

000 001 002 003 004 005 006 007 008 009 010 OPTIMIZING MULTI-AGENT COLLABORATION FOR MULTIMODAL MEDICAL REASONING

005
006
007
008
009
010
Anonymous authors

Paper under double-blind review

ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy with dynamic entropy regulation, progressively teaching the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL outperforms both open-source and proprietary Med-LVLMs. Notably, it achieves an average performance gain of 23.6% over strong baselines.

032 033 034 035 036 037 038 039 1 INTRODUCTION

040
041
042
043
044
045
046
047
048
049
050
Large Vision-Language Models (LVLMs) are becoming increasingly proficient in visual understanding and reasoning (Liu et al., 2024a;b; Zhu et al., 2023; Bai et al., 2023; Chen et al., 2024c). This advancement is also making a significant impact in the biomedical domain, where Medical Large Vision-Language Models (Med-LVLMs) have demonstrated great potential in enabling intelligent diagnostic applications (Li et al., 2023; Moor et al., 2023; Nath et al., 2024). However, as shown in Figure 1 (a) *left*, although a single Med-LVLM can be trained with a large amount of data and show promise results to some extent, it is challenging for a single model to handle diagnostic expertise from different subfields (e.g., radiology, pathology, etc.).

051
052
053
Therefore, some recent works propose using multi-agent collaboration to solve medical tasks (Li et al., 2024c; Kim et al., 2024; Tang et al., 2024), where different models act as specialists or general practitioners, collaborating and discussing to arrive at a final answer, improving overall performance compared to a single agent. These works follow the steps of simulating a hospital visit process and adopt a General Practitioner (GP) → Specialist → GP workflow. First, the general practitioner (i.e., the *triage doctor*) classifies the patient based on the consultation questions and images and selects the appropriate department from several predefined specialties. Then, *specialist doctors* from the relevant departments provide their diagnoses. Finally, the general practitioner (i.e., *attending physician*) makes the final decision based on the images, consultation questions, and the diagnostic results from multiple specialists. However, as illustrated in Figure 1 (a) *middle*, such workflows are inherently *static*. Such interaction pattern between agents is fixed and predetermined, which limits the system’s capacity for flexible, optimized reasoning across multiple modalities.

To address this challenge, motivated by the success of Reinforcement Learning (RL)-driven reasoning (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025), as shown in Figure 1 (a) *right*, we perform a stage-wise training on two GPs based on Qwen2.5-VL (Bai et al., 2025) via reinforcement learning, namely the triage doctor and the attending physician.

054 Specifically, first, for the
 055 first GP, i.e., triage doctor, we utilize the image
 056 modality information provided by the dataset itself
 057 to reinforce the triage doctor, such as pathology slides
 058 → *Pathologist*, ensuring
 059 that the triage doctor can
 060 accurately assign patients
 061 to the appropriate department. Then, we use power-
 062 ful proprietary models like
 063 GPT (OpenAI, 2025) to
 064 play the role of the spe-
 065 cialist doctors and generate
 066 initial judgments. Finally,
 067 the second GP, i.e., attend-
 068 ing physician, integrates do-
 069 main knowledge from multiple specialists and their own judgment to make the final decision. Here,
 070 during the process of the general practitioner integrating specialist doctor information, while specialist
 071 doctors provide valuable domain knowledge, their judgments are not always perfectly accurate. These
 072 inconsistencies in specialist performance can introduce noise into model training, preventing the
 073 model from simply memorizing or blindly replicating their outputs. Instead, the model must learn to
 074 generalize beyond potentially flawed expert judgments.
 075

076 To address this, inspired by Curriculum Learning (CL) (Bengio et al., 2009; Pentina et al., 2015;
 077 Deng et al., 2025), which enables models to be trained progressively on increasingly difficult tasks,
 078 we implement an entropy-aware reinforcement learning approach based on CL, aiming to help the
 079 model gradually learn to leverage the knowledge of specialist doctors. The core principle is that
 080 the attending physician agent faces a dynamic *exploration-exploitation dilemma* when integrating
 081 specialist opinions: it must learn when to trust and adopt a consensus and when to challenge it and
 082 search for novel diagnostic paths (Cui et al., 2025; Wang et al., 2025b). Specifically, we use the
 083 accuracy of specialist results as a flag to classify the training data by difficulty: specialist results that
 084 are *completely correct* are labeled as *easy*, *partially correct* as *medium*, and *completely incorrect* as
 085 *hard*. In this way, we design a three-stage curriculum reinforcement learning process for optimizing
 086 the attending physician to handle diverse specialist results, where the model starts with low-entropy
 087 policies to exploit reliable “easy” cases and gradually increases its policy entropy to explore and
 088 correct flawed judgments in “hard” cases.
 089

090 The primary contribution of this paper is MMMedAgent-RL, an RL-driven framework optimized
 091 for multi-agent collaboration in improving medical reasoning. Empirical results on five medical
 092 multimodal datasets, shows that the model performs exceptionally well not only on in-domain datasets
 093 but also on out-of-domain datasets, outperforming a series of both open-source and proprietary
 094 LVLMs, exceeding SFT method by 23.6%.

2 PRELIMINARIES

095 In this section, we will provide a brief overview of LVLMs, multi-agent collaboration and GRPO.

096 **Large Vision Language Models.** LVLMs enhance LLMs by integrating visual input x_v with
 097 textual input x_t , forming a joint input $x = (x_v, x_t)$. They autoregressively predict the next token’s
 098 distribution to generate a textual response y .

099 **Multi-Agent Collaboration.** To support complex workflows, multi-agent frameworks coordinate
 100 specialized agents. Our setting simulates a hospital visit: GP → Specialist(s) → GP. Each agent
 101 $a_i \in \mathcal{A}$ follows policy $\pi_{\theta_i}(y | x)$, with multimodal input $x = (x_v, x_t)$, where x_v is an image, x_t is
 102 a text instruction, and y is the output. GP agent: a_{GP} ; specialists: $\{a_{SP}^{(1)}, \dots, a_{SP}^{(K)}\}$. The workflow
 103 proceeds as follows: 1) Triage: a_{GP}^{triage} selects department via $d = \arg \max_k \pi_{\theta_{GP}^{\text{triage}}}(k | x)$. 2) Specialist:
 104 $a_{SP}^{(d)}$ produces response $y_d \sim \pi_{\theta_{SP}^{(d)}}(y | x)$. 3) Aggregation: a_{GP}^{attend} outputs $y_{\text{final}} \sim \pi_{\theta_{GP}^{\text{attend}}}(y | x, y_d)$.

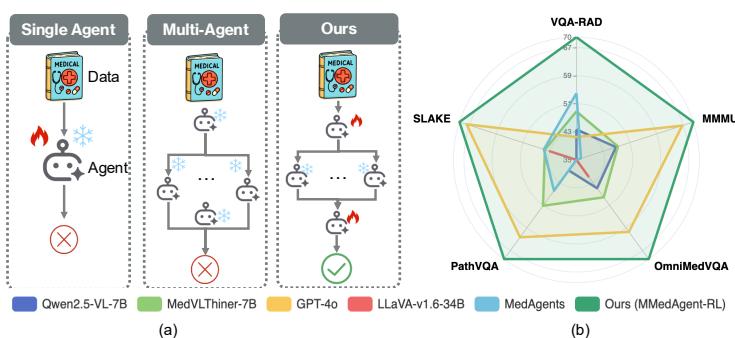


Figure 1: Comparison of Med-Agent paradigms: single-agent → static workflows → dynamic collaboration. (a) Motivation: Single-agent models struggle with domain specialization, and prior multi-agent systems rely on fixed workflows, limiting adaptability. We propose a trainable reasoning-enhanced multi-agent system via RL. (b) Performance: Our method is highly competitive across multiple benchmarks.

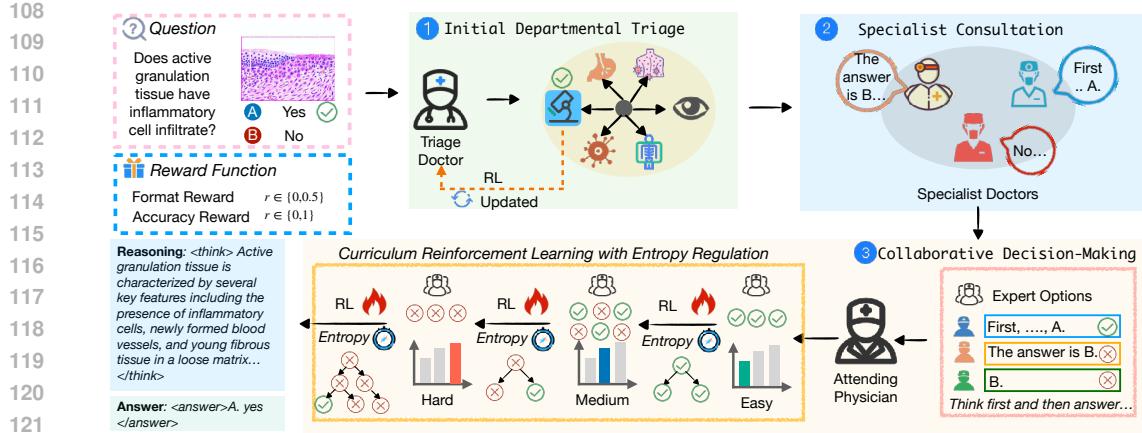


Figure 2: Overview of MMedAgent-RL, a RL-driven multi-agent framework designed for multimodal medical reasoning. It simulates the clinical loop of General Practitioner (GP) → Specialists → GP. First, MMedAgent-RL optimizes the triage doctor (the first GP) to improve triage accuracy. Then, proprietary LVLMs are used as the specialist doctors for the assigned department. Finally, curriculum learning and RL are combined to progressively train the attending physician (the second GP), who integrates the specialist knowledge and makes robust decisions.

Group Relative Policy Optimization (GRPO). Group Relative Policy Optimization (GRPO) (Guo et al., 2025) is a reinforcement learning method that avoids training a critic by using intra-group relative rewards to optimize the policy. For each query x , the model samples G responses $\{y^{(1)}, \dots, y^{(G)}\}$, which are scored to get rewards $\{R_1, \dots, R_G\}$. GRPO computes normalized advantages and updates the policy with a PPO-style clipped objective (Schulman et al., 2017):

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{x, \{y_i\}} \left[\frac{1}{G} \sum_{i=1}^G \left(\min \left(r_i A_i, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) A_i \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) \right) \right], r_i = \frac{\pi_\theta(y_i | x)}{\pi_{\text{old}}(y_i | x)}, \quad (2.1)$$

where $A_i = \frac{R_i - \text{mean}(\{R_j\}_{j=0}^G)}{\text{std}(\{R_j\}_{j=0}^G)}$, ϵ, β are hyperparams, and π_{old} is a old policy model. GRPO enables scalable policy learning using only relative rewards, without a critic.

3 METHODOLOGY

In this section, as illustrated in Figure 2, we will present MMedAgent-RL, a RL-driven multi-agent framework for multimodal medical reasoning by emulating a structured clinical workflow. Our approach begins with the first General Practitioner (GP) leveraging the input to select the appropriate medical department for further consultation. To optimize the initial triage decision, we employ GRPO to refine the triage doctor’s capabilities. Then the case is referred to a panel of specialist doctors, each served by a proprietary LVLM specialized in the identified department, analyze data and provide expert opinions. Finally, the process culminates with the second GP, acting as the attending physician, integrates all specialist opinions to form a final diagnosis. We will delve into each stage as follows:

3.1 INITIAL DEPARTMENTAL TRIAGE

In real-world medical treatment, particularly for complex diagnoses, the workflow fundamentally relies on a Multi-Disciplinary Team (MDT) process (Abo-Hamad & Arisha, 2013): moving from initial assessment and triage to expert consultation, and finally, synthesis by an attending physician. This collaborative paradigm has been validated in recent medical AI literature as an effective abstraction for simulating clinical decision-making. Previous works like Agent Hospital (Li et al., 2024c) and MDAgents (Kim et al., 2024) have adopted similar role-based structures, employing LLMs for triage or dynamic collaboration. However, these methods typically rely on rigid or predefined assignment strategies and lack the ability to update the model based on new data.

To address this challenge, the first step is to optimize the general practitioner $a_{\text{GP}}^{\text{triage}}$ who acts as the triage doctor (i.e., policy $\pi_{\theta_{\text{GP}}^{\text{triage}}}$). Here, we use the image modality information provided by the

162 dataset itself as ground truth labels y^* to train the triage model. For example, pathology slides →
 163 pathologist (e.g., PathVQA contains pathology slide images and is thus assigned to pathologists),
 164 ensuring that the triage model can accurately assign patients to the appropriate medical specialty.
 165

166 Specifically, when prompting the triage doctor, we provide k candidate specialties. In our setup, k is
 167 set to 7, including *Pathologist, Radiologist, Surgeon, Oncologist, Endocrinologist, Ophthalmologist,*
 168 *and Dermatologist*, which broadly cover the main departments involved in the data. Our aim is not
 169 only to improve triage accuracy, but also to strengthen the model’s reasoning process, helping explain
 170 why a particular triage recommendation is made. Thus, we use GRPO as the base RL algorithm.
 171 At this stage, the reward function adopts a rule-based format with rewards $R_{\text{format}} \in \{0, 0.5\}$ and
 172 accuracy rewards $R_{\text{accuracy}} \in \{0, 1\}$. A reward is given when the output format meets the required
 173 criteria and the chosen specialty is correct. This stage can optimize the triage doctor’s performance,
 174 improving their ability to select the appropriate specialty $d = \arg \max_k \pi_{\theta_{\text{GP}}^{\text{triage}}}(k \mid x)$, and lays a
 175 foundation for subsequently acting as the corresponding specialist.
 176

177 3.2 ROLE-PLAYING SPECIALISTS OFFER VALUABLE INSIGHTS

178 After obtaining the department from the triage doctor, following previous work using LLMs or
 179 LVLMs for medical discussions (Li et al., 2024c; Tang et al., 2024; Li et al., 2024a), we utilize several
 180 powerful models as specialist doctors $a_{\text{SP}}^{(d)}$ to provide relatively accurate preliminary judgments. This
 181 facilitates subsequent reference by the attending physician. In our setup, we use responses from e
 182 specialists as references for each sample. We only require the specialist doctors to independently
 183 provide expert opinions $y_d \sim \pi_{\theta_{\text{SP}}^{(d)}}(y \mid x)$ within their specialty, without engaging in complex
 184 interactions. This ensures system efficiency and avoids majority voting that could overshadow
 185 minority opinions, leaving the final decision to the attending physician.
 186

187 3.3 EVOLVING DECISIONS BY ATTENDING PHYSICIAN VIA ONGOING COLLABORATION

188 After getting the responses from the specialists, we then integrate their knowledge into the final
 189 general practitioner designed to support the final diagnostic decision. The final decision-making
 190 agent, namely the attending physician, plays the most crucial role throughout the diagnostic process,
 191 as they must synthesize diverse expert opinions and draw upon their own clinical expertise to arrive
 192 at a final judgment. This poses significant challenges for the attending physician, as the specialists’
 193 conclusions are not always fully reliable. Over-reliance on specialist input can lead to suboptimal
 194 outcomes. Secondly, different specialists may offer conflicting interpretations of the same case,
 195 creating misalignment issues. If the model is unable to reconcile its internal reasoning with external
 196 expert input, it risks compounding errors. For instance, while majority voting may help mitigate the
 197 influence of less competent specialists, it can also suppress minority views, including potentially the
 198 only correct one. Such multi-agent collaboration can yield adverse effects when the model is not
 199 properly aligned with the nature and limitations of expert knowledge.
 200

201 To address these challenges, we draw inspiration from curriculum learning (Bengio et al., 2009),
 202 which emphasizes the importance of organizing learning experiences in a meaningful progression,
 203 i.e., from easier to harder tasks. Motivated by this principle, see in Alg. 1, we propose the Curriculum-
 204 based Entropy-Aware Reinforcement Learning for Multi-Agent Collaboration (**C-MARL**). The
 205 core principle of this framework is that the attending physician agent faces a dynamic *exploration-
 206 exploitation dilemma* when integrating specialist opinions: it must learn when to trust and adopt a
 207 consensus (exploit) and when to challenge it and search for novel diagnostic paths (explore). We
 208 posit that the policy entropy is the central mechanism for navigating this trade-off (Cui et al., 2025).
 209 Therefore, C-MARL employs a purpose-designed curriculum to actively shape the policy entropy of
 210 the attending physician, enabling it to adapt to specialist information of varying reliability.
 211

212 **Curriculum Design based on Specialist Reliability.** Unlike previous curriculum learning ap-
 213 proaches that define difficulty based on problem formulation or data domains, we categorize tasks
 214 based on the accuracy of specialists’ diagnoses $y_d \sim \pi_{\theta_{\text{SP}}^{(d)}}(y_d \mid x)$, denoted by $s = \text{Acc}(y_d, y^*)$. The
 215 dataset is divided into three levels: *fully correct specialist results* ($s = 1$) are labeled as *easy*, *partially
 216 correct results* ($0 < s < 1$) are labeled as *medium*, and *completely incorrect results* ($s = 0$) are
 217 labeled as *hard*. The datasets corresponding to the three levels are denoted as $\mathcal{D}_{\text{easy}}, \mathcal{D}_{\text{medium}}, \mathcal{D}_{\text{hard}}$,
 218 respectively, and $\mathcal{D} = \mathcal{D}_{\text{easy}} \cup \mathcal{D}_{\text{medium}} \cup \mathcal{D}_{\text{hard}}$. Based on these data of three categories, we design a
 219

216

Algorithm 1: Curriculum-Based Multi-Agent Reinforcement Learning (C-MARL)

217

Input: Dataset $\mathcal{D} = \{x_v^{(i)}, x_t^{(i)}, y^{*(i)}\}_{i=1}^N$, policy model π_θ , old policy π_{old} , group size G , specialist responses $y_d^{(i)}$.

