
On the Global Convergence of Fitted Q-Iteration with Two-layer Neural
Network Parametrization

Mudit Gaur 1 Vaneet Aggarwal 2 3 Mridul Agarwal 4

Abstract
Deep Q-learning based algorithms have been
applied successfully in many decision making
problems, while their theoretical foundations are
not as well understood. In this paper, we study
a Fitted Q-Iteration with two-layer ReLU neu-
ral network parameterization, and find the sam-
ple complexity guarantees for the algorithm. Our
approach estimates the Q-function in each iter-
ation using a convex optimization problem. We
show that this approach achieves a sample com-
plexity of Õ(1/ϵ2), which is order-optimal. This
result holds for a countable state-spaces and does
not require any assumptions such as a linear or
low rank structure on the MDP.

1. Introduction
Reinforcement learning aims to maximize the cumulative
rewards wherein an agent interacts with the system in a
sequential manner, and has been used in many applica-
tions including games (Silver et al., 2017; Vinyals et al.,
2017; Bonjour et al., 2022), robotics (Maes et al., 2003),
autonomous driving (Kiran et al., 2022), ride-sharing (Al-
Abbasi et al., 2019), networking (Geng et al., 2020), rec-
ommender systems (Warlop et al., 2018), etc. One of the
key class of algorithms used in reinforcement learning are
those based on Q-learning. Due to large state space (possi-
bly infinite), such algorithms are parameterized (Van Has-
selt et al., 2016). However, with general parametrization
(e.g., neural network parametrization), sample complexity
guarantees to achieve an ϵ gap to the optimal Q-values have
not been fully understood. In this paper, we study this prob-
lem to provide the first sample complexity results for Q-

1Department of Statistics, Purdue University, West Lafayette,
IN, U.S.A 2School of IE and School of ECE, Purdue Uni-
versity, West Lafayette, IN, U.S.A 3Computer Science Pro-
gram, KAUST, Saudi Arabia 4Amazon.com. Correspondence
to: Mudit Gaur <mgaur@purdue.edu>, Vaneet Aggarwal <va-
neet@purdue.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

learning based algorithm with neural network parametriza-
tion.

We note that most of the theoretical results for Q-learning
based algorithms have been in tabular setups which assume
finite states such as in (Li et al., 2020; Jin et al., 2018),
or assume a linear function approximation (Carvalho et al.,
2020; Wang et al., 2021a; Chen et al., 2022; Zhou et al.,
2021) where the linear representation is assumed to be
known. Although practically large state spaces are handled
using deep neural networks due to the universal approxima-
tion theorem, the theoretical analysis with neural network
parametrization of Q-learning is challenging as the training
of neural network involves solving a non-convex optimiza-
tion problem. Recently, the authors of (Fan et al., 2020)
studied the problem of neural network parametrization for
Q-learning based algorithms, and provided the asymptotic
global convergence guarantees when the parameters of the
neural network used to approximate the Q function are
large. In this paper, we study the first results on sample
complexity to achieve the global convergence of Q-learning
based algorithm with neural network parametrization.

In this paper, we propose a fitted Q-Iteration based algo-
rithm, wherein the Q-function is parametrized by a two-
layer ReLU network. The key for the two-layer ReLU net-
work is that finding the optimal parameters for estimating
the Q-function could be converted to a convex problem. In
order to reduce the problem from non-convex to convex,
one can replace the ReLU function with an equivalent di-
agonal matrix. Further, the minima of both the non-convex
ReLU optimization and the equivalent convex optimization
are same (Wang et al., 2021b; Pilanci and Ergen, 2020).

We find the sample complexity for fitted Q-Iteration based
algorithm with neural network parametrization. The gap
between the learnt Q-function and the optimal Q-function
arises from the parametrization error due to the 2-layer neu-
ral network, the error incurred due to imperfect reformula-
tion of the neural network as a convex optimization prob-
lem as well as the error due to the random nature of the
underlying MDP. This error reduces with increasing the
number of iterations of the fitted Q-iteration algorithm, the
number of iterations of the convex optimization step, the
number of data points sampled at each step. We achieve

1

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

an overall sample complexity of Õ
(

1
(1−γ)6ϵ2

)
. Our proof

consists of expressing the error in estimation of the Q-
function at a fixed iteration in terms of the Bellman error
incurred at each successive iteration upto that point. We
then express the Bellman error in terms of the previously
mentioned components for the statistical error. We then up-
per bound the expectation of these error components with
respect to a distribution of the state action space.

2. Related Works
2.1. Fitted Q-Iteration

The analysis of Q-learning based algorithms has been stud-
ied since the early 1990’s (Watkins and Dayan, 1992; Singh
and Yee, 1994), where it was shown that small errors in
the approximation of a task’s optimal value function can-
not produce arbitrarily bad performance when actions are
selected by a greedy policy. Value Iteration algorithms,
and its analogue Approximate Value iteration for large state
spaces has been shown to have finite error bounds as (Puter-
man, 2014). Similar analysis for finite state space has been
studied in (Bertsekas and Tsitsiklis, 1996) and (Munos,
2007).

When the state space is large (possibly infinite), the value
function can not be updated at each state action pair at ev-
ery iteration. Thus, approximate value iteration algorithms
are used that obtains samples from state action space at
each iteration and estimates the action value function by
minimizing a loss which is a function of the sampled state
action pairs. This is the basis of the Fitted Q-Iteration, first
explained in (Boyan and Moore, 1994). Instead of updat-
ing the Q-function at each step of the trajectory, it collects
a batch of sample transitions and updates the Q-functions
based on the collected samples and the existing estimate of
the Q-function. The obtained samples could be using a gen-
erative model (Munos, 2003; Ghavamzadeh et al., 2008), or
using the buffer memory (Kozakowski et al., 2022; Wang
et al., 2020).

2.2. Deep Neural Networks in Reinforcement Learning

Parametrization of Q-network is required for scaling the Q-
learning algorithms to a large state space. Neural networks
have been used previously to parameterize the Q-function
(Tesauro et al., 1995; Xu and Gu, 2020; Fujimoto et al.,
2019). This approach, also called Deep Q-learning has
been widely used in many reinforcement learning applica-
tions (Yang et al., 2020; Damjanović et al., 2022; Gao et al.,
2020). However, fundamental guarantees of Q-learning
with such function approximation are limited, because the
non-convexity of neural network makes the parameter op-
timization problem non-convex.

Even though the sample complexity of Q-learning based
algorithms have not been widely studied for general
parametrization, we note that such results have been stud-
ied widely for policy gradient based approaches (Agarwal
et al., 2021; Wang et al., 2019; Zhang et al., 2022). The pol-
icy gradient approaches directly optimize the policy, while
still having the challenge that the parametrization makes
the optimization of parameters non-convex. This is re-
solved by assuming that the class of parametrization (e.g.,
neural networks) is rich in the sense that arbitrary policy
could be approximated by the parametrization. However,
note that for systems with infinite state spaces, results for
policy gradient methods consist of upper bounds on the gra-
dient of the estimate of the average reward function, such
as in (Yuan et al., 2022). For upper bounds on the error
of estimation of the value function, linear structure on the
MDP has to be assumed, as is done in (Chen and Zhao,
2022).

In the case of analysis of Fitted Q-Iteration (FQI) algo-
rithms such as (Fan et al., 2020), upper bounds on the error
of estimation of the Q-function are obtained by considering
sparse Neural networks with ReLU functions and Holder
smooth assumptions on the Neural networks. At each iter-
ation of the FQI algorithm, an estimate of the Q-function
is obtained by optimizing a square loss error, which is non-
convex in the parameters of the neural network used to rep-
resent the Q-function. Due to this non-convexity, the upper
bounds are asymptotic in terms of the parameters of the
neural network and certain unknown constants. (Xu and
Gu, 2020) improves upon this result by demonstrating fi-
nite time error bounds for Q-learning with neural network
parametrization. However the error bounds obtained can go
unbounded as the number of iterations increase (See Ap-
pendix A), hence they do not give any sample complexity
results. Our result establishes the first sample complexity
results for a (possibly) infinite state space without the need
for a linear structure on the MDP.

2.3. Neural Networks Parameter Estimation

The global optimization of neural networks has shown to be
NP hard (Blum and Rivest, 1992). Even though Stochastic
Gradient Descent algorithms can be tuned to give highly
accurate results as in (Bengio, 2012), convergence analy-
sis of such methods requires assumptions such as infinite
width limit such as in (Zhu and Xu, 2021). Recently, it
has been shown that the parameter optimization for two-
layer ReLU neural networks can be converted to an equiv-
alent convex program which is exactly solvable and com-
putationally tractable (Pilanci and Ergen, 2020). Convex
formulations for convolutions and deeper models have also
been studied (Sahiner et al., 2020a;b). In this paper, we
will use these approaches for estimating the parameterized
Q-function.

2

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

3. Problem Setup
We study a discounted Markov Decision Process (MDP),
which is described by the tuple M = (S,A, P,R, γ),
where S is a bounded measurable state space, A is the finite
set of actions, we represent set of state action pairs as [0, 1]d

(a d dimensional tuple with all elements in [0,1]), where d
is a positive integer greater than 1. P : S × A → P(S) is
the probability transition kernel

R : S × A → P([0, Rmax]) is the reward kernel on the
state action space with Rmax being the absolute value of
the maximum reward and 0 < γ < 1 is the discount factor.
A policy π : S → P(A) is a mapping that maps state to
a probability distribution over the action space. Here, we
denote by P(S),P(A),P([a, b]), the set of all probabil-
ity distributions over the state space, the action space, and
a closed interval [a, b], respectively. We define the action
value function for a given policy π respectively as follows.

Qπ(s, a) = E

[∞∑
t=0

γtr′(st, at)|s0 = s, a0 = a

]
, (1)

where r′(st, at) ∼ R(·|st, at), at+1 ∼ π(·|st+1) and
st+1 ∼ P (·|st, at) for t = {0, · · · ,∞}. For a discounted
MDP, we define the optimal action value functions as fol-
lows:

Q∗(s, a) = sup
π
Qπ(s, a) ∀(s, a) ∈ S ×A, (2)

A policy that achieves the optimal action value functions is
known as the optimal policy and is denoted as π∗. It can
be shown that π∗ is the greedy policy with respect to Q∗

(Bertsekas and Shreve, 2007). Hence finding Q∗ is suffi-
cient to obtain the optimal policy. We define the Bellman
operator for a policy π as follows

(TπQ)(s, a) = r(s, a) + γ

∫
Qπ(s′, π(s′))P (ds′|s, a),

(3)
where r(s, a) = E(r′(s, a)|(s, a)) Similarly we define the
Bellman Optimality Operator as

(TQ)(s, a) =

(
r(s, a) + max

a′∈A
γ

∫
Q(s′, a′)P (ds′|s, a)

)
,

(4)

Further, operator Pπ is defined as

PπQ(s, a) = E[Q(s′, a′)|s′ ∼ P (·|s, a), a′ ∼ π(·|s′)],
(5)

which is the one step Markov transition operator for pol-
icy π for the Markov chain defined on S × A with the
transition dynamics given by St+1 ∼ P (·|St, At) and
At+1 ∼ π(·|St+1). It defines a distribution on the state

action space after one transition from the initial state. Sim-
ilarly, Pπ1Pπ2 · · ·Pπm is them-step Markov transition op-
erator following policy πt at steps 1 ≤ t ≤ m. It defines
a distribution on the state action space after m transitions
from the initial state. We have the relation

(TπQ)(s, a) = r(s, a) + γ

∫
Qπ(s′, π(s′))P (ds′|s, a)

= r(s, a) + γ(PπQ)(s, a) (6)

Which defines P ∗ as

P ∗Q(s, a) = max
a′∈A

E[Q(s′, a′)|s′ ∼ P (·|s, a)], (7)

in other words, P ∗ is the one step Markov transition op-
erator with respect to the greedy policy of the function on
which it is acting.

This gives us the relation

(TQ)(s, a) = r(s, a) + γP ∗Q(s, a), (8)

For any measurable function f : S × A :→ R, we also
define

E(f)ν =

∫
S×A

fdν, (9)

for any distribution ν ∈ P(S ×A).

We define ρπs0 as the stationary state distribution induced
by the policy π starting at state s0 and ζπs0(s, a) is the cor-
responding stationary state action distribution defined as
ζπs0(s, a) = ρπs0(s).π(a|s).

Similarly, we define ρπν (s) as the stationary state distribu-
tion induced by the policy π starting at state s0 ∼ ν and
ζπν (s, a) = ρπν (s).π(a|s) as the corresponding stationary
state action distribution.

For representing the action value function, we will use a 2
layer ReLU neural network. A 2-layer ReLU Neural Net-
work with input x ∈ Rd is defined as

f(x) =

m∑
i=1

σ′(xTui)αi, (10)

where m ≥ 1 is the number of neurons in the neural net-
work, the parameter space is Θm = Rd×m × Rm and
θ = (U,α) is an element of the parameter space, where
ui is the ith column of U , and αi is the ith coefficient of
α. The function σ′ : R → R≥0 is the ReLU or restricted
linear function defined as σ′(x) ≜ max(x, 0). In order to
obtain parameter θ for a given set of data X ∈ Rn×d and
the corresponding response values y ∈ Rn×1, we desire the
parameter that minimizes the squared loss , given by

L(θ) = argmin
θ

||
m∑
i=1

σ(Xui)αi − y||22 + β

m∑
i=1

||ui||22(11)

3

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Here, we have the term σ(Xui) which is a vector
{σ′((xj)

Tui)}j∈{1,··· ,n} where xj is the jth row of X . It
is the ReLU function applied to each element of the vec-
tor Xui. We note that the optimization in Equation (11)
is non-convex in θ due to the presence of the ReLU acti-
vation function. In (Wang et al., 2021b), it is shown that
this optimization problem has an equivalent convex form,
provided that the number of neurons m goes above a cer-
tain threshold value. This convex problem is obtained by
replacing the ReLU functions in the optimization problem
with equivalent diagonal operators. The convex problem is
given as

L
′

β(p) := (argmin
p

||
∑

Di∈DX

Di(Xpi)− y||22 (12)

where p ∈ Rd×|DX |.

