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ABSTRACT

Graph data, such as scene graphs and knowledge graphs, see wide use in AI systems.
In real-world and large applications graph data are usually incomplete, motivating
graph reasoning models for missing-fact or missing-relationship inference. While
these models can achieve state-of-the-art performance, they require a large amount
of training data.
Recent years have witnessed the rising interest in label creation with data program-
ming (DP) methods, which aim to generate training labels from heuristic labeling
functions. However, existing methods typically focus on unstructured data and are
not optimized for graphs. In this work, we propose LOGICDP, a data programming
framework for graph data. Unlike existing DP methods, (1) LOGICDP utilizes
the inductive logic programming (ILP) technique and automatically discovers the
labeling functions from the graph data; (2) LOGICDP employs a budget-aware
framework to iteratively refine the functions by querying an oracle, which signif-
icantly reduces the human efforts in function creations. Experiments show that
LOGICDP achieves better data efficiency in both scene graph and knowledge graph
reasoning tasks.

1 INTRODUCTION

Graph data are widely used in many applications as structured representations for complex information.
In the visual domain, a scene graph can be used to represent the semantic information of an image.
As shown in Figure 1a, each node in the graph corresponds to a localized entity (e.g., x1, x2, and
x3) and each edge represents the semantic relations between a pair of entities (e.g., ⟨x3,Has, x1⟩).
Similarly, knowledge graphs (KGs) represent real-world facts with entities and the relations that
connect them. Standard KGs such as Freebase Toutanova & Chen (2015) and WordNet (Bordes et al.,
2013) consist of facts that describe commonsense knowledge and have played important roles in
many applications (Yang et al., 2017; Sun et al., 2019; Mitchell et al., 2018; Yang et al., 2022).

Graph datasets are usually incomplete and new facts can be inferred from the existing facts. For
example, in Figure 1a, the class label of x3 is missing, and one can infer that it is a Car because
x3 Has a Wheel and a Window. This process is referred to as graph reasoning. A large body of
research has been proposed to address this task. For scene graph reasoning, methods such as iterative
message passing (Xu et al., 2017), LSTM (Zellers et al., 2018) and GNN (Yang et al., 2018) are
proposed. And for KG reasoning, a variety of graph embedding methods (Bordes et al., 2013; Sun
et al., 2019) are proposed. These graph reasoning methods rely on standard supervised training,
where the model is fed with a fixed set of data that are curated beforehand. Such training leads to
a state-of-the-art performance when a large amount of data is available. However, this approach is
shown to be suboptimal with respect to data efficiency (Misra et al., 2018; Shen et al., 2019), and
creating a sufficiently large training dataset manually can be expensive.

In this work, we approach this problem by adopting the data programming (DP) paradigm (Ratner
et al., 2016), which aims at creating a large high-quality labeled dataset from a set of labeling
functions that generate noisy, incomplete, and conflicting labels. To this end, we propose LOGICDP,
a DP framework that creates training data for graph reasoning models. Compared to the existing
domain-general DP frameworks (Ratner et al., 2016; 2017), LOGICDP utilizes the inductive logic
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Figure 1: (a) An image can be represented by a scene graph and a logic rule can be used to represent
the shaded pattern in the graph. (b) Learning and refining a labeling function for the unary predicate
Car.

programming technique and can automatically generate labeling functions in the form of first-order
logic rules from a small labeled set; LOGICDP also employs a budget-aware framework that refines
the functions through weak supervision from an oracle.

The LOGICDP framework is flexible and agnostic to the choice of the graph reasoning model and the
ILP method. In experiments, we evaluate LOGICDP on scene graph and KG datasets together with
several strong generic weakly-supervised methods, which suggests that LOGICDP scales well with
large graph datasets and generalizes better than the baselines. We also showcase the training with
human oracles and discuss its potential as a novel human-in-the-loop learning paradigm.

2 RELATED WORK

Data Programming. LOGICDP is related to the recent advances in data-centric AI and data pro-
gramming (Ratner et al., 2016; 2017; Varma & Ré, 2018), which aims at a new paradigm for training
and evaluating ML models with weak supervision. Existing frameworks such as Snorkel (Ratner
et al., 2017) show great potential in this direction but are also limited in applications where expert
labeling functions are difficult or expensive to construct, and they do not utilize the rich semantic
information in graphs to automate the process. In LOGICDP, we incorporate the ILP technique and
automatically generate the labeling functions from a small set of graph data.