218

Output: π_θ .

219

1 Initialize $\mathcal{D}_{\text{easy}}$, $\mathcal{D}_{\text{medium}}$, $\mathcal{D}_{\text{hard}}$ as empty sets

2 **foreach** $(x_v, x_t, y^*) \in \mathcal{D}$ **do**

3 ▷ *Use Specialists' Accuracy to Categorize the Dataset by Task Difficulty*

4 Calculate the accuracy of the specialist doctor $s \leftarrow \text{Acc}(y_d, y^*)$

224

5 **if** $s = 1$ **then**

6 | Put $\{(x_v, x_t), y^*\}$ into $\mathcal{D}_{\text{easy}}$

7 **if** $0 < s < 1$ **then**

8 | Put $\{(x_v, x_t), y^*\}$ into $\mathcal{D}_{\text{medium}}$

9 **if** $s = 0$ **then**

10 | Put $\{(x_v, x_t), y^*\}$ into $\mathcal{D}_{\text{hard}}$

225

11 **foreach** $(x_v, x_t, y^*) \in \{\mathcal{D}_{\text{easy}}, \mathcal{D}_{\text{medium}}, \mathcal{D}_{\text{hard}}\}$ **in batch do**

12 ▷ *Utilize the RL Algorithm for Optimization at Each Stage*

226

13 Sample G rollouts $\{y_{\text{final}}^{(1)}, y_{\text{final}}^{(2)}, \dots, y_{\text{final}}^{(G)}\}$ from π_{old} , where $y_{\text{final}}^{(g)} \leftarrow \pi_\theta(y \mid (x_v, x_t), y_d)$

227

14 **foreach** rollout y_{final} **do**

15 | Calculate the outcome reward $R(y_{\text{final}}) = R_{\text{format}}(y_{\text{final}}) + R_{\text{accuracy}}(y_{\text{final}})$

228

16 Compute the groupwise advantage $A_i \leftarrow \frac{R_i - \text{mean}(\{R_j\}_{j=0}^G)}{\text{std}(\{R_j\}_{j=0}^G)}$

229

17 Calculate the entropy regularization term $H_t \leftarrow -\sum_{j=1}^V p_{t,j} \log p_{t,j}$

230

18 Compute the loss in Equation 3.1 and update π_θ

231

232

three-stage curriculum reinforcement learning process to optimize the attending physician's ability to handle different types of specialist knowledge, such as when to accurately leverage specialist knowledge and when to rely on their own understanding to solve problems.

233

Reinforcement Learning with Dynamic Entropy Regulation. We utilize GRPO as our base RL algorithm. For each query x , the attending physician $\pi_{\theta_{\text{GP}}^{\text{attend}}}$ generates a group of G responses $\{y_{\text{final}}^{(i)}\}_{i=1}^G$. The reward R_i for each response is determined by a format reward $R_{\text{format}} \in \{0, 0.5\}$ and an accuracy reward $R_{\text{accuracy}} \in \{0, 1\}$, and GRPO calculates the relative advantage $A_i = \frac{R_i - \text{mean}(\{R_j\})}{\text{std}(\{R_j\})}$ for the policy update. To achieve dynamic entropy control, we introduce an entropy regularization term into the standard GRPO objective function:

234

$$\mathcal{J}_{\text{C-MARL}}(\theta) = \mathbb{E} \left[\mathcal{J}_{\text{GRPO}}(\theta) + \gamma_s \cdot H_t(\pi_{\theta_{\text{GP}}^{\text{attend}}}) \right], \quad H_t = -\sum_{j=1}^V p_{t,j} \log p_{t,j}, \quad (3.1)$$

235

$$\text{where } \mathbf{p}_t = \pi_\theta(\cdot \mid \mathcal{R}_{<t}, x; T) = \text{Softmax} \left(\frac{\mathbf{z}_t}{\tau} \right).$$

236

Here, $\mathcal{J}_{\text{GRPO}}$ is the PPO-clip loss term from GRPO in Eq. 2.1, V is the vocabulary size, $\mathbf{z}_t \in \mathbb{R}^V$ are the pre-softmax logits, and τ is the decoding temperature. Critically, the entropy bonus coefficient γ_s is not a fixed hyperparameter but is dynamically set based on the curriculum level s of the current sample. For $s = 1$, we set $\gamma_{\text{easy}} \approx 0$, as we do not need to explicitly reward exploration when the agent should be learning to exploit reliable specialist knowledge. For $0 < s < 1$, we use a moderate positive bonus $\gamma_{\text{medium}} > 0$ to encourage policy diversity and prevent the agent from becoming overconfident in the face of conflicting information. For $s = 0$, we apply a strong positive bonus $\gamma_{\text{hard}} \gg \gamma_{\text{medium}}$ to aggressively incentivize exploration, compelling the model to break from the misleading specialist consensus.

237

4 THEORETICAL ANALYSIS

238

In this section, we provide theoretical insights explaining why curriculum learning works better than the usual SGD when we optimize the GRPO objective function 3.1. Specifically, we begin by analyzing the effectiveness of the curriculum learning strategy for policy learning. Our goal is to determine the number of samples and iterations required to achieve a specified error tolerance.

239

The curriculum learning procedure can be simplified as follows. We consider J batches of samples arranged in increasing order of difficulty. In our setting (Section 3.2), the curriculum is composed of

270 $J = 3$ difficulty stages: easy, medium, and hard. Starting from $j = 1$, we sequentially train on each
 271 batch using Stochastic Gradient Descent (SGD) to obtain the policies $\pi_{\hat{\theta}_{j, K_j}}(y_i | x), j = 1, \dots, J$.
 272

273 We aim to track the policy's trajectory and convergence throughout this process. To model the
 274 difficulty of the data from each batch, we make the following assumption and suppose the target
 275 parameter $\theta^* = \theta_J^*$:

276 **Assumption 4.1.** *From the easiest to the hardest dataset, for j -th dataset, we assume*

$$277 \quad \mathcal{D}_j = \left\{ (x_i, y_i)_{i=1}^{n_j} \mid x_i \sim p(x), y_i \sim \pi_{\theta_j^*}(y | x) \right\}$$

279 **Theorem 4.1** (Informal). *Suppose Assumption 4.1 holds, together with some regularity conditions
 280 (Assumptions B.2–B.6 in Appendix B). Take $\epsilon_1 < L_1 \delta^2 / 16$. For curriculum learning, in order to
 281 make the error $\|\hat{\theta}_{\text{cl}} - \theta^*\|_2^2 < \frac{4\epsilon_1}{L_1}$, set n_j satisfies $\mathcal{R}_{n_j}(\Pi) \leq \epsilon_1 / 4$, where $\mathcal{R}_{n_j}(\Pi)$ is the Rademacher
 282 complexity of policy class Π and uses the learning rate $\eta \leq \mu / L_2^2$, and set the total iteration as*

$$284 \quad K = \Omega \left(\frac{1}{\mu \eta} \sum_{j=0}^{J-1} \log \frac{L_2^2 \|\theta_j^* - \theta_{j+1}^*\|_2^2}{\mu \epsilon_1} \right).$$

287 For regular SGD, in order to make the error $\|\hat{\theta}_{\text{rg}} - \theta_{\text{rg}}^*\|_2^2 < \frac{4\epsilon_1}{L_1}$, set n_{rg} to satisfy $\mathcal{R}_{n_{\text{rg}}}(\Pi) \leq \epsilon_1 / 4$
 288 and uses the same η , and take

$$290 \quad K_{\text{rg}} = \Omega \left(\frac{1}{\mu \eta} \log \frac{L_2^2 \|\theta_0^* - \theta_{\text{rg}}^*\|_2^2}{\mu \epsilon_1} \right).$$

293 With probability at least $1 - \exp \left(- \frac{n_{\text{rg}} \epsilon_1^2}{2B_1^2} \right) - \sum_{j=1}^J \exp \left(- \frac{n_j \epsilon_1^2}{2B_1^2} \right) - (J+1)\epsilon_1$, we have

$$295 \quad \|\hat{\theta}_{\text{cl}} - \theta^*\|_2^2 < \|\hat{\theta}_{\text{rg}} - \theta^*\|_2^2.$$

297 Here, θ_0^* is the starting point; $\hat{\theta}_{\text{cl}}$ and $\hat{\theta}_{\text{rg}}$ are the final outputs of curriculum learning and standard
 298 SGD, respectively; n_j is the sample size of batch j ; n_{rg} is the total sample size for standard SGD; δ
 299 measures the distance between the true minimizer θ^* and the population minimizer of standard SGD
 300 θ_{rg}^* ; $B_1, L_1, L_2, \mu, \Omega(\cdot)$ and $\mathcal{R}_n(\cdot)$ are defined in Appendix B.

301 *Remark 4.1.* This theorem provides a formal justification for the convergence of curriculum learning.
 302 The total training time, K , depends on the sum of logarithmic distances between the optimal policies
 303 of consecutive stages: $\sum_{j=0}^{J-1} \log \|\theta_j^* - \theta_{j+1}^*\|_2^2$. An effective curriculum ensures these intermediate
 304 distances are small, allowing the solution from each stage to serve as a strong **warm start** for the
 305 next. CL thereby decomposes a single, challenging optimization problem, leaping directly from
 306 an initial θ_0^* to the final θ_J^* , into a sequence of more tractable sub-problems, creating an efficient
 307 optimization path. In contrast, we establish a lower bound for standard SGD which shows that, under
 308 these conditions, it fails to converge to the optimal policy. Details are provided in Appendix B.

310 5 EXPERIMENTS

311 In this section, we evaluate the performance of MMedAgent-RL, aiming to answer the following
 312 questions: (1) Can MMedAgent-RL effectively improve model performance compared to other
 313 LVLMs and the Qwen2.5-VL-based baselines? (2) How does MMedAgent-RL perform on out-of-
 314 distribution datasets? (3) Does each proposed component contribute to performance gains? (4) What
 315 is the impact of choosing different models as specialist doctors? (5) Does MMedAgent-RL truly
 316 enhance the model's capabilities across various specialist configurations?

318 5.1 EXPERIMENTAL SETUP

319 **Implementation Details.** We use Qwen2.5-VL (Bai et al., 2025) as the base model. We design the
 320 prompt template shown in Table 4, clearly specifying the required output structure, which includes
 321 using `<think>` and `<answer>` tags to separately contain the reasoning process and the final answer.
 322 The rollout batch size and training batch size are both set to 128, with 8 rollouts generated for each
 323 sample. The sampling temperature is set to 1.0 to encourage response diversity, and optimization is

324
 325 Table 1: The results of the medical VQA benchmark. Here, MMMU denotes MMMU (Health
 326 & Medicine track). The best results and second best results are highlighted in red and blue,
 327 respectively. Majority voting is used for the test-time scaling (TTS).

Model	VQA-RAD	In-Domain Datasets			Out-of-Distribution Datasets		
		SLAKE	PathVQA	Avg.	OmniMedVQA	MMMU-Med	Avg.
GPT-4o	61.0	75.5	69.4	68.6	68.5	69.7	69.1
Med-Flamingo	45.4	43.5	54.7	47.9	30.7	28.3	29.5
RadFM	50.6	34.6	38.7	41.3	28.2	27.0	27.6
LLaVA-Med-7B	51.4	48.6	56.8	52.3	44.1	36.9	40.5
Qwen-VL-Chat	47.0	56.0	55.1	52.7	48.3	32.7	40.5
Yi-VL-34B	53.0	58.9	47.3	53.1	51.5	41.5	46.5
LLaVA-v1.6-7B	52.6	57.9	47.9	52.8	49.0	33.1	41.1
LLaVA-v1.6-13B	55.8	58.9	51.9	55.5	48.0	39.3	43.7
LLaVA-v1.6-34B	58.6	67.3	59.1	61.6	58.7	48.8	53.8
LLaVA-v1.5-LLaMA3-8B	54.2	59.4	54.1	55.9	44.6	38.2	41.4
HuatuqGPT-Vision-7B	63.0	77.2	58.7	66.3	74.6	51.0	62.8
Qwen2.5-VL-3B	61.0	62.7	57.6	60.4	60.1	54.5	57.3
Qwen2.5-VL-7B	61.8	64.7	60.5	62.3	60.8	56.6	58.7
MedVLThinker-7B	63.7	67.8	65.2	65.6	62.4	57.0	59.7
Multi-Agent Collaboration							
MedAgents	65.6	67.9	63.2	65.6	55.8	49.7	52.6
MDAgents	66.8	68.2	65.4	66.8	58.2	52.3	55.1
AFlow	67.3	68.9	66.4	67.5	59.6	53.6	56.6
MMedAgent-RL (7B)	71.5 +10%	76.2 +12%	72.3 +12%	73.3 +11%	73.3 +13%	71.9 +15%	72.6 +14%
<i>w/ Test-Time Scaling</i>	73.9 +12%	80.1 +15%	74.3 +14%	76.1 +14%	79.6 +19%	73.5 +17%	76.6 +18%

345 done with a learning rate of 1×10^{-6} . The KL divergence coefficients are set to 1×10^{-3} , 4×10^{-3} ,
 346 and 1×10^{-2} respectively for curriculum reinforcement learning. For the number of specialists, we
 347 set $e = 3$. The details are shown in Appendix F.2.

348 **Dataset Splitting and Difficulty Stratification.** We adhere strictly to the official guidelines for
 349 partitioning the training, validation, and test sets. To facilitate our curriculum learning strategy, we
 350 further categorize samples into three difficulty levels (*Easy*, *Medium*, *Hard*) based on the consistency
 351 and accuracy of specialist responses. It is important to note that this difficulty grading is utilized
 352 exclusively during the training phase to schedule the curriculum. During inference, the model
 353 generates responses without access to difficulty labels or ground truth information. The difficulty-
 354 based breakdown presented in our analysis is applied *post-hoc* to the test set solely to visualize model
 355 robustness against specialist noise, ensuring no data leakage.

356 **Baseline Methods.** We compare MMedAgent-RL with methods under two different settings: 1)
 357 Single-agent setting: This includes a series of state-of-the-art LVLMs, encompassing both general
 358 LVLMs and domain-specific LVLMs. Specifically, we include comparisons of the LLaVA series (Liu
 359 et al., 2024a), Yi-VL-34B (Young et al., 2024), Qwen-VL (Bai et al., 2025), LLaVA-Med (Li et al.,
 360 2023), MedFlamingo (Moor et al., 2023), RadFM (Wu et al., 2023), MedVLThinker-7B Huang et al.
 361 (2025) and GPT-4o (OpenAI, 2024). 2) Multi-agent setting: This includes MedAgents (Tang et al.,
 362 2024), MDAgents (Kim et al., 2024), AFlow (Zhang et al., 2024).

363 **Data and Metrics.** We train on the three medical VQA datasets, i.e., VQA-RAD (Lau et al., 2018),
 364 SLAKE (Liu et al., 2021), PathVQA (He et al., 2020). Their test sets are considered the in-domain
 365 test sets. Additionally, following Chen et al. (2024a), we select the health and medicine subset of
 366 MMMU (Yue et al., 2024), and OmniMedVQA (Hu et al., 2024b) as out-of-distribution datasets. All
 367 evaluation questions are multiple-choice, and accuracy is used as the evaluation metric.