DX is the set of diagonal matrices Di which depend on the
dataset X . Except for cases of X being low rank it is not
computationally feasible to obtain the set DX . We instead
use D̃ ∈ DX to solve the convex problem

L
′

β(p) := (argmin
p

||
∑

Di∈D̃

Di(Xpi)− y||22 (13)

where p ∈ Rd×|D̃|.

The relevant details of the formulation and the definition
of the diagonal matrices Di are provided in Appendix B.
For a set of parameters θ = (u, α) ∈ Θ, we denote neural
network represented by these parameters as

Qθ(x) =

m∑
i=1

σ′(xTui)αi (14)

4. Proposed Algorithm
In this section, we describe our Neural Network Fitted Q-
iteration algorithm. The key in the algorithm is the use of
convex optimization for the update of parameters of the Q-
function. The algorithm, at each iteration k, updates the
estimate of the Q function, here denoted as Qk. The up-
date at each step in the ideal case is to be done by applying
the Bellman optimality operator defined in Equation (3).
However, there are two issues which prevent us from doing
that. First, we do not know the transition kernel P . Second
for the case of an infinite state space, we cannot update the
estimate at each iteration of the state space. Therefore, we
apply an approximation of the Bellman optimality operator
defined as

T̂Q(s, a) =

(
r′(s, a) + max

a′∈A
γQ(s′, a′)

)
, (15)

Algorithm 1 Iterative algorithm to estimate Q function
Input: S, A, γ, Time Horizon K ∈ Z, sampling distribu-
tion ν, one step transition operator κ, Tk:k∈{1,··· ,K}

Initialize: Q̃(s, a) = 0 ∀(s, a) ∈ S ×A

1: for k ∈ {1, · · · ,K} do
2: Generate nk state-action pairs by (i) sampling from

the initial state-action distribution ν and (ii) apply-
ing the greedy policy based on the previously esti-
mated Qk−1 values, denoted as πk

3: Obtain {s′i, r′i} from κ(si, ai) = {s′i, r′i}
4: Set yi = r′i + γmaxa′∈A Q̃(s′i, a

′), where i ∈
{1, · · · , n}

5: Set Xk, Yk as the matrix of the sampled state action
pairs and vector of estimated Q values respectively

6: Call Algorithm 2 with input (X = Xk, y = Yk,
T = Tk) and return parameter θ

7: Q̃ = Qθ

8: end for
Define πK+1 as the greedy policy with respect to Q̃
Output: An estimator Q̃ of Q∗ and πk as it’s greedy
policy

where r′(s, a) ∼ R(.|s, a). Since we cannot perform even
this approximated optimality operator for all state action
pairs due to the possibly infinite state space, we instead up-
date our estimate of the Q function at iteration k as the 2
layer ReLU Neural Network which minimizes the follow-
ing loss function

1

n

n∑
i=1

(
Qθ(si, ai)−

(
r′(si, ai) + max

a′∈A
γQk−1(s

′, a′)

))2

,

(16)

Here Qk−1 is the estimate of the Q function from itera-
tion k − 1 and the state action pairs have been sampled
from some distribution, ν, over the state action pairs. Note
that this is a problem of the form given in Equation (11)
with yi = (r′(si, ai) + maxa′∈A γQk−1(s

′, a′)) where
i ∈ (1, · · · , n) and Qθ represented as in Equation (14).

We define the Bellman error at iteration k as

ϵk = TQk−1 −Qk, (17)

The main algorithm, Algorithm 1, iteratively samples from
the state action space at every iteration, and the correspond-
ing reward is observed. For each of the sampled state action
pairs, the approximate Bellman optimality operator given
in Equation (15) is applied to obtain the corresponding out-
put value y. We have access to these values under Assump-
tion 3. The sampled set of state action pairs and the corre-

4

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

sponding y values are then passed to Algorithm 2, which
returns the estimates of the neural network which mini-
mizes the loss given in Equation (16). The algorithm up-
dates the estimate of the action value function as the neural
network corresponding to the estimated parameters.

Algorithm 2 Neural Network Parameter Estimation
1: Input: data (X, y, T)
2: Sample: D̃ = diag(1(Xgi > 0)) : gi ∼ N (0, I), i ∈

[|D̃|]
3: Initialize y1 = 0, u1 = 0

Initialize g(u) = ||
∑

Di∈D̃DiXui − y||22
4: for k ∈ {0, · · · , T} do
5: uk+1 = yk − αk∇g(yk)
6: yk+1 = argminy:|y|1≤Rmax

1−γ
||uk+1 − y||22

7: end for
8: Set uT+1 = u∗

9: Solve Cone Decomposition:
v̄, w̄ ∈ u∗i = vi − wi, i ∈ [d]} such that vi, wi ∈ Ki

and at-least one vi, wi is zero.
10: Construct (θ = {ui, αi}) using the transformation

ψ(vi, wi) =

 (vi, 1), if wi = 0
(wi,−1), if vi = 0
(0, 0), if vi = wi = 0

(18)

for all i ∈ {1, · · · ,m}
11: Return θ

Algorithm 2 optimizes the parameters for the neural net-
work at each step of Algorithm 1. This is performed by
reducing the problem to an equivalent convex problem as
described in Appendix B. The algorithm first samples a set
of diagonal matrices denoted by D̃ in line 2 of Algorithm 2.
The elements of D̃ act as the diagonal matrix replacement
of the ReLU function. Algorithm 2 then solves an opti-
mization of the form given in Equation (13). This convex
optimization is solved in Algorithm 2 using the projected
gradient descent algorithm. After obtaining the optima for
this convex program, denoted by u∗ = {u∗i }i∈{1,··· ,|D̃|}, in
line 10, we transform them to the parameters of a neural
network of the form given in Equation (14) which are then
passed back to Algorithm 1. The procedure is described in
detail along with the relevant definitions in Appendix B.

5. Error Characterization
We now characterize the errors which can result in the
gap between the point of convergence and the optimal Q-
function. To define the errors, we first define the vari-
ous possible Q-functions which we can approximate in de-
creasing order of the accuracy.

We start by defining the best possible Q-function, Qk1
for

episode k > 1. Qk1 is the best approximation of the func-
tion TQk−1 possible from the class of two layer ReLU neu-
ral networks, with respect to the expected square from the
true ground truth TQk−1.
Definition 1. For a given iteration k of Algorithm 1, we
define

Qk1
= argmin

Qθ,θ∈Θ
E(Qθ − TQk−1)

2
ν , (19)

The expectation is with respect to the sampling distribution
of the state action pairs denoted by ν. TQk−1 is the bell-
man optimality operator applied to Qk−1.

Note that we do not have access to the transition probability
kernel P , hence we cannot calculate TQk−1. To alleviate
this, we use the observed next states to estimate the Q-value
function. Using this, we define Qk2

as,.
Definition 2. For a given function Q : S × A →[
0, Rmax

1−γ

]
, we define

Qk2
= argmin

Qθ,θ∈Θ
E(s,a)∼ν,s′∼P (s′|s,a),r′(·|s,a)∼R(·|s,a)

(Qθ(s, a)− (r′(s, a) + γmax
a′

Qk−1(s
′, a′))2, (20)

Compared to Qk1
, in Qk2

, we are minimizing the
expected square loss from target function

(
r′(s, a) +

γmaxa′ Q(s′, a′)
)

or the expected loss function.

To obtain Qk2 , we still need to compute the true expected
value in Equation 20. However, we still do not know the
transition function P . To remove this limitation, we use
sampling. Consider a set, X , of state-action pairs sampled
using distribution ν. We now define Qk3

as,
Definition 3. For a given set of state action pairs X and a
given function Q : S ×A →

[
0, Rmax

1−γ

]
we define

Qk3 = argmin
Qθ,θ∈Θ

1

|X |
∑

(si,ai)∈X

(
Qθ(si, ai)

−
(
r′(si, ai) + γmax

a′∈A
Qk−1(s

′
i, a

′)
))2

, (21)

where r′(si, ai), and s′i are the observes reward and the
observed next state for state action pair si, ai respectively.

Qk3
is the best possible approximation for Q-value func-

tion which minimizes the sample average of the square
loss functions with the target values as

(
r′(si, ai) +

γmaxa′∈AQ(s′, a′)
)2

or the empirical loss function.

After defining the possible solutions for theQ-values using
different loss functions, we define the errors.

We first define approximation error which represents the
difference between TQk−1 and its best approximation pos-
sible from the class of 2 layer ReLU neural networks. We
have

5

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Definition 4 (Approximation Error). For a given iteration
k of Algorithm 1, ϵk1 = TQk−1 −Qk1 , where Qk−1 is the
estimate of the Q function at the iteration k − 1.

We also define Estimation Error which denotes the error
between the best approximation of TQk−1 possible from
a 2 layer ReLU neural network and Qk2

. We demonstrate
that these two terms are the same and this error is zero.

Definition 5 (Estimation Error). For a given iteration k of
Algorithm 1, ϵk2 = Qk1 −Qk2 .

We now define Sampling error which denotes the differ-
ence between the minimizer of expected loss function Qk2

and the minimizer of the empirical loss function using sam-
ples, Qk3

. We will use Rademacher complexity results to
upper bound this error.

Definition 6 (Sampling Error). For a given iteration k of
Algorithm 1, ϵk3

= Qk2
−Qk3

. Here Xk is the set of state
action pairs sampled at the kth iteration of Algorithm 1.

Lastly, we define optimization error which denotes the dif-
ference between the minimizer of the empirical square loss
function, Qk3 , and our estimate of this minimizer that is
obtained from the projected gradient descent algorithm.

Definition 7 (Optimization Error). For a given iteration k
of Algorithm 1, ϵk4

= Qk3
−Qk. Here Qk is our estimate

of the Q function at iteration k of Algorithm 1.

6. Assumptions
In this section, we formally describe the assumptions that
will be used in the results.

Assumption 1. Let θ∗ ≜ argminθ∈Θ L(θ), where L(θ) is
defined in (11) and we denote Qθ∗(·) as Qθ(·) as defined
in (14) for θ = θ∗. Also, let θ∗

D̃
≜ argminθ∈Θ L|D̃|(θ),

where LD̃(θ) is defined in (52). Further, we denote
Qθ∗

|D̃|
(·) as Qθ(·) as defined in (14) for θ = θ∗|D̃|. Then

we assume

E(|Qθ∗ −Qθ∗
|D̃|

|)ν ≤ ϵ|D̃|, (22)

for any ν ∈ P(S ×A)

LD̃(θ) is the non-convex problem equivalent to the convex
problem in (13). Thus, ϵ|D̃| is a measure of the error in-
curred due to taking a sample of diagonal matrices D̃ and
not the full set DX . In practice, setting |D̃| to be the same
order of magnitude as d (dimension of the data) gives us
a sufficient number of diagonal matrices to get a reformu-
lation of the non convex optimization problem which per-
forms comparably or better than existing gradient descent
algorithms, therefore ϵ|D̃| is only included for theoretical
completeness and will be negligible in practice. This has

been practically demonstrated in (Mishkin et al., 2022; Bar-
tan and Pilanci, 2022; Sahiner et al., 2022). Refer to Ap-
pendix B for details of DX , D̃ and L|D̃|(θ).

Assumption 2. We assume that for all functions Q : S ×
A →

[
0,
(

Rmax

1−γ

)]
, there exists a functionQθ where θ ∈ Θ

such that

E(Qθ −Q)
2
ν ≤ ϵbias, (23)

for any ν ∈ P(S ×A).

ϵbias reflects the error that is incurred due to the inherent
lack of expressiveness of the neural network function class.
In the analysis of (Fan et al., 2020), this error is assumed
to be zero. We account for this error with an assumption
similar to the one used in (Liu et al., 2020).

Assumption 3. For any policy π on the MDP M with the
starting state s0, let ζπs0 be the corresponding stationary
state action distribution of the induced Markov chain and
(s, a)τ denote the state action pair obtained at step τ ∈ Z
by following policy π. We assume that there exists a posi-
tive integer m and ρ ∈ (0, 1) such that

sup
s0

dTV

(
P((s, a)τ ∈ ·|(s0)), ζπs0(·)

)
≤ mρτ , (24)

This assumption implies that the Markov chain for any pol-
icy is geometrically mixing. Such an assumption is widely
used both in analysis of stochastic gradient descent litera-
ture such as (Doan, 2022; Sun et al., 2018), as well as finite
time analysis of reinforcement learning algorithms such as
(Wu et al., 2020; Xu et al., 2020).

Assumption 4. Let ν1 be a probability measure on S ×A
which is absolutely continuous with respect to the Lebesgue
measure. Let {πt} be a sequence of policies and suppose
that the state action pair has an initial distribution of ν1.
Then we assume that for all ν1, ν2 ∈ P(S×A) there exists
a constant ϕν1,ν2

≤ ∞ such that

sup
π1,π2,··· ,πm

∣∣∣∣∣
∣∣∣∣∣d(Pπ1Pπ2 · · ·Pπmν2)

dν1

∣∣∣∣∣
∣∣∣∣∣
∞

≤ ϕν1,ν2

(25)

for allm ∈ {0, · · · ,∞}, where d(Pπ1Pπ2 ···Pπmν2)
dν1

denotes
the Radon Nikodym derivative of the state action distribu-
tion Pπ1Pπ2 · · ·Pπmν2 with respect to the distribution ν1.

