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ABSTRACT

Medical Large Vision-Language Models (Med-LVLMs) have shown strong po-
tential in multimodal diagnostic tasks. However, existing single-agent models
struggle to generalize across diverse medical specialties, limiting their perfor-
mance. Recent efforts introduce multi-agent collaboration frameworks inspired
by clinical workflows, where general practitioners (GPs) and specialists interact
in a fixed sequence. Despite improvements, these static pipelines lack flexibility
and adaptability in reasoning. To address this, we propose MMedAgent-RL, a
reinforcement learning (RL)-based multi-agent framework that enables dynamic,
optimized collaboration among medical agents. Specifically, we train two GP
agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to
appropriate specialties, while the attending physician integrates the judgments from
multi-specialists and its own knowledge to make final decisions. To address the
inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided
RL strategy with dynamic entropy regulation, progressively teaching the attending
physician to balance between imitating specialists and correcting their mistakes.
Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL
outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves
an average performance gain of 23.6% over strong baselines.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) are becoming increasingly proficient in visual understand-
ing and reasoning (Liu et al., 2024a;b; Zhu et al., 2023; Bai et al., 2023; Chen et al., 2024c). This
advancement is also making a significant impact in the biomedical domain, where Medical Large
Vision-Language Models (Med-LVLMs) have demonstrated great potential in enabling intelligent
diagnostic applications (Li et al., 2023; Moor et al., 2023; Nath et al., 2024). However, as shown in
Figure 1 (a) left, although a single Med-LVLM can be trained with a large amount of data and show
promise results to some extent, it is challenging for a single model to handle diagnostic expertise
from different subfields (e.g., radiology, pathology, etc.).

Therefore, some recent works propose using multi-agent collaboration to solve medical tasks (Li
et al., 2024c; Kim et al., 2024; Tang et al., 2024), where different models act as specialists or general
practitioners, collaborating and discussing to arrive at a final answer, improving overall performance
compared to a single agent. These works follow the steps of simulating a hospital visit process
and adopt a General Practitioner (GP) → Specialist → GP workflow. First, the general practitioner
(i.e., the triage doctor) classifies the patient based on the consultation questions and images and
selects the appropriate department from several predefined specialties. Then, specialist doctors from
the relevant departments provide their diagnoses. Finally, the general practitioner (i.e., attending
physician) makes the final decision based on the images, consultation questions, and the diagnostic
results from multiple specialists. However, as illustrated in Figure 1 (a) middle, such workflows are
inherently static. Such interaction pattern between agents is fixed and predetermined, which limits
the system’s capacity for flexible, optimized reasoning across multiple modalities.

To address this challenge, motivated by the success of Reinforcement Learning (RL)-driven
reasoning (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025), as shown in Fig-
ure 1 (a) right, we perform a stage-wise training on two GPs based on Qwen2.5-VL (Bai
et al., 2025) via reinforcement learning, namely the triage doctor and the attending physician.
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Figure 1: Comparison of Med-Agent paradigms: single-agent → static
workflows → dynamic collaboration. (a) Motivation: Single-agent
models struggle with domain specialization, and prior multi-agent sys-
tems rely on fixed workflows, limiting adaptability. We propose a
trainable reasoning-enhanced multi-agent system via RL. (b) Perfor-
mance: Our method is highly competitive across multiple benchmarks.

Specifically, first, for the
first GP, i.e., triage doc-
tor, we utilize the image
modality information pro-
vided by the dataset itself
to reinforce the triage doc-
tor, such as pathology slides
→ Pathologist, ensuring
that the triage doctor can
accurately assign patients
to the appropriate depart-
ment. Then, we use power-
ful proprietary models like
GPT (OpenAI, 2025) to
play the role of the spe-
cialist doctors and generate
initial judgments. Finally,
the second GP, i.e., attend-
ing physician, integrates do-
main knowledge from multiple specialists and their own judgment to make the final decision. Here,
during the process of the general practitioner integrating specialist doctor information, while specialist
doctors provide valuable domain knowledge, their judgments are not always perfectly accurate. These
inconsistencies in specialist performance can introduce noise into model training, preventing the
model from simply memorizing or blindly replicating their outputs. Instead, the model must learn to
generalize beyond potentially flawed expert judgments.

To address this, inspired by Curriculum Learning (CL) (Bengio et al., 2009; Pentina et al., 2015;
Deng et al., 2025), which enables models to be trained progressively on increasingly difficult tasks,
we implement an entropy-aware reinforcement learning approach based on CL, aiming to help the
model gradually learn to leverage the knowledge of specialist doctors. The core principle is that
the attending physician agent faces a dynamic exploration-exploitation dilemma when integrating
specialist opinions: it must learn when to trust and adopt a consensus and when to challenge it and
search for novel diagnostic paths (Cui et al., 2025; Wang et al., 2025b). Specifically, we use the
accuracy of specialist results as a flag to classify the training data by difficulty: specialist results that
are completely correct are labeled as easy, partially correct as medium, and completely incorrect as
hard. In this way, we design a three-stage curriculum reinforcement learning process for optimizing
the attending physician to handle diverse specialist results, where the model starts with low-entropy
policies to exploit reliable “easy” cases and gradually increases its policy entropy to explore and
correct flawed judgments in “hard” cases.

The primary contribution of this paper is MMedAgent-RL, an RL-driven framework optimized
for multi-agent collaboration in improving medical reasoning. Empirical results on five medical
multimodal datasets, shows that the model performs exceptionally well not only on in-domain datasets
but also on out-of-domain datasets, outperforming a series of both open-source and proprietary
LVLMs, exceeding SFT method by 23.6%.

2 PRELIMINARIES

In this section, we will provide a brief overview of LVLMs, multi-agent collaboration and GRPO.

Large Vision Language Models. LVLMs enhance LLMs by integrating visual input xv with
textual input xt, forming a joint input x = (xv, xt). They autoregressively predict the next token’s
distribution to generate a textual response y.

Multi-Agent Collaboration. To support complex workflows, multi-agent frameworks coordinate
specialized agents. Our setting simulates a hospital visit: GP → Specialist(s) → GP. Each agent
ai ∈ A follows policy πθi(y | x), with multimodal input x = (xv, xt), where xv is an image, xt is
a text instruction, and y is the output. GP agent: aGP; specialists: {a(1)

SP , . . . , a
(K)
SP }. The workflow

proceeds as follows: 1) Triage: atriage
GP selects department via d = argmaxk πθ

triage
GP

(k | x). 2) Specialist:

a
(d)
SP produces response yd ∼ π

θ
(d)
SP

(y | x). 3) Aggregation: aattend
GP outputs yfinal ∼ πθattend

GP
(y | x, yd).

2
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Figure 2: Overview of MMedAgent-RL, a RL-driven multi-agent framework designed for multimodal
medical reasoning. It simulates the clinical loop of General Practitioner (GP) → Specialists → GP.
First, MMedAgent-RL optimizes the triage doctor (the first GP) to improve triage accuracy. Then,
proprietary LVLMs are used as the specialist doctors for the assigned department. Finally, curriculum
learning and RL are combined to progressively train the attending physician (the second GP), who
integrates the specialist knowledge and makes robust decisions.

Group Relative Policy Optimization (GRPO). Group Relative Policy Optimization (GRPO) (Guo
et al., 2025) is a reinforcement learning method that avoids training a critic by using intra-group
relative rewards to optimize the policy. For each query x, the model samples G responses
{y(1), . . . , y(G)}, which are scored to get rewards {R1, . . . , RG}. GRPO computes normalized
advantages and updates the policy with a PPO-style clipped objective (Schulman et al., 2017):

JGRPO(θ) = Ex,{yi}

[
1

G

G∑
i=1

(
min

(
riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai

)
− β DKL(πθ∥πref)

)]
, ri =

πθ(yi | x)
πold(yi | x)

,

(2.1)

where Ai =
Ri−mean({Rj}G

j=0)

std({Rj}G
j=0)

, ϵ, β are hyperparams, and πold is a old policy model. GRPO enables
scalable policy learning using only relative rewards, without a critic.

3 METHODOLOGY

In this section, as illustrated in Figure 2, we will present MMedAgent-RL, a RL-driven multi-agent
framework for multimodal medical reasoning by emulating a structured clinical workflow. Our
approach begins with the first General Practitioner (GP) leveraging the input to select the appropriate
medical department for further consultation. To optimize the initial triage decision, we employ GRPO
to refine the triage doctor’s capabilities. Then the case is referred to a panel of specialist doctors, each
served by a proprietary LVLM specialized in the identified department, analyze data and provide
expert opinions. Finally, the process culminates with the second GP, acting as the attending physician,
integrates all specialist opinions to form a final diagnosis. We will delve into each stage as follows:

3.1 INITIAL DEPARTMENTAL TRIAGE

In real-world medical treatment, particularly for complex diagnoses, the workflow fundamentally re-
lies on a Multi-Disciplinary Team (MDT) process (Abo-Hamad & Arisha, 2013): moving from initial
assessment and triage to expert consultation, and finally, synthesis by an attending physician. This
collaborative paradigm has been validated in recent medical AI literature as an effective abstraction
for simulating clinical decision-making. Previous works like Agent Hospital (Li et al., 2024c) and
MDAgents (Kim et al., 2024) have adopted similar role-based structures, employing LLMs for triage
or dynamic collaboration. However, these methods typically rely on rigid or predefined assignment
strategies and lack the ability to update the model based on new data.

To address this challenge, the first step is to optimize the general practitioner atriage
GP who acts as the

triage doctor (i.e., policy πθtriage
GP

). Here, we use the image modality information provided by the

3
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dataset itself as ground truth labels y∗ to train the triage model. For example, pathology slides →
pathologist (e.g., PathVQA contains pathology slide images and is thus assigned to pathologists),
ensuring that the triage model can accurately assign patients to the appropriate medical specialty.

Specifically, when prompting the triage doctor, we provide k candidate specialties. In our setup, k is
set to 7, including Pathologist, Radiologist, Surgeon, Oncologist, Endocrinologist, Ophthalmologist,
and Dermatologist, which broadly cover the main departments involved in the data. Our aim is not
only to improve triage accuracy, but also to strengthen the model’s reasoning process, helping explain
why a particular triage recommendation is made. Thus, we use GRPO as the base RL algorithm.
At this stage, the reward function adopts a rule-based format with rewards Rformat ∈ {0, 0.5} and
accuracy rewards Raccuracy ∈ {0, 1}. A reward is given when the output format meets the required
criteria and the chosen specialty is correct. This stage can optimize the triage doctor’s performance,
improving their ability to select the appropriate specialty d = argmaxk πθtriage

GP
(k | x), and lays a

foundation for subsequently acting as the corresponding specialist.

3.2 ROLE-PLAYING SPECIALISTS OFFER VALUABLE INSIGHTS

After obtaining the department from the triage doctor, following previous work using LLMs or
LVLMs for medical discussions (Li et al., 2024c; Tang et al., 2024; Li et al., 2024a), we utilize several
powerful models as specialist doctors a(d)SP to provide relatively accurate preliminary judgments. This
facilitates subsequent reference by the attending physician. In our setup, we use responses from e
specialists as references for each sample. We only require the specialist doctors to independently
provide expert opinions yd ∼ π

θ
(d)
SP

(y | x) within their specialty, without engaging in complex
interactions. This ensures system efficiency and avoids majority voting that could overshadow
minority opinions, leaving the final decision to the attending physician.

3.3 EVOLVING DECISIONS BY ATTENDING PHYSICIAN VIA ONGOING COLLABORATION

After getting the responses from the specialists, we then integrate their knowledge into the final
general practitioner designed to support the final diagnostic decision. The final decision-making
agent, namely the attending physician, plays the most crucial role throughout the diagnostic process,
as they must synthesize diverse expert opinions and draw upon their own clinical expertise to arrive
at a final judgment. This poses significant challenges for the attending physician, as the specialists’
conclusions are not always fully reliable. Over-reliance on specialist input can lead to suboptimal
outcomes. Secondly, different specialists may offer conflicting interpretations of the same case,
creating misalignment issues. If the model is unable to reconcile its internal reasoning with external
expert input, it risks compounding errors. For instance, while majority voting may help mitigate the
influence of less competent specialists, it can also suppress minority views, including potentially the
only correct one. Such multi-agent collaboration can yield adverse effects when the model is not
properly aligned with the nature and limitations of expert knowledge.