368 5.2 MAIN RESULTS

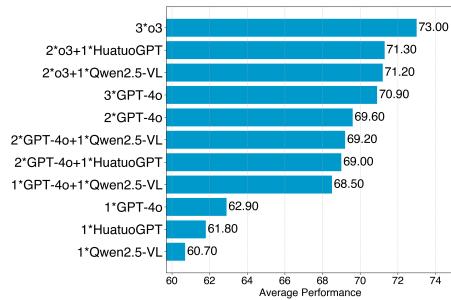
371 In this section, we conduct a comprehensive comparison on the medical VQA task involving six
 372 datasets and various LVLMs as well as baseline methods based on Qwen2.5-VL.

373 **Comparison with Baselines in In-Distribution Datasets.** Table 1 shows the performance of various
 374 models across four medical VQA benchmarks. General LVLMs like LLaVA-v1.6-34B and GPT-4o
 375 exhibit consistently strong performance, outperforming earlier medical-specific models such as
 376 Med-Flamingo and RadFM. Notably, GPT-4o achieves the highest average score (68.6%) among
 377 all single-agent models, demonstrating its powerful generalization capabilities even in specialized
 medical domains. Interestingly, the multi-agent collaboration strategy further boosts performance.

378 MMedAgent-RL achieves the best overall average (73.3%), surpassing even the strongest single-agent
 379 models. This highlights the effectiveness of collaborative inference in leveraging the complementary
 380 strengths of different models. In addition, we utilized majority voting as the method for test-
 381 time scaling (Snell et al., 2024), which further improved the model performance by 4.5%. This
 382 demonstrates that optimizing token entropy during the RL process is positive for efficient sampling.
 383 For different specialists, a varied spirit of exploration remains very important.

384 **Performance in Out-of-Distribution Datasets.** We evaluate the performance of MMedAgent-RL
 385 across various out-of-distribution (OOD) datasets. The results are presented in Table 1, which
 386 demonstrates the generalization of our approach in adapting to different OOD scenarios. These two
 387 OOD datasets cover multiple body parts and involve various medical image modalities. Through rein-
 388 force learning, MMedAgent-RL demonstrates significant superiority across multiple modalities,
 389 outperforming the base model by 21% and the SFT method by 23.6%. Moreover, it surpasses the
 390 performance of multi-agent collaboration methods that cannot optimize models, i.e., MedAgents,
 391 MDAgents and AFlow, by 23%, 19% and 17%, highlighting the effectiveness of our approach in
 392 handling diverse and unseen data distributions.

393 5.3 ANALYSIS

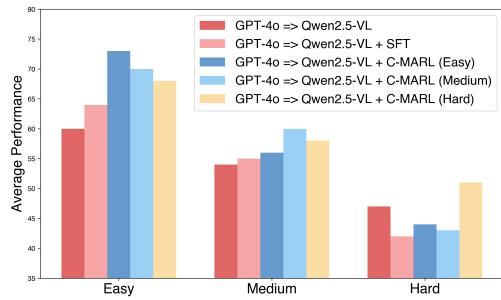


405 Figure 3: Results of different settings of
 406 specialist doctors.

407 In this section, we conduct a detailed performance analysis at each step and explore how model type,
 408 numbers of specialist doctors, and varying levels of decision difficulty affect the results, to better
 409 understand the performance gains achieved by MMedAgent-RL.

410 **Ablation Studies.** We conducted a series of ablation experiments to evaluate the impact of each
 411 component in MMedAgent-RL, as shown in Table 2. We can see that: (1) Reliable triage doctors
 412 are important. Accurately determining the department to which a specialist doctor belongs helps the
 413 model call upon knowledge from their corresponding field of expertise to answer questions, improving
 414 the accuracy of specialist doctors' answers. A fine-tuned triage doctor significantly improves model
 415 performance compared to the original model, with an average performance increase of 3% across
 416 multiple datasets. (2) Based on this, the mechanism of specialist doctor consultation is introduced,
 417 further helping the decision-making agent fully utilize expert opinions, with an average performance
 418 increase of 4.5% across multiple datasets. (3) Most importantly, the addition of curriculum multi-agent
 419 reinforcement learning (C-MARL) enhanced the decision-making agent's understanding of specialist
 420 doctors' knowledge, achieving a significant performance improvement of 18.6%. This indicates that
 421 C-MARL can effectively solve the problem of overall misalignment between the model and external
 422 knowledge. Specifically, each stage plays a corresponding role and can understand the specialist
 423 doctors' knowledge according to the goals of different stages, achieving overall performance gains.

424 **Analysis of Specialist Doctors.** We ana-
 425 lyze the types and number of models play-
 426 ing the role of specialist doctors. Specifi-
 427 cally, as shown in Figure 3, regarding the
 428 model types, the performance of the final
 429 decision-making agent is closely related to
 430 the performance of the specialist doctors.
 431 Therefore, we used a series of models that
 432 performed well on multiple datasets, such
 433 as o3, GPT-4o, HuatuoGPT-Vision, and



405 Figure 4: Results under different levels of deci-
 406 sion difficulty.

407 Table 2: Ablation results on ID and OOD datasets.

Model	ID		OOD	
	VQA-RAD	SLAKE	OmniMedVQA	MMMU
MMMedAgent-RL	71.5	76.2	73.3	71.9
w/o Triage	66.3	69.9	66.2	59.3
w/o Specialists	65.8	67.8	64.4	54.2
w/o C-MARL	63.5	65.5	57.9	50.2
+ Easy	64.7	69.3	68.2	58.0
+ Medium	69.4	76.9	70.8	68.8
+ Hard	71.5	76.2	73.3	71.9

432 Qwen2.5-VL, as specialist doctors. Since
 433 the areas or tasks that each model excels in are not completely consistent, the specialist doctor played
 434 by o3 ultimately performed the best. Its performance across various aspects was relatively balanced,
 435 enabling MMedAgent-RL to achieve the best performance. Refer to Appendix G.2 for details.

436 **Performance under Different Levels of Decision Difficulty.** To analyze the robustness of the
 437 GP agent against noisy advice, we categorize test samples into three difficulty levels based on the
 438 consistency and correctness of specialist outputs: *Easy* (all specialists are correct), *Medium* (spe-
 439 cialists disagree), and *Hard* (specialists consistently provide incorrect advice, creating a misleading
 440 consensus). Figure 4 illustrates the performance of baselines versus MMedAgent-RL across these
 441 categories. While specialist noise—particularly in the ‘Hard’ setting—significantly hampers the
 442 baseline model’s decision-making, our C-MARL method enables the agent to gradually learn to
 443 distinguish and selectively utilize specialist knowledge. Consequently, MMedAgent-RL achieves an
 444 overall performance improvement of 20%, with the most significant gains observed in overcoming
 445 misleading specialist hallucinations in the hard cases.

446 **Case Study and Outlook on “Aha Moments”.** As shown in Figure 5, MMedAgent-RL demonstrates
 447 strong performance across multiple cases. It provides accurate answers within the <answer>
 448 tags and generates high-quality reasoning resembling that of human doctors: defining the disease,
 449 analyzing images, and checking consistency with the definition. It also evaluates specialists’ outputs
 450 before reasoning out the correct answer. While lacking the “aha moment” observed in humans, this
 451 structured reasoning highlights the potential for more human-like scientific AI systems.

452

453

454

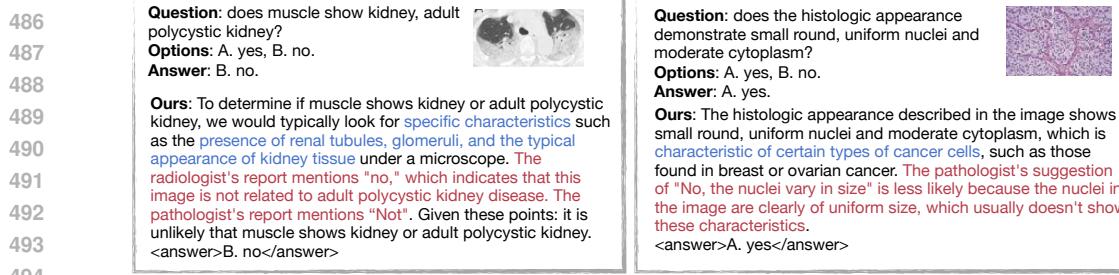
6 RELATED WORK

455

456

457 **Medical Vision-Language Models.** The advancement of Vision-Language Models (VLMs) (Liu
 458 et al., 2024a;b; Zhu et al., 2023; Bai et al., 2023; Chen et al., 2024c) has catalyzed significant
 459 progress in medical applications (Xia et al., 2024a;c;b; Chen et al., 2024a; Zhu et al., 2024), with
 460 large-scale models like LLaVA-Med (Li et al., 2024b), HuatuoGPT-Vision (Chen et al., 2024a),
 461 and VILA-M3 (Nath et al., 2024) demonstrating profound results in medical diagnostics. However,
 462 single models struggle to handle cross-domain expertise. Although multi-agent systems (Li et al.,
 463 2024c; Kim et al., 2024; Tang et al., 2024; Zhang et al., 2024) have been proposed to combine
 464 diverse medical expertise, existing approaches typically use preset workflows that lack adaptive
 465 reasoning capabilities. Works such as MedAgentsBench (Tang et al., 2025) and AI Hospital Fan
 466 et al. (2025) have established frameworks for evaluating multi-agent interactions and diagnostic
 467 thinking. Furthermore, AgentClinic Schmidgall et al. (2024) introduces a multimodal benchmark
 468 to simulate clinical environments specifically for evaluating embodied agents. Additionally, most
 469 Med-VLMs are developed through supervised fine-tuning (SFT) on general VLMs using biomedical
 470 instruction data (Chen et al., 2024a; Li et al., 2023; Liu et al., 2023), which is limited by the scarcity
 471 of high-quality reasoning examples and often results in models that struggle with complex diagnostic
 472 reasoning across specialties.

473 **Reinforcement Learning for Multimodal Reasoning.** To address the limitations of static multi-
 474 agent systems and overcome the constraints of supervised fine-tuning, Reinforcement Learning
 475 (RL) offers a promising alternative for optimizing medical reasoning. RL evolves from establishing
 476 foundational frameworks for learning from human preferences (Christiano et al., 2017; Ziegler et al.,
 477 2019) to developing sophisticated approaches like RLHF for instruction following (Ouyang et al.,
 478 2022) and self-correction (Kumar et al., 2024). Recent advances with DeepSeek-R1 (Guo et al., 2025)
 479 demonstrate that LLMs can leverage RL to enhance reasoning capabilities in complex tasks without
 480 supervision, showing exceptional performance in mathematics and coding challenges (Yeo et al.,
 481 2025). This success has extended to multimodal reasoning (Meng et al., 2025; Shen et al., 2025;
 482 Wang et al., 2025a; Chen et al., 2025; Zhou et al., 2025; Liu et al., 2025), including the biomedical
 483 domain (Pan et al., 2025). **DoctorAgent-RL (Feng et al., 2025)** employs a multi-agent collaborative
 484 RL system specifically to optimize multi-turn clinical dialogue policies. Then **Med-U1** Zhang
 485 et al. (2025) utilizes large-scale RL to incentivize unified reasoning patterns in medical LLMs.
 However, prior RL-based approaches for multimodal reasoning have primarily focused on optimizing
 a single model, leaving the potential of RL for enhancing multi-agent medical collaboration largely
 unexplored.



495 Figure 5: Several case analyses. In the model responses, **blue text** represents the process of reasoning
496 about relevant medical knowledge based on the question, and **red text** represents the analysis of the
497 answer provided by the specialists.

7 CONCLUSION

500 This work presents MMedAgent-RL, a novel RL framework for multi-agent collaboration in medical
501 multimodal reasoning. The framework mimics a clinical “triage-and-referral” system, using a
502 curriculum RL strategy to train a primary model to intelligently handle noisy or conflicting inputs
503 from different “specialist” agents. Experiments demonstrate the method’s strong performance across
504 multiple medical visual question answering datasets, offering a promising new direction for building
505 reasoning models that more closely emulate human diagnostic thinking.

506 **Ethics Statement.** All authors have read and comply with the ICLR Code of Ethics. This work does
507 not involve human subjects or sensitive data, and we are unaware of any potential misuse, harm, or
508 bias. No conflicts of interest or compromising sponsorships exist.

509 **Reproducibility Statement** Details of the proposed methodology, training procedure, hyperparameters,
510 and evaluation metrics are provided in Section F. We include complete algorithm pseudocode in
511 Alg. 1 and a full description of the datasets in Appendix D and Appendix F.1.

REFERENCES

515 Waleed Abo-Hamad and Amr Arisha. Simulation-based framework to improve patient experience in
516 an emergency department. *European journal of operational research*, 224(1):154–166, 2013.

517 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
518 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
519 text reading, and beyond. 2023.

520 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
521 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
522 2025.

524 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
525 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

527 Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang,
528 Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, et al. Huatuogpt-vision, towards injecting
529 medical visual knowledge into multimodal llms at scale. *arXiv preprint arXiv:2406.19280*, 2024a.

530 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
531 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025. Accessed: 2025-02-02.

533 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
534 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
535 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024b.

537 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
538 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
539 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition*, pp. 24185–24198, 2024c.

540 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 541 reinforcement learning from human preferences. *Advances in neural information processing*
 542 *systems*, 30, 2017.

543

544 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 545 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
 546 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

547

548 Huilin Deng, Ding Zou, Rui Ma, Hongchen Luo, Yang Cao, and Yu Kang. Boosting the generalization
 549 and reasoning of vision language models with curriculum reinforcement learning. *arXiv preprint*
 550 *arXiv:2503.07065*, 2025.

551

552 Zhihao Fan, Lai Wei, Jialong Tang, Wei Chen, Wang Siyuan, Zhongyu Wei, and Fei Huang. Ai
 553 hospital: Benchmarking large language models in a multi-agent medical interaction simulator. In
 554 *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 10183–10213,
 555 2025.

556

557 Yichun Feng, Jiawei Wang, Lu Zhou, Zhen Lei, and Yixue Li. Doctoragent-rl: A multi-agent
 558 collaborative reinforcement learning system for multi-turn clinical dialogue. *arXiv preprint*
 559 *arXiv:2505.19630*, 2025.

560

561 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 562 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 563 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

564

565 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
 566 medical visual question answering. *arXiv preprint arXiv:2003.10286*, 2020.

567

568 Jian Hu, Xibin Wu, Zilin Zhu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use,
 569 scalable and high-performance rlhf framework. *arXiv preprint arXiv:2405.11143*, 2024a.

570

571 Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimed-
 572 vqa: A new large-scale comprehensive evaluation benchmark for medical lilm. *arXiv preprint*
 573 *arXiv:2402.09181*, 2024b.

574

575 Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, and Yuyin Zhou. Medvithinker: Simple
 576 baselines for multimodal medical reasoning. *arXiv preprint arXiv:2508.02669*, 2025.

577

578 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 579 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 580 *arXiv:2412.16720*, 2024.

581

582 Yubin Kim, Chanwoo Park, Hyewon Jeong, Yik Siu Chan, Xuhai Xu, Daniel McDuff, Hyeonhoon
 583 Lee, Marzyeh Ghassemi, Cynthia Breazeal, Hae Park, et al. Mdagents: An adaptive collaboration
 584 of llms for medical decision-making. *Advances in Neural Information Processing Systems*, 37:
 585 79410–79452, 2024.

586

587 Abhishek Kumar, Victor Zhuang, Rishabh Agarwal, Ying Su, John D Co-Reyes, Aravind Singh,
 588 Kshitij Baumli, Shariq Iqbal, Christopher Bishop, Rebecca Roelofs, et al. Training language
 589 models to self-correct via reinforcement learning. *arXiv preprint arXiv:2409.12917*, 2024.

590

591 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 592 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 593 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 594 *Systems Principles*, 2023.

595

596 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 597 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

598

599 Yunwen Lei, Ting Hu, Guiying Li, and Ke Tang. Stochastic gradient descent for nonconvex learning
 600 without bounded gradient assumptions. *IEEE transactions on neural networks and learning*
 601 *systems*, 31(10):4394–4400, 2019.

594 Bin Xu, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang Ji, Jiayuan Ding, Zhe Xu, Shilong Liu, Haoyu
 595 Dong, Zihao Lin, et al. Mmedagent: Learning to use medical tools with multi-modal agent. In
 596 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 8745–8760, 2024a.
 597

598 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
 599 mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant
 600 for biomedicine in one day. In *Thirty-seventh Conference on Neural Information Processing
 601 Systems Datasets and Benchmarks Track*, 2023.

602 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 603 Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
 604 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36,
 605 2024b.