Graph reasoning and inductive logic programming. Graph reasoning is the fundamental task
performed on graph data. It can be addressed by many approaches. For example, graph embedding
methods (Bordes et al., 2013; Sun et al., 2019), GNN-based methods (Yang et al., 2018; Zhang
et al., 2020) and various deep models (Xu et al., 2017; Zellers et al., 2018). While these data-driven
models achieve state-of-the-art performance, they require many samples to train. On the other hand,
graph reasoning can be solved by finding a multi-hop path in the graph that predicts the missing
facts (Guu et al., 2015; Lao & Cohen, 2010; Lin et al., 2015; Gardner & Mitchell, 2015; Das et al.,
2016). Specifically, inductive logic programming (ILP) methods (Galárraga et al., 2015; Evans &
Grefenstette, 2018; Payani & Fekri, 2019; Campero et al., 2018; Yang & Song, 2020; Yang et al.,
2017) learns to predict missing facts by searching for such paths and representing them as logic
rules. Compared to the previous methods, ILP methods are more data-efficient and offer better
interpretability. In this work, we investigate using logic rules learned by ILP methods as labeling
functions and generating triples to train a data-driven graph reasoning model.

3 PRELIMINARIES AND PROBLEM STATEMENT

We consider graphs such as scene graphs and KGs that consist of a set of facts in the form of head-
predicate-tail triples. Here, we use the scene graph in Figure 1a as a running example. Formally, we
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define such a graph as G = ⟨X ,P, T ⟩, where X denotes the set of entities in the graph and in the case
of Figure 1a, X = {x1, x2, x3, ...}; P denotes the set of predicates and example predicates P ∈ P
in Figure 1a are Has, Inside, Wheel and Car; finally, T denotes the set of triples in this graph,
where each triple t consists of two entities and a predicate T = {t := ⟨x, P, x′⟩|x, x′ ∈ X , P ∈ P}.
There are two types of predicates: (1) binary predicates are commonly used in KGs, which correspond
to relations between two entities. For example in Figure 1a, Has is a binary predicate and triples
involving it are {⟨x3,Has, x1⟩, ⟨x3,Has, x2⟩, ...}; they effectively represent the edges in G. On the
other hand, (2) unary predicates are not typically used in KGs but are common in scene graphs,
which correspond to the class label or attributes of a single entity. In Figure 1a, this can be Wheel
and Window, and triples of this type are {⟨x1,Wheel, x1⟩, ⟨x2,Window, x2⟩, ...} (we duplicate the
same entity for unary predicate for notation consistency); they effectively represent the class labels of
the entities.

Graph reasoning. The fundamental task of graph reasoning is to infer missing facts from the existing
ones. These missing facts are referred to as queries and take the form of ⟨x, ?, x′⟩. In Figure 1a, a
query can be ⟨x3, ?, x3⟩ which asks for the missing class labels of x3. In this work, we are interested
in approaching this task by training a graph reasoning model. Formally, let fθ(t) be a graph reasoning
model parameterized by θ, which infers the score of how likely a triple t exist in the graph, and let T
be a set of training triples, one trains the model by minimizing the following margin-based objective

L(θ; T ) = 1

N

∑
t∈T

∑
t′∈N (t)

1− fθ(t) + fθ(t
′), (1)

whereN (t) denotes the random triples generated by corrupting the entities x, x′ in the triple ⟨x, P, x′⟩.
Note that this is different from classical objectives such as cross-entropy and is widely used in graph
reasoning tasks because there are usually no explicit negative triples in the graph (Refer to details
in (Guu et al., 2015; Bordes et al., 2013)). Our goal is to generate enough triples such that the model
fθ is sufficiently trained via Eq.(1).

Data programming for graph reasoning. Acquiring a large number of training triples manually
is expensive. We adopt the data programming (DP) paradigm and propose to generate triples from
a set of labeling functions. Similar to the reasoning model fθ, these functions infer the predicate
given a query, but they are noisy and likely to conflict with each other and one needs to aggregate the
outputs to generate the triples. Additionally, existing DP methods (Ratner et al., 2017; 2016) rely on
domain experts to manually create good labeling functions. We observe that graph data contain rich
semantic information and propose to automatically learn the labeling functions from the graph. Once
the functions are learned from the data, one also needs a principled framework to incorporate human
weak supervision (e.g., expert confidence scores on the functions) and refine the functions.

In summary, we specify the three challenges that need to be addressed to generate high-quality
training triples for graph reasoning: (1) Function Generation: how to automatically generate
labeling functions? (2) Function refinement: how to incorporate human weak supervision and refine
the labeling functions? (3) Label aggregation: how to aggregate the labeling function outputs into
the training triples usable for Eq.(1)? We address these challenges section 4.

4 PROPOSED METHOD

4.1 FUNCTION GENERATION

The first challenge we address is to automatically learn labeling functions from graphs. We assume a
small bootstrap set Tinit is given, from which we will generalize the functions. This is a realistic
setting because many graph datasets such as Visual Genome (VG) (Krishna et al., 2016) have
incomplete graphs with sparse connections (i.e., facts), while the data is insufficient for supervised
training for fθ (especially for the rare predicates), one can use them to construct functions with good
heuristics. For example, in Figure 1b, a few scene graphs associated with predicates Car, Wheel,
etc. are given as the bootstrap set, and we can generalize a heuristic that “Anything that has a Wheel
and Window is a Car”, which can be later used as a function to generate triples for Car.