To address these challenges, we draw inspiration from curriculum learning (Bengio et al., 2009),
which emphasizes the importance of organizing learning experiences in a meaningful progression,
i.e., from easier to harder tasks. Motivated by this principle, see in Alg. 1, we propose the Curriculum-
based Entropy-Aware Reinforcement Learning for Multi-Agent Collaboration (C-MARL). The
core principle of this framework is that the attending physician agent faces a dynamic exploration-
exploitation dilemma when integrating specialist opinions: it must learn when to trust and adopt a
consensus (exploit) and when to challenge it and search for novel diagnostic paths (explore). We
posit that the policy entropy is the central mechanism for navigating this trade-off (Cui et al., 2025).
Therefore, C-MARL employs a purpose-designed curriculum to actively shape the policy entropy of
the attending physician, enabling it to adapt to specialist information of varying reliability.

Curriculum Design based on Specialist Reliability. Unlike previous curriculum learning ap-
proaches that define difficulty based on problem formulation or data domains, we categorize tasks
based on the accuracy of specialists’ diagnoses yd ∼ π

θ
(d)
SP

(yd | x), denoted by s = Acc(yd, y∗). The
dataset is divided into three levels: fully correct specialist results (s = 1) are labeled as easy, partially
correct results (0 < s < 1) are labeled as medium, and completely incorrect results (s = 0) are
labeled as hard. The datasets corresponding to the three levels are denoted as Deasy,Dmedium,Dhard,
respectively, and D = Deasy ∪ Dmedium ∪ Dhard. Based on these data of three categories, we design a

4
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Algorithm 1: Curriculum-Based Multi-Agent Reinforcement Learning (C-MARL)

Input: Dataset D = {x(i)
v , x

(i)
t , y∗(i)}Ni=1, policy model πθ , old policy πold, group size G, specialist

responses y(i)
d .

Output: πθ .
1 Initialize Deasy, Dmedium, Dhard as empty sets
2 foreach (xv, xt, y

∗) ∈ D do
3 ▷ Use Specialists’ Accuracy to Categorize the Dataset by Task Difficulty
4 Calculate the accuracy of the specialist doctor s← Acc(yd, y∗)
5 if s = 1 then
6 Put {(xv, xt), y

∗} into Deasy
7 if 0 < s < 1 then
8 Put {(xv, xt), y

∗} into Dmedium
9 if s = 0 then

10 Put {(xv, xt), y
∗} into Dhard

11 foreach (xv, xt, y
∗) ∈ {Deasy,Dmedium,Dhard} in batch do

12 ▷ Utilize the RL Algorithm for Optimization at Each Stage
13 Sample G rollouts {y(1)

final, y
(2)
final, · · · , y

(G)
final } from πold, where y

(g)
final ← πθ(y | (xv, xt), yd)

14 foreach rollout yfinal do
15 Calculate the outcome reward R(yfinal) = Rformat(yfinal) +Raccuracy(yfinal)

16 Compute the groupwise advantage Ai ←
Ri−mean({Rj}Gj=0)

std({Rj}Gj=0)

17 Calculate the entropy regularization term Ht ← −
∑V

j=1 pt,j log pt,j
18 Compute the loss in Equation 3.1 and update πθ

three-stage curriculum reinforcement learning process to optimize the attending physician’s ability
to handle different types of specialist knowledge, such as when to accurately leverage specialist
knowledge and when to rely on their own understanding to solve problems.

Reinforcement Learning with Dynamic Entropy Regulation. We utilize GRPO as our base
RL algorithm. For each query x, the attending physician πθattend

GP
generates a group of G responses

{y(i)final}Gi=1. The reward Ri for each response is determined by a format reward Rformat ∈ {0, 0.5}
and an accuracy reward Raccuracy ∈ {0, 1}, and GRPO calculates the relative advantage Ai =
Ri−mean({Rj})

std({Rj}) for the policy update. To achieve dynamic entropy control, we introduce an entropy
regularization term into the standard GRPO objective function:

JC-MARL(θ) = E
[
JGRPO(θ) + γs ·Ht(πθattend

GP
)
]
, Ht = −

V∑
j=1

pt,j log pt,j , (3.1)

where pt = πθ(· | R<t, x;T ) = Softmax
(zt
τ

)
.

Here, JGRPO is the PPO-clip loss term from GRPO in Eq. 2.1, V is the vocabulary size, zt ∈ RV are
the pre-softmax logits, and τ is the decoding temperature. Critically, the entropy bonus coefficient γs
is not a fixed hyperparameter but is dynamically set based on the curriculum level s of the current
sample. For s = 1, we set γeasy ≈ 0, as we do not need to explicitly reward exploration when the
agent should be learning to exploit reliable specialist knowledge. For 0 < s < 1, we use a moderate
positive bonus γmedium > 0 to encourage policy diversity and prevent the agent from becoming
overconfident in the face of conflicting information. For s = 0, we apply a strong positive bonus
γhard ≫ γmedium to aggressively incentivize exploration, compelling the model to break from the
misleading specialist consensus.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical insights explaining why curriculum learning works better
than the usual SGD when we optimize the GRPO objective function 3.1. Specifically, we begin by
analyzing the effectiveness of the curriculum learning strategy for policy learning. Our goal is to
determine the number of samples and iterations required to achieve a specified error tolerance.

The curriculum learning procedure can be simplified as follows. We consider J batches of samples
arranged in increasing order of difficulty. In our setting (Section 3.2), the curriculum is composed of

5
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J = 3 difficulty stages: easy, medium, and hard. Starting from j = 1, we sequentially train on each
batch using Stochastic Gradient Descent (SGD) to obtain the policies πθ̂j,Kj

(yi | x), j = 1, . . . , J .
We aim to track the policy’s trajectory and convergence throughout this process. To model the
difficulty of the data from each batch, we make the following assumption and suppose the target
parameter θ∗ = θ∗J :
Assumption 4.1. From the easiest to the hardest dataset, for j-th dataset, we assume

Dj =
{
(xi, yi)

nj

i=1 | xi ∼ p(x), yi ∼ πθ∗
j
(y | x)

}
Theorem 4.1 (Informal). Suppose Assumption 4.1 holds, together with some regularity conditions
(Assumptions B.2–B.6 in Appendix B). Take ϵ1 < L1δ

2/16. For curriculum learning, in order to
make the error ∥θ̂cl−θ⋆∥22 < 4ϵ1

L1
, set nj satisfies Rnj

(Π) ≤ ϵ1/4, where Rnj
(Π) is the Rademacher

complexity of policy class Π and uses the learning rate η ≤ µ/L 2
2 , and set the total iteration as

K = Ω

 1

µη

J−1∑
j=0

log
L 2
2 ∥θ⋆j − θ⋆j+1∥22

µ ϵ1

 .

For regular SGD, in order to make the error ∥θ̂rg − θ⋆rg∥22 < 4ϵ1
L1

, set nrg to satisfy Rnrg
(Π) ≤ ϵ1/4

and uses the same η, and take

Krg = Ω

(
1

µη
log

L 2
2 ∥θ⋆0 − θ⋆rg∥22

µ ϵ1

)
.

With probability at least 1− exp
(
− nrgϵ

2
1

2B2
1

)
−
∑J

j=1 exp
(
− njϵ

2
1

2B2
1

)
− (J + 1)ϵ1, we have

∥θ̂cl − θ⋆∥22 < ∥θ̂rg − θ⋆∥2.

Here, θ⋆0 is the starting point; θ̂cl and θ̂rg are the final outputs of curriculum learning and standard
SGD, respectively; nj is the sample size of batch j; nrg is the total sample size for standard SGD; δ
measures the distance between the true minimizer θ⋆ and the population minimizer of standard SGD
θ⋆rg; B1, L1, L2, µ, Ω(·) and Rn(·) are defined in Appendix B.
Remark 4.1. This theorem provides a formal justification for the convergence of curriculum learning.
The total training time, K, depends on the sum of logarithmic distances between the optimal policies
of consecutive stages:

∑J−1
j=0 log ∥θ⋆j − θ⋆j+1∥22. An effective curriculum ensures these intermediate

distances are small, allowing the solution from each stage to serve as a strong warm start for the
next. CL thereby decomposes a single, challenging optimization problem, leaping directly from
an initial θ⋆0 to the final θ⋆J , into a sequence of more tractable sub-problems, creating an efficient
optimization path. In contrast, we establish a lower bound for standard SGD which shows that, under
these conditions, it fails to converge to the optimal policy. Details are provided in Appendix B.

5 EXPERIMENTS

In this section, we evaluate the performance of MMedAgent-RL, aiming to answer the following
questions: (1) Can MMedAgent-RL effectively improve model performance compared to other
LVLMs and the Qwen2.5-VL-based baselines? (2) How does MMedAgent-RL perform on out-of-
distribution datasets? (3) Does each proposed component contribute to performance gains? (4) What
is the impact of choosing different models as specialist doctors? (5) Does MMedAgent-RL truly
enhance the model’s capabilities across various specialist configurations?

5.1 EXPERIMENTAL SETUP

Implementation Details. We use Qwen2.5-VL (Bai et al., 2025) as the base model. We design the
prompt template shown in Table 4, clearly specifying the required output structure, which includes
using <think> and <answer> tags to separately contain the reasoning process and the final answer.
The rollout batch size and training batch size are both set to 128, with 8 rollouts generated for each
sample. The sampling temperature is set to 1.0 to encourage response diversity, and optimization is

6
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Table 1: The results of the medical VQA benchmark. Here, MMMU denotes MMMU (Health
& Medicine track). The best results and second best results are highlighted in red and blue ,
respectively. Majority voting is used for the test-time scaling (TTS).

In-Domain Datasets Out-of-Distribution Datasets
Model VQA-RAD SLAKE PathVQA Avg. OmniMedVQA MMMU-Med Avg.

GPT-4o 61.0 75.5 69.4 68.6 68.5 69.7 69.1
Med-Flamingo 45.4 43.5 54.7 47.9 30.7 28.3 29.5
RadFM 50.6 34.6 38.7 41.3 28.2 27.0 27.6
LLaVA-Med-7B 51.4 48.6 56.8 52.3 44.1 36.9 40.5
Qwen-VL-Chat 47.0 56.0 55.1 52.7 48.3 32.7 40.5
Yi-VL-34B 53.0 58.9 47.3 53.1 51.5 41.5 46.5
LLaVA-v1.6-7B 52.6 57.9 47.9 52.8 49.0 33.1 41.1
LLaVA-v1.6-13B 55.8 58.9 51.9 55.5 48.0 39.3 43.7
LLaVA-v1.6-34B 58.6 67.3 59.1 61.6 58.7 48.8 53.8
LLaVA-v1.5-LLaMA3-8B 54.2 59.4 54.1 55.9 44.6 38.2 41.4
HuatuoGPT-Vision-7B 63.0 77.2 58.7 66.3 74.6 51.0 62.8
Qwen2.5-VL-3B 61.0 62.7 57.6 60.4 60.1 54.5 57.3
Qwen2.5-VL-7B 61.8 64.7 60.5 62.3 60.8 56.6 58.7
MedVLThinker-7B 63.7 67.8 65.2 65.6 62.4 57.0 59.7

Multi-Agent Collaboration
MedAgents 65.6 67.9 63.2 65.6 55.8 49.7 52.6
MDAgents 66.8 68.2 65.4 66.8 58.2 52.3 55.1
AFlow 67.3 68.9 66.4 67.5 59.6 53.6 56.6
MMedAgent-RL (7B) 71.5 +10% 76.2 +12% 72.3 +12% 73.3 +11% 73.3 +13% 71.9 +15% 72.6 +14%

w/ Test-Time Scaling 73.9 +12% 80.1+15% 74.3 +14% 76.1 +14% 79.6 +19% 73.5 +17% 76.6 +18%

done with a learning rate of 1× 10−6. The KL divergence coefficients are set to 1× 10−3, 4× 10−3,
and 1× 10−2 respectively for curriculum reinforcement learning. For the number of specialists, we
set e = 3. The details are shown in Appendix F.2.

Dataset Splitting and Difficulty Stratification. We adhere strictly to the official guidelines for
partitioning the training, validation, and test sets. To facilitate our curriculum learning strategy, we
further categorize samples into three difficulty levels (Easy, Medium, Hard) based on the consistency
and accuracy of specialist responses. It is important to note that this difficulty grading is utilized
exclusively during the training phase to schedule the curriculum. During inference, the model
generates responses without access to difficulty labels or ground truth information. The difficulty-
based breakdown presented in our analysis is applied post-hoc to the test set solely to visualize model
robustness against specialist noise, ensuring no data leakage.