606 Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng Zhang, Xinhui Kang, Siyu Wang, Peng Li,
 607 Ya-Qin Zhang, Weizhi Ma, et al. Agent hospital: A simulacrum of hospital with evolvable medical
 608 agents. *arXiv preprint arXiv:2405.02957*, 2024c.

609

610 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 611 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th
 612 International Symposium on Biomedical Imaging (ISBI)*, pp. 1650–1654. IEEE, 2021.

613

614 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 615 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 616 pp. 26296–26306, 2024a.

617 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 618 neural information processing systems*, 36, 2024b.

619

620 Junling Liu, Ziming Wang, Qichen Ye, Dading Chong, Peilin Zhou, and Yining Hua. Qilin-
 621 med-vl: Towards chinese large vision-language model for general healthcare. *arXiv preprint
 622 arXiv:2310.17956*, 2023.

623

624 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 625 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.

626

627 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 628 Han, Botian Shi, Wenhui Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multimodal
 reasoning with rule-based reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

629

630 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
 631 Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot
 632 learner. In *Machine Learning for Health (ML4H)*, pp. 353–367. PMLR, 2023.

633

634 Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhijian Liu,
 635 Hongxu Yin, Yucheng Tang, Pengfei Guo, et al. Vila-m3: Enhancing vision-language models with
 medical expert knowledge. *arXiv preprint arXiv:2411.12915*, 2024.

636

637 OpenAI. Gpt-4o system card, 2024. <https://openai.com/index/gpt-4o-system-card/>.

638

639 OpenAI. Introducing o3 and o4-mini, 2025. <https://openai.com/index/introducing-o3-and-o4-mini/>.

640

641 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 642 Zhang, Sandhini Agarwal, Katarina Slama, and Alex Ray. Training language models to follow
 643 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:
 644 27730–27744, 2022.

645

646 Jiazheng Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng
 647 Ouyang, and Daniel Rueckert. Medvlm-r1: Incentivizing medical reasoning capability of vision-
 language models (vlms) via reinforcement learning. *arXiv preprint arXiv:2502.19634*, 2025.

648 Anastasia Pentina, Viktoria Sharmanska, and Christoph H Lampert. Curriculum learning of multiple
 649 tasks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 650 5492–5500, 2015.

651

652 Samuel Schmidgall, Rojin Ziae, Carl Harris, Eduardo Reis, Jeffrey Jopling, and Michael Moor.
 653 *Agentclinic: a multimodal agent benchmark to evaluate ai in simulated clinical environments.*
 654 *arXiv preprint arXiv:2405.07960*, 2024.

655 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 656 optimization algorithms. *ArXiv preprint*, abs/1707.06347, 2017. URL <https://arxiv.org/abs/1707.06347>.

658

659 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 660 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 661 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

662 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 663 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

664

665 Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
 666 and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
 667 reasoning. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 599–621,
 668 2024.

669

670 Xiangru Tang, Daniel Shao, Jiwoong Sohn, Jiapeng Chen, Jiayi Zhang, Jinyu Xiang, Fang Wu, Yilun
 671 Zhao, Chenglin Wu, Wenqi Shi, et al. Medagentsbench: Benchmarking thinking models and agent
 672 frameworks for complex medical reasoning. *arXiv preprint arXiv:2503.07459*, 2025.

673

674 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 675 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 676 llms. *arXiv preprint arXiv:2501.12599*, 2025.

677

678 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 679 bridge university press, 2019.

680

681 Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. Vl-rethinker:
 682 Incentivizing self-reflection of vision-language models with reinforcement learning. *arXiv preprint*
 683 *arXiv:2504.08837*, 2025a.

684

685 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 686 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 687 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025b.

688

689 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 690 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 691 models. In *The Eleventh International Conference on Learning Representations*.

692

693 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Towards generalist foundation
 694 model for radiology. *arXiv preprint arXiv:2308.02463*, 2023.

695

696 Peng Xia, Ze Chen, Juanxi Tian, Yangrui Gong, Ruibo Hou, Yue Xu, Zhenbang Wu, Zhiyuan Fan,
 697 Yiyang Zhou, Kangyu Zhu, et al. Cares: A comprehensive benchmark of trustworthiness in medical
 698 vision language models. *Advances in Neural Information Processing Systems*, 37:140334–140365,
 699 2024a.

700

701 Peng Xia, Kangyu Zhu, Haoran Li, Tianze Wang, Weijia Shi, Sheng Wang, Linjun Zhang, James
 702 Zou, and Huaxiu Yao. Mmed-rag: Versatile multimodal rag system for medical vision language
 703 models. *arXiv preprint arXiv:2410.13085*, 2024b.

704

705 Peng Xia, Kangyu Zhu, Haoran Li, Hongtu Zhu, Yun Li, Gang Li, Linjun Zhang, and Huaxiu Yao.
 706 *Rule: Reliable multimodal rag for factuality in medical vision language models*. In *Proceedings
 707 of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 1081–1093,
 708 2024c.

702 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
 703 chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.
 704

705 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
 706 Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 707 *arXiv:2403.04652*, 2024.

708 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 709 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 710 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
 711 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

712 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
 713 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation.
 714 In *The Thirteenth International Conference on Learning Representations*, 2024.

715

716 Xiaotian Zhang, Yuan Wang, Zhaopeng Feng, Ruizhe Chen, Zhijie Zhou, Yan Zhang, Hongxia Xu,
 717 Jian Wu, and Zuozhu Liu. Med-u1: Incentivizing unified medical reasoning in llms via large-scale
 718 reinforcement learning. *arXiv preprint arXiv:2506.12307*, 2025.

719 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 720 "zero's" aha moment" in visual reasoning on a 2b non-sft model. *arXiv preprint arXiv:2503.05132*,
 721 2025.

722

723 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 724 hancing vision-language understanding with advanced large language models. *arXiv preprint*
 725 *arXiv:2304.10592*, 2023.

726 Kangyu Zhu, Peng Xia, Yun Li, Hongtu Zhu, Sheng Wang, and Huaxiu Yao. Mmedpo: Aligning
 727 medical vision-language models with clinical-aware multimodal preference optimization. *arXiv*
 728 *preprint arXiv:2412.06141*, 2024.

729

730 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 731 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
 732 *preprint arXiv:1909.08593*, 2019.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX	
757		
758	A Large Language Model Usage	16
759		
760	B Omitted Theorems and Proofs	16
761		
762	B.1 Notation	16
763	B.2 Some Useful Lemmas	16
764	B.3 Analysis for Curriculum Learning	16
765	B.4 Analysis for Standard SGD	21
766		
767	C Evaluated Models	22
768		
769	D Evaluated Datasets	22
770		
771	E Overview of the Baselines	23
772		
773	F Experimental Setup	23
774		
775	F.1 Data Statistics	23
776	F.2 Hyperparameter Settings	24
777	F.3 Prompt	24
778	F.4 Dataset Splitting and Difficulty Stratification	25
779		
780	G Additional Results	25
781		
782	G.1 Comparison with Supervised Fine-Tuning (SFT)	25
783	G.2 Different Specialists	25
784	G.3 Ablation Analysis	26
785	G.3.1 Performance of Triage Doctor	26
786	G.3.2 KL Divergence Coefficient	26
787	G.4 Comparison with Test-Time Scaling Methods	26
788	G.5 Quantify the Performance Gain from Routing and Aggregation	27
789	G.6 Detailed Ablation on Triage Agent	27
790	G.7 Detailed Ablation on Progressively Adding Components	28
791	G.8 Comparison on Triage Agent with Different Settings	29
792	G.9 Involvement of Human Experts	29
793	G.10 Comparison on GP Update Strategies	29
794	G.11 Framework Transferability	30
795	G.12 Baselines with Trained Aggregator	30
796	G.13 Detailed Results	31
797	G.14 More Cases	31
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A LARGE LANGUAGE MODEL USAGE
811

812 All content in this article is entirely authored by the writers. The LLM (we use Gemini2.5-Pro) was
813 used solely for language refinement and stylistic polishing, without contributing to content generation.
814 All LLM-refined passages were subsequently reviewed and revised by the authors.
815

816 B OMITTED THEOREMS AND PROOFS
817818 B.1 NOTATION
819

820 We denote by $\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_{S=(x_1, \dots, x_n)} \left[\mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(x_i) \right] \right]$ the (expected) Rademacher
821 complexity of the function class $\mathcal{F} \subseteq \{f : \mathcal{X} \rightarrow \mathbb{R}\}$, where $\sigma_1, \dots, \sigma_n$ are i.i.d. Rademacher
822 variables taking values in $\{-1, +1\}$ with probability $1/2$ each and the outer expectation is over
823 the sample S . The Kullback–Leibler (KL) divergence from a discrete distribution p to a discrete
824 distribution q (defined over a common support \mathcal{X}) is given by $\mathbb{D}_{\text{KL}}[p \parallel q] := \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)} \right)$,
825 under the assumption that whenever $p(x) > 0$, one also has $q(x) > 0$ for all $x \in \mathcal{X}$. For two positive
826 sequences $\{a_n\}$ and $\{b_n\}$, write $a_n = o(b_n)$ if $\lim_n a_n/b_n = 0$, $a_n = O(b_n)$ if $a_n \leq Cb_n$, and
827 $a_n = \Omega(b_n)$ if $a_n \geq Cb_n$ for all n and some positive C . The l_2 norm of a vector $x \in \mathbb{R}^d$ is
828 defined as $\|x\|_2 := \left(\sum_{i=1}^d x_i^2 \right)^{1/2}$. For a measurable function $f : \mathcal{X} \rightarrow \mathbb{R}$, the L_∞ norm is
829 $\|f\|_\infty := \sup_{x \in \mathcal{X}} |f(x)|$, which equals $\sup_{x \in \mathcal{X}} |f(x)|$ when \mathcal{X} is finite.
830

832 B.2 SOME USEFUL LEMMAS
833

834 **Lemma B.1** (Theorem 4.10 in Wainwright (2019)). *For any b -uniformly bounded class of functions
835 \mathcal{F} , any positive integer $n \geq 1$, and any scalar $\delta \geq 0$, we have*

$$836 \mathbb{P} \left(\sup_{f \in \mathcal{F}} |(\mathbb{P}_n - \mathbb{P})[f]| \leq 2\mathcal{R}_n(\mathcal{F}) + \delta \right) \geq 1 - \exp \left(-\frac{n\delta^2}{2b^2} \right).$$

837 A function class \mathcal{F} is said to be b -uniformly bounded if $\|f\|_\infty \leq b, \forall f \in \mathcal{F}$.
838

839 To prove Theorem 4.1, we split the analysis into two parts: Theorem B.1, which establishes the upper
840 bound for curriculum learning, and Theorem B.2, which establishes the lower bound for standard
841 SGD. Combining these results yields Theorem 4.1.
842

844 B.3 ANALYSIS FOR CURRICULUM LEARNING
845

846 In this section, we systematically develop the theoretical foundation for curriculum learning. As
847 previously discussed, we reiterate here that the curriculum learning strategy is effective for policy
848 learning in the reinforcement learning (RL) setting. Our goal is to quantify the number of samples
849 required to achieve a target error level ϵ .
850

Recall the distribution assumption:

851 **Assumption B.1.** *From the easiest to the hardest dataset, for j -th dataset, we assume*

$$853 \mathcal{D}_j = \left\{ (x_i, y_i)_{i=1}^{n_j} \mid x_i \sim p(x), y_i \sim \pi_{\theta_j^*}(y \mid x) \right\}.$$

855 Recall that the GRPO loss is given by

$$856 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{x, \{y_i\}} \left[\frac{1}{G} \sum_{i=1}^G \left(\min \left(r_i A_i, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) A_i \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right) \right], r_i = \frac{\pi_\theta(y_i \mid x)}{\pi_{\text{old}}(y_i \mid x)}. \quad (\text{B.1})$$

859 And our loss function is defined as

$$860 \mathcal{J}_{\text{C-MARL}}(\theta) = \mathbb{E} \left[\mathcal{J}_{\text{GRPO}}(\theta) + \gamma_s \cdot H_t(\pi_{\theta_{\text{GP}}^{\text{attend}}}) \right], \quad H_t = - \sum_{j=1}^V p_{t,j} \log p_{t,j}, \quad (\text{B.2})$$

863 where $\mathbf{p}_t = \pi_\theta(\cdot \mid \mathcal{R}_{<t}, x; T) = \text{Softmax} \left(\frac{\mathbf{z}_t}{\tau} \right)$.

864 When minimizing the objective, we can interpret the procedure as performing SGD on the batch loss.
 865 Specifically, define
 866

$$867 \quad \mathcal{L}_j(\theta) = -\mathbb{E}_{x \sim p(x), y \sim \pi_{\theta_j^*}(y|x)} \left[\mathcal{J}_{\text{GRPO}}(\theta) + \gamma_s \cdot H_t(\pi_{\theta_{\text{GP}}^{\text{attend}}}) \right].$$

869 It is natural to introduce the following self-consistency condition:

870 **Assumption B.2** (Self-consistency). θ_j^* is the minimizer of $\mathcal{L}_j(\theta)$.
 871

872 Under this assumption, minimizing $\mathcal{L}_j(\theta)$ allows us to recover the true policy.
 873

874 For the empirical version, the dataset at stage j is
 875

$$875 \quad \mathcal{D}_j = \left\{ (x_i, y_i)_{i=1}^{n_j} \mid x_i \sim p(x), y_i \sim \pi_{\theta_j^*}(y \mid x) \right\},$$

877 and the overall dataset is
 878

$$879 \quad \mathcal{D} = \bigcup_{j=1}^J \mathcal{D}_j.$$

881 The corresponding empirical approximation of the batch loss is
 882

$$883 \quad \tilde{\mathcal{L}}_j(\theta) = -\frac{1}{n_j} \sum_{(x,y) \in \mathcal{D}_j} \left[\mathcal{J}_{\text{GRPO}}(\theta) + \gamma_s \cdot H_t(\pi_{\theta_{\text{GP}}^{\text{attend}}}) \right].$$

886 We denote its minimizer by $\tilde{\theta}_j$.
 887

888 The overall training procedure then consists of successively minimizing $\tilde{\mathcal{L}}_j(\theta)$ for $j = 1, \dots, J$,
 889 where at each stage j we perform K_j iterations of SGD.
 890

891 We first apply classical learning theory techniques to establish the convergence between $\tilde{\mathcal{L}}_j(\theta)$ and
 892 $\mathcal{L}_j(\theta)$. After that, we analyze the behavior of the SGD iterations.
 893

894 To proceed, we introduce two assumptions on the loss function class
 895

$$894 \quad \mathcal{F} = \left\{ \mathcal{L}_j(\theta), \tilde{\mathcal{L}}_j(\theta) \mid j = 1, \dots, J \right\}.$$

896 **Assumption B.3** (Boundedness). For any loss function $f \in \mathcal{F}$, $\|f\|_{\infty} \leq B_1$.
 897

898 **Assumption B.4.** For any loss function $f \in \mathcal{F}$, let θ_f^* denote its minimizer. If $f(\theta) - f(\theta_f^*) \leq U_1$,
 899 then
 900

$$900 \quad L_1 \|\theta - \theta_f^*\|_2^2 \leq f(\theta) - f(\theta_f^*).$$

901 *Remark B.1.* Here we assume that, in a neighborhood of its minimizer, the objective is locally convex.
 902 Our GRPO loss satisfies this assumption.
 903

904 **Proposition B.1.** Suppose Assumptions B.1–B.4 hold. At the j -th step, for any $0 < \epsilon_1 < U_1$, assume
 905 the sample size n_j is sufficiently large so that
 906

$$906 \quad \mathcal{R}_{n_j}(\Pi) \leq \frac{\epsilon_1}{4},$$

907 where $\Pi = \{\pi_{\theta}(y \mid x) : \theta \in \Theta\}$ denotes the distribution space induced by the parameter space Θ .
 908 Define the event
 909

$$910 \quad \Omega_j^{(1)} = \left\{ \|\tilde{\theta}_j - \theta_j^*\|_2^2 \leq \frac{\epsilon_1}{L_1} \right\}.$$

912 Then,
 913

$$913 \quad \mathbb{P}(\Omega_j^{(1)}) \geq 1 - \exp\left(-\frac{n_j \epsilon_1^2}{2B_1^2}\right).$$

915 In other words, with high probability, the empirical minimizer $\tilde{\theta}_j$ lies close to the population minimizer
 916 θ_j^* in the parameter space, and the estimation error decreases as the sample size n_j increases.
 917

918 *Remark B.2.* Usually, for regular parameter space, $\mathcal{R}_{n_j}(\Pi)$ is $o(1)$.
 919

