfit-
ting for CIFAR-100 and calls for cross validation techniques in width optimization. The supporting
materials for these two findings are in Appendix C.

4.5 COMPOUND PROJECTION

From previous analyses, we find that the optimized widths are largely transferable across various
projection methods independently. Here, we further empirically analyzed if the optimized width can
be transferable across compound projection. To do so, we considered linearly interpolating all four
projection methods and analyzed if the width optimized using cost-efficient settings can transfer
to the most costly setting. Specifically, let a tuple (width, depth, resolution, dataset size) denote a
training configuration. We considered Ĉ to be {(0.312,1,64,5%), (0.707,1,160,10%), (1,1,224,50%),
(1.414,2,320,100%)} and C to be (1.414,2,320,100%). As shown in Figure 6, the optimized width is
transferable across compound projection. Specifically, we can achieve up to 320× width optimiza-
tion overhead reduction with width transfer for the best performing algorithm, DMCP. Additionally,
it also suggests that the four projection dimensions are not tightly coupled for width optimization.

5 DISCUSSION

In this paper, we take a first step in understanding the transferability of the optimized widths across
different width optimization algorithms and projection dimensions. This investigation sheds light
on the width optimization problem, which is often regarded as a black-box problem and tackled
with general optimization methods (Liu et al., 2019; Guo et al., 2020; Gordon et al., 2018). More
specifically, we show that there are common structures in the optimized widths obtained across
a wide range of settings such that one can successfully transfer the optimized width to various
settings with competitive performance. Per our analysis, we can achieve up to 320× reduction in
width optimization overhead without compromising the top-1 accuracy on ImageNet. Our findings
not only suggest an efficient alternative to conduct width optimization, but also imply that width
optimization can be done for lower dimensional inputs, which can be beneficial since it allows a
more effective traversal of the design space.

While encouraging, our study also presents some limitations. Specifically, we empirically consider
two types of CNNs: ResNet18 and MobileNetV2. While these networks are popular currently in
our community, it is not clear if such encouraging characteristics hold for other CNNs. Additionally,
extending this work beyond convolutional neural networks is an interesting direction going forward.
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A TRAINING HYPERPARAMETERS

We use PyTorch (Paszke et al., 2019) as our deep learning framework. We largely follow Ra-
dosavovic et al. (2020) for training hyperparameters. Specifically, learning rate grows linearly from
0 to 0.2s within the first 5 epochs from 0 where s depend on batch size B, i.e., s = B

256 . We use
batch size of 1024 and distributed training over 8 GPUs and we have not used synchronized batch
normalization layers. We set the training epochs to be 100. For optimizers, we use stochastic gra-
dient descent (SGD) with 0.9 Nesterov momentum. As for data augmentation, we have adopted
0.1 label smoothing, random resize crop, random horizontal flops, and RandAugment (Cubuk et al.,
2020) with parameter N = 2 and M = 9 following common practice in popular repository1. Note
that these training hyperparameters are fixed for all experiments. In other words, we always train
for 100 epochs regardless of the dataset size when we conduct the dataset projection in Section 4.4

For hyperparameters specific to width optimization algorithms, we largely follow the hyperparam-
eters used in respective methods. Specifically, we use 40 epochs to search for optimized width for
all three algorithms. We enlarge the network by 1.5× for DMCP and AutoSlim. Since MorphNet
has FLOPs-aware regualrization, we normalize the FLOPs for each network and use λ = 1 for all
experiments.

B WIDTH VISUALIZATION

(a) ResNet18 (b) MobileNetV2

Figure A1: The average optimized width for ResNet18 and MobileNetV2. They are averaged across
the optimized widths in Section 4.1. We plot the mean in solid line with shaded area representing
standard deviation.

C CIFAR-100 EXPERIMENTS

In this section, we are interested in understanding how dependent is width optimization on
the training data. To do so, we use CIFAR-100 as the dataset and sweep the network
configuration to cover both depth and width multipilers. Specifically, we consider width
{0.312, 0.5, 0.707, 1, 1.414, 1.732} and depth {1, 2, 3, 4} for ResNet18 using DMCP. To allow using
the same architecutres as the experiments for ImageNet, we alter the input resolution for CIFAR-100
from 32×32 to 64×64. Finally we compare the pairwise cosine similarity between the architectures
searched across the two different datasets, i.e., ImageNet and CIFAR-100. As shown in Table 1, we
find that the channel counts searched on these two datasets are more similar than comparing the
optimized width with uniform baselines.

At first glance, one might conclude that the optimal channel configurations are similar across these
two datasets. However, we find that the optimized widths perform worse than uniform (un-optimized
widths) on CIFAR-100 due to over-fitting. This suggests that a cross validation method should be
used for width optimization algorithms.

1https://github.com/rwightman/pytorch-image-models (We use their implementation
for RandAugment and use ‘rand-m9-mstd0.5’ as the value for the ‘aa’ flag.
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0.3w,1d 0.5w,1d 0.7w,1d 1w,1d 1.4w,1d 1.7w,1d 1w,2d 1w,3d 1w,4d

CIFAR-100 Uniform 61.1 64.6 66.5 67.5 68.8 69.4 68.7 69.0 69.9
DMCP 60.8 64.5 66.4 67.4 68.4 69.2 68.5 69.0 69.8

ImageNet Uniform 53.1 61.7 66.8 70.7 73.4 75.0 74.4 76.2 77.0
DMCP 56.2 64.1 68.2 71.8 74.3 75.3 74.7 76.0 77.0

cosine(CIFAR,ImageNet) 0.96 0.95 0.95 0.94 0.94 0.95 0.91 0.91 0.92
cosine(CIFAR,uniform) 0.93 0.92 0.92 0.92 0.91 0.92 0.88 0.88 0.88

Table 1: Comparing the optimized widths found using ImageNet and CIFAR-100 datasets. The
first two sections are the top-1 accuracy on respective datasets while the last section is the cosine
similarity among the widths.

D SIMILARITY AMONG WIDTH MULTIPLIERS

In Section 4, we have analyzed the similarity between w∗ and ŵ∗ in the accuracy space. Here, we
show that w∗ and ŵ∗ are in fact similar in the vector space using cosine similarity.
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(a) ResNet18, width projection
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(b) MobileNetV2, width projection
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(c) ResNet18, depth projection
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(d) MobileNetV2, depth projection
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(e) ResNet18, resolution projection
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(f) MobileNetV2, resolution projection
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(g) ResNet18, dataset size projection
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(h) MobileNetV2, dataset size projection

Figure A2: Pairwise cosine similarity between w∗ and E(ŵ∗) for different width optimization
algorithms and projection strategies. Within each methods (diagonal blocks), w∗ and E(ŵ∗) are
generally similar.
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