Baseline Methods. We compare MMedAgent-RL with methods under two different settings: 1)
Single-agent setting: This includes a series of state-of-the-art LVLMs, encompassing both general
LVLMs and domain-specific LVLMs. Specifically, we include comparisons of the LLaVA series (Liu
et al., 2024a), Yi-VL-34B (Young et al., 2024), Qwen-VL (Bai et al., 2025), LLaVA-Med (Li et al.,
2023), MedFlamingo (Moor et al., 2023), RadFM (Wu et al., 2023), MedVLThinker-7B Huang et al.
(2025) and GPT-4o (OpenAI, 2024). 2) Multi-agent setting: This includes MedAgents (Tang et al.,
2024), MDAgents (Kim et al., 2024), AFlow (Zhang et al., 2024).

Data and Metrics. We train on the three medical VQA datasets, i.e., VQA-RAD (Lau et al., 2018),
SLAKE (Liu et al., 2021), PathVQA (He et al., 2020). Their test sets are considered the in-domain
test sets. Additionally, following Chen et al. (2024a), we select the health and medicine subset of
MMMU (Yue et al., 2024), and OmniMedVQA (Hu et al., 2024b) as out-of-distribution datasets. All
evaluation questions are multiple-choice, and accuracy is used as the evaluation metric.

5.2 MAIN RESULTS

In this section, we conduct a comprehensive comparison on the medical VQA task involving six
datasets and various LVLMs as well as baseline methods based on Qwen2.5-VL.

Comparison with Baselines in In-Distribution Datasets. Table 1 shows the performance of various
models across four medical VQA benchmarks. General LVLMs like LLaVA-v1.6-34B and GPT-4o
exhibit consistently strong performance, outperforming earlier medical-specific models such as
Med-Flamingo and RadFM. Notably, GPT-4o achieves the highest average score (68.6%) among
all single-agent models, demonstrating its powerful generalization capabilities even in specialized
medical domains. Interestingly, the multi-agent collaboration strategy further boosts performance.
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MMedAgent-RL achieves the best overall average (73.3%), surpassing even the strongest single-agent
models. This highlights the effectiveness of collaborative inference in leveraging the complementary
strengths of different models. In addition, we utilized majority voting as the method for test-
time scaling (Snell et al., 2024), which further improved the model performance by 4.5%. This
demonstrates that optimizing token entropy during the RL process is positive for efficient sampling.
For different specialists, a varied spirit of exploration remains very important.

Performance in Out-of-Distribution Datasets. We evaluate the performance of MMedAgent-RL
across various out-of-distribution (OOD) datasets. The results are presented in Table 1, which
demonstrates the generalization of our approach in adapting to different OOD scenarios. These two
OOD datasets cover multiple body parts and involve various medical image modalities. Through rein-
forcement learning, MMedAgent-RL demonstrates significant superiority across multiple modalities,
outperforming the base model by 21% and the SFT method by 23.6%. Moreover, it surpasses the
performance of multi-agent collaboration methods that cannot optimize models, i.e., MedAgents,
MDAgents and AFlow, by 23%, 19% and 17%, highlighting the effectiveness of our approach in
handling diverse and unseen data distributions.

5.3 ANALYSIS

Figure 3: Results of different settings of
specialist doctors.

Figure 4: Results under different levels of deci-
sion difficulty.

In this section, we conduct a detailed performance analysis at each step and explore how model type,
numbers of specialist doctors, and varying levels of decision difficulty affect the results, to better
understand the performance gains achieved by MMedAgent-RL.

Ablation Studies. We conducted a series of ablation experiments to evaluate the impact of each
component in MMedAgent-RL, as shown in Table 2. We can see that: (1) Reliable triage doctors
are important. Accurately determining the department to which a specialist doctor belongs helps the
model call upon knowledge from their corresponding field of expertise to answer questions, improving
the accuracy of specialist doctors’ answers. A fine-tuned triage doctor significantly improves model
performance compared to the original model, with an average performance increase of 3% across
multiple datasets. (2) Based on this, the mechanism of specialist doctor consultation is introduced,
further helping the decision-making agent fully utilize expert opinions, with an average performance
increase of 4.5% across multiple datasets. (3) Most importantly, the addition of curriculum multi-agent
reinforcement learning (C-MARL) enhanced the decision-making agent’s understanding of specialist
doctors’ knowledge, achieving a significant performance improvement of 18.6%. This indicates that
C-MARL can effectively solve the problem of overall misalignment between the model and external
knwoledge. Specifically, each stage plays a corresponding role and can understand the specialist
doctors’ knowledge according to the goals of different stages, achieving overall performance gains.

Table 2: Ablation results on ID and OOD datasets.

Model ID OOD
VQA-RAD SLAKE OmniMedVQA MMMU

MMedAgent-RL 71.5 76.2 73.3 71.9

w/o Triage 66.3 69.9 66.2 59.3
w/o Specialists 65.8 67.8 64.4 54.2
w/o C-MARL 63.5 65.5 57.9 50.2

+ Easy 64.7 69.3 68.2 58.0
+ Medium 69.4 76.9 70.8 68.8

+ Hard 71.5 76.2 73.3 71.9

Analysis of Specialist Doctors. We ana-
lyze the types and number of models play-
ing the role of specialist doctors. Specifi-
cally, as shown in Figure 3, regarding the
model types, the performance of the final
decision-making agent is closely related to
the performance of the specialist doctors.
Therefore, we used a series of models that
performed well on multiple datasets, such
as o3, GPT-4o, HuatuoGPT-Vision, and
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Qwen2.5-VL, as specialist doctors. Since
the areas or tasks that each model excels in are not completely consistent, the specialist doctor played
by o3 ultimately performed the best. Its performance across various aspects was relatively balanced,
enabling MMedAgent-RL to achieve the best performance. Refer to Appendix G.2 for details.

Performance under Different Levels of Decision Difficulty. To analyze the robustness of the
GP agent against noisy advice, we categorize test samples into three difficulty levels based on the
consistency and correctness of specialist outputs: Easy (all specialists are correct), Medium (spe-
cialists disagree), and Hard (specialists consistently provide incorrect advice, creating a misleading
consensus). Figure 4 illustrates the performance of baselines versus MMedAgent-RL across these
categories. While specialist noise—particularly in the ’Hard’ setting—significantly hampers the
baseline model’s decision-making, our C-MARL method enables the agent to gradually learn to
distinguish and selectively utilize specialist knowledge. Consequently, MMedAgent-RL achieves an
overall performance improvement of 20%, with the most significant gains observed in overcoming
misleading specialist hallucinations in the hard cases.

Case Study and Outlook on “Aha Moments”. As shown in Figure 5, MMedAgent-RL demonstrates
strong performance across multiple cases. It provides accurate answers within the <answer>
tags and generates high-quality reasoning resembling that of human doctors: defining the disease,
analyzing images, and checking consistency with the definition. It also evaluates specialists’ outputs
before reasoning out the correct answer. While lacking the “aha moment” observed in humans, this
structured reasoning highlights the potential for more human-like scientific AI systems.

6 RELATED WORK

Medical Vision-Language Models. The advancement of Vision-Language Models (VLMs) (Liu
et al., 2024a;b; Zhu et al., 2023; Bai et al., 2023; Chen et al., 2024c) has catalyzed significant
progress in medical applications (Xia et al., 2024a;c;b; Chen et al., 2024a; Zhu et al., 2024), with
large-scale models like LLaVA-Med (Li et al., 2024b), HuatuoGPT-Vision (Chen et al., 2024a),
and VILA-M3 (Nath et al., 2024) demonstrating profound results in medical diagnostics. However,
single models struggle to handle cross-domain expertise. Although multi-agent systems (Li et al.,
2024c; Kim et al., 2024; Tang et al., 2024; Zhang et al., 2024) have been proposed to combine
diverse medical expertise, existing approaches typically use preset workflows that lack adaptive
reasoning capabilities. Works such as MedAgentsBench (Tang et al., 2025) and AI Hospital Fan
et al. (2025) have established frameworks for evaluating multi-agent interactions and diagnostic
thinking. Furthermore, AgentClinic Schmidgall et al. (2024) introduces a multimodal benchmark
to simulate clinical environments specifically for evaluating embodied agents. Additionally, most
Med-VLMs are developed through supervised fine-tuning (SFT) on general VLMs using biomedical
instruction data (Chen et al., 2024a; Li et al., 2023; Liu et al., 2023), which is limited by the scarcity
of high-quality reasoning examples and often results in models that struggle with complex diagnostic
reasoning across specialties.
Reinforcement Learning for Multimodal Reasoning. To address the limitations of static multi-
agent systems and overcome the constraints of supervised fine-tuning, Reinforcement Learning
(RL) offers a promising alternative for optimizing medical reasoning. RL evolves from establishing
foundational frameworks for learning from human preferences (Christiano et al., 2017; Ziegler et al.,
2019) to developing sophisticated approaches like RLHF for instruction following (Ouyang et al.,
2022) and self-correction (Kumar et al., 2024). Recent advances with DeepSeek-R1 (Guo et al., 2025)
demonstrate that LLMs can leverage RL to enhance reasoning capabilities in complex tasks without
supervision, showing exceptional performance in mathematics and coding challenges (Yeo et al.,
2025). This success has extended to multimodal reasoning (Meng et al., 2025; Shen et al., 2025;
Wang et al., 2025a; Chen et al., 2025; Zhou et al., 2025; Liu et al., 2025), including the biomedical
domain (Pan et al., 2025). DoctorAgent-RL (Feng et al., 2025) employs a multi-agent collaborative
RL system specifically to optimize multi-turn clinical dialogue policies. Then Med-U1 Zhang
et al. (2025) utilizes large-scale RL to incentivize unified reasoning patterns in medical LLMs.
However, prior RL-based approaches for multimodal reasoning have primarily focused on optimizing
a single model, leaving the potential of RL for enhancing multi-agent medical collaboration largely
unexplored.
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Question: does muscle show kidney, adult 
polycystic kidney? 

Options: A. yes, B. no.

Answer: B. no.

Ours: To determine if muscle shows kidney or adult polycystic 
kidney, we would typically look for specific characteristics such 
as the presence of renal tubules, glomeruli, and the typical 
appearance of kidney tissue under a microscope. The 
radiologist's report mentions "no," which indicates that this 
image is not related to adult polycystic kidney disease. The 
pathologist's report mentions “Not". Given these points: it is 
unlikely that muscle shows kidney or adult polycystic kidney.

<answer>B. no</answer>

Question: does the histologic appearance 
demonstrate small round, uniform nuclei and 
moderate cytoplasm? 

Options: A. yes, B. no.

Answer: A. yes.
Ours: The histologic appearance described in the image shows 
small round, uniform nuclei and moderate cytoplasm, which is 
characteristic of certain types of cancer cells, such as those 
found in breast or ovarian cancer. The pathologist's suggestion 
of "No, the nuclei vary in size" is less likely because the nuclei in 
the image are clearly of uniform size, which usually doesn't show 
these characteristics.
<answer>A. yes</answer>

Figure 5: Several case analyses. In the model responses, blue text represents the process of reasoning
about relevant medical knowledge based on the question, and red text represents the analysis of the
answer provided by the specialists.

7 CONCLUSION

This work presents MMedAgent-RL, a novel RL framework for multi-agent collaboration in medical
multimodal reasoning. The framework mimics a clinical “triage-and-referral” system, using a
curriculum RL strategy to train a primary model to intelligently handle noisy or conflicting inputs
from different “specialist” agents. Experiments demonstrate the method’s strong performance across
multiple medical visual question answering datasets, offering a promising new direction for building
reasoning models that more closely emulate human diagnostic thinking.

Ethics Statement. All authors have read and comply with the ICLR Code of Ethics. This work does
not involve human subjects or sensitive data, and we are unaware of any potential misuse, harm, or
bias. No conflicts of interest or compromising sponsorships exist.

Reproducibility Statement Details of the proposed methodology, training procedure, hyperparame-
ters, and evaluation metrics are provided in Section F. We include complete algorithm pseudocode in
Alg. 1 and a full description of the datasets in Appendix D and Appendix F.1.
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A LARGE LANGUAGE MODEL USAGE

All content in this article is entirely authored by the writers. The LLM (we use Gemini2.5-Pro) was
used solely for language refinement and stylistic polishing, without contributing to content generation.
All LLM-refined passages were subsequently reviewed and revised by the authors.