918 *Proof.* We begin by decomposing the excess risk:
919

$$920 \quad \mathcal{L}_j(\tilde{\theta}_j) - \mathcal{L}_j(\theta_j^*) \leq \mathcal{L}_j(\tilde{\theta}_j) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) + \tilde{\mathcal{L}}_j(\tilde{\theta}_j) - \tilde{\mathcal{L}}_j(\theta_j^*) + \tilde{\mathcal{L}}_j(\theta_j^*) - \mathcal{L}_j(\theta_j^*).$$

921 Since $\tilde{\theta}_j$ minimizes $\tilde{\mathcal{L}}_j(\theta)$, the middle term is non-positive. Hence,
922

$$923 \quad \mathcal{L}_j(\tilde{\theta}_j) - \mathcal{L}_j(\theta_j^*) \leq 2 \sup_{\theta \in \Theta} |\tilde{\mathcal{L}}_j(\theta) - \mathcal{L}_j(\theta)|.$$

926 Applying Lemma B.1, we obtain the high-probability bound
927

$$928 \quad \mathbb{P}\left(\mathcal{L}_j(\tilde{\theta}_j) - \mathcal{L}_j(\theta_j^*) \leq 2\mathcal{R}_{n_j}(\Pi) + \frac{\epsilon_1}{2}\right) \geq 1 - \exp\left(-\frac{n_j\epsilon_1^2}{2B_1^2}\right).$$

931 If n_j is chosen sufficiently large such that
932

$$933 \quad 2\mathcal{R}_{n_j}(\Pi) \leq \frac{\epsilon_1}{2},$$

935 then with the same probability we have
936

$$937 \quad \mathcal{L}_j(\tilde{\theta}_j) - \mathcal{L}_j(\theta_j^*) \leq \epsilon_1.$$

939 Moreover, if $\epsilon_1 \leq U_1$, Assumption B.4 implies
940

$$941 \quad L_1 \left\| \tilde{\theta}_j - \theta_j^* \right\|_2^2 \leq \mathcal{L}_j(\tilde{\theta}_j) - \mathcal{L}_j(\theta_j^*).$$

943 Combining the above, we obtain
944

$$945 \quad \mathbb{P}\left(\left\| \tilde{\theta}_j - \theta_j^* \right\|_2^2 \leq \frac{\epsilon_1}{L_1}\right) = \mathbb{P}\left(\Omega_j^{(1)}\right) \geq 1 - \exp\left(-\frac{n_j\epsilon_1^2}{2B_1^2}\right).$$

947 This establishes the claim. □
948

950 To establish the iteration complexity at stage j , we impose two standard conditions on the loss
951 function class \mathcal{F} .
952

Assumption B.5 (Smoothness). *Let $L_2 > 0$. For any loss function $f \in \mathcal{F}$, the gradient of f is
953 L_2 -Lipschitz continuous. That is, for all $\theta, \tilde{\theta} \in \Theta$,*
954

$$955 \quad \left\| \nabla f(\theta) - \nabla f(\tilde{\theta}) \right\|_2 \leq L_2 \left\| \theta - \tilde{\theta} \right\|_2.$$

957 **Assumption B.6** (Polyak–Łojasiewicz (PL) condition). *For any loss function $f \in \mathcal{F}$, we assume that
958 f satisfies the PL inequality with parameter $\mu > 0$. Specifically, for all $\theta \in \Theta$,*
959

$$960 \quad f(\theta) - f(\theta_f^*) \leq \frac{1}{2\mu} \left\| \nabla f(\theta) \right\|_2^2,$$

962 where $\theta_f^* = \arg \min_{\theta \in \Theta} f(\theta)$ denotes the minimizer of f .
963

964 Based on Assumptions B.5 and B.6, Lei et al. (2019) established the following result.
965

Lemma B.2. *Suppose Assumptions B.5 and B.6 hold, and that $\nabla f(\theta_f^*) = 0$. If the step size satisfies
966 $\eta_t = \eta \leq \mu/L^2$, then
967*

$$968 \quad \mathbb{E}[f(\theta_{t+1})] - f(\theta_f^*) \leq (1 - \mu\eta)^t (f(\theta_1) - f(\theta_f^*)),$$

970 where $f \in \mathcal{F}$ and $\theta_f^* = \arg \min_{\theta \in \Theta} f(\theta)$.
971

Next proposition give the detail how many iteration do we need in j step SGD

972 Suppose Assumptions B.1, B.5, B.6, and B.4 hold. Fix stage j . Run SGD on
 973 the empirical loss $\tilde{\mathcal{L}}_j$ with a constant stepsize $\eta \leq \mu/L_2^2$ for K_j iterations, starting from $\hat{\theta}_{j,0} =$
 974 $\hat{\theta}_{j-1,K_{j-1}}$. Let

$$976 \quad D_{j-1} = \left\| \hat{\theta}_{j,0} - \tilde{\theta}_j \right\|_2^2.$$

977 Define the event

$$979 \quad \Omega_j^{(2)} = \left\{ \left\| \hat{\theta}_{j,K_j} - \tilde{\theta}_j \right\|_2^2 \leq \frac{\epsilon_1}{L_1} \right\}.$$

981 Then for any $0 < \epsilon_1 \leq U_1$, if

$$982 \quad K_j = O\left(\frac{1}{\mu\eta} \log\left(\frac{L_2^2 D_{j-1}}{2\mu\epsilon_1^2} \right) \right),$$

984 we have

$$986 \quad \mathbb{P}\left(\Omega_j^{(2)} \right) \geq 1 - \epsilon_1.$$

988 *Proof.* Firstly, applying Lemma B.2 (with $f = \tilde{\mathcal{L}}_j$ and $\eta_t = \eta \leq \mu/L^2$), we obtain for $K_j \geq 0$,

$$990 \quad \mathbb{E}\left[\tilde{\mathcal{L}}_j(\hat{\theta}_{j,K_j}) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) \right] \leq (1 - \mu\eta)^{K_j} \left(\tilde{\mathcal{L}}_j(\hat{\theta}_{j,0}) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) \right).$$

992 By Assumptions B.6 (PL) and B.5 (Lipschitz gradient), we have

$$994 \quad \tilde{\mathcal{L}}_j(\hat{\theta}_{j,0}) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) \leq \frac{1}{2\mu} \left\| \nabla \tilde{\mathcal{L}}_j(\hat{\theta}_{j,0}) \right\|_2^2 \leq \frac{L_2^2}{2\mu} \left\| \hat{\theta}_{j,0} - \tilde{\theta}_j \right\|_2^2.$$

996 Taking expectations over the randomness up to stage $j-1$ (recall $\hat{\theta}_{j,0} = \hat{\theta}_{j-1,K_{j-1}}$), we get

$$998 \quad \mathbb{E}\left[\tilde{\mathcal{L}}_j(\hat{\theta}_{j,K_j}) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) \right] \leq \frac{L_2^2}{2\mu} (1 - \mu\eta)^{K_j} \mathbb{E}\left[\left\| \hat{\theta}_{j,0} - \tilde{\theta}_j \right\|_2^2 \right] = \frac{L_2^2}{2\mu} (1 - \mu\eta)^{K_j} D_{j-1}.$$

1001 Choose K_j so that

$$1002 \quad \frac{L_2^2}{2\mu} (1 - \mu\eta)^{K_j} D_{j-1} \leq \epsilon_1^2.$$

1004 Using $1 - \mu\eta \leq e^{-\mu\eta}$, a sufficient condition is

$$1006 \quad K_j \geq \frac{1}{\mu\eta} \log\left(\frac{L_2^2 D_{j-1}}{2\mu\epsilon_1^2} \right).$$

1008 By Markov's inequality, with probability at least $1 - \epsilon_1$,

$$1010 \quad \Omega_j^{(2)} = \left\{ \left| \tilde{\mathcal{L}}_j(\hat{\theta}_{j,K_j}) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) \right| \leq \epsilon_1 \right\}$$

1012 occurs. On $\Omega_j^{(2)}$, Assumption B.4 yields

$$1014 \quad \left\| \hat{\theta}_{j,K_j} - \tilde{\theta}_j \right\|_2^2 \leq \frac{1}{L_1} \left| \tilde{\mathcal{L}}_j(\hat{\theta}_{j,K_j}) - \tilde{\mathcal{L}}_j(\tilde{\theta}_j) \right| \leq \frac{\epsilon_1}{L_1},$$

1016 which completes the proof. \square

1017 **Theorem B.1.** Suppose Assumptions B.1–B.6 hold. Fix $0 < \epsilon_1 \leq U_1$. For each stage $j = 1, \dots, J$
 1018 choose n_j such that $\mathcal{R}_{n_j}(\Theta) \leq \epsilon_1/4$, and run SGD with constant stepsize $\eta \leq \mu/L_2^2$. A sufficient
 1019 total number of iterations is

$$1021 \quad K = O\left(\frac{1}{\mu\eta} \sum_{j=0}^{J-1} \log \frac{L_2^2 \left\| \theta_j^* - \theta_{j+1}^* \right\|_2^2}{\mu\epsilon_1} \right).$$

1024 With this K , the final iterate satisfies $\left\| \hat{\theta}_{J,K} - \theta_J^* \right\|_2^2 \leq \epsilon_1/L_1$ with probability at least $1 -$
 1025 $\sum_{j=1}^J \exp\left(-\frac{n_j \epsilon_1^2}{2B_1^2} \right) - J\epsilon_1$.

1026 *Proof.* Recall the following events from Propositions B.1 and B.2:
1027

$$1028 \quad \Omega_j^{(1)} = \left\{ \left\| \tilde{\theta}_j - \theta_j^* \right\|_2^2 \leq \frac{\epsilon_1}{L_1} \right\}, \quad \Omega_j^{(2)} = \left\{ \left\| \hat{\theta}_{j,K_j} - \tilde{\theta}_j \right\|_2^2 \leq \frac{\epsilon_1}{L_1} \right\}.$$

1030 By Proposition B.1 and the choice of n_j ,
1031

$$1032 \quad \mathbb{P}(\Omega_j^{(1)}) \geq 1 - \exp\left(-\frac{n_j \epsilon_1^2}{2B_1^2}\right).$$

1035 By Proposition B.2 and the choice of K_j ,
1036

$$1037 \quad \mathbb{P}(\Omega_j^{(2)}) \geq 1 - \epsilon_1.$$

1039 Let

$$1040 \quad \Omega = \bigcap_{j=1}^J (\Omega_j^{(1)} \cap \Omega_j^{(2)}).$$

1043 A union bound gives

$$1045 \quad \mathbb{P}(\Omega) \geq 1 - \sum_{j=1}^J \exp\left(-\frac{n_j \epsilon_1^2}{2B_1^2}\right) - J \epsilon_1.$$

1048 Condition on Ω . From the end of stage j to the start of stage $j+1$ we have $\hat{\theta}_{j,K_j} = \hat{\theta}_{j+1,0}$, and thus
1049

$$1050 \quad \left\| \hat{\theta}_{j+1,0} - \tilde{\theta}_{j+1} \right\|_2 \leq \left\| \hat{\theta}_{j,K_j} - \tilde{\theta}_j \right\|_2 + \left\| \tilde{\theta}_j - \theta_j^* \right\|_2 + \left\| \theta_j^* - \theta_{j+1}^* \right\|_2 + \left\| \theta_{j+1}^* - \tilde{\theta}_{j+1} \right\|_2 \\ 1051 \quad \leq \sqrt{\frac{\epsilon_1}{L_1}} + \sqrt{\frac{\epsilon_1}{L_1}} + \left\| \theta_j^* - \theta_{j+1}^* \right\|_2 + \sqrt{\frac{\epsilon_1}{L_1}} = 3\sqrt{\frac{\epsilon_1}{L_1}} + \left\| \theta_j^* - \theta_{j+1}^* \right\|_2,$$

1054 where we used $\Omega_j^{(2)}$ and Assumption B.4 to bound $\left\| \hat{\theta}_{j,K_j} - \tilde{\theta}_j \right\|_2^2 \leq \epsilon_1/L_1$, and $\Omega_j^{(1)}$, $\Omega_{j+1}^{(1)}$ to bound
1055 the two terms involving $\tilde{\theta}_j$ and $\tilde{\theta}_{j+1}$. Squaring both sides and using $(a+b)^2 \leq 2a^2 + 2b^2$ gives the
1056 displayed recursion
1058

$$1059 \quad D_j = \left\| \hat{\theta}_{j+1,0} - \tilde{\theta}_{j+1} \right\|_2^2 \leq \frac{18\epsilon_1}{L_1} + 2 \left\| \theta_j^* - \theta_{j+1}^* \right\|_2^2.$$

1062 By Proposition B.2, choosing

$$1064 \quad K_j = O\left(\frac{1}{\mu\eta} \log\left(\frac{L_2^2 \left\| \theta_{j-1}^* - \theta_j^* \right\|_2^2}{\mu\epsilon_1}\right)\right)$$

1067 ensures $\Omega_j^{(2)}$ holds and

$$1069 \quad \left\| \hat{\theta}_{j,K_j} - \tilde{\theta}_j \right\|_2^2 \leq \frac{\epsilon_1}{L_1}.$$

1071 Iterating this from $j = 1$ to J , we obtain at the final stage
1072

$$1073 \quad \left\| \hat{\theta}_{J,K_J} - \theta_J^* \right\|_2 \leq \left\| \hat{\theta}_{J,K_J} - \tilde{\theta}_J \right\|_2 + \left\| \tilde{\theta}_J - \theta_J^* \right\|_2 \leq \sqrt{\frac{\epsilon_1}{L_1}} + \sqrt{\frac{\epsilon_1}{L_1}},$$

1075 and hence

$$1076 \quad \left\| \hat{\theta}_{J,K_J} - \theta_J^* \right\|_2^2 \leq \frac{4\epsilon_1}{L_1}.$$

1078 Finally, the total number of iterations is $K = \sum_{j=1}^J K_j$, and the total sample size is $n = \sum_{j=1}^J n_j$.
1079 \square

1080 B.4 ANALYSIS FOR STANDARD SGD
1081

1082 Without loss of generality, assume $n_1 = \dots = n_J = n_{\text{rg}}/J$, where n_{rg} is the total sample size, and
1083 suppose we run SGD directly on the dataset \mathcal{D} . Under this equal-allocation setting, the pooled data
1084 are drawn from the uniform mixture

$$1085 \pi_{\theta_{\text{rg}}^*}(y | x) = \frac{1}{J} \sum_{j=1}^J \pi_{\theta_j^*}(y | x).$$

1088 Define the mixed (population) and empirical losses by

$$1089 \mathcal{L}_{\text{rg}}(\theta) = -\mathbb{E}_{x \sim p(x), y \sim \pi_{\theta_{\text{rg}}^*}(y | x)} \left[\mathcal{J}_{\text{GRPO}}(\theta) + \gamma_s H_t(\pi_{\theta_{\text{GP}}^*}) \right],$$

$$1091 \tilde{\mathcal{L}}_{\text{rg}}(\theta) = -\frac{1}{n_{\text{rg}}} \sum_{(x, y) \in \mathcal{D}} \left[\mathcal{J}_{\text{GRPO}}(\theta) + \gamma_s H_t(\pi_{\theta_{\text{GP}}^*}) \right].$$

1093 Let θ_{rg}^* and $\tilde{\theta}_{\text{rg}}$ denote the minimizers of \mathcal{L}_{rg} and $\tilde{\mathcal{L}}_{\text{rg}}$, respectively.

$$1095 \delta = \|\theta_{\text{rg}}^* - \theta^*\|_2.$$

1096 **Theorem B.2.** If n_{rg} satisfies $\mathcal{R}_{n_{\text{rg}}}(\Pi) \leq \epsilon_1/4$ and SGD uses the same stepsize η , take

$$1098 1099 1100 K_{\text{rg}} = O\left(\frac{1}{\mu\eta} \log \frac{L_2^2 \|\theta_0^* - \theta_{\text{rg}}^*\|_2^2}{\mu\epsilon_1}\right).$$

1101 Then, with probability at least $1 - \exp\left(-\frac{n_{\text{rg}}\epsilon_1^2}{2B_1^2}\right) - \epsilon_1$, we have

$$1103 1104 \|\hat{\theta}_{\text{rg}} - \theta^*\|_2 \geq \frac{\delta}{2} \quad \text{whenever} \quad \epsilon_1 \leq \frac{L_1\delta^2}{16}.$$

1105 *Proof.* Apply Proposition B.1 to $\tilde{\mathcal{L}}_{\text{rg}}$: with probability at least $1 - \exp(-(n_{\text{rg}}\epsilon_1^2)/(2B_1^2))$,

$$1107 1108 \|\tilde{\theta}_{\text{rg}} - \theta_{\text{rg}}^*\|_2^2 \leq \frac{\epsilon_1}{L_1}.$$

1109 Next apply Proposition B.2 to the standard (pooled) SGD (same $\eta \leq \mu/L_2^2$) and $K_{\text{rg}} = O\left(\frac{1}{\mu\eta} \log \frac{L_2^2 \|\theta_0^* - \theta_{\text{rg}}^*\|_2^2}{\mu\epsilon_1}\right)$: with probability at least $1 - \epsilon_1$,

$$1112 1113 \|\hat{\theta}_{\text{rg}} - \tilde{\theta}_{\text{rg}}\|_2^2 \leq \frac{\epsilon_1}{L_1}.$$

1114 By a union bound, both events hold simultaneously with probability at least $1 - \exp\left(-\frac{n_{\text{rg}}\epsilon_1^2}{2B_1^2}\right) - \epsilon_1$.