This assumption puts an upper bound on the difference be-
tween the state action distribution ν1 and the state action
distribution induced by sampling a state action pair from
the distribution µ2 followed by any possible policy for the
nextm steps for any finite value ofm. Similar assumptions
have been made in (Fan et al., 2020; Lazaric et al., 2016).

6

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

7. Supporting Lemmas
We will now state the key lemmas that will be used for
finding the sample complexity of the proposed algorithm.

Lemma 1. For any given iteration k ∈ {1, · · · ,K} for
the approximation error denoted by ϵk1

in Definition 4, we
have

E (|ϵk1 |)ν ≤
√
ϵbias, (26)

Proof Sketch: We use Assumption 2 and the definition of
the variance of a random variable to obtain the required
result. The detailed proof is given in Appendix E.1.

Lemma 2. For any given iteration k ∈ {1, · · · ,K},
Qk1

= Qk2
, or equivalently ϵk2

= 0

Proof Sketch: We use Lemma 6 in Appendix C and use
the definitions of Qk1 and Qk2 to prove this result. The
detailed proof is given in Appendix E.2.

Lemma 3. For any given iteration k ∈ {1, · · · ,K}, if the
number of samples of the state action pairs sampled by Al-
gorithm 1 at iteration k, denoted by nk, satisfies

nk ≥ Õ
(
(1− γ)−2ϵ−2

)
(27)

then the error ϵk3 defined in Definition 6 is upper bounded
as

E (|ϵk3
|)ζπk

ν
≤ ϵ, (28)

where πk is the greedy policy with respect to Qk−1.

Proof Sketch: First we note that for a fixed iteration
k of Algorithm 1, E(RX,Qk−1

(θ)) = LQk−1
(θ) where

RX,Qk−1
(θ) and LQk−1

(θ) are defined in Appendix E.3.
We use this to get a probabilistic bound on the expected
value of |(Qk2

) − (Qk3
)| using Rademacher complexity

theory. The detailed proof is given in Appendix E.3.

Lemma 4. For any given iteration k ∈ {1, · · · ,K} of Al-
gorithm 1, let the number of steps of the projected gradient
descent performed by Algorithm 2, denoted by Tk, and the
gradient descent step size αk satisfy

Tk ≥

(
C

′

kϵ

lk

)−2

L2
k||u∗k||22 − 1 (29)

αk =
||u∗k||2

Lk

√
Tk + 1

(30)

where ϵ < C
′

k, for some constants C
′

k, lk, Lk and
|| (u∗k) ||2. Then the error ϵk4

defined in Definition 7 is up-
per bounded as

E(|ϵk4 |)ν ≤ ϵ+ ϵ|D̃|, (31)

Proof Sketch: We use the number of iterations Tk required
to get an ϵ bound on the difference between the minimum

objective value and the objective value corresponding to the
estimated parameter at iteration Tk. We use the convexity
of the objective and the Lipschitz property of the neural
network to get a bound on the Q functions corresponding
to the estimated parameters. The detailed proof is given in
Appendix E.4.

8. Main Result
In this section, we provide the guarantees for the proposed
algorithm, which is given in the following theorem.

Theorem 1. Suppose Assumptions 1-4 hold. Let Algorithm
1 run forK iterations with nk state-action pairs sampled at
iteration k ∈ {1, · · · ,K}, Tk be the number of steps used
and step size αk in the projected gradient descent in Algo-
rithm 2 at iteration k ∈ {1, · · · ,K} and |D̃| be the number
of diagonal matrices sampled in Algorithm 2 for all itera-
tions. Let ν ∈ P(S × A) be the state action distribution
used to sample the state action pairs in Algorithm 1. Fur-
ther, let ϵ ∈ (0, 1), Ck, C

′

k, lk, ,Lk, ϕν,µ, βk, η, (||u∗k||2) be
constants. If we have,

K ≥ 1

log
(

1
γ

) log

(
6ϕν,µRmax

ϵ(1− γ)2

)
− 1 (32)

nk ≥ Õ(1− γ)−6ϵ−2 (33)

Tk ≥

(
C

′

kϵ(1− γ)2

6lkϕν,µγ

)−2

L2
k||u∗k||22 − 1

(34)

αk =
||u∗k||2

Lk

√
Tk + 1

(35)

∀k ∈ {1, · · · ,K}

and ϵ < (C
′

k) for all k ∈ (1, · · · ,K), then we obtain

E(Q∗ −QπK)µ ≤ ϵ+
2ϕν,µγ

(1− γ)2
(
√
ϵbias + ϵ|D̃|),

where µ ∈ P(S × A). Thus we get an overall sample
complexity given by

∑K
k=1 nk = Õ

(
ϵ−2(1− γ)−6

)
.

The above algorithm achieves a sample complexity of
Õ(1/ϵ2), which is the first such result for general
parametrized large state space reinforcement learning. Fur-
ther, we note that Õ(1/ϵ2) is the best order-optimal result
even in tabular setup (Zhang et al., 2020). In the following,
we provide an outline of the proof, with the detailed proof
provided in the Appendix D.

7

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

9. Proof of Theorem 1 Outline
The expectation of the difference between our estimated
Q function denoted by QπK and the optimal Q function
denoted by Q∗ (where πk is the policy obtained at the final
stepK of algorithm 1) is first expressed as a function of the
sum of the errors incurred by the actor and critic steps. The
critic error is the Bellman error defined as in (17). This
is then further split into different components which are
analysed separately. The actor error is the error incurred
due to the stochastic gradient descent steps. In the first
stage, we demonstrate how the expectation of the error of
estimation (QπK −Q∗) of theQ function is upper bounded
by a function of the Bellman errors incurred till the final
step K. The second part is to upper bound the expectation
of the Bellman error.

Upper Bounding Q Error In Terms Of Bellman Error:
Since we only have access to the approximate Bellman op-
timality operator defined in Equation (15), we will rely
upon the analysis laid out in (Farahmand et al., 2010) and
instead of the iteration of the value functions, we will ap-
ply a similar analysis to the action value function to get the
desired result. We recreate the result for the value func-
tion from Lemmas 2 and 3 of (Munos, 2003) for the action
value function Q to obtain

Q∗ −QK ≤
K−1∑
k=1

γK−k−1(Pπ∗
)K−k−1ϵk, (36)

+γK(Pπ∗
)K(Q∗ −Q0)

and

Q∗ −QπK ≤ (I − γPπK)−1
(
Pπ∗

− PπK

)
(Q∗ −QK) (37)

where ϵk = TQk−1 −Qk.

We use the results in Equation (36) and (37) to obtain

E(Q∗ −QπK)µ ≤ 2γ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk|)µ

]
+

2Rmaxγ
K+1

(1− γ)2
, (38)

The first term on the right hand side is called as the algorith-
mic error, which depends on how good our approximation
of the Bellman error is. The second term on the right hand
side is called as the statistical error, which is the error in-
curred due to the random nature of the system and depends
only on the parameters of the MDP as well as the number
of iterations of the FQI algorithm.

The expectation of the error of estimation is taken with re-
spect to any arbitrary distribution on the state action space

denoted as µ. The dependence of the expected value of the
error of estimation on this distribution is expressed through
the constant ϕν,µ, which is a measure of the similarity be-
tween the distributions ν and µ.

Upper Bounding Expectation of Bellman Error: The
upper bound on E(Q∗−QπK)µ in Equation (38) is in terms
of E(|ϵk|)µ, where ϵk = TQk−1 −Qk is a measure of how
closely our estimate of the Q function at iteration k ap-
proximates the function obtained by applying the bellman
optimality operator applied to the estimate of the Q func-
tion at iteration k − 1. Intuitively, this error depends on
how much data is collected at each iteration, how efficient
our solution to the optimization step is to the true solution,
and how well our function class can approximate the true
Bellman optimality operator applied to the estimate at the
end of the previous iteration. Building upon this intuition,
we split ϵk into four different components as follows.

ϵk = TQk−1 −Qk

= TQk−1 −Qk1︸ ︷︷ ︸
ϵk1

+Qk1 −Qk2︸ ︷︷ ︸
ϵk2

+Qk2 −Qk3︸ ︷︷ ︸
ϵk3

+Qk3 −Qk︸ ︷︷ ︸
ϵk4

= ϵk1 + ϵk2 + ϵk3 + ϵk4 , (39)

We use the Lemmas 1, 2, 3, and 4 to bound the error terms
in Equation (39). Before plugging these in Equation (38),
we replace ϵ in the Lemma results with ϵ′ = ϵ (1−γ)3

6γ as
these error terms are in a summation in Equation (38). We
also bound the last term on the right hand side of Equation
(38) by solving for a value ofK that makes the term smaller
than ϵ

3 .

10. Conclusion and Future Work
In this paper, we study a Fitted Q-Iteration with two-layer
ReLU neural network parametrization, and find the sample
complexity guarantees for the algorithm. Using the convex
approach for estimating the Q-function, we show that our
approach achieves a sample complexity of Õ(1/ϵ2), which
is order-optimal. This demonstrates the first approach for
achieving sample complexity beyond linear MDP assump-
tions for large state space.

This study raises multiple future problems. First is whether
we can remove the assumption on the generative model,
while estimating Q-function by efficient sampling of past
samples. Further, whether the convexity in training that
was needed for the results could be extended to more than
two layers. Finally, efficient analysis for the error incurred
when a sample of cones are chosen rather than the complete
set of cones and how to efficiently choose this subset will
help with a complete analysis by which Assumption 1 can

8

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

be relaxed.

11. Acknowledgements
This work was supported in part by research award from
Cisco.

References
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan,

G. (2021). On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. In
The Journal of Machine Learning Research, volume 22,
pages 4431–4506. JMLRORG.

Al-Abbasi, A. O., Ghosh, A., and Aggarwal, V. (2019).
Deeppool: Distributed model-free algorithm for ride-
sharing using deep reinforcement learning. IEEE
Transactions on Intelligent Transportation Systems,
20(12):4714–4727.

Bartan, B. and Pilanci, M. (2022). Neural Fisher discrim-
inant analysis: Optimal neural network embeddings in
polynomial time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
1647–1663. PMLR.

Bengio, Y. (2012). Practical recommendations for gradient-
based training of deep architectures. In Neural networks:
Tricks of the trade, pages 437–478. Springer.

Bertail, P. and Portier, F. (2019). Rademacher complex-
ity for markov chains: Applications to kernel smoothing
and metropolis–hastings. Bernoulli, 25:3912–3938.

Bertsekas, D. P. and Shreve, S. E. (2007). Stochastic Opti-
mal Control: The Discrete-Time Case. Athena Scientific.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic
programming., volume 3 of Optimization and neural
computation series. Athena Scientific.

Blum, A. and Rivest, R. (1992). Training a 3-node neural
network is NP-complete. Neural Networks, 5:117–127.

Bonjour, T., Haliem, M., Alsalem, A., Thomas, S., Li, H.,
Aggarwal, V., Kejriwal, M., and Bhargava, B. (2022).
Decision making in monopoly using a hybrid deep re-
inforcement learning approach. IEEE Transactions on
Emerging Topics in Computational Intelligence.

Boyan, J. and Moore, A. (1994). Generalization in re-
inforcement learning: Safely approximating the value
function. In Advances in neural information processing
systems, volume 7.

Carvalho, D., Melo, F. S., and Santos, P. (2020). A new
convergent variant ofQ-learning with linear function ap-
proximation. In Adv. Neural Information Proc. Systems
33, pages 19412–19421.

Chen, X. and Zhao, L. (2022). Finite-time analy-
sis of single-timescale actor-critic. arXiv preprint
arXiv:2210.09921.

Chen, Y., He, J., and Gu, Q. (2022). On the sample
complexity of learning infinite-horizon discounted linear
kernel mdps. In International Conference on Machine
Learning, pages 3149–3183. PMLR.

Damjanović, I., Pavić, I., Puljiz, M., and Brcic, M.
(2022). Deep reinforcement learning-based approach
for autonomous power flow control using only topology
changes. Energies, 15(19).

Doan, T. T. (2022). Finite-time analysis of markov gradient
descent. IEEE Transactions on Automatic Control, pages
1–1.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2020). A the-
oretical analysis of deep q-learning. In Proceedings of
the 2nd Conference on Learning for Dynamics and Con-
trol, volume 120 of Proceedings of Machine Learning
Research, pages 486–489. PMLR.

Farahmand, A.-m., Szepesvári, C., and Munos, R. (2010).
Error propagation for approximate policy and value iter-
ation. Advances in Neural Information Processing Sys-
tems, 23.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-
policy deep reinforcement learning without exploration.
In International conference on machine learning, pages
2052–2062. PMLR.

Gao, Z., Gao, Y., Hu, Y., Jiang, Z., and Su, J. (2020). Ap-
plication of deep q-network in portfolio management. In
2020 5th IEEE International Conference on Big Data
Analytics (ICBDA), pages 268–275.

Geng, N., Lan, T., Aggarwal, V., Yang, Y., and Xu, M.
(2020). A multi-agent reinforcement learning perspec-
tive on distributed traffic engineering. In 2020 IEEE 28th
International Conference on Network Protocols (ICNP),
pages 1–11. IEEE.

Ghavamzadeh, M., Szepesvári, C., Mannor, S., et al.
(2008). Regularized fitted q-iteration: Application to
planning. In European Workshop on Reinforcement
Learning, pages 55–68. Springer.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018).
Is q-learning provably efficient? In Advances in neural
information processing systems, volume 31.

9

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab,
A. A. A., Yogamani, S., and Pérez, P. (2022). Deep
reinforcement learning for autonomous driving: A sur-
vey. IEEE Transactions on Intelligent Transportation
Systems, 23(6):4909–4926.

Kozakowski, P., Kaiser, L., Michalewski, H., Mohiuddin,
A., and Kańska, K. (2022). Q-value weighted regression:
Reinforcement learning with limited data. In 2022 Inter-
national Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE.