B OMITTED THEOREMS AND PROOFS

B.1 NOTATION

We denote by Rn(F) := ES=(x1,...,xn)

[
Eσ

[
supf∈F

1
n

∑n
i=1 σif(xi)

]]
the (expected) Rademacher

complexity of the function class F ⊆ {f : X → R}, where σ1, . . . , σn are i.i.d. Rademacher
variables taking values in {−1,+1} with probability 1/2 each and the outer expectation is over
the sample S. The Kullback–Leibler (KL) divergence from a discrete distribution p to a discrete
distribution q (defined over a common support X ) is given by DKL [p ∥ q] :=

∑
x∈X p(x) log

(
p(x)
q(x)

)
,

under the assumption that whenever p(x) > 0, one also has q(x) > 0 for all x ∈ X . For two positive
sequences {an} and {bn}, write an = o(bn) if limn an/bn = 0, an = O(bn) if an ≤ Cbn, and
an = Ω(bn) if an ≥ Cbn for all n and some positive C. The l2 norm of a vector x ∈ Rd is

defined as ∥x∥2 :=
(∑d

i=1 x
2
i

)1/2
. For a measurable function f : X → R, the L∞ norm is

∥f∥∞ := supx∈X |f(x)|, which equals supx∈X |f(x)| when X is finite.

B.2 SOME USEFUL LEMMAS

Lemma B.1 (Theorem 4.10 in Wainwright (2019)). For any b-uniformly bounded class of functions
F , any positive integer n ≥ 1, and any scalar δ ≥ 0, we have

P

(
sup
f∈F

|(Pn − P)[f ]| ≤ 2Rn(F) + δ

)
≥ 1− exp

(
−nδ2

2b2

)
.

A function class F is said to be b-uniformly bounded if ∥f∥∞ ≤ b,∀f ∈ F .

To prove Theorem 4.1, we split the analysis into two parts: Theorem B.1, which establishes the upper
bound for curriculum learning, and Theorem B.2, which establishes the lower bound for standard
SGD. Combining these results yields Theorem 4.1.

B.3 ANALYSIS FOR CURRICULUM LEARNING

In this section, we systematically develop the theoretical foundation for curriculum learning. As
previously discussed, we reiterate here that the curriculum learning strategy is effective for policy
learning in the reinforcement learning (RL) setting. Our goal is to quantify the number of samples
required to achieve a target error level ϵ.

Recall the distribution assumption:
Assumption B.1. From the easiest to the hardest dataset, for j-th dataset, we assume

Dj =
{
(xi, yi)

nj

i=1 | xi ∼ p(x), yi ∼ πθ∗
j
(y | x)

}
.

Recall that the GRPO loss is given by

JGRPO(θ) = Ex,{yi}

[
1

G

G∑
i=1

(
min

(
riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai

)
− β DKL(πθ∥πref)

)]
, ri =

πθ(yi | x)
πold(yi | x)

.

(B.1)
And our loss function is defined as

JC-MARL(θ) = E
[
JGRPO(θ) + γs ·Ht(πθattend

GP
)
]
, Ht = −

V∑
j=1

pt,j log pt,j , (B.2)

where pt = πθ(· | R<t, x;T ) = Softmax
(zt
τ

)
.
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When minimizing the objective, we can interpret the procedure as performing SGD on the batch loss.
Specifically, define

Lj(θ) = −Ex∼p(x), y∼πθ∗
j
(y|x)

[
JGRPO(θ) + γs ·Ht(πθattend

GP
)
]
.

It is natural to introduce the following self-consistency condition:

Assumption B.2 (Self-consistency). θ∗j is the minimizer of Lj(θ).

Under this assumption, minimizing Lj(θ) allows us to recover the true policy.

For the empirical version, the dataset at stage j is

Dj =
{
(xi, yi)

nj

i=1 | xi ∼ p(x), yi ∼ πθ∗
j
(y | x)

}
,

and the overall dataset is

D =

J⋃
j=1

Dj .

The corresponding empirical approximation of the batch loss is

L̃j(θ) = − 1

nj

∑
(x,y)∈Dj

[
JGRPO(θ) + γs ·Ht(πθattend

GP
)
]
.

We denote its minimizer by θ̃j .

The overall training procedure then consists of successively minimizing L̃j(θ) for j = 1, . . . , J ,
where at each stage j we perform Kj iterations of SGD.

We first apply classical learning theory techniques to establish the convergence between L̃j(θ) and
Lj(θ). After that, we analyze the behavior of the SGD iterations.

To proceed, we introduce two assumptions on the loss function class

F =
{
Lj(θ), L̃j(θ) | j = 1, . . . , J

}
.

Assumption B.3 (Boundedness). For any loss function f ∈ F , ∥f∥∞ ≤ B1.

Assumption B.4. For any loss function f ∈ F , let θ∗f denote its minimizer. If f(θ)− f(θ∗f ) ≤ U1,
then

L1

∥∥θ − θ∗f
∥∥2
2
≤ f(θ)− f(θ∗f ).

Remark B.1. Here we assume that, in a neighborhood of its minimizer, the objective is locally convex.
Our GRPO loss satisfies this assumption.

Proposition B.1. Suppose Assumptions B.1–B.4 hold. At the j-th step, for any 0 < ϵ1 < U1, assume
the sample size nj is sufficiently large so that

Rnj
(Π) ≤ ϵ1

4
,

where Π = {πθ(y | x) : θ ∈ Θ} denotes the distribution space induced by the parameter space Θ.
Define the event

Ω
(1)
j =

{∥∥∥θ̃j − θ⋆j

∥∥∥2
2
≤ ϵ1

L1

}
.

Then,

P
(
Ω

(1)
j

)
≥ 1− exp

(
−njϵ

2
1

2B2
1

)
.

In other words, with high probability, the empirical minimizer θ̃j lies close to the population minimizer
θ⋆j in the parameter space, and the estimation error decreases as the sample size nj increases.

Remark B.2. Usually, for regular parameter space, Rnj (Π) is o(1).
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Proof. We begin by decomposing the excess risk:

Lj(θ̃j)− Lj(θ
⋆
j ) ≤ Lj(θ̃j)− L̃j(θ̃j) + L̃j(θ̃j)− L̃j(θ

⋆
j ) + L̃j(θ

⋆
j )− Lj(θ

⋆
j ).

Since θ̃j minimizes L̃j(θ), the middle term is non-positive. Hence,

Lj(θ̃j)− Lj(θ
⋆
j ) ≤ 2 sup

θ∈Θ

∣∣∣L̃j(θ)− Lj(θ)
∣∣∣.

Applying Lemma B.1, we obtain the high-probability bound

P
(
Lj(θ̃j)− Lj(θ

⋆
j ) ≤ 2Rnj (Π) +

ϵ1
2

)
≥ 1− exp

(
−njϵ

2
1

2B2
1

)
.

If nj is chosen sufficiently large such that

2Rnj
(Π) ≤ ϵ1

2
,

then with the same probability we have

Lj(θ̃j)− Lj(θ
⋆
j ) ≤ ϵ1.

Moreover, if ϵ1 ≤ U1, Assumption B.4 implies

L1

∥∥∥θ̃j − θ⋆j

∥∥∥2
2
≤ Lj(θ̃j)− Lj(θ

⋆
j ).

Combining the above, we obtain

P
(∥∥∥θ̃j − θ⋆j

∥∥∥2
2
≤ ϵ1

L1

)
= P

(
Ω

(1)
j

)
≥ 1− exp

(
−njϵ

2
1

2B2
1

)
.

This establishes the claim.

To establish the iteration complexity at stage j, we impose two standard conditions on the loss
function class F .

Assumption B.5 (Smoothness). Let L2 > 0. For any loss function f ∈ F , the gradient of f is
L2-Lipschitz continuous. That is, for all θ, θ̃ ∈ Θ,∥∥∥∇f(θ)−∇f(θ̃)

∥∥∥
2

≤ L2

∥∥∥θ − θ̃
∥∥∥
2
.

Assumption B.6 (Polyak–Łojasiewicz (PL) condition). For any loss function f ∈ F , we assume that
f satisfies the PL inequality with parameter µ > 0. Specifically, for all θ ∈ Θ,

f(θ)− f(θ⋆f ) ≤ 1

2µ
∥∇f(θ)∥22,

where θ⋆f = argminθ∈Θ f(θ) denotes the minimizer of f .

Based on Assumptions B.5 and B.6, Lei et al. (2019) established the following result.

Lemma B.2. Suppose Assumptions B.5 and B.6 hold, and that ∇f(θ⋆f ) = 0. If the step size satisfies
ηt = η ≤ µ/L2, then

E[f(θt+1)]− f(θ⋆f ) ≤ (1− µη)t
(
f(θ1)− f(θ⋆f )

)
,

where f ∈ F and θ⋆f = argminθ∈Θ f(θ).

Next proposition give the detail how many iteration do we need in j step SGD
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Proposition B.2. Suppose Assumptions B.1, B.5, B.6, and B.4 hold. Fix stage j. Run SGD on
the empirical loss L̃j with a constant stepsize η ≤ µ/L 2

2 for Kj iterations, starting from θ̂j,0 =

θ̂j−1,Kj−1
. Let

Dj−1 =
∥∥∥θ̂j,0 − θ̃j

∥∥∥2
2
.

Define the event

Ω
(2)
j =

{∥∥∥θ̂j,Kj − θ̃j

∥∥∥2
2
≤ ϵ1

L1

}
.

Then for any 0 < ϵ1 ≤ U1, if

Kj = O

(
1

µη
log

(
L 2
2 Dj−1

2µ ϵ21

))
,

we have
P
(
Ω

(2)
j

)
≥ 1− ϵ1.

Proof. Firstly, applying Lemma B.2 (with f = L̃j and ηt = η ≤ µ/L2), we obtain for Kj ≥ 0,

E
[
L̃j(θ̂j,Kj )− L̃j(θ̃j)

]
≤ (1− µη)Kj

(
L̃j(θ̂j,0)− L̃j(θ̃j)

)
.

By Assumptions B.6 (PL) and B.5 (Lipschitz gradient), we have

L̃j(θ̂j,0)− L̃j(θ̃j) ≤ 1

2µ

∥∥∥∇L̃j(θ̂j,0)
∥∥∥2
2

≤ L2
2

2µ

∥∥∥θ̂j,0 − θ̃j

∥∥∥2
2
.

Taking expectations over the randomness up to stage j − 1 (recall θ̂j,0 = θ̂j−1,Kj−1
), we get

E
[
L̃j(θ̂j,Kj

)− L̃j(θ̃j)
]

≤ L 2
2

2µ
(1− µη)Kj E

[∥∥∥θ̂j,0 − θ̃j

∥∥∥2
2

]
=

L 2
2

2µ
(1− µη)Kj Dj−1.

Choose Kj so that
L 2
2

2µ
(1− µη)Kj Dj−1 ≤ ϵ21.

Using 1− µη ≤ e−µη , a sufficient condition is

Kj ≥ 1

µη
log

(
L 2
2 Dj−1

2µ ϵ1

)
.

By Markov’s inequality, with probability at least 1− ϵ1,

Ω
(2)
j =

{∣∣∣ L̃j(θ̂j,Kj )− L̃j(θ̃j)
∣∣∣ ≤ ϵ1

}
occurs. On Ω

(2)
j , Assumption B.4 yields∥∥∥θ̂j,Kj

− θ̃j

∥∥∥2
2

≤ 1

L1

∣∣∣ L̃j(θ̂j,Kj
)− L̃j(θ̃j)

∣∣∣ ≤ ϵ1
L1

,

which completes the proof.

Theorem B.1. Suppose Assumptions B.1–B.6 hold. Fix 0 < ϵ1 ≤ U1. For each stage j = 1, . . . , J
choose nj such that Rnj

(Θ) ≤ ϵ1/4, and run SGD with constant stepsize η ≤ µ/L 2
2 . A sufficient

total number of iterations is

K = O

 1

µη

J−1∑
j=0

log
L 2
2 ∥θ⋆j − θ⋆j+1∥22

µ ϵ1

 .

With this K, the final iterate satisfies ∥θ̂J,K − θ⋆J∥22 ≤ ϵ1/L1 with probability at least 1 −∑J
j=1 exp

(
−njϵ

2
1

2B2
1

)
− J ϵ1.
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Proof. Recall the following events from Propositions B.1 and B.2:

Ω
(1)
j =

{∥∥∥θ̃j − θ⋆j

∥∥∥2
2
≤ ϵ1

L1

}
, Ω

(2)
j =

{∥∥∥θ̂j,Kj
− θ̃j

∥∥∥2
2
≤ ϵ1

L1

}
.

By Proposition B.1 and the choice of nj ,

P
(
Ω

(1)
j

)
≥ 1− exp

(
−njϵ

2
1

2B2
1

)
.

By Proposition B.2 and the choice of Kj ,

P
(
Ω

(2)
j

)
≥ 1− ϵ1.

Let

Ω =

J⋂
j=1

(
Ω

(1)
j ∩ Ω

(2)
j

)
.