1116 On this event, the triangle inequality yields

$$1117 1118 1119 \|\hat{\theta}_{\text{rg}} - \theta_{\text{rg}}^*\|_2 \leq \|\hat{\theta}_{\text{rg}} - \tilde{\theta}_{\text{rg}}\|_2 + \|\tilde{\theta}_{\text{rg}} - \theta_{\text{rg}}^*\|_2 \leq 2\sqrt{\frac{\epsilon_1}{L_1}},$$

1120 hence

$$1121 \|\hat{\theta}_{\text{rg}} - \theta_{\text{rg}}^*\|_2^2 \leq \frac{4\epsilon_1}{L_1}.$$

1122 Finally,

$$1124 1125 \|\hat{\theta}_{\text{rg}} - \theta^*\|_2 \geq \|\theta_{\text{rg}}^* - \theta^*\|_2 - \|\hat{\theta}_{\text{rg}} - \theta_{\text{rg}}^*\|_2 \geq \delta - \sqrt{\frac{4\epsilon_1}{L_1}},$$

1126 and if $\epsilon_1 \leq L_1\delta^2/16$, then $\sqrt{4\epsilon_1/L_1} \leq \delta/2$, which gives

$$1127 1128 \|\hat{\theta}_{\text{rg}} - \theta^*\|_2 \geq \frac{\delta}{2}.$$

1129 \square

1130 **Remark B.3.** Notice that when we take $\epsilon_1 \leq L_1\delta^2/16$, we will have

$$1132 1133 \|\hat{\theta}_{J,K} - \theta_J^*\|_2^2 \leq 4\epsilon_1/L_1 < \frac{\delta}{2} \leq \|\hat{\theta}_{\text{rg}} - \theta^*\|_2.$$

1134 This directly yields Theorem 4.1.

1134 **C EVALUATED MODELS**

1135

1136 We evaluate a series of state-of-the-art LVLMs and Multi-agent. The single-agent models include
 1137 LLaVA (Liu et al., 2024a), Yi-VL-34B (Young et al., 2024), Qwen-VL (Bai et al., 2025), LLaVA-
 1138 Med (Li et al., 2023), MedFlamingo (Moor et al., 2023), RadFM (Wu et al., 2023), HuatuoGPT-
 1139 Vision (Chen et al., 2024a) and GPT-4o (OpenAI, 2024). The multi-agent frameworks include prior
 1140 collaborative systems such as MedAgents (Tang et al., 2024), MDAgents (Kim et al., 2024) and
 1141 AFlow (Zhang et al., 2024), as well as our proposed MMedAgent-RL framework that introduces
 1142 reinforcement learning for adaptive multi-agent reasoning.

1143

- 1144 • **GPT-4o** (OpenAI, 2024) is OpenAI’s latest multimodal large model that supports text, image, and
 1145 audio inputs. It exhibits strong generalization across vision-language benchmarks and serves both
 1146 as a single-agent baseline and as a specialist in our multi-agent settings.
- 1147 • **Med-Flamingo** (Moor et al., 2023) is a multimodal few-shot learner designed for the medical
 1148 domain. Built upon OpenFlamingo, it is further pre-trained on biomedical image-text data from sci-
 1149 entific literature. It enables few-shot medical visual question answering with minimal supervision.
- 1150 • **RadFM** (Wu et al., 2023) is a domain-specific foundation model tailored for radiology. It leverages
 1151 large-scale radiology reports and domain-adaptive learning to improve zero-shot and few-shot
 1152 performance on radiographic image understanding.
- 1153 • **LLaVA-Med** (Li et al., 2023) extends LLaVA to the biomedical domain by fine-tuning with
 1154 medical image-instruction pairs. It enhances medical reasoning and answer generation with limited
 1155 supervision using domain-specific visual-textual alignments.
- 1156 • **Qwen2.5-VL** (Bai et al., 2025) is a versatile vision-language model developed by Alibaba. It
 1157 supports high-quality OCR, multi-turn dialogue, and reasoning over complex multimodal inputs.
 1158 It is used both as a strong single-agent baseline and as the foundation of agents in our proposed
 1159 framework.
- 1160 • **Yi-VL-34B** (Young et al., 2024) is a large-scale multimodal model from 01.AI. With 34 billion
 1161 parameters, it offers high-capacity visual understanding and serves as a powerful open-source
 1162 baseline across medical and general VQA tasks.
- 1163 • **LLaVA** (Liu et al., 2024b;a) are general-purpose vision-language models trained via visual instruc-
 1164 tion tuning. Evaluated in several sizes (7B, 13B, 34B), they serve as strong single-agent baselines
 1165 in both in-domain and out-of-domain medical benchmarks.
- 1166 • **HuatuoGPT-Vision-7B** (Chen et al., 2024a) is a medical multimodal large language model
 1167 (MLLM) trained on the curated PubMedVision dataset. This dataset was created by using GPT-4V
 1168 to denoise and reformat 1.3 million image-text pairs from PubMed, significantly improving data
 1169 quality. As a result, HuatuoGPT-Vision demonstrates superior performance on medical multimodal
 1170 benchmarks compared to other open-source models.

1171 **D EVALUATED DATASETS**

1172

1173 We employ three established medical vision-language datasets: VQA-RAD (Lau et al., 2018),
 1174 SLAKE (Liu et al., 2021), and PathVQA (He et al., 2020). Furthermore, to evaluate out-of-distribution
 1175 performance, we incorporate the health and medicine subset of MMMU (Yue et al., 2024) along with
 1176 OmniMedVQA (Hu et al., 2024b).

1177

- 1178 • **VQA-RAD** (Lau et al., 2018) is a manually constructed dataset containing 315 radiology images
 1179 with 3,515 question-answer pairs. The images are distributed across head, chest, and abdomen
 1180 regions, and include both open-ended and binary "yes/no" questions. Each image is associated
 1181 with multiple clinically relevant questions generated by medical professionals. The dataset aims to
 1182 facilitate the development of visual question answering systems for the medical domain.
- 1183 • **SLAKE** (Liu et al., 2021) is a semantically-labeled knowledge-enhanced dataset featuring 642
 1184 radiology images and over 14,000 question-answer pairs. It offers comprehensive annotations
 1185 including masks for semantic segmentation and bounding boxes for object detection. SLAKE is
 1186 bilingual (English and Chinese) and covers 12 diseases and 39 organs across various body parts.
 1187 The dataset also incorporates a medical knowledge graph with 5,232 medical knowledge triplets to
 1188 support knowledge-based reasoning.

- **PathVQA** (He et al., 2020) is a pathology-focused dataset containing 32,799 open-ended questions from 4,998 pathology images. The dataset was created using a semi-automated pipeline to extract images and captions from pathology textbooks and generate question-answer pairs using natural language processing. PathVQA aims to support the development of AI systems capable of answering clinical questions about pathology images, with each question manually checked for correctness.
- **MMMU** (Yue et al., 2024) (Health & Medicine subset) is part of the Massive Multi-discipline Multimodal Understanding benchmark. This subset contains approximately 1,752 test questions across five disciplines: Basic Medical Science, Clinical Medicine, Diagnostics and Laboratory Medicine, Pharmacy, and Public Health. The questions require college-level subject knowledge and deliberate reasoning, challenging models to perform expert-level perception and reasoning tasks.
- **OmniMedVQA** (Hu et al., 2024b) is a comprehensive medical VQA benchmark collected from 73 different medical datasets, featuring images across 12 different modalities and covering more than 20 distinct anatomical regions. All images are sourced from authentic medical scenarios, ensuring alignment with real-world applications. The benchmark provides a diverse evaluation platform for testing the capabilities of large vision-language models in medical image understanding and reasoning.

E OVERVIEW OF THE BASELINES

We evaluate MMedAgent-RL against two main multi-agent baselines, MedAgents (Tang et al., 2024), MDAgents (Kim et al., 2024) and AFlow (Zhang et al., 2024). These baselines represent state-of-the-art approaches in medical visual question answering.

- **MedAgents** (Tang et al., 2024) establishes a zero-shot multi-agent collaboration framework that simulates real-world clinical workflows. The framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarizing analyses into a report, iterating over discussions until consensus is reached, and making a final decision. Different agents are assigned specific medical roles and collaborate to solve complex medical reasoning tasks. The framework relies on pre-trained large language models without additional fine-tuning, enabling natural dialogue-based interactions between agents. MedAgents demonstrates how specialized medical knowledge from different domains can be integrated through structured agent collaboration, providing a strong baseline for multi-agent medical reasoning.
- **MDAgents** (Kim et al., 2024) advances multi-agent medical systems by introducing adaptive collaboration mechanisms. Unlike fixed collaboration patterns, MDAgents dynamically selects the most appropriate agent configuration and communication structure based on the specific medical task. This framework allows for more flexible interactions between general practitioners and specialist agents, optimizing the collaboration pattern for different types of medical queries. MDAgents incorporates mechanisms to resolve conflicts between different agent opinions and adapts the consultation workflow to match the complexity of the medical case, resulting in more robust decision-making across diverse medical scenarios.
- **AFlow** (Zhang et al., 2024) is a framework designed to automatically generate and optimize complex problem-solving workflows for LLMs. Instead of relying on a single inference pass, these workflows enhance performance through structured procedures. We evaluate three distinct strategies as strong baselines: *Self-Consistency Ensemble*, which runs an agent multiple times and selects the most frequent answer to improve reliability; *Multi-Agent Debate*, which uses several agents to collaboratively propose, critique, and refine solutions; and *Self-Refine*, which employs a feedback loop for a single agent to iteratively critique and improve its own output.

F EXPERIMENTAL SETUP

F.1 DATA STATISTICS

The data used in this work is shown in Table 3 and involves five multimodal medical datasets: VQA-RAD, SLAKE, PathVQA, OmniMedVQA and MMMU (Health & Medicine track). Among them, three are used as in-domain datasets, with their training sets employed for model training. The

1242 Table 3: The results of the medical VQA benchmark. Here, MMMU denotes MMMU (Health &
 1243 Medicine track) and the number of training and testing phase denotes the number of QA items for
 1244 each phase.

Model	All	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU
Train	12,176	940	1,681	9,555	/	/
- Easy	8,321	498	1,284	6,539	/	/
- Medium	1,409	160	114	1,135	/	/
- Hard	2,626	281	275	2,070	/	/
Test	15,153	251	416	3,362	11,124	150

1252
 1253 remaining two are directly used as out-of-domain (OOD) testing datasets. The specific data volume
 1254 for each dataset used at each stage of Curriculum-Based Multi-Agent Reinforcement Learning is
 1255 detailed in Table 3.

1258 F.2 HYPERPARAMETER SETTINGS

1260 We use Qwen2.5-VL (Bai et al., 2025) as the base model. We design the prompt template using
 1261 the format employed in MM-EUREKA (Meng et al., 2025), clearly specifying the required output
 1262 structure, which includes using `<think>` and `<answer>` tags to separately contain the reasoning
 1263 process and the final answer, with the two being separated. The detailed prompt is shown in Table 4.
 1264 For training hyperparameters, the rollout batch size and training batch size are both set to 128, with 8
 1265 rollouts generated for each sample. The sampling temperature is set to 1.0 to encourage response
 1266 diversity, and optimization is done with a learning rate of 1×10^{-6} . Additionally, for the three stages
 1267 of curriculum reinforcement learning, the KL divergence coefficients are set to 1×10^{-3} , 4×10^{-3} ,
 1268 and 1×10^{-2} respectively to stabilize training. The dynamic entropy coefficient γ_s is set to 0.03
 1269 for hard ($s = 0$), 0.005 for medium ($0 < s < 1$), and 0.0001 for easy ($s = 1$) samples, respectively,
 1270 to adapt the level of exploration based on curriculum difficulty. For the number of specialists, we
 1271 set $e = 3$. For the baseline implementation, i.e., MedAgents (Tang et al., 2024), MDAgents (Kim
 1272 et al., 2024) and AFlow (Zhang et al., 2024), we use Qwen2.5-VL as the agent for decision making
 1273 to ensure a fair comparison between multi-agent baselines and MMedAgent-RL. For the training
 1274 framework, we adopt a multimodal RL framework based on OpenRLHF (Hu et al., 2024a). For
 1275 the inference, we adopt the vLLM framework (Kwon et al., 2023). All training is conducted on 8
 1276 NVIDIA Tesla A100 80GB GPUs.

1277 F.3 PROMPT

1279 The prompt for the fine-tuning of base model is shown in Table 4. In this prompt, we provide the
 1280 question options, the input image, and k expert answers. In the experiment, k is set to 3. The model
 1281 needs to first generate the reasoning process within the `<think>` tag, and then provide the final
 1282 answer within the `<answer>` tag.

1284 Table 4: Prompt template used for reinforcement learning fine-tuning.

1287 **Prompt Template:**

1288 As the General Practitioner coordinating this case, review the specialist expertise to make a
 1289 final decision. Answer from `<Specialist>`: `<SpecialistAnswer>`. `<Question>`
 1290 Provide your final assessment. You need to first think about the reasoning process in the
 1291 mind and then provide the user with the answer. The reasoning process and answer are
 1292 enclosed within `<think>` `</think>` and `<answer>` `</answer>` tags, respectively, i.e.,
 1293 `<think>` reasoning process here `</think>` `<answer>` answer here `</answer>`. The
 1294 answer must be chosen from the given options.

1296
1297
1298 Table 5: The comparison with SFT on several medical VQA benchmarks.
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Model	VQA-RAD	In-Domain Datasets			Out-of-Distribution Datasets		
		SLAKE	PathVQA	Avg.	OmniMedVQA	MMMU-Med	Avg.
GPT-4o	61.0	75.5	69.4	68.6	68.5	69.7	69.1
Med-Flamingo	45.4	43.5	54.7	47.9	30.7	28.3	29.5
RadFM	50.6	34.6	38.7	41.3	28.2	27.0	27.6
LLaVA-Med-7B	51.4	48.6	56.8	52.3	44.1	36.9	40.5
Qwen-VL-Chat	47.0	56.0	55.1	52.7	48.3	32.7	40.5
Yi-VL-34B	53.0	58.9	47.3	53.1	51.5	41.5	46.5
LLaVA-v1.6-7B	52.6	57.9	47.9	52.8	49.0	33.1	41.1
LLaVA-v1.6-13B	55.8	58.9	51.9	55.5	48.0	39.3	43.7
LLaVA-v1.6-34B	58.6	67.3	59.1	61.6	58.7	48.8	53.8
LLaVA-v1.5-LLaMA3-8B	54.2	59.4	54.1	55.9	44.6	38.2	41.4
HuatuoGPT-Vision-7B	63.0	77.2	58.7	66.3	74.6	51.0	62.8
Qwen2.5-VL-3B	61.0	62.7	57.6	60.4	60.1	54.5	57.3
Qwen2.5-VL-7B	61.8	64.7	60.5	62.3	60.8	56.6	58.7
MedVLThinker-7B	63.7	67.8	65.2	65.6	62.4	57.0	59.7
Multi-Agent Collaboration							
MedAgents	65.6	67.9	63.2	65.6	55.8	49.7	52.6
MDAgents	66.8	68.2	65.4	66.8	58.2	52.3	55.1
AFlow	67.3	68.9	66.4	67.5	59.6	53.6	56.6
GPT-4o → Qwen2.5-VL-7B	62.5	63.9	53.2	59.9	56.4	50.7	53.6
GPT-4o → Qwen2.5-VL-7B+SFT w/o reasoning	65.5	66.5	61.4	64.5	60.9	57.8	62.4
GPT-4o → Qwen2.5-VL-7B+SFT w/ reasoning	68.8	68.4	63.7	67.0	62.0	59.4	64.5
MMedAgent-RL (7B)	71.5 <small>+10%</small>	76.2 <small>+12%</small>	72.3 <small>+12%</small>	73.3 <small>+11%</small>	73.3 <small>+13%</small>	71.9 <small>+15%</small>	72.6 <small>+14%</small>

F.4 DATASET SPLITTING AND DIFFICULTY STRATIFICATION

The partition of training, validation, and test sets strictly follows the official dataset guidelines. The difficulty grading is required exclusively for the training phase to implement curriculum learning. Specifically, we classify samples into difficulty levels based on the consistency and accuracy of the specialists’ responses. We emphasize that the inference process and the calculation of evaluation scores do not use this difficulty grading at all. The model generates responses without access to any difficulty labels or ground truth. The difficulty stratification on the test set is applied solely for the analytical breakdown shown in Figure 4. It serves only to visualize and analyze model performance across different complexity levels post-generation, and has no influence on the inference process itself. The difficulty grading for the test dataset follows the same as training data.