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2016).
Analysis of classification-based policy iteration al-
gorithms. Journal of Machine Learning Research,
17(19):1–30.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2020).
Sample complexity of asynchronous q-learning: Sharper
analysis and variance reduction. In Advances in Neu-
ral Information Processing Systems, volume 33, pages
7031–7043. Curran Associates, Inc.

Liu, Y., Zhang, K., Basar, T., and Yin, W. (2020). An
improved analysis of (variance-reduced) policy gradi-
ent and natural policy gradient methods. In Advances
in Neural Information Processing Systems, volume 33,
pages 7624–7636.

Maes, S., Tuyls, K., and Manderick, B. (2003). Reinforce-
ment learning in large state spaces: Simulated robotic
soccer as a testbed.

Mishkin, A., Sahiner, A., and Pilanci, M. (2022). Fast con-
vex optimization for two-layer relu networks: Equivalent
model classes and cone decompositions. In International
Conference on Machine Learning, pages 15770–15816.
PMLR.

Munos, R. (2003). Error bounds for approximate policy
iteration. In ICML, volume 3, pages 560–567.

Munos, R. (2007). Performance Bounds in Lp norm for
Approximate Value Iteration. SIAM Journal on Control
and Optimization, 46(2):541–561.

Pilanci, M. and Ergen, T. (2020). Neural networks are
convex regularizers: Exact polynomial-time convex op-
timization formulations for two-layer networks. In Inter-
national Conference on Machine Learning, pages 7695–
7705. PMLR.

Puterman, M. L. (2014). Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley &
Sons.

Sahiner, A., Ergen, T., Ozturkler, B., Pauly, J., Mardani,
M., and Pilanci, M. (2022). Unraveling attention via

convex duality: Analysis and interpretations of vision
transformers. In International Conference on Machine
Learning, pages 19050–19088. PMLR.

Sahiner, A., Ergen, T., Pauly, J., and Pilanci, M. (2020a).
Vector-output relu neural network problems are copos-
itive programs: Convex analysis of two layer net-
works and polynomial-time algorithms. arXiv preprint
arXiv:2012.13329.

Sahiner, A., Mardani, M., Ozturkler, B., Pilanci, M., and
Pauly, J. (2020b). Convex regularization behind neural
reconstruction. arXiv preprint arXiv:2012.05169.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. (2017). Mastering the game of go with-
out human knowledge. Nature, 550(7676):354–359.

Singh, S. P. and Yee, R. C. (1994). An upper bound on the
loss from approximate optimal-value functions. Mach.
Learn., 16(3):227–233.

Sun, T., Sun, Y., and Yin, W. (2018). On markov chain
gradient descent. Advances in neural information pro-
cessing systems, 31.

Tesauro, G. et al. (1995). Temporal difference learning and
td-gammon. Communications of the ACM, 38(3):58–68.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep rein-
forcement learning with double q-learning. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 30.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezh-
nevets, A. S., Yeo, M., Makhzani, A., Küttler, H., Aga-
piou, J., Schrittwieser, J., et al. (2017). Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

Virmaux, A. and Scaman, K. (2018). Lipschitz regularity of
deep neural networks: analysis and efficient estimation.
In Advances in Neural Information Processing Systems,
volume 31.

Wang, C., Zhou, T., Chen, C., Hu, T., and Chen, G. (2020).
Off-policy recommendation system without exploration.
In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 16–27. Springer.

Wang, L., Cai, Q., Yang, Z., and Wang, Z. (2019). Neural
policy gradient methods: Global optimality and rates of
convergence. arXiv preprint arXiv:1909.01150.

Wang, T., Zhou, D., and Gu, Q. (2021a). Provably efficient
reinforcement learning with linear function approxima-
tion under adaptivity constraints. In Advances in Neu-
ral Information Processing Systems, volume 34, pages
13524–13536.

10

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Wang, Y., Lacotte, J., and Pilanci, M. (2021b). The hidden
convex optimization landscape of regularized two-layer
relu networks: an exact characterization of optimal solu-
tions. In International Conference on Learning Repre-
sentations.

Warlop, R., Lazaric, A., and Mary, J. (2018). Fighting bore-
dom in recommender systems with linear reinforcement
learning. In Advances in Neural Information Processing
Systems, volume 31.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8(3):279–292.

Wu, Y. F., Zhang, W., Xu, P., and Gu, Q. (2020). A
finite-time analysis of two time-scale actor-critic meth-
ods. Advances in Neural Information Processing Sys-
tems, 33:17617–17628.

Xu, P. and Gu, Q. (2020). A finite-time analysis of q-
learning with neural network function approximation. In
International Conference on Machine Learning, pages
10555–10565. PMLR.

Xu, T., Wang, Z., and Liang, Y. (2020). Improving sample
complexity bounds for (natural) actor-critic algorithms.
In Advances in Neural Information Processing Systems,
volume 33, pages 4358–4369.

Yang, T., Zhao, L., Li, W., and Zomaya, A. Y. (2020). Re-
inforcement learning in sustainable energy and electric
systems: a survey. Annu. Rev. Control., 49:145–163.

Yuan, R., Gower, R. M., and Lazaric, A. (2022). A general
sample complexity analysis of vanilla policy gradient. In
International Conference on Artificial Intelligence and
Statistics, pages 3332–3380. PMLR.

Zhang, M. S., Erdogdu, M. A., and Garg, A. (2022). Con-
vergence and optimality of policy gradient methods in
weakly smooth settings. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
9066–9073.

Zhang, Z., Zhou, Y., and Ji, X. (2020). Almost op-
timal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Informa-
tion Processing Systems, 33:15198–15207.

Zhou, D., He, J., and Gu, Q. (2021). Provably efficient
reinforcement learning for discounted mdps with fea-
ture mapping. In International Conference on Machine
Learning, pages 12793–12802. PMLR.

Zhu, H. and Xu, J. (2021). One-pass stochastic gradient de-
scent in overparametrized two-layer neural networks. In
International Conference on Artificial Intelligence and
Statistics, pages 3673–3681. PMLR.

11

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

A. Comparison of Result with (Xu and Gu, 2020)
Analysis of Q learning algorithms with neural network function approximation was carried out in (Xu and Gu, 2020),
where finite time error bounds were studied for estimation of the Q function for MDP’s with countable state spaces. The
final result in (Xu and Gu, 2020) is of the form

1

T

T∑
t=1

E(Q(s, a, θt)−Q∗(s, a)) ≤ Õ
(

1√
T

)
+ Õ(

√
log(T)) (40)

Here, Q(s, a, θt) is the estimate of the Q function obtained using the neural network with the parameters obtained at step
t of the Q learning algorithm represented by θt and Q∗(s, a) is the optimal Q function. T is the total number of iterations
of the Q learning algorithm.

The first term on the right hand side of (40) is monotonically decreasing with respect to T . The second term on the
right hand side monotonically increases with respect to T . This term is present due to the error incurred by the linear
approximation of the neural network representing the Q function. Our approach does not require this approximation due
to the convex representation of the neural network. Due to the increasing function of T , it is not possible to obtain the
number of iteration of the Q learning required to make the error of estimation smaller than some fixed value. Thus, this
result cannot be said to be a sample complexity result. However, in our results, this is not the case.

B. Convex Reformulation with Two-Layer Neural Networks
In order to understand the convex reformulation of the squared loss optimization problem, consider the vector σ(Xui)

σ(Xui) =


{σ′

((x1)
Tui)}

{σ′
((x2)

Tui)}
...

{σ′
((xn)

Tui)}

 (41)

Now for a fixedX ∈ Rn×d, different ui ∈ Rd×1 will have different components of σ(Xui) that are non zero. For example,
if we take the set of all ui such that only the first element of σ(Xui) are non zero (i.e, only (x1)

Tui ≥ 0 and (xj)
Tui < 0

∀j ∈ [2, · · · , n]) and denote it by the set K1, then we have

σ(Xui) = D1(Xui) ∀ui ∈ K1,

where D1 is the n× n diagonal matrix with only the first diagonal element equal to 1 and the rest 0. Similarly, there exist
a set of u′s which result in σ(Xu) having certain components to be non-zero and the rest zero. For each such combination
of zero and non-zero components, we will have a corresponding set of u′is and a corresponding n×n Diagonal matrix Di.
We define the possible set of such diagonal matrices possible for a given matrix X as

DX = {D = diag(1(Xu ≥ 0)) : u ∈ Rd , D ∈ Rn×n}, (42)

where diag(1(Xu ≥ 0)) represents a matrix given by

Dk,j =

{
1(xTj u), for k = j
0 for k ̸= j

, (43)

where 1(x) = 1 if x > 0 and 1(x) = 0 if x ≤ 0. Corresponding to each such matrix Di, there exists a set of ui given by

Ki = {u ∈ Rd : σ(Xui) = DiXui, Di ∈ DX} (44)

12

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

where I is the n×n identity matrix. The number of these matrices Di is upper bounded by 2n. From (Wang et al., 2021b)
the upper bound is O

(
r
(
n
r

)r)
where r = rank(X). Also, note that the sets Ki form a partition of the space Rd×1. Using

these definitions, we define the equivalent convex problem to the one in Equation (11) as

Lβ(v, w) := argmin
v,w

(||
∑

Di∈DX

Di(X(vi − wi))− y||22 +

β
∑

Di∈DX

||vi||2 + ||wi||2) (45)

where v = {vi}i∈1,··· ,|DX |, w = {wi}i∈1,··· ,|DX |, vi, wi ∈ Ki, note that by definition, for any fixed i ∈ {1, · · · , |DX |}
at-least one of vi or wi are zero. If v∗, w∗ are the optimal solutions to Equation (45), the number of neurons m of the
original problem in Equation (11) should be greater than the number of elements of v∗, w∗, which have at-least one of v∗i
or w∗

i non-zero. We denote this value as m∗
X,y , with the subscript X denoting that this quantity depends upon the data

matrix X and response y.

We convert v∗, w∗ to optimal values of Equation (11), denoted by θ∗ = (U∗, α∗), using a function ψ : Rd×Rd → Rd×R
defined as follows

ψ(vi, wi) =

 (vi, 1), if wi = 0
(wi,−1), if vi = 0
(0, 0), if vi = wi = 0

(46)

where according to (Pilanci and Ergen, 2020) we have (u∗i , α
∗
i) = ψ(v∗i , w

∗
i), for all i ∈ {1, · · · , |DX |} where u∗i , α

∗
i

are the elements of θ∗. Note that restriction of αi to {1,−1, 0} is shown to be valid in (Mishkin et al., 2022). For
i ∈ {|DX |+ 1, · · · ,m} we set (u∗i , α

∗
i) = (0, 0).

Since DX is hard to obtain computationally unless X is of low rank, we can construct a subset D̃ ∈ DX and perform the
optimization in Equation (45) by replacing DX with D̃ to get

Lβ(v, w) := argmin
v,w

(||
∑

Di∈D̃

Di(X(vi − wi))− y||22 +

β
∑

Di∈D̃

||vi||2 + ||wi||2) (47)

where v = {vi}i∈1,··· ,|D̃|, w = {wi}i∈1,··· ,|D̃|, vi, wi ∈ Ki, by definition, for any fixed i ∈ {1, · · · , |D̃|} at-least one of vi
or wi are zero.

The required condition for D̃ to be a sufficient replacement for DX is as follows. Suppose (v, w) = (v̄i, w̄i)i∈(1,··· ,|D̃|)
denote the optimal solutions of Equation (47). Then we require

m ≥
∑

Di∈D̃

|{v̄i : v̄i ̸= 0} ∪ {w̄i : w̄i ̸= 0}| (48)

Or, the number of neurons in the neural network are greater than the number of indices i for which at-least one of v∗i or w∗
i

is non-zero. Further,

diag(Xu∗i ≥ 0 : i ∈ [m]) ∈ D̃ (49)

13

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

In other words, the diagonal matrices induced by the optimal u∗i ’s of Equation (11) must be included in our sample of
diagonal matrices. This is proved in Theorem 2.1 of (Mishkin et al., 2022).

A computationally efficient method for obtaining D̃ and obtaining the optimal values of the Equation (11), is laid out in
(Mishkin et al., 2022). In this method we first get our sample of diagonal matrices D̃ by first sampling a fixed number of
vectors from a d dimensional standard multivariate distribution, multiplying the vectors with the data matrix X and then
forming the diagonal matrices based of which co-ordinates are positive. Then we solve an optimization similar to the one
in Equation (45), without the constraints, that its parameters belong to sets of the form Ki as follows.

L
′

β(p) := argmin
p

(||
∑

Di∈D̃

Di(Xpi)− y||22 + β
∑

Di∈D̃

||pi||2), (50)

where p ∈ Rd×|D̃| . In order to satisfy the constraints of the form given in Equation (45), this step is followed by a cone
decomposition step. This is implemented through a function {ψ′

i}i∈{1,··· ,|D̃|}. Let p∗ = {p∗i }i∈{1,··· ,|D̃|} be the optimal

solution of Equation (50). For each i we define a function ψ
′

i : Rd → Rd × Rd as

ψ
′

i(pi) = (vi, wi) (51)
such that p = vi − wi, and vi, wi ∈ Ki

Then we obtain ψ(p∗i) = (v̄i, w̄i). As before, at-least one of vi, wi is 0. Note that in practice we do not know if the
conditions in Equation (48) and (49) are satisfied for a given sampled D̃. We express this as follows. If D̃ was the full set
of Diagonal matrices then we would have (v̄i, w̄i) = v∗i , w

∗
i and ψ(v̄i, w̄i) = (u∗i , α

∗
i) for all i ∈ (1, · · · , |DX |). However,

since that is not the case and D̃ ∈ DX , this means that {ψ(v̄i, w̄i)}i∈(1,··· ,|D̃|) is an optimal solution of a non-convex
optimization different from the one in Equation (11). We denote this non-convex optimization as L|D̃|(θ) defined as

L|D̃|(θ) = argmin
θ

||
m

′∑
i=1

σ(Xui)αi − y||22 + β

m∑
i=1

||ui||22 + β

m∑
i=1

|αi|2, (52)

wherem
′
= |D̃| or the size of the sampled diagonal matrix set. In order to quantify the error incurred due to taking a subset

of DX , we assume that the expectation of the absolute value of the difference between the neural networks corresponding
to the optimal solutions of the non-convex optimizations given in Equations (52) and (11) is upper bounded by a constant
depending on the size of D̃. The formal assumption and its justification is given in Assumption 1.