A union bound gives

P(Ω) ≥ 1 −
J∑

j=1

exp

(
−njϵ

2
1

2B2
1

)
− J ϵ1.

Condition on Ω. From the end of stage j to the start of stage j + 1 we have θ̂j,Kj
= θ̂j+1,0, and thus∥∥∥θ̂j+1,0 − θ̃j+1

∥∥∥
2
≤
∥∥∥θ̂j,Kj − θ̃j

∥∥∥
2
+
∥∥∥θ̃j − θ⋆j

∥∥∥
2
+
∥∥θ⋆j − θ⋆j+1

∥∥
2
+
∥∥∥θ⋆j+1 − θ̃j+1

∥∥∥
2

≤
√

ϵ1
L1

+
√

ϵ1
L1

+
∥∥θ⋆j − θ⋆j+1

∥∥
2
+
√

ϵ1
L1

= 3
√

ϵ1
L1

+
∥∥θ⋆j − θ⋆j+1

∥∥
2
,

where we used Ω
(2)
j and Assumption B.4 to bound

∥∥∥θ̂j,Kj
− θ̃j

∥∥∥2
2
≤ ϵ1/L1, and Ω

(1)
j , Ω(1)

j+1 to bound

the two terms involving θ̃j and θ̃j+1. Squaring both sides and using (a+ b)2 ≤ 2a2 + 2b2 gives the
displayed recursion

Dj =
∥∥∥θ̂j+1,0 − θ̃j+1

∥∥∥2
2

≤ 18 ϵ1
L1

+ 2
∥∥θ⋆j − θ⋆j+1

∥∥2
2
.

By Proposition B.2, choosing

Kj = O

(
1

µη
log

(
L 2
2

∥∥θ⋆j−1 − θ⋆j
∥∥2
2

µ ϵ1

))

ensures Ω(2)
j holds and ∥∥∥θ̂j,Kj

− θ̃j

∥∥∥2
2

≤ ϵ1
L1

.

Iterating this from j = 1 to J , we obtain at the final stage∥∥∥θ̂J,KJ
− θ⋆J

∥∥∥
2

≤
∥∥∥θ̂J,KJ

− θ̃J

∥∥∥
2
+
∥∥∥θ̃J − θ⋆J

∥∥∥
2

≤
√

ϵ1
L1

+
√

ϵ1
L1

,

and hence ∥∥∥θ̂J,KJ
− θ⋆J

∥∥∥2
2

≤ 4ϵ1
L1

.

Finally, the total number of iterations is K =
∑J

j=1 Kj , and the total sample size is n =
∑J

j=1 nj .
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B.4 ANALYSIS FOR STANDARD SGD

Without loss of generality, assume n1 = · · · = nJ = nrg/J , where nrg is the total sample size, and
suppose we run SGD directly on the dataset D. Under this equal-allocation setting, the pooled data
are drawn from the uniform mixture

πθ⋆
rg
(y | x) = 1

J

J∑
j=1

πθ⋆
j
(y | x).

Define the mixed (population) and empirical losses by

Lrg(θ) = −Ex∼p(x), y∼πθ⋆rg
(y|x)

[
JGRPO(θ) + γsHt(πθattend

GP
)
]
,

L̃rg(θ) = − 1

nrg

∑
(x,y)∈D

[
JGRPO(θ) + γsHt(πθattend

GP
)
]
.

Let θ⋆rg and θ̃rg denote the minimizers of Lrg and L̃rg, respectively.

δ = ∥θ⋆rg − θ⋆∥2.
Theorem B.2. If nrg satisfies Rnrg(Π) ≤ ϵ1/4 and SGD uses the same stepsize η, take

Krg = O

(
1

µη
log

L 2
2 ∥θ⋆0 − θ⋆rg∥22

µ ϵ1

)
.

Then, with probability at least 1− exp
(
− nrgϵ

2
1

2B2
1

)
− ϵ1, we have

∥θ̂rg − θ⋆∥2 ≥ δ

2
whenever ϵ1 ≤ L1δ

2

16
.

Proof. Apply Proposition B.1 to L̃rg: with probability at least 1− exp
(
−(nrgϵ

2
1)/(2B

2
1)
)
,

∥θ̃rg − θ⋆rg∥22 ≤ ϵ1
L1

.

Next apply Proposition B.2 to the standard (pooled) SGD (same η ≤ µ/L 2
2 ) and Krg =

O
(

1
µη log

L 2
2 ∥θ⋆

0−θ⋆
rg∥

2
2

µ ϵ1

)
: with probability at least 1− ϵ1,

∥θ̂rg − θ̃rg∥22 ≤ ϵ1
L1

.

By a union bound, both events hold simultaneously with probability at least 1− exp
(
− nrgϵ

2
1

2B2
1

)
− ϵ1.

On this event, the triangle inequality yields

∥θ̂rg − θ⋆rg∥2 ≤ ∥θ̂rg − θ̃rg∥2 + ∥θ̃rg − θ⋆rg∥2 ≤ 2

√
ϵ1
L1

,

hence
∥θ̂rg − θ⋆rg∥22 ≤ 4 ϵ1

L1
.

Finally,

∥θ̂rg − θ⋆∥2 ≥ ∥θ⋆rg − θ⋆∥2 − ∥θ̂rg − θ⋆rg∥2 ≥ δ −
√

4 ϵ1
L1

,

and if ϵ1 ≤ L1δ
2/16, then

√
4ϵ1/L1 ≤ δ/2, which gives

∥θ̂rg − θ⋆∥2 ≥ δ

2
.

Remark B.3. Notice that when we take ϵ1 ≤ L1δ
2/16, we will have

∥θ̂J,K − θ⋆J∥22 ≤ 4ϵ1/L1 <
δ

2
≤ ∥θ̂rg − θ⋆∥2.

This directly yields Theorem 4.1.
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C EVALUATED MODELS

We evaluate a series of state-of-the-art LVLMs and Multi-agent. The single-agent models include
LLaVA (Liu et al., 2024a), Yi-VL-34B (Young et al., 2024), Qwen-VL (Bai et al., 2025), LLaVA-
Med (Li et al., 2023), MedFlamingo (Moor et al., 2023), RadFM (Wu et al., 2023), HuatuoGPT-
Vision (Chen et al., 2024a) and GPT-4o (OpenAI, 2024). The multi-agent frameworks include prior
collaborative systems such as MedAgents (Tang et al., 2024), MDAgents (Kim et al., 2024) and
AFlow (Zhang et al., 2024), as well as our proposed MMedAgent-RL framework that introduces
reinforcement learning for adaptive multi-agent reasoning.

• GPT-4o (OpenAI, 2024) is OpenAI’s latest multimodal large model that supports text, image, and
audio inputs. It exhibits strong generalization across vision-language benchmarks and serves both
as a single-agent baseline and as a specialist in our multi-agent settings.

• Med-Flamingo (Moor et al., 2023) is a multimodal few-shot learner designed for the medical
domain. Built upon OpenFlamingo, it is further pre-trained on biomedical image-text data from sci-
entific literature. It enables few-shot medical visual question answering with minimal supervision.

• RadFM (Wu et al., 2023) is a domain-specific foundation model tailored for radiology. It leverages
large-scale radiology reports and domain-adaptive learning to improve zero-shot and few-shot
performance on radiographic image understanding.

• LLaVA-Med (Li et al., 2023) extends LLaVA to the biomedical domain by fine-tuning with
medical image-instruction pairs. It enhances medical reasoning and answer generation with limited
supervision using domain-specific visual-textual alignments.

• Qwen2.5-VL (Bai et al., 2025) is a versatile vision-language model developed by Alibaba. It
supports high-quality OCR, multi-turn dialogue, and reasoning over complex multimodal inputs.
It is used both as a strong single-agent baseline and as the foundation of agents in our proposed
framework.

• Yi-VL-34B (Young et al., 2024) is a large-scale multimodal model from 01.AI. With 34 billion
parameters, it offers high-capacity visual understanding and serves as a powerful open-source
baseline across medical and general VQA tasks.

• LLaVA (Liu et al., 2024b;a) are general-purpose vision-language models trained via visual instruc-
tion tuning. Evaluated in several sizes (7B, 13B, 34B), they serve as strong single-agent baselines
in both in-domain and out-of-domain medical benchmarks.

• HuatuoGPT-Vision-7B (Chen et al., 2024a) is a medical multimodal large language model
(MLLM) trained on the curated PubMedVision dataset. This dataset was created by using GPT-4V
to denoise and reformat 1.3 million image-text pairs from PubMed, significantly improving data
quality. As a result, HuatuoGPT-Vision demonstrates superior performance on medical multimodal
benchmarks compared to other open-source models.

D EVALUATED DATASETS

We employ three established medical vision-language datasets: VQA-RAD (Lau et al., 2018),
SLAKE (Liu et al., 2021), and PathVQA (He et al., 2020). Furthermore, to evaluate out-of-distribution
performance, we incorporate the health and medicine subset of MMMU (Yue et al., 2024) along with
OmniMedVQA (Hu et al., 2024b).

• VQA-RAD (Lau et al., 2018) is a manually constructed dataset containing 315 radiology images
with 3,515 question-answer pairs. The images are distributed across head, chest, and abdomen
regions, and include both open-ended and binary "yes/no" questions. Each image is associated
with multiple clinically relevant questions generated by medical professionals. The dataset aims to
facilitate the development of visual question answering systems for the medical domain.

• SLAKE (Liu et al., 2021) is a semantically-labeled knowledge-enhanced dataset featuring 642
radiology images and over 14,000 question-answer pairs. It offers comprehensive annotations
including masks for semantic segmentation and bounding boxes for object detection. SLAKE is
bilingual (English and Chinese) and covers 12 diseases and 39 organs across various body parts.
The dataset also incorporates a medical knowledge graph with 5,232 medical knowledge triplets to
support knowledge-based reasoning.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• PathVQA (He et al., 2020) is a pathology-focused dataset containing 32,799 open-ended ques-
tions from 4,998 pathology images. The dataset was created using a semi-automated pipeline to
extract images and captions from pathology textbooks and generate question-answer pairs using
natural language processing. PathVQA aims to support the development of AI systems capable of
answering clinical questions about pathology images, with each question manually checked for
correctness.

• MMMU (Yue et al., 2024) (Health & Medicine subset) is part of the Massive Multi-discipline
Multimodal Understanding benchmark. This subset contains approximately 1,752 test questions
across five disciplines: Basic Medical Science, Clinical Medicine, Diagnostics and Laboratory
Medicine, Pharmacy, and Public Health. The questions require college-level subject knowledge and
deliberate reasoning, challenging models to perform expert-level perception and reasoning tasks.

• OmniMedVQA (Hu et al., 2024b) is a comprehensive medical VQA benchmark collected from 73
different medical datasets, featuring images across 12 different modalities and covering more than
20 distinct anatomical regions. All images are sourced from authentic medical scenarios, ensuring
alignment with real-world applications. The benchmark provides a diverse evaluation platform
for testing the capabilities of large vision-language models in medical image understanding and
reasoning.

E OVERVIEW OF THE BASELINES

We evaluate MMedAgent-RL against two main multi-agent baselines, MedAgents (Tang et al.,
2024), MDAgents (Kim et al., 2024) and AFlow (Zhang et al., 2024). These baselines represent
state-of-the-art approaches in medical visual question answering.

• MedAgents (Tang et al., 2024) establishes a zero-shot multi-agent collaboration framework that
simulates real-world clinical workflows. The framework encompasses five critical steps: gathering
domain experts, proposing individual analyses, summarizing analyses into a report, iterating
over discussions until consensus is reached, and making a final decision. Different agents are
assigned specific medical roles and collaborate to solve complex medical reasoning tasks. The
framework relies on pre-trained large language models without additional fine-tuning, enabling
natural dialogue-based interactions between agents. MedAgents demonstrates how specialized
medical knowledge from different domains can be integrated through structured agent collaboration,
providing a strong baseline for multi-agent medical reasoning.

• MDAgents (Kim et al., 2024) advances multi-agent medical systems by introducing adaptive
collaboration mechanisms. Unlike fixed collaboration patterns, MDAgents dynamically selects
the most appropriate agent configuration and communication structure based on the specific
medical task. This framework allows for more flexible interactions between general practitioners
and specialist agents, optimizing the collaboration pattern for different types of medical queries.
MDAgents incorporates mechanisms to resolve conflicts between different agent opinions and
adapts the consultation workflow to match the complexity of the medical case, resulting in more
robust decision-making across diverse medical scenarios.