G ADDITIONAL RESULTS

G.1 COMPARISON WITH SUPERVISED FINE-TUNING (SFT)

We compare our method with Supervised Fine-Tuning (SFT) methods as a baseline. As shown in Table 5, our proposed method, MMedAgent-RL, demonstrates a significant performance advantage over SFT methods across all the medical VQA benchmarks. The superiority of our approach is even more pronounced in the more challenging out-of-distribution datasets. This highlights our model’s enhanced robustness and generalization capabilities. Overall, MMedAgent-RL consistently sets a new state-of-the-art, with our base model achieving a 73.3% average on in-domain tasks and 72.6% on out-of-distribution tasks, already surpassing the SFT method. The results clearly indicate that our multi-agent, reinforcement learning-based approach is more effective than traditional SFT techniques for complex medical VQA tasks.

G.2 DIFFERENT SPECIALISTS

The effectiveness of different specialist compositions within our framework is detailed in Table 6. The results unequivocally show that multi-agent collaboration substantially outperforms single-agent baselines. Our premier configuration, 3*OpenAI-o3 (OpenAI, 2025), achieved a top average score of 73.0, far exceeding the best-performing baseline, GPT-4o (68.8). Crucially, this performance gain stems from the synergistic integration of multiple experts. The analysis also underscores the importance of specialist diversity. Heterogeneous teams combining different models (e.g., 2*OpenAI-o3+1*HuatuoGPT at 71.3) proved highly effective, demonstrating that fusing complementary knowledge enhances diagnostic robustness. This confirms that our framework’s core strength lies in its ability to dynamically orchestrate collaboration among a diverse team of high-quality specialists to achieve superior decision-making.

Table 6: The comparison with different specialists.

Model	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU	Avg.
GPT-4o	61.0	75.5	69.4	68.5	69.7	68.8
Qwen2.5-VL-7B	61.8	64.7	60.5	60.8	56.6	60.9
HuatuoGPT-7B	63.0	77.2	58.7	74.6	51.0	64.9
MMedAgent-RL						
3*OpenAI-o3	71.5	76.2	72.3	73.3	71.9	73.04
3*GPT-4o	70.4	75.2	72.7	69.1	67.1	70.9
1*GPT-4o	63.2	65.9	62.8	63.4	59.0	62.86
1*HuatuoGPT-Vision-7B	63.4	67.2	60.8	64.9	54.1	62.1
1*Qwen2.5-VL-7B	62.4	63.2	61.5	61.5	55.1	60.7
2*GPT-4o+1*Qwen2.5-VL-7B	70.0	74.6	71.3	66.0	64.0	69.2
2*GPT-4o+1*HuatuoGPT-Vision-7B	68.5	75.0	71.7	68.0	62.0	69.0
2*OpenAI-o3+1*HuatuoGPT-Vision-7B	69.9	75.8	73.0	70.0	68.0	71.3
2*OpenAI-o3+1*Qwen2.5-VL-7B	71.1	75.4	71.8	69.1	69.2	71.3
1*Qwen2.5-VL-7B+1*GPT-4o	68.9	73.8	70.6	66.1	63.2	68.5
1*HuatuoGPT-Vision-7B+1*OpenAI-o3	69.0	74.7	72.3	68.8	68.3	70.6
3*HuatuoGPT-Vision-7B	65.8	78.2	61.3	73.8	50.1	65.8

G.3 ABLATION ANALYSIS

G.3.1 PERFORMANCE OF TRIAGE DOCTOR

The accuracy of the triage doctors is shown in Table 7. We used the data with definitive department labels as the evaluation target. From the results, we can observe that triage is not as challenging as answering complex medical diagnostic questions. Instead, department classification resembles a modality classification process. The original model already achieved an accuracy of over 80%, and after our fine-tuning, the model’s performance has reached a human-level standard on these datasets.

Table 7: The performance of triage doctor.

Model	VQA-RAD	SLAKE	PathVQA
Qwen2.5-VL-3B	95.62	92.16	77.53
Qwen2.5-VL-7B	96.21	94.41	80.58
MMedAgent-RL	99.98	99.94	99.06

G.3.2 KL DIVERGENCE COEFFICIENT

We conduct ablation experiments on the KL divergence coefficient at each stage, and the results are shown in Figure 6. We observe that in the first stage, as the KL divergence coefficient increases, the model’s performance tends to stabilize. This indicates that when training with simple data, where the specialist doctor’s answers are entirely correct, i.e., the model merely needs to learn to imitate. In this case, an additional KL divergence loss is required to constrain the policy model’s update steps, preventing it from changing too drastically; otherwise, it would become a model that simply copies the specialist’s answers. In the second stage, the optimal KL divergence coefficient is slightly larger than in the first stage, suggesting that the model needs some autonomy to explore its own direction. This becomes even more apparent in the third stage, where the optimal KL divergence coefficient is significantly higher. This is reasonable because, when the specialist doctor’s answers are entirely incorrect, it becomes very difficult for the model to generate an accurate response. If the KL divergence loss is too large in this stage, the model cannot explore effectively to find the correct answer. Therefore, in conclusion, different KL divergence coefficients need to be set for each stage of curriculum reinforcement learning to ensure optimal model performance.

G.4 COMPARISON WITH TEST-TIME SCALING METHODS

We conducted additional experiments using test-time scaling techniques, specifically Majority Voting and Self-Consistency (Wang et al.), on both Qwen2.5-VL-7B and GPT-4o. For the experimental setup, Majority Voting involved sampling $N = 3$ outputs and selecting the most frequent answer as the final prediction. Self-Consistency sampled a set of diverse reasoning paths rather than relying

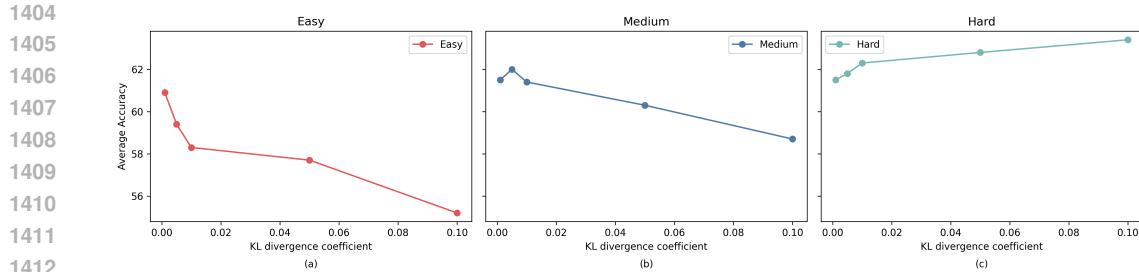


Figure 6: Ablation of KL divergence coefficient.

on the greedy path, subsequently selecting the most consistent answer by marginalizing over the sampled paths. As shown in Table 8, test-time scaling improved the performance of Qwen2.5-VL-7B by 2.6% and GPT-4o by 1.6% across the five datasets. However, despite these improvements, a performance gap remains compared to our multi-agent framework. Our method outperforms these enhanced baselines by 18%, demonstrating the necessity and effectiveness of our proposed triage and multi-expert pipeline.

Table 8: Performance comparison with test-time scaling baselines.

Method	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med	Overall
Qwen2.5-VL-7B	61.8	64.7	60.5	60.8	56.6	60.9
Qwen2.5-VL-7B + Majority Voting	63.7	65.4	61.5	62.5	57.0	62.0
Qwen2.5-VL-7B + Self-consistency	63.8	65.3	62.4	64.5	59.1	63.0
GPT-4o	61.0	75.5	69.4	68.5	69.7	68.8
GPT-4o + Majority Voting	62.2	75.9	70.3	69.4	70.3	69.6
GPT-4o + Self-consistency	63.6	75.4	70.8	69.1	71.5	70.1
MMMedAgent-RL	71.5	76.2	72.3	73.3	71.9	73.0

G.5 QUANTIFY THE PERFORMANCE GAIN FROM ROUTING AND AGGREGATION

To strictly quantify the model’s ability to correct mistakes rather than simply route to a specialist, we conducted a targeted evaluation on hard samples where all three specialists provided incorrect answers. We selected 200 such samples from PathVQA and 200 from OmniMedVQA to evaluate the performance of the Base Model (with and without expert knowledge), the SFT baseline, and our MMedAgent-RL. Since every specialist is incorrect, any routing mechanism would yield 0% accuracy. Therefore, the performance on this subset is strictly attributable to the model’s ability to perform intrinsic correction. As shown in Table 9, our method achieves substantial improvements. For instance, on the OOD OmniMedVQA hard subset, MMedAgent-RL improves accuracy to 23.0%. We attribute this capability to the following logic: The extremely low accuracy of the Base Model w/o expert knowledge (4.5% on PathVQA and 2.0% on OmniMedVQA) confirms that the model lacks the intrinsic parametric knowledge to solve these hard cases independently. Although the specialists’ final answers were wrong, their reasoning processes likely contained partial truths or valid medical context. While the SFT baseline struggles to utilize this conflicting information (often hallucinating along with the experts), MMedAgent-RL has learned via RL to critically synthesize these valid reasoning fragments, correcting the final conclusion rather than simply aggregating the errors.

G.6 DETAILED ABLATION ON TRIAGE AGENT

In Table 2, “w/o Triage” refers to using the original base model to perform the routing (triage) task directly, without specific fine-tuning for this role. Following your suggestions, we have expanded our comparison in Table 10. We introduced two new settings to test the necessity of the framework: 1) Random Routing: Assigning queries to specialists randomly to isolate the benefit of the specialists themselves. 2) Single Model w/o Routing: Using the Qwen2.5-VL-7B base model directly, and enhancing it with Majority Voting (diverse sampling) as requested.

As shown in Table 10, incorporating a routing mechanism leads to significant performance gains. No

Table 9: Correctness ratio (accuracy on hard samples where all specialists failed).

Setting / Model	PathVQA	OmniMedVQA
<i>w/o expert knowledge</i>		
Base Model	4.5%	2.0%
<i>w/ expert knowledge</i>		
Base Model	5.5%	3.5%
SFT	10.0%	7.5%
MMedAgent-RL	26.5%	23.0%

table, even Random Routing generally outperforms the single model equipped with Majority Voting. Furthermore, our proposed MMedAgent-RL significantly outperforms all baselines, confirming that a dedicated triage-and-expert pipeline provides advantages that cannot be achieved by simple diverse sampling or random assignment.

Comparison with SFT. The original “w/o Triage” ablation was insufficient to justify the specific choice of RL over simpler methods. To address this, we conducted a detailed comparison between our GRPO-optimized Triage Agent and standard Supervised Fine-Tuning (SFT) baselines. As shown in Table 11, we evaluated two SFT configurations: 1) SFT (Standard): Fine-tuned on direct Question-Department pairs. 2) SFT (w/ Reasoning): Fine-tuned using reasoning traces distilled from Qwen2.5-VL-32B to simulate a more capable classifier. While SFT significantly improves performance over the base model, GRPO still outperforms the best SFT baseline across all datasets. Crucially, this advantage is most pronounced on Out-of-Distribution (OOD) datasets. For instance, on MMMU-Med, GRPO outperforms “SFT w/ Reasoning” by +4.1% (71.9 vs. 67.8), and on OmniMedVQA by +2.5% (73.3 vs. 70.8). This indicates that while SFT can achieve high accuracy on standard distributions, the reinforcement learning process (GRPO) enables the Triage Agent to generalize better to complex, unseen scenarios by learning from the reward signal of the downstream reasoning success, rather than just mimicking a static label.

Table 10: Performance comparison with or without routing.

Method	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med	Overall
<i>w/ triage</i>						
MMedAgent-RL (zero-shot)	66.3	69.9	67.2	66.2	59.3	65.8
MMedAgent (random triage)	63.4	66.7	64.7	67.8	58.2	64.2
MMedAgent-RL (fine-tuned triage)	71.5	76.2	72.3	73.3	71.9	73.0
<i>w/o triage</i>						
Qwen2.5-VL-7B	61.8	64.7	60.5	60.8	56.6	60.9
+ Majority Voting	63.7	65.4	61.5	62.5	57.0	62.0

Table 11: Performance comparison of Triage Agent training strategies.

Method	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med
Base model	66.3	69.9	67.2	66.2	59.3
+ SFT w/o reasoning process	69.4	75.0	70.5	70.1	66.7
+ SFT w/ reasoning process	70.2	75.9	71.0	70.8	67.8
+ GRPO	71.5	76.2	72.3	73.3	71.9

G.7 DETAILED ABLATION ON PROGRESSIVELY ADDING COMPONENTS

To quantify the contribution of each component, we have conducted a progressive evaluation as shown in Table 12. Regarding the order of ablation, we formulated the progression as Base → Multi-expert → Triage. From an architectural perspective, the Triage module depends on the existence of a candidate pool of experts to perform routing. Thus, we first introduce the Specialists (Multi-expert) to build the capability pool, and subsequently add the Triage module to manage and utilize these experts efficiently. Starting with the Qwen2.5-VL-7B baseline, we observed the following trends:

- + Majority Voting: Provides a marginal improvement, indicating that simple test-time scaling has limits.
- + Specialists: Integrating domain-specific experts (with a base model as the router) yields further gains, surpassing the single model with voting.
- + Triage: Introducing the learned Triage module significantly improves the effective utilization of specialists.
- + Curriculum RL: Finally, applying our Curriculum RL strategy provides the most substantial performance leap, demonstrating that optimizing the collaboration between the triage and specialist agents is critical for complex medical reasoning.

Table 12: Performance progressively adding components.

Method	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med
Qwen2.5-VL-7B (Base)	61.8	64.7	60.5	60.8	56.6
+ Specialists (Base Model)	64.5	66.9	63.2	63.4	60.7
+ Triage	65.7	68.4	64.4	64.8	62.6
+ Curriculum RL	71.5	76.2	72.3	73.3	71.9

G.8 COMPARISON ON TRIAGE AGENT WITH DIFFERENT SETTINGS

As shown in Table 13, we quantitatively evaluated the impact of different training stages on the triage agent’s performance. We compared the Base Model, SFT (trained on direct question-answer pairs without reasoning), SFT with Reasoning (trained on reasoning traces distilled from Qwen2.5-VL-32B), and our final GRPO-optimized model. The results demonstrate that the triage agent trained with GRPO yields the highest performance. Notably, this improvement is most significant on the two Out-of-Distribution (OOD) datasets, i.e., OmniMedVQA and MMMU-Med, confirming that the reasoning capabilities reinforced by GRPO are crucial for generalization.

Table 13: Performance with triage agent with different settings.

Method	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med	Overall
Base model	66.3	69.9	67.2	66.2	59.3	65.8
+ SFT w/o reasoning process	69.4	75.0	70.5	70.1	66.7	70.3
+ SFT w/ reasoning process	70.2	75.9	71.0	70.8	67.8	71.1
+ GRPO	71.5	76.2	72.3	73.3	71.9	73.0

G.9 INVOLVEMENT OF HUMAN EXPERTS

Human expert involvement was a core component of our evaluation methodology, serving both as a performance benchmark and a qualitative evaluator. To ensure clinical relevance, we engaged three practicing clinical experts to evaluate 50 randomly selected samples. This study focused on two key dimensions: 1) Diagnostic Accuracy Benchmark: The experts provided their own diagnoses for the samples to establish a “Human Upper Bound.” As shown in Table R1, while human experts achieved 98.0% accuracy, our MMedAgent-RL reached 82.0%, significantly narrowing the gap compared to standard baselines (e.g., LLaVA-Med at 44.0%). 2) Reasoning Process Evaluation: The experts also scored the quality of the models’ reasoning chains on a 1–5 scale (normalized in the table). They assessed whether the models followed a logical clinical workflow (e.g., defining the disease → analyzing the image → consistency checking). As shown in Table 14, the experts confirmed that our method produces reasoning paths that align more closely with clinical standards, achieving a score of 72.0, compared to only 28.0 for LLaVA-Med.