C. Supplementary lemmas and Definitions
Here we provide some definitions and results that will be used to prove the lemmas stated in the paper.

Definition 8. For a given set Z ∈ Rn, we define the Rademacher complexity of the set Z as

Rad(Z) = E

(
sup
z∈Z

1

n

d∑
i=1

Ωizi

)
(53)

where Ωi is random variable such that P (Ωi = 1) = 1
2 , P (Ωi = −1) = 1

2 and zi are the co-ordinates of z which is an
element of the set Z

Lemma 5. Consider a set of observed data denoted by z = {z1, z2, · · · zn} ∈ Rn, a parameter space Θ, a loss function
{l : R × Θ → R} where 0 ≤ l(θ, z) ≤ 1 ∀(θ, z) ∈ Θ × R. The empirical risk for a set of observed data as R(θ) =
1
n

∑n
i=1 l(θ, zi) and the population risk as r(θ) = El(θ, z̃i), where z̃i is a co-ordinate of z̃ sampled from some distribution

over Z.

We define a set of functions denoted by L as

14

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

L = {z ∈ Z → l(θ, z) ∈ R : θ ∈ Θ} (54)

Given z = {z1, z2, z3 · · · , zn} we further define a set L ◦ z as

L ◦ z = {(l(θ, z1), l(θ, z2), · · · , l(θ, zn)) ∈ Rn : θ ∈ Θ} (55)

Then, we have

E sup
θ∈Θ

|{r(θ)−R(θ)}| ≤ 2E (Rad(L ◦ z)) (56)

If the data is of the form zi = (xi, yi), x ∈ X, y ∈ Y and the loss function is of the form l(aθ(x), y), is L lipschitz and
aθ : Θ×X → R, then we have

E sup
θ∈Θ

|{r(θ)−R(θ)}| ≤ 2LE (Rad(A ◦ {x1, x2, x3, · · · , xn})) (57)

where

A ◦ {x1, x2, · · · , xn} = {(a(θ, x1), a(θ, x2), · · · , a(θ, xn)) ∈ Rn : θ ∈ Θ} (58)

The detailed proof of the above statement is given in (Rebeschini, P. (2022). Algorithmic Foundations of Learning [Lecture
Notes]. https://www.stats.ox.ac.uk/ rebeschi/teaching/AFoL/20/material/. The upper bound for E supθ∈Θ({r(θ)−R(θ)})
is proved in the aformentioned reference. However, without loss of generality the same proof holds for the upper bound
for E supθ∈Θ({R(θ)− r(θ)}). Hence the upper bound for E supθ∈Θ |{r(θ)−R(θ)}| can be established.

Lemma 6. Consider two random random variable x ∈ X and y, y
′ ∈ Y . Let Ex,y,Ex and Ey|x, Ey′ |x denote the

expectation with respect to the joint distribution of (x, y), the marginal distribution of x, the conditional distribution of y
given x and the conditional distribution of y

′
given x respectively . Let fθ(x) denote a bounded measurable function of x

parameterised by some parameter θ and g(x, y) be bounded measurable function of both x and y.

Then we have

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2)
(59)

Proof. Denote the left hand side of Equation (59) as Xθ, then add and subtract Ey|x(g(x, y)|x) to it to get

Xθ = argmin
fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x) + Ey′ |x(g(x, y

′
)|x)− g(x, y)

)2)
(60)

= argmin
fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2
+ Ex,y

(
y − Ey′ |x(g(x, y

′
)|x)

)2
− 2Ex,y

(
fθ(x)−

Ey′ |x(g(x, y
′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

))
(61)

15

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Consider the third term on the right hand side of Equation (61)

2Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
= 2ExEy|x

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)
(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
(62)

= 2Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)
Ey|x

(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
(63)

= 2Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)
(
Ey|x(g(x, y))− Ey|x

(
Ey′ |x(g(x, y

′
)|x)

))
(64)

= 2Ex (fθ(x)− E(y|x)) . (65)(
Ey|x(g(x, y))− Ey′ |x(g(x, y

′
)|x)

)
(66)

= 0 (67)

Equation (62) is obtained by writing Ex,y = ExEy|x from the law of total expectation. Equation (63) is obtained
from (62) as the term fθ(x) − Ey′ |x(g(x, y

′
)|x) is not a function of y. Equation (64) is obtained from (63) as

Ey|x

(
Ey′ |x(g(x, y

′
)|x)

)
= Ey′ |x(g(x, y

′
)|x) because Ey′ |x(g(x, y

′
)|x) is not a function of y hence is constant with

respect to the expectation operator Ey|x.

Thus plugging in value of 2Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
in Equation (61) we get

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex,y

(
fθ(x)− Ex,y′ (g(x, y

′
)|x)

)2
+ Ex,y

(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)2)
(68)

Note that the second term on the right hand side of Equation (68) des not depend on fθ(x) therefore we can write Equation
(68) as

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2)
(69)

Since the right hand side of Equation (69) is not a function of y we can replace Ex,y with Ex to get

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2)
(70)

Lemma 7. Consider an optimization of the form given in Equation (47) with the regularization term β = 0 denoted
by L|D̃| and it’s convex equivalent denoted by L0. Then the value of these two loss functions evaluated at (v, w) =

(vi, wi)i∈{1,··· ,|D̃|} and θ = ψ(vi, wi)i∈{1,··· ,|D̃|} respectively are equal and thus we have

L|D̃|(ψ(vi, wi)i∈{1,··· ,|D̃|}) = L0((vi, wi)i∈{1,··· ,|D̃|}) (71)

Proof. Consider the loss functions in Equations (45), (50) with β = 0 are as follows

16

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

L0((vi, wi)i∈{1,··· ,|D̃|}) = ||
∑

Di∈D̃

Di(X(vi − wi))− y||22 (72)

L|D̃|(ψ(vi, wi)i∈{1,··· ,|D̃|}) = ||
|D̃|∑
i=1

σ(Xψ(vi, wi)1)ψ(vi, wi)2 − y||22, (73)

where ψ(vi, wi)1, ψ(vi, wi)2 represent the first and second coordinates of ψ(vi, wi) respectively.

For any fixed i ∈ {1, · · · , |D̃|} consider the two terms

Di(X(vi − wi)) (74)
σ(Xψ(vi, wi)1)ψ(vi, wi)2 (75)

For a fixed i either vi or wi is zero. In case both are zero, both of the terms in Equations (74) and (75) are zero as
ψ(0, 0) = (0, 0). Assume that for a given i wi = 0. Then we have ψ(vi, wi) = (vi, 1). Then equations (74), (75) are.

Di(X(vi) (76)
σ(X(vi)) (77)

But by definition of vi we have Di(X(vi) = σ(X(vi)), therefore Equations (76), (77) are equal. Alternatively if for a
given i vi = 0, then ψ(vi, wi) = (wi,−1), then the terms in (74), (75) become.

−Di(X(wi) (78)
−σ(X(wi)) (79)

By definition of wi we have Di(X(wi) = σ(X(wi)), then the terms in (78), (78) are equal. Since this is true for all i, we
have

L|D̃|(ψ(vi, wi)i∈{1,··· ,|D̃|}) = L0((vi, wi)i∈{1,··· ,|D̃|}) (80)

Lemma 8. The function Qθ(x) defined in equation (14) is Lipschitz continuous in θ, where θ is considered a vector in
R(d+1)m with the assumption that the set of all possible θ belong to the set B = {θ : |θ∗ − θ|1 < 1}, where θ∗ is some
fixed value.

Proof. First we show that for all θ1 = {ui, αi}, θ2 = {u′

i, α
′

i} ∈ B we have αi = α
′

i for all i ∈ (1, · · · ,m)

Note that

|θ1 − θ2|1 =

m∑
i=1

|ui − u
′

i|1 +
m∑
i=1

|αi − α
′

i|, (81)

where |ui − u
′

i|1 =
∑d

j=1 |uij − u
′

ij
| with uij , u

′

ij
denote the jth component of ui, u

′

i respectively.

By construction αi, α
′

i can only be 1, −1 or 0. Therefore if αi ̸= α
′

i then |αi − α
′

i| = 2 if both non zero or |αi − α
′

i| = 1
if one is zero. Therefore |θ1 − θ2|1 ≥ 1. Which leads to a contradiction.

17

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Therefore αi = α
′

i for all i and we also have

|θ1 − θ2|1 =

m∑
i=1

|ui − u
′

i|1 (82)

Qθ(x) is defined as

Qθ(x) =

m∑
i=1

σ
′
(xTui)αi (83)

From Proposition 1 in (Virmaux and Scaman, 2018) the function Qθ(x) is Lipschitz continuous in x, therefore there exist
l > 0 such that

|Qθ(x)−Qθ(y)| ≤ l|x− y|1 (84)

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(yTui)αi| ≤ l|x− y|1 (85)

If we consider a single neuron of Qθ, for example i = 1, we have l1 > 0 such that

|σ
′
(xTu1)αi − σ

′
(yTu1)αi| ≤ l1|x− y|1 (86)

Now consider Equation (86), but instead of considering the left hand side a a function of x, y consider it a function of u
where we consider the difference between σ

′
(xTu)αi evaluated at u1 and u

′

1 such that

|σ
′
(xTu1)αi − σ

′
(xTu

′

1)αi| ≤ lx1 |u1 − u
′

1|1 (87)

for some lx1 > 0.

Similarly, for all other i if we change ui to u
′

i to be unchanged we have

|σ
′
(xTui)αi − σ

′
(xTu

′

i)αi| ≤ lxi |ui − u
′

i|1 (88)

for all x if both θ1, θ2 ∈ B.

Therefore we obtain

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(xTu

′

i)αi| ≤
m∑
i=1

|σ
′
(xTui)αi − (xTu

′

i)αi| (89)

≤
m∑
i=1

lxi |ui − u
′

i|1 (90)

≤ (sup
i
lxi)

m∑
i=1

|ui − u
′

i|1 (91)

≤ (sup
i
lxi)|θ1 − θ2| (92)

This result for a fixed x. If we take the supremum over x on both sides we get

18

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

sup
x

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(xTu

′

i)αi| ≤ (sup
i,x

lxi)|θ1 − θ2| (93)

Denoting (supi,x l
x
i) = l, we get

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(xTu

′

i)αi| ≤ l|θ1 − θ2|1 (94)

∀x ∈ Rd (95)

D. Proof of Theorem 1
Proof. For ease of notations, let Q1, Q2 be two real valued functions on the state action space. The expression Q1 ≥ Q2

implies Q1(s, a) ≥ Q2(s, a) ∀(s, a) ∈ S ×A.

Qk denotes our estimate of the action value function at step k of Algorithm 1 and Qπk denotes the action value function
induced by the policy πk which is the greedy policy with respect to Qk.

Consider ϵk+1 = TQk −Qk+1.

TQk ≥ Tπ∗
Qk (96)

This follows from the definition of Tπ∗
and T in Equation (3) and (4), respectively.

Thus we get,

Q∗ −Qk+1 = Tπ∗
Q∗ −Qk+1 (97)

= Tπ∗
Q∗ − Tπ∗

Qk + Tπ∗
Qk − TQk + TQk −Qk+1 (98)

= r(s, a) + γPπ∗
Q∗ − (r(s, a) + γPπ∗

Qk) + (r(s, a) + γPπ∗
Qk)− (r(s, a) + γP ∗Qk) + ϵk+1

= γPπ∗
(Q∗ −Qk) + γPπ∗

Qk − γP ∗Qk + ϵk+1 (99)
≤ γ(Pπ∗

(Q∗ −Qk)) + ϵk+1 (100)

Right hand side of Equation (97) is obtained by writing Q∗ = Tπ∗
Q∗. This is because the function Q∗ is a stationary point

with respect to the operator Tπ∗
. Equation (98) is obtained from (97) by adding and subtracting Tπ∗

Qk. Equation (100) is
obtained from (99) as Pπ∗

Qk ≤ P ∗Qk and P ∗ is the operator with respect to the greedy policy of Qk.

By recursion on k, we get,

Q∗ −QK ≤
K−1∑
k=0

γK−k−1(Pπ∗
)K−k−1ϵk + γK(Pπ∗

)K(Q∗ −Q0) (101)

using TQK ≥ Tπ∗
QK (from definition of Tπ∗

) and TQK = TπKQK as πk is the greedy policy with respect to Qk hence
TπK acts on it the same way T does.

Similarly we write,

19

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Q∗ −QπK = Tπ∗
Q∗ − TπKQπK (102)

= Tπ∗
Q∗ − Tπ∗

QK + Tπ∗
QK − TQK + TQk − TπKQπK (103)

≤ Tπ∗
Q∗ − Tπ∗

QK + TQk − TπKQπK (104)
≤ r(s, a) + γPπ∗

Q∗ − (r(s, a) + γPπ∗
QK) + (r(s, a) + γP ∗Qk)− (r(s, a) + γPπKQπK) (105)

= γPπ∗
(Q∗ −QK) + γPπK (QK −QπK) (106)

= γPπ∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK) (107)

The right hand side of Equation (103) is obtained by adding and subtracting Tπ∗
QK and TQK to the right hand side of

Equation (102). Equation (104) is obtained from (103) by noting that the term Tπ∗
QK −TQK is non-positive for all (s, a)

as T is the greedy operator on a Q function and results in a higher or equal value than any other operator. Equation (106)
is obtained from (105) by writing PπkQπk = P ∗Qπk . This is true as πk is the greedy policy with respect to Qπk , hence
the operator P ∗ acts on Qπk in the same way as Pπk . Equation (107) is obtained from (106) by adding and subtracting Q∗

to the second term on the right hand side.