• AFlow (Zhang et al., 2024) is a framework designed to automatically generate and optimize
complex problem-solving workflows for LLMs. Instead of relying on a single inference pass,
these workflows enhance performance through structured procedures. We evaluate three distinct
strategies as strong baselines: Self-Consistency Ensemble, which runs an agent multiple times and
selects the most frequent answer to improve reliability; Multi-Agent Debate, which uses several
agents to collaboratively propose, critique, and refine solutions; and Self-Refine, which employs a
feedback loop for a single agent to iteratively critique and improve its own output.

F EXPERIMENTAL SETUP

F.1 DATA STATISTICS

The data used in this work is shown in Table 3 and involves five multimodal medical datasets:
VQA-RAD, SLAKE, PathVQA, OmniMedVQA and MMMU (Health & Medicine track). Among
them, three are used as in-domain datasets, with their training sets employed for model training. The
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Table 3: The results of the medical VQA benchmark. Here, MMMU denotes MMMU (Health &
Medicine track) and the number of training and testing phase denotes the number of QA items for
each phase.

Model All VQA-RAD SLAKE PathVQA OmniMedVQA MMMU

Train 12,176 940 1,681 9,555 / /
- Easy 8,321 498 1,284 6,539 / /
- Medium 1,409 160 114 1,135 / /
- Hard 2,626 281 275 2,070 / /

Test 15,153 251 416 3,362 11,124 150

remaining two are directly used as out-of-domain (OOD) testing datasets. The specific data volume
for each dataset used at each stage of Curriculum-Based Multi-Agent Reinforcement Learning is
detailed in Table 3.

F.2 HYPERPARAMETER SETTINGS

We use Qwen2.5-VL (Bai et al., 2025) as the base model. We design the prompt template using
the format employed in MM-EUREKA (Meng et al., 2025), clearly specifying the required output
structure, which includes using <think> and <answer> tags to separately contain the reasoning
process and the final answer, with the two being separated. The detailed prompt is shown in Table 4.
For training hyperparameters, the rollout batch size and training batch size are both set to 128, with 8
rollouts generated for each sample. The sampling temperature is set to 1.0 to encourage response
diversity, and optimization is done with a learning rate of 1× 10−6. Additionally, for the three stages
of curriculum reinforcement learning, the KL divergence coefficients are set to 1× 10−3, 4× 10−3,
and 1 × 10−2 respectively to stabilize training. The dynamic entropy coefficient γs is set to 0.03
for hard (s = 0), 0.005 for medium (0 < s < 1), and 0.0001 for easy (s = 1) samples, respectively,
to adapt the level of exploration based on curriculum difficulty. For the number of specialists, we
set e = 3. For the baseline implementation, i.e., MedAgents (Tang et al., 2024), MDAgents (Kim
et al., 2024) and AFlow (Zhang et al., 2024), we use Qwen2.5-VL as the agent for decision making
to ensure a fair comparison between multi-agent baselines and MMedAgent-RL. For the training
framework, we adopt a multimodal RL framework based on OpenRLHF (Hu et al., 2024a). For
the inference, we adopt the vLLM framework (Kwon et al., 2023). All training is conducted on 8
NVIDIA Tesla A100 80GB GPUs.

F.3 PROMPT

The prompt for the fine-tuning of base model is shown in Table 4. In this prompt, we provide the
question options, the input image, and k expert answers. In the experiment, k is set to 3. The model
needs to first generate the reasoning process within the <think> tag, and then provide the final
answer within the <answer> tag.

Table 4: Prompt template used for reinforcement learning fine-tuning.

Prompt Template:
As the General Practitioner coordinating this case, review the specialist expertise to make a
final decision. Answer from <Specialist>: <SpecialistAnswer>. <Question>
Provide your final assessment. You need to first think about the reasoning process in the
mind and then provide the user with the answer. The reasoning process and answer are
enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think><answer> answer here </answer>. The
answer must be chosen from the given options.
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Table 5: The comparison with SFT on several medical VQA benchmarks.

In-Domain Datasets Out-of-Distribution Datasets
Model VQA-RAD SLAKE PathVQA Avg. OmniMedVQA MMMU-Med Avg.

GPT-4o 61.0 75.5 69.4 68.6 68.5 69.7 69.1
Med-Flamingo 45.4 43.5 54.7 47.9 30.7 28.3 29.5
RadFM 50.6 34.6 38.7 41.3 28.2 27.0 27.6
LLaVA-Med-7B 51.4 48.6 56.8 52.3 44.1 36.9 40.5
Qwen-VL-Chat 47.0 56.0 55.1 52.7 48.3 32.7 40.5
Yi-VL-34B 53.0 58.9 47.3 53.1 51.5 41.5 46.5
LLaVA-v1.6-7B 52.6 57.9 47.9 52.8 49.0 33.1 41.1
LLaVA-v1.6-13B 55.8 58.9 51.9 55.5 48.0 39.3 43.7
LLaVA-v1.6-34B 58.6 67.3 59.1 61.6 58.7 48.8 53.8
LLaVA-v1.5-LLaMA3-8B 54.2 59.4 54.1 55.9 44.6 38.2 41.4
HuatuoGPT-Vision-7B 63.0 77.2 58.7 66.3 74.6 51.0 62.8
Qwen2.5-VL-3B 61.0 62.7 57.6 60.4 60.1 54.5 57.3
Qwen2.5-VL-7B 61.8 64.7 60.5 62.3 60.8 56.6 58.7
MedVLThinker-7B 63.7 67.8 65.2 65.6 62.4 57.0 59.7

Multi-Agent Collaboration
MedAgents 65.6 67.9 63.2 65.6 55.8 49.7 52.6
MDAgents 66.8 68.2 65.4 66.8 58.2 52.3 55.1
AFlow 67.3 68.9 66.4 67.5 59.6 53.6 56.6
GPT-4o→ Qwen2.5-VL-7B 62.5 63.9 53.2 59.9 56.4 50.7 53.6
GPT-4o→ Qwen2.5-VL-7B+SFT w/o reasoning 65.5 66.5 61.4 64.5 60.9 57.8 62.4
GPT-4o→ Qwen2.5-VL-7B+SFT w/ reasoning 68.8 68.4 63.7 67.0 62.0 59.4 64.5
MMedAgent-RL (7B) 71.5 +10% 76.2 +12% 72.3 +12% 73.3 +11% 73.3 +13% 71.9 +15% 72.6 +14%

F.4 DATASET SPLITTING AND DIFFICULTY STRATIFICATION

The partition of training, validation, and test sets strictly follows the official dataset guidelines. The
difficulty grading is required exclusively for the training phase to implement curriculum learning.
Specifically, we classify samples into difficulty levels based on the consistency and accuracy of the
specialists’ responses. We emphasize that the inference process and the calculation of evaluation
scores do not use this difficulty grading at all. The model generates responses without access to any
difficulty labels or ground truth. The difficulty stratification on the test set is applied solely for the
analytical breakdown shown in Figure 4. It serves only to visualize and analyze model performance
across different complexity levels post-generation, and has no influence on the inference process
itself. The difficulty grading for the test dataset follows the same as training data.

G ADDITIONAL RESULTS

G.1 COMPARISON WITH SUPERVISED FINE-TUNING (SFT)

We compare our method with Supervised Fine-Tuning (SFT) methods as a baseline. As shown in
Table 5, our proposed method, MMedAgent-RL, demonstrates a significant performance advantage
over SFT methods across all the medical VQA benchmarks. The superiority of our approach is even
more pronounced in the more challenging out-of-distribution datasets. This highlights our model’s
enhanced robustness and generalization capabilities. Overall, MMedAgent-RL consistently sets a
new state-of-the-art, with our base model achieving a 73.3% average on in-domain tasks and 72.6%
on out-of-distribution tasks, already surpassing the SFT method. The results clearly indicate that our
multi-agent, reinforcement learning-based approach is more effective than traditional SFT techniques
for complex medical VQA tasks.

G.2 DIFFERENT SPECIALISTS

The effectiveness of different specialist compositions within our framework is detailed in Table 6.
The results unequivocally show that multi-agent collaboration substantially outperforms single-agent
baselines. Our premier configuration, 3*OpenAI-o3 (OpenAI, 2025), achieved a top average
score of 73.0, far exceeding the best-performing baseline, GPT-4o (68.8). Crucially, this perfor-
mance gain stems from the synergistic integration of multiple experts. The analysis also under-
scores the importance of specialist diversity. Heterogeneous teams combining different models
(e.g., 2*OpenAI-o3+1*HuatuoGPT at 71.3) proved highly effective, demonstrating that fusing
complementary knowledge enhances diagnostic robustness. This confirms that our framework’s
core strength lies in its ability to dynamically orchestrate collaboration among a diverse team of
high-quality specialists to achieve superior decision-making.
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Table 6: The comparison with different specialists.

Model VQA-RAD SLAKE PathVQA OmniMedVQA MMMU Avg.

GPT-4o 61.0 75.5 69.4 68.5 69.7 68.8
Qwen2.5-VL-7B 61.8 64.7 60.5 60.8 56.6 60.9
HuatuoGPT-7B 63.0 77.2 58.7 74.6 51.0 64.9
MMedAgent-RL
3*OpenAI-o3 71.5 76.2 72.3 73.3 71.9 73.04
3*GPT-4o 70.4 75.2 72.7 69.1 67.1 70.9
1*GPT-4o 63.2 65.9 62.8 63.4 59.0 62.86
1*HuatuoGPT-Vision-7B 63.4 67.2 60.8 64.9 54.1 62.1
1*Qwen2.5-VL-7B 62.4 63.2 61.5 61.5 55.1 60.7
2*GPT-4o+1*Qwen2.5-VL-7B 70.0 74.6 71.3 66.0 64.0 69.2
2*GPT-4o+1*HuatuoGPT-Vision-7B 68.5 75.0 71.7 68.0 62.0 69.0
2*OpenAI-o3+1*HuatuoGPT-Vision-7B 69.9 75.8 73.0 70.0 68.0 71.3
2*OpenAI-o3+1*Qwen2.5-VL-7B 71.1 75.4 71.8 69.1 69.2 71.3
1*Qwen2.5-VL-7B+1*GPT-4o 68.9 73.8 70.6 66.1 63.2 68.5
1*HuatuoGPT-Vision-7B+1*OpenAI-o3 69.0 74.7 72.3 68.8 68.3 70.6
3*HuatuoGPT-Vision-7B 65.8 78.2 61.3 73.8 50.1 65.8

G.3 ABLATION ANALYSIS

G.3.1 PERFORMANCE OF TRIAGE DOCTOR

The accuracy of the triage doctors is shown in Table 7. We used the data with definitive department
labels as the evaluation target. From the results, we can observe that triage is not as challenging
as answering complex medical diagnostic questions. Instead, department classification resembles a
modality classification process. The original model already achieved an accuracy of over 80%, and
after our fine-tuning, the model’s performance has reached a human-level standard on these datasets.

Table 7: The performance of triage doctor.

Model VQA-RAD SLAKE PathVQA

Qwen2.5-VL-3B 95.62 92.16 77.53
Qwen2.5-VL-7B 96.21 94.41 80.58
MMedAgent-RL 99.98 99.94 99.06

G.3.2 KL DIVERGENCE COEFFICIENT

We conduct ablation experiments on the KL divergence coefficient at each stage, and the results are
shown in Figure 6. We observe that in the first stage, as the KL divergence coefficient increases, the
model’s performance tends to stabilize. This indicates that when training with simple data, where
the specialist doctor’s answers are entirely correct, i.e., the model merely needs to learn to imitate.
In this case, an additional KL divergence loss is required to constrain the policy model’s update
steps, preventing it from changing too drastically; otherwise, it would become a model that simply
copies the specialist’s answers. In the second stage, the optimal KL divergence coefficient is slightly
larger than in the first stage, suggesting that the model needs some autonomy to explore its own
direction. This becomes even more apparent in the third stage, where the optimal KL divergence
coefficient is significantly higher. This is reasonable because, when the specialist doctor’s answers
are entirely incorrect, it becomes very difficult for the model to generate an accurate response. If the
KL divergence loss is too large in this stage, the model cannot explore effectively to find the correct
answer. Therefore, in conclusion, different KL divergence coefficients need to be set for each stage
of curriculum reinforcement learning to ensure optimal model performance.

G.4 COMPARISON WITH TEST-TIME SCALING METHODS

We conducted additional experiments using test-time scaling techniques, specifically Majority Voting
and Self-Consistency (Wang et al.), on both Qwen2.5-VL-7B and GPT-4o. For the experimental
setup, Majority Voting involved sampling N = 3 outputs and selecting the most frequent answer as
the final prediction. Self-Consistency sampled a set of diverse reasoning paths rather than relying
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Figure 6: Ablation of KL divergence coefficient.

on the greedy path, subsequently selecting the most consistent answer by marginalizing over the
sampled paths. As shown in Table 8, test-time scaling improved the performance of Qwen2.5-VL-7B
by 2.6% and GPT-4o by 1.6% across the five datasets. However, despite these improvements, a
performance gap remains compared to our multi-agent framework. Our method outperforms these
enhanced baselines by 18%, demonstrating the necessity and effectiveness of our proposed triage and
multi-expert pipeline.