G.10 COMPARISON ON GP UPDATE STRATEGIES

In the paper, the two GP agents (the Triage Agent and the Attending Physician) are updated independently. This design choice was primarily made to ensure training stability and to decouple the

1566
1567
1568 Table 14: Human Expert Assessment
1569
1570
1571
1572
1573

Model	Acc	Reasoning Score (by human)
Human	98.0	-
Qwen2.5-VL-3B	62.0	38.0
LLaVA-Med-7B	44.0	28.0
MMedAgent-RL	82.0	72.0

1574
1575 training process from potential API failures or latency when querying the external OpenAI-based
1576 specialists. Specifically, our procedure is as follows: 1) Triage Optimization: We first optimize
1577 the Triage Agent using image-modality QA pairs to ensure accurate department routing. 2) Data
1578 Preparation: We classify the training data based on these departments and invoke the OpenAI API
1579 (acting as specialists) to generate expert knowledge offline. 3) Attending GP Training: Finally, we use
1580 these pre-generated expert trajectories to train the Attending GP (Qwen2.5-VL) via Reinforcement
1581 Learning.

1582 However, following your suggestion, we also implemented an end-to-end online framework where
1583 both GPs are updated simultaneously. As shown in Table 15, the performance difference between
1584 the two settings is negligible. This confirms that our decoupled training strategy is valid and yields
1585 results consistent with a fully end-to-end approach while remaining more computationally efficient
1586 and stable.

1587
1588 Table 15: Performance comparison of GP update strategies.

Strategy	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med	Overall
Independent	71.5	76.2	72.3	73.3	71.9	73.0
Simultaneous	71.3	76.5	72.4	73.6	71.6	73.1

1593
1594 G.11 FRAMEWORK TRANSFERABILITY

1595 To demonstrate the transferability of our framework, we conducted additional experiments using
1596 InternVL2.5-Instruct-8B (Chen et al., 2024b) as an alternative base model. As shown in Table 16, our
1597 method yields consistent and significant improvements across all datasets, regardless of the backbone
1598 architecture. On OmniMedVQA, the InternVL-based agent achieved a remarkable score of 82.4%,
1599 surpassing the performance of the Qwen-based version. Even on datasets where the base InternVL
1600 model struggled (e.g., PathVQA, where the base score was only 42.3%), our framework provided a
1601 massive performance boost of +26.1% (reaching 68.4%). These results confirm that our pipeline is
1602 model-agnostic and can effectively enhance the reasoning capabilities of diverse multimodal LLMs.

1604
1605 Table 16: Assessment of framework transferability.

Model	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med
Qwen2.5-VL-7B	61.8	64.7	60.5	60.8	56.6
MMedAgent-RL (Qwen2.5-VL-7B)	71.5	76.2	72.3	73.3	71.9
InternVL2.5-8B	58.6	68.6	42.3	76.5	51.4
MMedAgent-RL (InternVL2.5-8B)	70.2	78.9	68.4	82.4	64.7

1612
1613 G.12 BASELINES WITH TRAINED AGGREGATOR

1614 We implemented two new baselines where GPT-4o first samples $N = 3$ diverse outputs per query
1615 ($T = 1.0$), and a Qwen2.5-VL-7B model is then trained on the training set (same as data we used) to
1616 act as an aggregator that selects or synthesizes the final answer from these candidates. We developed
1617 both an SFT Aggregator (via Supervised Fine-Tuning) and a GRPO Aggregator (via Group Relative
1618 Policy Optimization) to ensure a robust comparison. As shown in Table 17, MMedAgent-RL still
1619 maintains a significant performance lead. We observed that directly training an aggregator yields
limited gains, particularly when facing inconsistent candidate answers, i.e., a challenge that directly

1620 motivated our proposed curriculum learning-guided RL strategy. This confirms that our method’s
 1621 effectiveness stems from the process-level collaboration of specialized agents, which captures domain-
 1622 specific nuances that cannot be replicated by simply aggregating generalist outputs.
 1623

1624 Table 17: Performance comparison with GPT-4o+an aggregator (based on Qwen2.5-VL 7B) baselines.
 1625

Model	VQA-RAD	SLAKE	PathVQA	OmniMedVQA	MMMU-Med	Overall
Qwen2.5-VL-7B (Base)	61.8	64.7	60.5	60.8	56.6	60.9
GPT-4o	61.0	75.5	69.4	68.5	69.7	68.8
GPT-4o+Qwen2.5-VL-7B (SFT Fine-tuned)	65.8	69.4	62.9	60.3	65.3	64.7
GPT-4o+Qwen2.5-VL-7B (GRPO Fine-tuned)	67.3	70.8	63.8	61.8	64.6	65.7
MMedAgent-RL	71.5	76.2	72.3	73.3	71.9	73.0

1631
 1632 G.13 DETAILED RESULTS
 1633

1634 **Traditional Medical Imaging Evaluation.** Table 18 presents the accuracy of various models across
 1635 five major medical imaging modalities in the OmniMedVQA benchmark. Our model (MMedAgent-
 1636 RL) demonstrates strong generalization across all categories, achieving an average accuracy of 73.3%,
 1637 significantly outperforming previous state-of-the-art models including LLaVA-v1.6-34B (58.7%) and
 1638 Qwen2.5-VL-7B (60.8%). Specifically, our method achieves 76% on microscopy images, indicating
 1639 robust capability in processing fine-grained, high-resolution visual data typical of pathology slides.
 1640 On MRI and CT modalities, MMedAgent-RL reaches 72% and 65%, respectively, outperforming
 1641 strong baselines such as LLaVA-v1.6-34B and Yi-VL-34B by a wide margin. These results show
 1642 that our model captures both structural and soft-tissue anatomical details effectively. In X-Ray,
 1643 our method maintains competitive performance (78.8%) compared to high-performing models like
 1644 HuatuoGPT-Vision-7B (80.3%), while achieving the highest accuracy on Ultrasound (75%) among
 1645 all models, demonstrating robustness in handling noisy, low-contrast imaging modalities.
 1646

1647 **MMMU Health & Medicine Track.** In Table 19, our model again establishes new performance
 1648 standards, achieving 71.9% overall accuracy on the MMMU Health & Medicine test set. Compared
 1649 to existing large models such as Qwen2.5-VL-7B (56.6%) and HuatuoGPT-Vision-7B (51.0%),
 1650 MMedAgent-RL demonstrates clear advantages. Notably, our model excels across all five sub-
 1651 domains: scoring 75% in Basic Medical Science (BMS), 78% in Clinical Medicine (CM), 65% in
 1652 Diagnostics and Laboratory Medicine (DLM), 70% in Pharmacy (P), and 71.5% in Public Health (PH).
 1653 These results reflect a well-rounded capability across both foundational scientific understanding and
 1654 applied clinical knowledge. In particular, performance in CM and P shows substantial improvement
 1655 over single-agent baselines, suggesting that our model benefits from enhanced reasoning and domain
 1656 transfer. Taken together, these results confirm the effectiveness of our approach in both imaging-
 1657 based and knowledge-based medical VQA settings, and highlight the potential of our method as a
 1658 comprehensive solution for multimodal medical understanding.
 1659

G.14 MORE CASES

1660 To further demonstrate the robustness and versatility of our proposed model in multimodal medical
 1661 applications, we present additional representative cases in Figure 7, Figure 8, Figure 9 and Figure 10.
 1662 These examples encompass various clinical scenarios and imaging modalities, providing a comprehen-
 1663 sive illustration of the model’s ability to effectively integrate and interpret diverse types of medical
 1664 data.
 1665

1674
 1675
 1676
 1677
 1678 **Table 18:** The accuracy of OmniMedVQA within different modalities (excluding FP, OCT, and
 1679 Dermatology). **CT:** *Computed Tomography*, **MRI:** *Magnetic Resonance Imaging*, **Mic:** *Microscopy*
 1680 *Images*, **X-Ray:** *X-ray*, **US:** *Ultrasound*.

Model	CT	MRI	Mic	X-Ray	US	Avg.
Med-Flamingo	34.6	27.5	28.1	30.1	33.2	30.7
RadFM	33.3	22.0	28.0	31.5	26.1	28.2
LLaVA-Med-7B	25.3	35.9	44.0	31.7	83.7	44.1
Qwen-VL-Chat	51.5	43.9	49.5	63.1	33.5	48.3
Yi-VL-34B	39.8	51.4	61.4	64.2	40.5	51.5
LLaVA-v1.6-7B	40.1	54.8	48.8	53.3	47.9	49.0
LLaVA-v1.6-13B	40.0	47.4	50.5	59.6	42.6	48.0
LLaVA-v1.6-34B	50.6	60.9	62.8	74.7	44.5	58.7
LLaVA-v1.5-LLaMA3-8B	33.0	53.8	48.4	56.6	31.2	44.6
HuatuoGPT-Vision-7B	65.6	72.7	77.5	80.3	76.7	74.6
Qwen2.5-VL-3B	60.5	64.2	66.6	68.9	40.4	60.1
Qwen2.5-VL-7B	62.0	68.3	70.7	68.9	34.3	60.8
Multi-Agent Collaboration						
MedAgents	55.0	57.2	59.1	58.6	49.0	55.8
MDAgents	58.1	60.5	61.7	60.2	50.6	58.2
AFlow	59.5	62.0	63.2	61.7	51.6	59.6
MMedAgent-RL (7B)	64.6	71.7	76.0	78.8	75.4	73.3

1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705 **Table 19:** Results on the test set for the MMMU Health & Medicine track. The Health & Medicine
 1706 track is divided into five categories: **BMS** for *Basic Medical Science*, **CM** for *Clinical Medicine*,
 1707 **DLM** for *Diagnostics and Laboratory Medicine*, **P** for *Pharmacy*, and **PH** for *Public Health*. Results
 1708 are obtained by submitting to the official website.

Model	BMS	CM	DLM	P	PH	MMMU Health & Medicine
Med-Flamingo	29.6	28.1	24.8	25.3	31.2	28.3
RadFM	27.5	26.8	25.8	24.7	29.1	27.0
LLaVA-Med-7B	39.9	39.1	34.6	37.4	34.0	36.9
Qwen-VL-Chat	36.5	31.7	32.7	28.4	34.6	32.7
Yi-VL-34B	49.4	48.9	43.2	40.5	32.0	41.5
LLaVA-v1.6-7B	40.5	36.9	32.1	32.3	26.9	33.1
LLaVA-v1.6-13B	53.6	46.7	33.3	22.2	40.0	39.3
LLaVA-v1.6-34B	56.4	56.0	46.9	46.7	41.7	48.8
HuatuoGPT-Vision-7B	60.7	63.3	36.7	50.0	44.4	51.0
Qwen2.5-VL-3B	67.8	53.3	43.3	55.6	53.3	54.5
Qwen2.5-VL-7B	67.9	56.7	36.7	66.7	56.7	56.6
Multi-Agent Collaboration						
MedAgents	60.0	55.0	45.0	50.0	52.9	52.6
MDAgents	62.5	57.5	50.0	55.0	50.5	55.1
MMedAgent-RL (7B)	75.0	78.0	65.0	70.0	71.5	71.9

1728

1729

Question: What can be observed in this image?

1730

Options: A. Shin splints, B. Tennis elbow, C. Plantar fascia pathology, D. Meniscal tear

1731

Answer: C. Plantar fascia pathology.

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

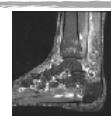
1777

1778

1779

1780

1781

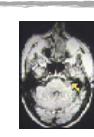
Question: What can be observed in this image?**Options:** A. Shin splints, B. Tennis elbow, C. Plantar fascia pathology, D. Meniscal tear**Meniscal tear****Answer:** C. Plantar fascia pathology.**Ours:** The image provided is a CT scan of a foot, specifically showing the plantar fascia. The CT scan typically shows bone structures and soft tissue, and in this case, it clearly displays the plantar fascia, which is a common site for plantar fasciitis or other plantar fascia-related pathologies.

<answer>C. Plantar fascia pathology</answer>

Figure 7: Case 1 (CT scan of foot): The model identifies plantar fascia pathology from a CT image, requiring anatomical knowledge of soft tissue structures in the foot and recognition of characteristic changes consistent with plantar fasciitis. Case 2 (Protein structure diagram): A structural biology reasoning task based on a protein diagram, where the absence of distinct subunit boundaries leads to the conclusion that the protein does not exhibit quaternary structure—showcasing visual-structural reasoning in molecular biology.

Question: What part is shown in this ultrasound image?**Options:** A. Testicle, B. Large intestine, C. pancreas, D. Liver**Answer:** C. pancreas.**Ours:** The ultrasound image shows a structure that appears to be a solid mass or lesion, which is consistent with a C. Plantar fascia pathology. This is typically seen in imaging of the foot and ankle region.

<answer>C</answer>

Question: The vestibular system can be stimulated or irritated by an infection of the inner ear or by a tumor (arrow) pressing on the vestibulocochlear nerve. Which of the following would NOT occur?**Options:** A. Decreased auditory acuity. B. Vertigo. C. Tinnitus. D. Loss of facial sensation.**Answer:** D. Loss of facial sensation**Ours:** The image provided is an MRI scan of the brain, not of the inner ear or vestibular system. Therefore, it does not show any information related to the vestibular system or its components such as the vestibulocochlear nerve. The question asks about the vestibular system, which is not depicted in this image. Since the image does not contain relevant information for the question, we cannot determine what would or would not occur based on this image alone.

<answer>D. Loss of facial sensation.</answer>

Figure 8: Case 3 (Ultrasound image): The model interprets an ultrasound to identify the pancreas, integrating grayscale image features with organ shape and texture—an example of soft tissue recognition using sonography. Case 4 (Brain MRI with question about vestibular system): This task highlights the model’s ability to identify mismatches between the image modality (brain MRI) and the clinical question (vestibular system), and to reason that facial sensation loss is not explainable from the given scan.

1782
1783
1784
1785
1786
1787

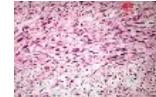
Question: Is polysplenia present?
Options: A. yes, B. no
Answer: A. yes.

1788
1789
1790
1791
1792
1793

Ours: The image provided shows multiple organs that appear to be abnormally positioned or fused together, which is characteristic of polysplenia. Polysplenia is a condition where there are more than two spleens, often accompanied by other anomalies such as heart defects and other organ malformations.
<answer>A. yes</answer>

1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

Question: Does malignant adenoma show bizarre strap and fusiform cells?
Options: A. yes, B. no
Answer: B. no



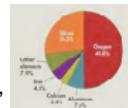
Ours: The image provided is a histological slide showing a pattern consistent with plantar fascia pathology. There is no indication of a malignant adenoma or bizarre strap and fusiform cells. Therefore, the correct answer is B.
<answer>B</answer>

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816

Figure 9: Case 5 (Abdominal CT image – polysplenia diagnosis): The task involves recognizing abnormal organ positioning indicative of polysplenia. This case highlights anatomical reasoning through CT imaging, requiring recognition of fused or duplicated spleens and an understanding of associated syndromic features. Case 6 (Histopathology slide – adenoma diagnosis): A histological image is used to assess the presence of malignant features. The model correctly distinguishes normal plantar fascia morphology from pathological adenoma patterns, demonstrating reasoning in pathology image interpretation.

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

Question: Five elements make up 98% of the mass of the human body. These elements are oxygen (61%), carbon (23%), hydrogen (10.0%), nitrogen (2.6%), and calcium (1.4%). Compare these data with those in the pie graph below, which shows the five most abundant elements by mass in Earth's crust, oceans, and atmosphere. <image 1>, _____, _____, _____, _____, are abundant both in the human body and Earth's crust, oceans, and atmosphere?
Options: A. iron, oxygen, Aluminum, silicon, B. Aluminum, silicon, iron, calcium, C. oxygen, silicon, iron, calcium
Answer: C. oxygen, silicon, iron, calcium.



1831
1832
1833
1834
1835

Ours: The pie chart shows that the five most abundant elements by mass in Earth's crust, oceans, and atmosphere are oxygen (49.8%), silicon (26.0%), aluminum (7.6%), iron (4.8%), and calcium (3.4%). Comparing these with the five most abundant elements in the human body (oxygen, carbon, hydrogen, nitrogen, and calcium), we can see that oxygen is present in both sets of data.
<answer>C. oxygen, silicon, iron, calcium</answer>

Figure 10: Case 7 (Pie chart comparison – elemental composition): This case blends image data (a pie chart of Earth's element composition) with textual biochemical data (composition of the human body). The reasoning required crosses domains, comparing datasets to identify overlapping elements, exemplifying multimodal cross-referencing and synthesis.