By rearranging the terms in Equation (107) we get

Q∗ −QπK ≤ γPπ∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK) (108)

≤ γ(Pπ∗
− PπK)(Q∗ −QK) + γPπK (+Q∗ −QπK) (109)

Thus, we have

(I − γPπK)(Q∗ −QπK) ≤ γ(Pπ∗
− PπK)(Q∗ −QK) (110)

This implies

(Q∗ −QπK) ≤ γ(I − γPπK)−1
(
Pπ∗

− PπK

)
(Q∗ −QK) (111)

Equation (111) is obtained from (110) by taking the inverse of the operator (I − γPπK) on both sides of (110)

Plugging in value of (Q∗ −QK) from Equation (101) in Equation (111), we obtain

Q∗ −QπK ≤ γ(I − γPπK)−1
(
Pπ∗

− PπK

)[K−1∑
k=1

γK−k−1(Pπ∗
)K−k−1ϵk + γK(Pπ∗

)K(Q∗ −Q0)

]
(112)

≤ γ(I − γPπK)−1
(
Pπ∗

− PπK

)[K−1∑
k=1

γK−k−1(Pπ∗
)K−k−1|ϵk|+ γK(Pπ∗

)K(Q∗ −Q0)

]
(113)

≤ γ(I − γPπK)−1
(
Pπ∗

+ PπK

)[K−1∑
k=1

γK−k−1(Pπ∗
)K−k−1|ϵk|+ γK(Pπ∗

)K(Q∗ −Q0)

]
(114)

≤ γ(I − γPπK)−1
(
Pπ∗

+ PπK

)[K−1∑
k=1

γK−k−1(Pπ∗
)K−k−1|ϵk|+ γK(Pπ∗

)K(Q∗ −Q0)

]
(115)

≤ γ(I − γPπK)−1

[
K−1∑
k=1

γK−k−1
(
(Pπ∗

)K−k + Pπk(Pπ∗
)K−k−1

)
|ϵk|+

γK
(
(Pπ∗

)K+1 + Pπk(Pπ∗
)K
)
(Q∗ −Q0)

]
(116)

Equation (114) is obtained from Equation (113) by noting that the operator
(
Pπ∗

+ PπK
)

acting on |ϵk| will produce a
larger value than

(
Pπ∗ − PπK

)
acting on |ϵk|.

20

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Q∗ −QπK ≤ (I − γPπK)−1

[
K−1∑
k=1

γK−k−1
(
(Pπ∗

)K−k + Pπk(Pπ∗
)K−k−1

)
|ϵk|

+γK
(
(Pπ∗

)K+1 + Pπk(Pπ∗
)K
)
(Q∗ −Q0)

]
(117)

We know Q∗ ≤ Rmax

1−γ for all (s, a) ∈ S ×A and Q0 = 0 by initialization. Therefore, we have

Q∗ −QπK ≤ (I − γPπK)−1

[
K−1∑
k=1

γK−k−1
(
(Pπ∗

)K−k + Pπk(Pπ∗
)K−k−1

)
|ϵk|

+γK
(
(Pπ∗

)K+1 + Pπk(Pπ∗
)K
) Rmax

(1− γ)

]
(118)

For simplicity, in stating our results, we also define

αk ≜

{
(1−γ)γK−k−1

1−γK+1 if 0 ≤ k < K,
(1−γ)γK

1−γK+1 if k = K
(119)

Ak ≜

{
(1−γ)

2 (I − γPπK)−1
(
(Pπ∗

)K−k + PπK (Pπ∗
)K−k−1

)
if 0 ≤ k < K,

(1−γ)
2 (I − γPπK)−1

(
(Pπ∗

)K+1 + PπK (Pπ∗
)K
)

if k = K
(120)

We then substitute the value αk and Ak from Equation (119) and (120) respectively to get,

Q∗ −QπK ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=1

αkAk|ϵk|+ αKAK
Rmax

1− γ

]
(121)

Taking an expectation on both sides with respect to µ ∈ P(S ×A) we get

E(Q∗ −QπK)µ ≤ 2γ(1− γK+1)

(1− γ)2

K−1∑
k=1

E(αkAk|ϵk|)µ︸ ︷︷ ︸
A

+αKAK
Rmax

1− γ︸ ︷︷ ︸
B

 (122)

Consider the term A in Equation (122) Plugging in the value of αkAk in the term E(αkAk(ϵk))ν , we get

A = E
(
(1− γ)2γK−k

2(1− γK+1)
(I − γPπk)−1

(
(Pπ∗

)K−k + (Pπ∗
)K−k−1Pπk

)
|ϵk|
)

µ

(123)

= E

(
(1− γ)2γK−k

2(1− γK+1)

∞∑
m=1

(γPπk)m
(
(Pπ∗

)K−k + (Pπ∗
)K−k−1Pπk

)
|ϵk|

)
µ

(124)

= E

(
(1− γ)2γK−k

2(1− γK+1)

∞∑
m=1

(
(γPπk)m(Pπ∗

)K−k + (γPπk)m+1(Pπ∗
)K−k−1

)
|ϵk|

)
µ

(125)

=
(1− γ)2γK−k

2(1− γK+1)

∞∑
m=1

E
(
(γPπk)m(Pπ∗

)K−k|ϵk|
)
µ︸ ︷︷ ︸

A1

+E
(
(γPπk)m+1(Pπ∗

)K−k−1|ϵk|
)
µ︸ ︷︷ ︸

A2

 (126)

(127)

21

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Equation (124) is obtained from (123) by writing (I−γPπk)−1 =
∑∞

m=1(γP
πk)m using the binomial expansion formula.

Consider the term A1 in Equation (125), We have

A1 = E
(
(γPπk)m(Pπ∗

)K−k|ϵk|
)
µ

(128)

=

∫
S×A

(γPπk)m(Pπ∗
)K−k|ϵk|dµ(s, a) (129)

≤
∫
S×A

d
(
(γPπk)m(Pπ∗

)K−kµ
)

dν
|ϵk|dν(s, a) (130)

≤ γmϕν,µ

(∫
S×A

|ϵk|dν(s, a)
)

(131)

≤ γmϕν,µE(|ϵk|)ν (132)

Here, Equation (131) is obtained from (130) from Assumption 4.

In the same manner, we have

A2 ≤ γmϕν,µE(|ϵk|)ν (133)

Denote the term in Equation (129) as

∫
S×A

(γPπk)m(Pπ∗
)K−k(|ϵk|)dµ(s, a) =

∫
S×A

(|ϵk|)dν̃ (134)

Where (Pπk)m(Pπ∗
)K−kµ is the marginal distribution of the state action pair at step m + K − k + 1 denoted by ν̃ for

notational simplicity. It is the state action distribution at step m + K − k + 1 obtained by starting the state action pair
sampled form µ and the following the policies π∗ for K − k steps and then πk for m steps. We then get Equation (130)
from (129) from the definition of the Radon Nikodym derivative as follows.

∫
S×A

|ϵk|dν̃ =

∫
S×A

dν̃

dν
|ϵk|dν (135)

Plugging upper bound on A1 and A2 into Equation (126), we obtain

A ≤ (1− γ)2γK−k

2(1− γK+1)

∞∑
m=1

(2ϕν,µγ
mE(|ϵk|)ν) (136)

≤ (1− γ)2γK−k

2(1− γK+1)

(
2ϕν,µE(|ϵk|)ν

1− γ

)
(137)

≤ ϕν,µ(1− γ)γK−k

(1− γK+1)
E(|ϵk|)ν (138)

≤ ϕν,µγ
K−k

(1− γK+1)
E(|ϵk|)ν (139)

Now consider B in Equation (122). We have

22

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

B = αKAk
Rmax

1− γ
(140)

= αK(1− γ)
Rmax

1− γ
(141)

=
γKRmax

(1− γK+1)
(142)

Equation (141) is obtained from the fact that the transition operator Ak acting on the constant Rmax

1−γ is equivalent to
multiplying it by 1− γ. Equation (142) is obtained by plugging in the value of αK from Equation (119). Plugging upper
bound on A and value of B into Equation (122), we obtain

E(Q∗ −QπK)µ ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=1

ϕν,µγ
K−k

(1− γK+1)
E(|ϵk|)ν +

γKRmax

2(1− γK+1)

]
(143)

E(Q∗ −QπK)µ ≤ 2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk|)ν

]
+

2Rmaxγ
K+1

(1− γ)2
(144)

From Equation (39) we have that

ϵk = TQk−1 −Qk

= ϵk1
+ ϵk2

+ ϵk3
+ ϵk4

(145)

Thus, equation (144) becomes

E(Q∗ −QπK)µ ≤ 2γ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk1
+ ϵk2

+ ϵk3
+ ϵk4

|)µ

]
+

2Rmaxγ
K+1

(1− γ)3
(146)

≤ 2γ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk1
|)µ

]
︸ ︷︷ ︸

T1

+
2γ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk2
|)µ

]
︸ ︷︷ ︸

T2

+
2γ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk3 |)µ

]
︸ ︷︷ ︸

T3

+
2γ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk4 |)µ

]
︸ ︷︷ ︸

T4

+
2Rmaxγ

K+1

(1− γ)2︸ ︷︷ ︸
T5

(147)

Consider T1, from Lemma 1, we have E(|ϵk1 |)ν ≤ √
ϵbias. Thus, for term T1, we obtain

23

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

T1 =
2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk1 |)ν

]
(148)

≤ 2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−k√ϵbias

]
(149)

≤
2ϕν,µ

√
ϵbiasγ

(1− γ)

1

1− γ
(150)

T1 ≤
2ϕν,µγ

√
ϵbias

(1− γ)2
(151)

Equation (150) is obtained from (149) by using the inequality
∑K−1

k=1 γK−k ≤ 1
1−γ .

Consider T2 we have from Lemma 2 ϵk2 = 0.

Therefore

T2 = 0 (152)

Consider T3, from Lemma 3, we have that if the number of samples of state action pairs at iteration k denoted by nk satisfy

nk ≥ Õ(ϵ−2(1− γ)−2) (153)

then we have

E (ϵk3
)ζπk

ν
≤ ϵ (154)

Further we have

E (|ϵk3
|)ν ≤ (ϕζπk

ν ,ν)E (|ϵk3
|)ζπk

ν
≤ (ϕζπk

ν ,ν)ϵ (155)

Plugging in ϵ = ϵ
6ϕ

ζ
πk
ν ,ν

ϕν,µγ
(1− γ)2 in Equation (155), we get that if number of samples of state action pairs at iteration

k denoted by nk satisfy

nk ≥ Õ(ϵ−2(1− γ)−6) (156)
∀k ∈ {1, · · · ,K}

then we have

24

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

T3 =
2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk3 |)ν

]
(157)

≤ 2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kϵ
(1− γ)2

6ϕν,µγ

]
(158)

≤ 2γϵ

(1− γ)

[
K−1∑
k=1

γK−k (1− γ)2

6γ

]
(159)

≤ ϵ

3(1− γ)

[
K−1∑
k=1

γK−k(1− γ)2

]
(160)

≤ ϵ

3(1− γ)

[
1

1− γ
(1− γ)2

]
(161)

≤ ϵ

3
(1− γK) (162)

T3 ≤ ϵ

3
(163)

Equation (161) is obtained from (160) by using the inequality
∑K−1

k=1 γK−k ≤ 1
1−γ .

Consider T4. From Lemma 4, we have that if the number of iterations of the projected gradient descent algorithm at
iteration k denoted by Tk and the step size denoted by αk satisfy

Tk ≥

(
C

′

kϵ

lk

)−2

L2
k||u∗k||22 − 1 (164)

αk =
||u∗k||2

Lk

√
Tk + 1

(165)

(166)

and ϵ < C
′

k, then we have

E(|ϵk4|)ν ≤ ϵ+ ϵ|D̃| (167)

Plugging in ϵ = ϵ (1−γ)2

6ϕν,µγ
in Equation (164) we get that if the number of iterations of the projected gradient descent algorithm

at iteration k denoted by Tk and the step size denoted by αk satisfy

Tk ≥

(
C

′

kϵ(1− γ)2

6lϕν,µγ

)−2

L2
k||u∗k||22 − 1 (168)

αk =
||u∗k||2

Lk

√
Tk + 1

(169)

∀k ∈ {1, · · · ,K}

and if ϵ < C
′

k for all k ∈ (1, · · · ,K), then we have

25

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

T4 =
2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kE(|ϵk4
|)ν

]
(170)

≤ 2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kϵ
(1− γ)2

6ϕν,µγ

]
+

2ϕν,µγ

(1− γ)

[
K−1∑
k=1

γK−kϵ|D̃|

]
(171)

≤ 2γϵ

(1− γ)

[
K−1∑
k=1

γK−k (1− γ)2

6γ

]
+

2ϕν,µϵ|D̃|γ

(1− γ)

1

1− γ
(172)

≤ ϵ

3(1− γ)

[
K−1∑
k=1

γK−k(1− γ)2

]
+

2ϕν,µϵ|D̃|

(1− γ)2
(173)

≤ ϵ

3(1− γ)

[
1

1− γ
(1− γ)2

]
+

2ϕν,µϵ|D̃|

(1− γ)2
(174)

≤ ϵ

3
(1− γK) +

2ϕν,µϵ|D̃|

(1− γ)2
(175)

≤ ϵ

3
+

2ϕν,µϵ|D̃|

(1− γ)2
(176)

Equation (171), (174) are obtained from (170), (173), respectively, by using the inequality
∑K−1

k=1 γK−k ≤ 1
1−γ .