Table 8: Performance comparison with test-time scaling baselines.

Method VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med Overall

Qwen2.5-VL-7B 61.8 64.7 60.5 60.8 56.6 60.9
Qwen2.5-VL-7B + Majority Voting 63.7 65.4 61.5 62.5 57.0 62.0
Qwen2.5-VL-7B + Self-consistency 63.8 65.3 62.4 64.5 59.1 63.0

GPT-4o 61.0 75.5 69.4 68.5 69.7 68.8
GPT-4o + Majority Voting 62.2 75.9 70.3 69.4 70.3 69.6
GPT-4o + Self-consistency 63.6 75.4 70.8 69.1 71.5 70.1

MMedAgent-RL 71.5 76.2 72.3 73.3 71.9 73.0

G.5 QUANTIFY THE PERFORMANCE GAIN FROM ROUTING AND AGGREGATION

To strictly quantify the model’s ability to correct mistakes rather than simply route to a specialist,
we conducted a targeted evaluation on hard samples where all three specialists provided incorrect
answers. We selected 200 such samples from PathVQA and 200 from OmniMedVQA to evaluate
the performance of the Base Model (with and without expert knowledge), the SFT baseline, and
our MMedAgent-RL. Since every specialist is incorrect, any routing mechanism would yield 0%
accuracy. Therefore, the performance on this subset is strictly attributable to the model’s ability to
perform intrinsic correction. As shown in Table 9, our method achieves substantial improvements.
For instance, on the OOD OmniMedVQA hard subset, MMedAgent-RL improves accuracy to 23.0%.
We attribute this capability to the following logic: The extremely low accuracy of the Base Model w/o
expert knowledge (4.5% on PathVQA and 2.0% on OmniMedVQA) confirms that the model lacks
the intrinsic parametric knowledge to solve these hard cases independently. Although the specialists’
final answers were wrong, their reasoning processes likely contained partial truths or valid medical
context. While the SFT baseline struggles to utilize this conflicting information (often hallucinating
along with the experts), MMedAgent-RL has learned via RL to critically synthesize these valid
reasoning fragments, correcting the final conclusion rather than simply aggregating the errors.

G.6 DETAILED ABLATION ON TRIAGE AGENT

In Table 2, “w/o Triage” refers to using the original base model to perform the routing (triage) task
directly, without specific fine-tuning for this role. Following your suggestions, we have expanded our
comparison in Table 10. We introduced two new settings to test the necessity of the framework: 1)
Random Routing: Assigning queries to specialists randomly to isolate the benefit of the specialists
themselves. 2) Single Model w/o Routing: Using the Qwen2.5-VL-7B base model directly, and
enhancing it with Majority Voting (diverse sampling) as requested.
As shown in Table 10, incorporating a routing mechanism leads to significant performance gains. No-
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Table 9: Correctness ratio (accuracy on hard samples where all specialists failed).

Setting / Model PathVQA OmniMedVQA

w/o expert knowledge
Base Model 4.5% 2.0%

w/ expert knowledge
Base Model 5.5% 3.5%
SFT 10.0% 7.5%
MMedAgent-RL 26.5% 23.0%

tably, even Random Routing generally outperforms the single model equipped with Majority Voting.
Furthermore, our proposed MMedAgent-RL significantly outperforms all baselines, confirming that a
dedicated triage-and-expert pipeline provides advantages that cannot be achieved by simple diverse
sampling or random assignment.
Comparison with SFT. The original “w/o Triage” ablation was insufficient to justify the specific
choice of RL over simpler methods. To address this, we conducted a detailed comparison between
our GRPO-optimized Triage Agent and standard Supervised Fine-Tuning (SFT) baselines. As
shown in Table 11, we evaluated two SFT configurations: 1) SFT (Standard): Fine-tuned on direct
Question-Department pairs. 2) SFT (w/ Reasoning): Fine-tuned using reasoning traces distilled
from Qwen2.5-VL-32B to simulate a more capable classifier. While SFT significantly improves
performance over the base model, GRPO still outperforms the best SFT baseline across all datasets.
Crucially, this advantage is most pronounced on Out-of-Distribution (OOD) datasets. For instance,
on MMMU-Med, GRPO outperforms “SFT w/ Reasoning” by +4.1% (71.9 vs. 67.8), and on Om-
niMedVQA by +2.5% (73.3 vs. 70.8). This indicates that while SFT can achieve high accuracy
on standard distributions, the reinforcement learning process (GRPO) enables the Triage Agent to
generalize better to complex, unseen scenarios by learning from the reward signal of the downstream
reasoning success, rather than just mimicking a static label.

Table 10: Performance comparison with or without routing.

Method VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med Overall

w/ triage
MMedAgent-RL (zero-shot) 66.3 69.9 67.2 66.2 59.3 65.8
MMedAgent (random triage) 63.4 66.7 64.7 67.8 58.2 64.2
MMedAgent-RL (fine-tuned triage) 71.5 76.2 72.3 73.3 71.9 73.0

w/o triage
Qwen2.5-VL-7B 61.8 64.7 60.5 60.8 56.6 60.9
+ Majority Voting 63.7 65.4 61.5 62.5 57.0 62.0

Table 11: Performance comparison of Triage Agent training strategies.

Method VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med

Base model 66.3 69.9 67.2 66.2 59.3
+ SFT w/o reasoning process 69.4 75.0 70.5 70.1 66.7
+ SFT w/ reasoning process 70.2 75.9 71.0 70.8 67.8
+ GRPO 71.5 76.2 72.3 73.3 71.9

G.7 DETAILED ABLATION ON PROGRESSIVELY ADDING COMPONENTS

To quantify the contribution of each component, we have conducted a progressive evaluation as shown
in Table 12. Regarding the order of ablation, we formulated the progression as Base → Multi-expert
→ Triage. From an architectural perspective, the Triage module depends on the existence of a
candidate pool of experts to perform routing. Thus, we first introduce the Specialists (Multi-expert)
to build the capability pool, and subsequently add the Triage module to manage and utilize these
experts efficiently. Starting with the Qwen2.5-VL-7B baseline, we observed the following trends:
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• + Majority Voting: Provides a marginal improvement, indicating that simple test-time scaling
has limits.

• + Specialists: Integrating domain-specific experts (with a base model as the router) yields
further gains, surpassing the single model with voting.

• + Triage: Introducing the learned Triage module significantly improves the effective utiliza-
tion of specialists.

• + Curriculum RL: Finally, applying our Curriculum RL strategy provides the most substantial
performance leap, demonstrating that optimizing the collaboration between the triage and
specialist agents is critical for complex medical reasoning.

Table 12: Performance progressively adding components.

Method VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med

Qwen2.5-VL-7B (Base) 61.8 64.7 60.5 60.8 56.6
+ Specialists (Base Model) 64.5 66.9 63.2 63.4 60.7
+ Triage 65.7 68.4 64.4 64.8 62.6
+ Curriculum RL 71.5 76.2 72.3 73.3 71.9

G.8 COMPARISON ON TRIAGE AGENT WITH DIFFERENT SETTINGS

As shown in Table 13, we quantitatively evaluated the impact of different training stages on the triage
agent’s performance. We compared the Base Model, SFT (trained on direct question-answer pairs
without reasoning), SFT with Reasoning (trained on reasoning traces distilled from Qwen2.5-VL-
32B), and our final GRPO-optimized model. The results demonstrate that the triage agent trained
with GRPO yields the highest performance. Notably, this improvement is most significant on the
two Out-of-Distribution (OOD) datasets, i.e., OmniMedVQA and MMMU-Med, confirming that the
reasoning capabilities reinforced by GRPO are crucial for generalization.

Table 13: Performance with triage agent with different settings.

Method VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med Overall

Base model 66.3 69.9 67.2 66.2 59.3 65.8
+ SFT w/o reasoning process 69.4 75.0 70.5 70.1 66.7 70.3
+ SFT w/ reasoning process 70.2 75.9 71.0 70.8 67.8 71.1
+ GRPO 71.5 76.2 72.3 73.3 71.9 73.0

G.9 INVOLVEMENT OF HUMAN EXPERTS

Human expert involvement was a core component of our evaluation methodology, serving both as a
performance benchmark and a qualitative evaluator. To ensure clinical relevance, we engaged three
practicing clinical experts to evaluate 50 randomly selected samples. This study focused on two key
dimensions: 1) Diagnostic Accuracy Benchmark: The experts provided their own diagnoses for the
samples to establish a “Human Upper Bound.” As shown in Table R1, while human experts achieved
98.0% accuracy, our MMedAgent-RL reached 82.0%, significantly narrowing the gap compared
to standard baselines (e.g., LLaVA-Med at 44.0%). 2) Reasoning Process Evaluation: The experts
also scored the quality of the models’ reasoning chains on a 1–5 scale (normalized in the table).
They assessed whether the models followed a logical clinical workflow (e.g., defining the disease →
analyzing the image → consistency checking). As shown in Table 14, the experts confirmed that our
method produces reasoning paths that align more closely with clinical standards, achieving a score of
72.0, compared to only 28.0 for LLaVA-Med.

G.10 COMPARISON ON GP UPDATE STRATEGIES

In the paper, the two GP agents (the Triage Agent and the Attending Physician) are updated inde-
pendently. This design choice was primarily made to ensure training stability and to decouple the
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Table 14: Human Expert Assessment

Model Acc Reasoning Score (by human)

Human 98.0 -

Qwen2.5-VL-3B 62.0 38.0
LLaVA-Med-7B 44.0 28.0
MMedAgent-RL 82.0 72.0

training process from potential API failures or latency when querying the external OpenAI-based
specialists. Specifically, our procedure is as follows: 1) Triage Optimization: We first optimize
the Triage Agent using image-modality QA pairs to ensure accurate department routing. 2) Data
Preparation: We classify the training data based on these departments and invoke the OpenAI API
(acting as specialists) to generate expert knowledge offline. 3) Attending GP Training: Finally, we use
these pre-generated expert trajectories to train the Attending GP (Qwen2.5-VL) via Reinforcement
Learning.
However, following your suggestion, we also implemented an end-to-end online framework where
both GPs are updated simultaneously. As shown in Table 15, the performance difference between
the two settings is negligible. This confirms that our decoupled training strategy is valid and yields
results consistent with a fully end-to-end approach while remaining more computationally efficient
and stable.

Table 15: Performance comparison of GP update strategies.

Strategy VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med Overall

Independent 71.5 76.2 72.3 73.3 71.9 73.0
Simultaneous 71.3 76.5 72.4 73.6 71.6 73.1

G.11 FRAMEWORK TRANSFERABILITY

To demonstrate the transferability of our framework, we conducted additional experiments using
InternVL2.5-Instruct-8B (Chen et al., 2024b) as an alternative base model. As shown in Table 16, our
method yields consistent and significant improvements across all datasets, regardless of the backbone
architecture. On OmniMedVQA, the InternVL-based agent achieved a remarkable score of 82.4%,
surpassing the performance of the Qwen-based version. Even on datasets where the base InternVL
model struggled (e.g., PathVQA, where the base score was only 42.3%), our framework provided a
massive performance boost of +26.1% (reaching 68.4%). These results confirm that our pipeline is
model-agnostic and can effectively enhance the reasoning capabilities of diverse multimodal LLMs.

Table 16: Assessment of framework transferability.

Model VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med

Qwen2.5-VL-7B 61.8 64.7 60.5 60.8 56.6
MMedAgent-RL (Qwen2.5-VL-7B) 71.5 76.2 72.3 73.3 71.9

InternVL2.5-8B 58.6 68.6 42.3 76.5 51.4
MMedAgent-RL (InternVL2.5-8B) 70.2 78.9 68.4 82.4 64.7

G.12 BASELINES WITH TRAINED AGGREGATOR

We implemented two new baselines where GPT-4o first samples N = 3 diverse outputs per query
(T = 1.0), and a Qwen2.5-VL-7B model is then trained on the training set (same as data we used) to
act as an aggregator that selects or synthesizes the final answer from these candidates. We developed
both an SFT Aggregator (via Supervised Fine-Tuning) and a GRPO Aggregator (via Group Relative
Policy Optimization) to ensure a robust comparison. As shown in Table 17, MMedAgent-RL still
maintains a significant performance lead. We observed that directly training an aggregator yields
limited gains, particularly when facing inconsistent candidate answers, i.e., a challenge that directly
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motivated our proposed curriculum learning-guided RL strategy. This confirms that our method’s
effectiveness stems from the process-level collaboration of specialized agents, which captures domain-
specific nuances that cannot be replicated by simply aggregating generalist outputs.

Table 17: Performance comparison with GPT-4o+an aggregator (based on Qwen2.5-VL 7B) baselines.

Model VQA-RAD SLAKE PathVQA OmniMedVQA MMMU-Med Overall

Qwen2.5-VL-7B (Base) 61.8 64.7 60.5 60.8 56.6 60.9
GPT-4o 61.0 75.5 69.4 68.5 69.7 68.8
GPT-4o+Qwen2.5-VL-7B (SFT Fine-tuned) 65.8 69.4 62.9 60.3 65.3 64.7
GPT-4o+Qwen2.5-VL-7B (GRPO Fine-tuned) 67.3 70.8 63.8 61.8 64.6 65.7

MMedAgent-RL 71.5 76.2 72.3 73.3 71.9 73.0

G.13 DETAILED RESULTS

Traditional Medical Imaging Evaluation. Table 18 presents the accuracy of various models across
five major medical imaging modalities in the OmniMedVQA benchmark. Our model (MMedAgent-
RL) demonstrates strong generalization across all categories, achieving an average accuracy of 73.3%,
significantly outperforming previous state-of-the-art models including LLaVA-v1.6-34B (58.7%) and
Qwen2.5-VL-7B (60.8%). Specifically, our method achieves 76% on microscopy images, indicating
robust capability in processing fine-grained, high-resolution visual data typical of pathology slides.
On MRI and CT modalities, MMedAgent-RL reaches 72% and 65%, respectively, outperforming
strong baselines such as LLaVA-v1.6-34B and Yi-VL-34B by a wide margin. These results show
that our model captures both structural and soft-tissue anatomical details effectively. In X-Ray,
our method maintains competitive performance (78.8%) compared to high-performing models like
HuatuoGPT-Vision-7B (80.3%), while achieving the highest accuracy on Ultrasound (75%) among
all models, demonstrating robustness in handling noisy, low-contrast imaging modalities.

MMMU Health & Medicine Track. In Table 19, our model again establishes new performance
standards, achieving 71.9% overall accuracy on the MMMU Health & Medicine test set. Compared
to existing large models such as Qwen2.5-VL-7B (56.6%) and HuatuoGPT-Vision-7B (51.0%),
MMedAgent-RLdemonstrates clear advantages. Notably, our model excels across all five sub-
domains: scoring 75% in Basic Medical Science (BMS), 78% in Clinical Medicine (CM), 65% in
Diagnostics and Laboratory Medicine (DLM), 70% in Pharmacy (P), and 71.5% in Public Health (PH).
These results reflect a well-rounded capability across both foundational scientific understanding and
applied clinical knowledge. In particular, performance in CM and P shows substantial improvement
over single-agent baselines, suggesting that our model benefits from enhanced reasoning and domain
transfer. Taken together, these results confirm the effectiveness of our approach in both imaging-
based and knowledge-based medical VQA settings, and highlight the potential of our method as a
comprehensive solution for multimodal medical understanding.

G.14 MORE CASES

To further demonstrate the robustness and versatility of our proposed model in multimodal medical
applications, we present additional representative cases in Figure 7, Figure 8, Figure 9 and Figure 10.
These examples encompass various clinical scenarios and imaging modalities, providing a compre-
hensive illustration of the model’s ability to effectively integrate and interpret diverse types of medical
data.
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Table 18: The accuracy of OmniMedVQA within different modalities (excluding FP, OCT, and
Dermatology). CT: Computed Tomography, MRI: Magnetic Resonance Imaging, Mic: Microscopy
Images, X-Ray: X-ray, US: Ultrasound.

Model CT MRI Mic X-Ray US Avg.

Med-Flamingo 34.6 27.5 28.1 30.1 33.2 30.7
RadFM 33.3 22.0 28.0 31.5 26.1 28.2
LLaVA-Med-7B 25.3 35.9 44.0 31.7 83.7 44.1
Qwen-VL-Chat 51.5 43.9 49.5 63.1 33.5 48.3
Yi-VL-34B 39.8 51.4 61.4 64.2 40.5 51.5
LLaVA-v1.6-7B 40.1 54.8 48.8 53.3 47.9 49.0
LLaVA-v1.6-13B 40.0 47.4 50.5 59.6 42.6 48.0
LLaVA-v1.6-34B 50.6 60.9 62.8 74.7 44.5 58.7
LLaVA-v1.5-LLaMA3-8B 33.0 53.8 48.4 56.6 31.2 44.6
HuatuoGPT-Vision-7B 65.6 72.7 77.5 80.3 76.7 74.6
Qwen2.5-VL-3B 60.5 64.2 66.6 68.9 40.4 60.1
Qwen2.5-VL-7B 62.0 68.3 70.7 68.9 34.3 60.8

Multi-Agent Collaboration
MedAgents 55.0 57.2 59.1 58.6 49.0 55.8
MDAgents 58.1 60.5 61.7 60.2 50.6 58.2
AFlow 59.5 62.0 63.2 61.7 51.6 59.6
MMedAgent-RL (7B) 64.6 71.7 76.0 78.8 75.4 73.3

Table 19: Results on the test set for the MMMU Health & Medicine track. The Health & Medicine
track is divided into five categories: BMS for Basic Medical Science, CM for Clinical Medicine,
DLM for Diagnostics and Laboratory Medicine, P for Pharmacy, and PH for Public Health. Results
are obtained by submitting to the official website.

Model BMS CM DLM P PH MMMU Health & Medicine

Med-Flamingo 29.6 28.1 24.8 25.3 31.2 28.3
RadFM 27.5 26.8 25.8 24.7 29.1 27.0
LLaVA-Med-7B 39.9 39.1 34.6 37.4 34.0 36.9
Qwen-VL-Chat 36.5 31.7 32.7 28.4 34.6 32.7
Yi-VL-34B 49.4 48.9 43.2 40.5 32.0 41.5
LLaVA-v1.6-7B 40.5 36.9 32.1 32.3 26.9 33.1
LLaVA-v1.6-13B 53.6 46.7 33.3 22.2 40.0 39.3
LLaVA-v1.6-34B 56.4 56.0 46.9 46.7 41.7 48.8
HuatuoGPT-Vision-7B 60.7 63.3 36.7 50.0 44.4 51.0
Qwen2.5-VL-3B 67.8 53.3 43.3 55.6 53.3 54.5
Qwen2.5-VL-7B 67.9 56.7 36.7 66.7 56.7 56.6

Multi-Agent Collaboration
MedAgents 60.0 55.0 45.0 50.0 52.9 52.6
MDAgents 62.5 57.5 50.0 55.0 50.5 55.1
MMedAgent-RL (7B) 75.0 78.0 65.0 70.0 71.5 71.9
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Question: What can be observed in this image?

Options: A. Shin splints, B. Tennis elbow, C. Plantar fascia pathology, D. 
Meniscal tear
Answer: C. Plantar fascia pathology.

Ours: The image provided is a CT scan of a foot, specifically showing the plantar fascia. The CT scan 
typically shows bone structures and soft tissue, and in this case, it clearly displays the plantar fascia, 
which is a common site for plantar fasciitis or other plantar fascia-related pathologies.

<answer>C. Plantar fascia pathology</answer>

Ours: The figure shows a single protein structure with no indication of multiple protein subunits or 
different domains interacting. In proteins, quaternary structure refers to the arrangement of two or 
more polypeptide chains that form a complex. Since the image only displays one continuous chain 
without any visible subunit separation, it does not represent a quaternary structure.

<answer>B. False</answer>

Question: The figure below <image 1> shows a stable structure of a protein that is 
to be used for each part of this problem. The dashed line divides the structure into 
three regions labeled A, B, and C in the figure. Does this protein have quaternary 
structure and how do you reach that conclusion?

Options: A. True, B. False.

Answer: B. False

Figure 7: Case 1 (CT scan of foot): The model identifies plantar fascia pathology from a CT image,
requiring anatomical knowledge of soft tissue structures in the foot and recognition of characteristic
changes consistent with plantar fasciitis. Case 2 (Protein structure diagram): A structural biology
reasoning task based on a protein diagram, where the absence of distinct subunit boundaries leads to
the conclusion that the protein does not exhibit quaternary structure—showcasing visual-structural
reasoning in molecular biology.

Question: What part is shown in this ultrasound image?

Options: A. Testicle, B. Large intestine, C. pancreas, D. Liver
Answer: C. pancreas.

Ours: The ultrasound image shows a structure that appears to be a solid mass or lesion, which is 
consistent with a C. Plantar fascia pathology. This is typically seen in imaging of the foot and ankle 
region.

<answer>C</answer>

Ours: The image provided is an MRI scan of the brain, not of the inner ear or vestibular system. 
Therefore, it does not show any information related to the vestibular system or its components such 
as the vestibulocochlear nerve. The question asks about the vestibular system, which is not depicted 
in this image. Since the image does not contain relevant information for the question, we cannot 
determine what would or would not occur based on this image alone.

<answer>D. Loss of facial sensation.</answer>

Question: The vestibular system can be stimulated or irritated by an infection of 
the inner ear or by a tumor (arrow) pressing on the vestibulocochlear nerve. Which 
of the following would NOT occur?

Options: A. Decreased auditory acuity. B. Vertigo. C. Tinnitis. D. Loss of facial 
sensation.

Answer: D. Loss of facial sensation

Figure 8: Case 3 (Ultrasound image): The model interprets an ultrasound to identify the pancreas,
integrating grayscale image features with organ shape and texture—an example of soft tissue recog-
nition using sonography. Case 4 (Brain MRI with question about vestibular system): This task
highlights the model’s ability to identify mismatches between the image modality (brain MRI) and
the clinical question (vestibular system), and to reason that facial sensation loss is not explainable
from the given scan.
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Question: Is polysplenia present?

Options: A. yes, B. no
Answer: A. yes.

Ours: The image provided shows multiple organs that appear to be abnormally positioned or fused 
together, which is characteristic of polysplenia. Polysplenia is a condition where there are more than 
two spleens, often accompanied by other anomalies such as heart defects and other organ 
malformations.

<answer>A. yes</answer>

Ours: The image provided is a histological slide showing a pattern consistent with plantar fascia 
pathology. There is no indication of a malignant adenoma or bizarre strap and fusiform cells. 
Therefore, the correct answer is B.

<answer>B</answer>

Question: Does malignant adenoma show bizarre strap and fusiform cells?
Options: A. yes, B. no

Answer: B. no

Figure 9: Case 5 (Abdominal CT image – polysplenia diagnosis): The task involves recognizing
abnormal organ positioning indicative of polysplenia. This case highlights anatomical reasoning
through CT imaging, requiring recognition of fused or duplicated spleens and an understanding of
associated syndromic features. Case 6 (Histopathology slide – adenoma diagnosis): A histological
image is used to assess the presence of malignant features. The model correctly distinguishes normal
plantar fascia morphology from pathological adenoma patterns, demonstrating reasoning in pathology
image interpretation.

Question: Five elements make up 98% of the mass of the human body. These elements 
are oxygen (61%), carbon (23%), hydrogen (10.0%), nitrogen (2.6%), and calcium 
(1.4%). Compare these data with those in the pie graph below, which shows the five 
most abundant elements by mass in Earth's crust, oceans, and atmosphere. <image 
1>,___,____,____,____,are abundant both in the human body and Earth's crust, oceans, 
and atmosphere?

Options: A. iron, oxygen, Aluminum, silicon, B. Aluminum, silicon, iron, calcium, C. 
oxygen, silicon, iron, calcium
Answer: C. oxygen, silicon, iron, calcium.

Ours: The pie chart shows that the five most abundant elements by mass in Earth's crust, oceans, 
and atmosphere are oxygen (49.8%), silicon (26.0%), aluminum (7.6%), iron (4.8%), and calcium 
(3.4%). Comparing these with the five most abundant elements in the human body (oxygen, carbon, 
hydrogen, nitrogen, and calcium), we can see that oxygen is present in both sets of data.

<answer>C. oxygen, silicon, iron, calcium</answer>

Figure 10: Case 7 (Pie chart comparison – elemental composition): This case blends image data (a
pie chart of Earth’s element composition) with textual biochemical data (composition of the human
body). The reasoning required crosses domains, comparing datasets to identify overlapping elements,
exemplifying multimodal cross-referencing and synthesis.
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