Consider T5. Assume K is large enough such that

K ≥ 1

log
(

1
γ

) log

(
6Rmax

ϵ(1− γ)2

)
− 1 (177)

(K + 1)log

(
1

γ

)
≥ log

(
6Rmax

ϵ(1− γ)2

)
(178)

(K + 1)log(γ) ≤ log

(
ϵ(1− γ)2

6Rmax

)
(179)

γK+1 ≤ ϵ(1− γ)2

6Rmax
(180)

2Rmaxγ
K+1

(1− γ)2
≤ ϵ

3
(181)

Equation (179) is obtained from (178) by multiplying on −1 on both sides and noting that log(x) = − log
(
1
x

)
Thus, we obtain that if the number of iterations of Algorithm 1, number of state actions pairs sampled at iteration k denoted
by nk and the number of iterations of the projected gradient descent on iteration k denoted by Tk and the step size denoted
by αk satisfy

26

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

K ≥ 1

log
(

1
γ

) log

(
6Rmax

ϵ(1− γ)2

)
− 1 (182)

nk ≥ Õ(ϵ−2(1− γ)−6) (183)

Tk ≥

(
C

′

kϵ(1− γ)2

6lkϕν,µγ

)−2

L2
k||u∗k||22 − 1 (184)

αk =
||u∗k||2

Lk

√
Tk + 1

(185)

∀k ∈ {1, · · · ,K}

and if ϵ < (C
′

k) for all k ∈ (1, · · · ,K),

We have

E(Q∗ −QπK)µ ≤ ϵ+
2γ

(1− γ)2
(
√
ϵbias + ϵD̃) (186)

E. Proof of Supporting Lemmas
E.1. Proof Of Lemma 1

Proof. Using Assumption 2 and the definition of Qk1 for some iteration k of Algorithm 1 we have

E(TQk−1 −Qk1)
2
ν ≤ ϵbias (187)

Since |a|2 = a2 we obtain

E(|TQk−1 −Qk1|)2ν ≤ ϵbias (188)

We have for a random variable x, V ar(x) = E(x2) − (E(x))2 hence E(x) =
√
E(x2)− V ar(x), Therefore replacing x

with |TQk−1 −Qk1| we get

using the definition of the variance of a random variable we get

E(|TQk−1 −Qk1|)ν =
√

E(|TQk−1 −Qk1|)2ν − V ar(|TQk−1 −Qk1|)ν (189)

Therefore we get

E(|TQk−1 −Qk1|)ν ≤
√
ϵbias (190)

Since ϵk1
= TQk−1 −Qk1 we have

E(|ϵk1 |)ν ≤
√
ϵbias (191)

■

E.2. Proof Of Lemma 2

Proof. From Lemma 6, we have

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex,y

(
fθ(x)− E(g(y

′
, x)|x)

)2)
(192)

27

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

The function fθ(x) to be Qθ(s, a) and g(x, y) to be the function r
′
(s, a) + maxa′∈A γQk−1(s

′
, a

′
).

We also have y as the two dimensional random variable (r
′
(s, a), s

′
). We now have (s, a) ∼ ν and s

′ |(s, a) ∼ P (.|(s, a))
and r

′
(s, a) ∼ R(.|s, a).

Then the loss function in (59) becomes

E(s,a)∼ν,s′∼P (s′ |s,a),r(s,a)∼R(.|s,a)(Qθ(s, a)− (r
′
(s, a) + max

a′
γQk−1(s

′
, a

′
)))2 (193)

Therefore by Lemma 6, we have that the function Qθ(s, a) which minimizes Equation (193) it will be minimizing

E(s,a)∼ν(Qθ(s, a)− Es′∼P (s′ |s,a),r∼R(.|s,a))(r
′
(s, a) + max

a′
γQk−1(s

′
, a

′
)|s, a))2 (194)

But we have from Equation (4) that

Es′∼P (s′ |s,a),r∼R(.|s,a))(r
′
(s, a) + max

a′
γQk−1(s

′
, a

′
)|s, a) = TQk−1 (195)

Combining Equation (193) and (195) we get

argmin
Qθ

E(s,a)∼ν,s′∼P (s′ |s,a),r∼R(.|s,a))(Qθ(s, a)−(r(s, a)+max
a′

γQk−1(s
′
, a

′
)))2 = argmin

Qθ

E(s,a)∼ν(Qθ(s, a)−TQk−1)
2

(196)

The left hand side of Equation (196) isQk2
as defined in Definition 2 and the right hand side isQk1

as defined in Definition
1, which gives us

Qk2
= Qk1

(197)

E.3. Proof Of Lemma 3

Proof. We define RX,Qk−1
(θ) as

RX,Qk−1
(θ) =

1

|X|
∑

(si,ai)∈X

(
Qθ(si, ai)−

(
r
′
(si, ai) + γ max

a′∈A
Qk−1(s

′

i, a
′
)

))2

,

Here, X = {si, ai}i={1,··· ,|X|}, where si, ai are drawn from the Markov chain whose stationary state action distribution
is (si, ai) ∼ ζπk

ν , r(si, ai) ∼ R(.|si, ai) and s
′

i ∼ P (.|si, ai). θ ∈ Θ, Qθ is as defined in Equation (14) and Qk−1 is the
estimate of the Q function obtained at iteration k − 1 of Algorithm 1.

We also define the term

LQk−1
(θ) ≜ E(s,a)∼ζ

πk
ν ,s′∼P (s′|s,a),r′(·|s,a)∼R(·|s,a)(Qθ(s, a)− (r′(s, a) + γmax

a′
Qk−1(s

′, a′))2

We denote by θk2
, θk3

the parameters of the neural networks Qk2
, Qk3

respectively. Qk2
, Qk3

are defined in Definition 2
and 3 respectively.

We then obtain,

28

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

RX,Qk−1
(θk2)−RX,Qk−1

(θk3) ≤ RX,Qk−1
(θk2)−RX,Qk−1

(θk3) + LQk−1
(θk3)− LQk−1

(θk2) (198)
= RX,Qk−1

(θk2)− LQk−1
(θk2) + LQk−1

(θk3)−RX,Qk−1
(θk3) (199)

≤ |RX,Qk−1
(θk2)− LQk−1

(θk2)|︸ ︷︷ ︸
I

+ |RX,Qk−1
(θk3

)− LQk−1
(θk3

)|︸ ︷︷ ︸
II

(200)

We get the inequality in Equation (198) because LQk−1
(θk3

)−LQk−1
(θk2

) > 0 asQk2
is the minimizer of the loss function

LQk−1
(Qθ).

We take the Expectation with respect to (s0, a0) ∼ ζπk
ν , r(s0, a0) ∼ R(.|s0, a0), s1 ∼ P (.|s0, a0) on both sides of

Equation (200). Note that thus the expectation is only with respect s0, a0, s1, r0.

E(RX,Qk−1
(θk2

)−RX,Qk−1
(θk3

)) ≤ E|RX,Qk−1
(θk2

)− LQk−1
(θk2

)|+ E|LQk−1
(θk3

)−RX,Qk−1
(θk3

)| (201)

Now for notational convenience, we define for a fixed i consider the term fi(Q) as.

f(si, ai, si+1, ri) = (Qk2
(si, ai)− (r(si, ai) + Ea′∼πλkQ

2
k−1(si+1, a

′
)))2

−(Qk3(si, ai)− (r(si, ai) + Ea′∼πλkQ
3
k−1(si+1, a

′
)))2 (202)

We can write the right hand side of Equation (200) as

RX,Qk−1
(θk2

)−RX,Qk−1
(θk3

) =
1

nk

nk∑
i

f(si, ai, si+1, ri) (203)

For a fixed i, consider the term

∣∣∣∣∫
S×A×S×R

f(si, ai, si+1, ri)dσi −
∫

S×A×S×R
f(si, ai, si+1, ri)dσ1

∣∣∣∣ (204)

Here, σi is the measure on si, ai, si+1, ri at the ith step of the Markov chain induced by the policy πk and σ1 is the measure
corresponding to (s0, a0) ∼ ζπk

ν , r(s1, a1) ∼ R(.|s1, a1), s1 ∼ P (.|s1, a1). We then consider the term

∣∣∣∣∫
S×A×S×R

f(si, ai, si+1, ri)dσi −
∫

S×A×S×R
f(si, ai, si+1, ri)dσ1

∣∣∣∣
≤

∣∣∣∣∣ sup
s,a,s′ ,r

f(s, a, s
′
, r)

∣∣∣∣∣
∫

S×A×S×R
|Σi − Σ1|dσ (205)

Here, Σi = dσi

dσ and Σ1 = dσ1

dσ and σ is a measure on the space S ×A× S × R. We have from the definition of total
variation between two probability measures and Assumption 3 that

∫
S×A×S×R

|Σi − Σ1|dσ = dTV (σi, σ1) ≤ mρi (206)

29

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Note that Assumption 3 is formally on the Markov chain si, ai, however, we extend the assumption to the Markov chain
{si, ai, si+1, ri}i={1,··· ,nk} as si+1 ∼

∫
P

′
(si, ai)dP (.|si, ai), where P

′
denotes the distribution of si, ai. Therefore the

total variation between the distribution of si+1 in the Markov chain and the corresponding stationary state distribution is
a function of the difference in corresponding distributions of si, ai which are themselves bounded by Assumption 3. A
similar argument can be applied to ri. Also for i ≥ 2, f(si, ai, si+1, ri) is constant with respect to σ1 but the above
equation holds regardless.

Now plugging Equation (206) in Equation (205) and noting that sups,a,s′ ,rf(s, a, s
′
, r) ≤

(
Rmax

1−γ

)2
we obtain

∣∣∣∣∫
S×A×S×R

f(si, ai, si+1, ri)dσi −
∫

S×A×S×R
f(si, ai, si+1, ri)dσ1

∣∣∣∣ ≤
(
Rmax

1− γ

)2

mρi (207)

Which implies that

∫
S×A×S×R

f(si, ai, si+1, ri)dσ1 ≥
∫

S×A×S×R
f(si, ai, si+1, ri)dσi +

(
Rmax

1− γ

)2

mρi (208)

Now consider the term

∣∣∣∣∫
S×A×S×R

f(si, ai, si+1, ri)dσi −
∫

S×A×S×R
f(si

′, ai
′, si

′′, ri
′)dσ

′

i

∣∣∣∣ (209)

Here σi is the same measure as defined for Equation (204) and σ
′

i is the measure corresponding to (si
′, ai

′) ∼ ζπk
ν ,

ri
′ ∼ R(.|si′, ai′), si′′ ∼ P (.|si′, ai′). Similar to Equation (207) we have

∫
S×A×S×R

f(si, ai, si+1, ri)dσi ≥
∫

S×A×S×R
f(si

′, ai
′, si

′′, ri
′)dσ

′

i −
(
Rmax

1− γ

)2

mρi (210)

Combining Equation (207) and Equation (210) we get

∫
S×A×S×R

f(si, ai, si+1, ri)dσ1 ≥
∫

S×A×S×R
f(si

′, ai
′, si

′′, ri
′)dσ

′

i − 2

(
Rmax

1− γ

)2

mρi (211)

Now summing over i and dividing by nk we get.

1

nk

nk∑
i

∫
S×A×S×R

f(si, ai, si+1, ri)dσ1 ≥ 1

nk

nk∑
i

∫
S×A×S×R

f(si
′, ai

′, si
′′, ri

′)dσ
′

i −
2

nk

nk∑
i

(
Rmax

1− γ

)2

mρi

≥ 1

nk

nk∑
i

∫
S×A×S×R

f(si
′, ai

′, si
′′, ri

′)dσ
′

i −
2

nk

(
Rmax

1− γ

)2(
m

1− ρ

)
(212)

Note that the left hand side of Equation (212) is E(RX,Qk−1
(θk2)−RX,Qk−1

(θk3)), where the expectation is with respect
to (s0, a0) ∼ ζπk

ν , r(si, ai) ∼ R(.|si, ai). Thus, we have

30

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

E(RX,Qk−1
(θk2

)−RX,Qk−1
(θk3

)) ≥ 1

nk

nk∑
i

∫
S×A×S×R

f(si
′, ai

′, si
′′, ri

′)dσ
′

i −
2

nk

(
Rmax

1− γ

)2(
m

1− ρ

)
(213)

Now, from Theorem 5 of (Bertail and Portier, 2019) we have that

E| sup
θ∈Θ

(RX,Qk−1
(θk2

))− LQk−1
(θk2

)| ≤ 1

nk

(
4 (Rad(L ◦ z)) + 4

(
sup
θ∈Θ

LQk−1
(θ)

)
√
nkC

1
k + C2

k

)
(214)

where z = (s, a, s
′
, r), L = {z ∈ Z → l(θ, z), θ ∈ Θ}, l is the function given by {l : Z → R : l =

(Qθ(s, a) − (r′(s, a) + γmaxa′ Qk−1(s
′, a′))2}, and nk = |X|. C1

k , C
2
k are constants that depends on the Markov chain

(si, ai, si+1, ri)i∈{1,··· ,nk} and the expectation is with respect to (s, a) ∼ ν, s′ ∼ P (s′|s, a), r′(·|s, a) ∼ R(·|s, a) or the
initial distribution of the Markov chain.

Now from Proposition 11 of (Bertail and Portier, 2019) we have

Rad(L ◦ z) ≤ C

(
Rmax

1− γ

)2

log(log(nk))
√
nk (215)

where C is a universal constant. Plugging Equation (215) into Equation (214) we have

E| sup
θ∈Θ

(RX,Qk−1
(θ))− LQk−1

(θ)| ≤ O
(

log log(nk)√
nk(1− γ)2

)
(216)

Here, the expectation is with respect to (s, a) ∼ ν, s′ ∼ P (s′|s, a), r′(·|s, a) ∼ R(·|s, a) or the initial distribution of the
Markov chain. This implies that

E(s,a)∼ζ
πk
ν ,s′∼P (s′|s,a),r′(·|s,a)∼R(·|s,a)| sup

θ∈Θ
(RX,Qk−1

(θ))− LQk−1
(θ)|

≤ ϕkE(s,a)∼ν,s′∼P (s′|s,a),r′(·|s,a)∼R(·|s,a)| sup
θ∈Θ

(RX,Qk−1
(θ))− LQk−1

(θ)|

≤ O
(

log log(nk)√
nk(1− γ)2

)
(217)

where ϕk =
∣∣∣∣∣∣ dν

dζ
πk
ν

∣∣∣∣∣∣
∞

. Thus we get

E|RX,Qk−1
(θk2)− LQk−1

(θk2)| ≤ O
(

log log(nk)√
nk(1− γ)2

)
(218)

E|LQk−1
(θk3

)−RX,Qk−1
(θk3

)| ≤ O
(

log log(nk)√
nk(1− γ)2

)
(219)

where the expectation is with respect to (s, a) ∼ ζπk
ν , s′ ∼ P (s′|s, a), r′(·|s, a) ∼ R(·|s, a).

Now plugging Equation (218), (219) into the right hand side of Equation (201), we obtain

E
(
RX,Qk−1

(θk2)−RX,Qk−1
(θk3)

)
≤ O

(
log log(nk)√
nk(1− γ)2

)
(220)

31

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Further using Equation (213), we have

1

nk

nk∑
i=1

Ef(si′, ai′, si′′, ri′)− 2
1

nk

(
Rmax

1− γ

)2(
m

1− ρ

)
≤ O

(
log log(nk)√
nk(1− γ)2

)
(221)

which given us

1

nk

nk∑
i=1

Ef(si′, ai′, si′′, ri′) ≤ O
(

log log(nk)√
nk(1− γ)2

)
+

2

nk

(
Rmax

1− γ

)2(
m

1− ρ

)
(222)

≤ O
(

log log(nk)√
nk(1− γ)2

)
(223)

Therefore, if nk ≥ Õ(ϵ−2(1− γ)−2), we have

1

nk

nk∑
i=1

Ef(si′, ai′, si′′, ri′) ≤ ϵ (224)

Noting that all terms inside the summation of the right hand side of Equation (224) are identical, we can re-write Equation
(224) to get

E (Qk2
(s, a)−Qk3

(s, a))︸ ︷︷ ︸
A1

(Qk2
(s, a) +Qk3

(s, a)− 2(r(s, a)) + γmax
a∈A

Qk−1(s
′
, a))︸ ︷︷ ︸

A2

≤ ϵ (225)

where the expectation is now over a single (s, a) ∼ ζπk
ν , r(s, a) ∼ R(.|s, a) and s

′ ∼ P (.|s, a). We re-write Equation
(225) as

∫
(Qk2

(s, a)−Qk3
(s, a))︸ ︷︷ ︸

A1

(Qk2
(s, a) +Qk3

(s, a)− 2(r(s, a)) + γmax
a∈A

Qk−1(s
′
, a))︸ ︷︷ ︸

A2

dµ1(s, a)dµ2(r)dµ3(s
′
) ≤ ϵ

(226)

where µ1, µ2, µ3 are the measures with respect to (s, a), r
′

and s
′

respectively

Now for the integral in Equation (226) we split the integral into four different integrals. Each integral is over the set of
(s, a), r

′
, s

′
corresponding to the 4 different combinations of signs of A1, A2.

∫
{(s,a),r′ ,s′}:A1≥0,A2≥0

(A1)(A2)dν(s, a)dµ2(r)dν3(s
′
) +

∫
{(s,a),r′ ,s′}:A1<0,A2<0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
) +∫

{(s,a),r′ ,s′}:A1≥0,A2<0

(A1)(A2)dµ1(s, a)dµ2(r)dν3(s
′
) +

∫
{(s,a),r′ ,s′}:A1<0,A2≥0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
)

≤ ϵ

(227)

32

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

Now note that the first 2 terms are non-negative and the last two terms are non-positive. We then write the first two terms
as

∫
{(s,a),r′ ,s′}:A1≥0,A2≥0

(A1)(A2)d(s, a)dµ1(s, a)dµ2(r)dµ3(s
′
) = Ck1

∫
|Qk2

−Qk3
|dµ1(s, a)

= Ck1
E(|Qk2

−Qk3
|)ζπk

ν

(228)∫
{(s,a),r′ ,s′}:A1<0,A2<0

(A1)(A2)d(s, a)dµ1(s, a)dµ2(r)dµ3(s
′
) = Ck2

∫
|Qk2 −Qk3 |dµ1(s, a)

= Ck2
E(|Qk2

−Qk3
|)ζπk

ν

(229)

We write the last two terms as

∫
{(s,a),r′ ,s′}:A1≥0,A2<0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
) = Ck3

ϵ (230)∫
{(s,a),r′ ,s′}:A1<0,A2≥0

(A1)(A2)dν(s, a)dµ2(r)dµ3(s
′
) = Ck4

ϵ (231)

Here Ck1
, Ck2

, Ck4
and Ck4

are positive constants. Plugging Equations (228), (229), (230), (231) into Equation (225).

(Ck1
+ Ck2

)E(|Qk2
−Qk3

|)ζπk
ν

− (Ck3
+ Ck4

)ϵ ≤ ϵ (232)
(233)

which implies

E(|Qk2
−Qk3

|)ζπk
ν

≤
(
1 + Ck3

+ Ck4

Ck1 + Ck2

)
ϵ (234)

(235)

Now define
(

1+Ck3
+Ck4

Ck1
+Ck2

)
= Ck to get

E(|Qk2
−Qk3

|)ζπk
ν

≤ Ckϵ (236)
(237)

Thus we have that if nk ≥ Õ(ϵ−2(1− γ)−2) then we have

E(|Qk2 −Qk3 |)ζπk
ν

≤ ϵ (238)
(239)

33

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

E.4. Proof Of Lemma 4

Proof. For a given iteration k of Algorithm 1 the optimization problem to be solved in Algorithm 2 is the following

L(θ) = 1

n

n∑
i=1

(
Qθ(si, ai)−

(
r(si, ai) + γ max

a′∈A
γQk−1(s

′
, a

′
)

))2

(240)

Here, Qk−1 is the estimate of the Q function from the iteration k − 1 and the state action pairs (si, ai)i={1,··· ,n} have
been sampled from a distribution over the state action pairs denoted by ν. Since minθ L(θ) is a non convex optimization
problem we instead solve the equivalent convex problem given by

u∗k = argmin
u

gk(u) = argmin
u

||
∑

Di∈D̃

DiXkui − yk||22 (241)

subject to|u|1 ≤ Rmax

1− γ
(242)

Here, Xk ∈ Rnk×d is the matrix of sampled state action pairs at iteration k, yk ∈ Rnk×1 is the vector of target values
at iteration k. D̃ is the set of diagonal matrices obtained from line 2 of Algorithm 2 and u ∈ R|D̃d|×1 (Note that we are
treating u as a vector here for notational convenience instead of a matrix as was done in Section 4).

The constraint in Equation (242) ensures that the all the co-ordinates of the vector
∑

Di∈D̃DiXkui are upper bounded by
Rmax

1−γ (since all elements of Xk are between 0 and 1). This ensures that the corresponding neural network represented by
Equation (14) is also upper bounded by Rmax

1−γ . We use the a projected gradient descent to solve the constrained convex
optimization problem which can be written as.

u∗k = argmin
u:|u|1≤Rmax

1−γ

gk(u) = argmin
u:|u|1≤Rmax

1−γ

||
∑

Di∈D̃

DiXkui − yk||22 (243)

From Ang, Andersen(2017). “Continuous Optimization” [Notes]. https://angms.science/doc/CVX we have that if the step
size αk =

||u∗
k||2

Lk

√
Tk+1

, after Tk iterations of the projected gradient descent algorithm we obtain

(gk(uTk
)− gk(u

∗)) ≤ Lk
||u∗k||2√
Tk + 1

(244)

Where Lk is the lipschitz constant of gk(u) and uTk
is the parameter estimate at step Tk.

Therefore if the number of iteration of the projected gradient descent algorithm Tk and the step-size α satisfy

Tk ≥ L2
k||u∗k||22ϵ−2 − 1, (245)

αk =
||u∗k||2

Lk

√
Tk + 1

, (246)

we have

(gk(uTk
)− gk(u

∗)) ≤ ϵ (247)

Let (v∗i , w
∗
i)i∈(1,··· ,|D̃|), (v

Tk
i , wTk

i)i∈(1,··· ,|D̃|) be defined as

(v∗i , w
∗
i)i∈(1,··· ,|D̃|) = ψ

′

i(u
∗
i)i∈(1,··· ,|D̃|) (248)

(vTk
i , wTk

i)i∈(1,··· ,|D̃|) = ψ
′

i(u
Tk
i)i∈(1,··· ,|D̃|) (249)

34

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

where ψ
′

is defined in Equation (51).

Further, we define θ∗|D̃| and θTk as

θ∗|D̃| = ψ(v∗i , w
∗
i)i∈(1,··· ,|D̃|) (250)

θTk = ψ(vTk
i , wTk

i)i∈(1,··· ,|D̃|) (251)

where ψ is defined in Equation (46), θ∗|D̃| = argminθ L|D̃|(θ) for L|D̃|(θ) defined in Appendix B.

Since (g(uTk
)− g(u∗)) ≤ ϵ, then by Lemma 7, we have

L|D̃|(θ
Tk)− L|D̃|(θ

∗
|D̃|) ≤ ϵ (252)

Note that L|D̃|(θ
Tk)− L|D̃|(θ

∗
|D̃|) is a constant value. Thus we can always find constant C

′

k such that

C
′

k|θTk − θ∗|D̃||1 ≤ L|D̃|(θ
Tk)− L|D̃|(θ

∗
|D̃|) (253)

|θTk − θ∗|D̃||1 ≤ L(θTk)− L(θ∗)
C

′
k

(254)

Therefore if we have

Tk ≥ L2
k||u∗k||22ϵ−2 − 1, (255)

αk =
||u∗k||2

Lk

√
Tk + 1

, (256)

then we have

|θTk − θ∗|1 ≤ ϵ

C
′
k

(257)

which according to Equation (254) implies that

C
′

k|θTk − θ∗|D̃||1 ≤ L|D̃|(θ
Tk)− L|D̃|(θ

∗
|D̃|) ≤ ϵ (258)

Dividing Equation (258) by C
′

k we get

|θTk − θ∗|D̃||1 ≤
L|D̃|(θ

Tk)− L|D̃|(θ
∗
|D̃|)

C
′
k

≤ ϵ

C
′
k

(259)

Which implies

|θTk − θ∗|D̃||1 ≤ ϵ

C
′
k

(260)

Assuming ϵ is small enough such that ϵ
C

′
k

< 1 from lemma 8, this implies that there exists an lk > 0 such that

35

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

|QθTk (s, a)−Qθ∗
|D̃|

(s, a)| ≤ lk|θTk − θ∗|D̃||1 (261)

≤ lkϵ

C
′
k

(262)

for all (s, a) ∈ S ×A. Equation (262) implies that if

Tk ≥ L2
k||u∗k||22ϵ−2 − 1, (263)

α =
||u∗k||2

Lk

√
Tk + 1

, (264)

then we have

E(|QθTk (s, a)−Qθ∗
|D̃|

(s, a)|)ν ≤ lkϵ

C
′
k

(265)

By definition in section D Qk is our estimate of the Q function at the kth iteration of Algorithm 1 and thus we have
QθTk = Qk which implies that

E(|Qk(s, a)−Qθ∗
D̃
(s, a)|)ν ≤ lkϵ

C
′
k

(266)

If we replace ϵ by C
′
kϵ
lk

in Equation (265), we get that if

Tk ≥

(
C

′

kϵ

lk

)−2

L2
k||u∗k||22 − 1, (267)

α =
||u∗k||2

Lk

√
Tk + 1

, (268)

we have

E(|Qk(s, a)−Qθ∗
D̃
(s, a)|)ν ≤ ϵ (269)

From Assumption 1, we have that

E(|Qθ∗(s, a)−Qθ∗
D̃
(s, a)|)ν ≤ ϵ|D̃| (270)

where θ∗ = argminθ∈Θ L(θ) and by definition of Qk3
in Definition 6, we have that Qk3

= Qθ∗ . Therefore if we have

Tk ≥

(
C

′

kϵ

lk

)−2

L2
k||u∗k||22 − 1, (271)

α =
||u∗k||2

Lk

√
Tk + 1

, (272)

36

On the Global Convergence of Fitted Q-Iteration with Two-layer Neural Network Parametrization

we have

E(|Qk(s, a)−Qk3
(s, a)|)ν ≤ E(|Qk(s, a)−Qθ∗

D̃
(s, a)|)ν + E(|Qk3

(s, a)−Qθ∗
D̃
(s, a)|)ν (273)

≤ ϵ+ ϵ|D̃| (274)

37

	Introduction
	Related Works
	Fitted Q-Iteration
	Deep Neural Networks in Reinforcement Learning
	Neural Networks Parameter Estimation

	Problem Setup
	Proposed Algorithm
	Error Characterization
	Assumptions
	Supporting Lemmas
	Main Result
	Proof of Theorem 1 Outline
	Conclusion and Future Work
	Acknowledgements
	Comparison of Result with xu2020finite
	Convex Reformulation with Two-Layer Neural Networks
	Supplementary lemmas and Definitions
	Proof of Theorem 1
	Proof of Supporting Lemmas
	Proof Of Lemma 1
	Proof Of Lemma 2
	Proof Of Lemma 3
	Proof Of Lemma 4