To generalize functions from the bootstrap set Tinit, we need (T1) a function representation that
is interpretable as they need to be refined by humans later in the process, and (T2) a data-efficient
approach to generate functions because Tinit is small.
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Logic rules as labeling functions. The first-order logic rule severs as a principled representation for
(T1). One common logic rule family used for graphs is the chain-like Horn rules:

R : P (x, x′)← P (1)(x, z1) ∧ P (2)(z1, z2)... ∧ P (T )(zT−1, x
′). (2)

A rule R of this family consists of two parts: the head, which is P (x, x′), and the body which is
P (1)(x, z1) ∧ P (2)(z1, z2)... ∧ P (T )(zT−1, x

′). In first-order logic, a binary predicate P can be
treated as a function P : X × X 7→ {0, 1}. In other words, it predicts True or False given a pair
of entities (and similarly for unary predicates). The rule body is the conjunction (i.e., logical And)
of a set of predicate functions, and it is True if all of them are True. Therefore, the logic rule R
is effectively a binary labeling function R : X × X 7→ {0, 1}, which encodes the statement that
“P (x, x′) is True if the body P (1)(x, z1)∧ ...∧P (T )(zT−1, x

′) is True”. Note that one can express
other graph patterns with more complex rules. For example, the logic rule in Figure 1a corresponds
to a tree consisting of two paths. For notation simplicity, we focus on the chain-like rules for the
remaining contents and one can extend it to complex rules with different ILP methods.

Rule learning via Inductive logic programming. A chain-like rule R can be learned from the
bootstrap set Tinit efficiently via inductive logic programming (ILP). Many ILP-based methods
formalize this problem as a search problem, where given a query ⟨x, ?, x′⟩, one searches for a path
in the graph from x to x′ that entails the missing predicate. In particular, a chain-like rule of the

form Eq.(2) corresponds to a path x
P (1)

−−−→ ...
P (T )

−−−→ x′ in the graph. Therefore, learning the logic
rule is equivalent to finding the path from a graph. In general, learning explicit paths in the graph
requires fewer data and ILP methods are significantly more data-efficient (Yang & Song, 2020).

(T2) is a self-contained ILP problem: given a graph with bootstrap triples G = {X ,P, Tinit}, one
learns a set of logic rules for each P ∈ P . This can be solved with any off-the-shelf ILP methods.
Here, we briefly introduce the underlying methodology and leave the details in Appendix A.

In LOGICDP, we follow the differentiable backward-chaining ILP formalism, which learns the rule
by training a model that searches for the optimal path in the graph. This is done by performing a
graph random walk with soft attention. Let M ∈ {0, 1}|X |×|X| be the adjacency matrix of a graph.
For a graph G with |P| = K, there are K matricesM = {M1, ...,MK}. Let vx, v′x be the one-hot

vectors of entity x, x′; suppose we choose a path x
P (1)

−−−→ ...
P (T )

−−−→ x′, we can compute the score of
how likely the path exists for x, x′ as

v(T ) = v⊤x

T∏
t=1

M (t), score(vx, v
′
x) = v(T ) · v′x, (3)

where M (t) ∈ M is the adjacency matrix of the predicate used in (t)th step. One can verify
that the jth element v(T )

j is the count of unique paths from x to j (Guu et al., 2015). Therefore,
searching for the chain-like rule is equivalent to searching for a sequence of matrix multiplications
M (t), t = 1, ..., T . This hard-search problem can be relaxed into learning the weighted sums of all
possible paths

score(vx, v
′
x|α, β) = v⊤x

T∑
t′=1

α(t′)

 t′∏
t=1

K∑
k=1

β
(t)
k Mk · v′x

 , (4)

where α = [α(1), ..., α(T )]⊤ is the path attention vector, and β(t) = [β
(t)
1 , .., β

(t)
K ]⊤ is the matrix

attention vector at (t)th step; they are generated from differentiable models such as RNN and
transformer (Yang et al., 2017; Yang & Song, 2020).

Finally, since the model is differentiable via attention, one can train the model to maximize Eq.(4)
for triples in Tinit and extract the rules by sampling from the attention multinomials. We leave the
training details in Appendix A because, as mentioned above, LOGICDP is agnostic to the ILP model
and it is a self-contained task. For the remaining contents, we will assume the training is complete
and a set of logic rulesRcand is generated for each predicate P ∈ P .

4.2 FUNCTION REFINEMENT

We have now obtained a set of logic rules in the form of Eq.(2) via ILP, which generalizes predictive
heuristics (e.g., Figure 1b) from a small bootstrap set Tcand. However, these rules are potentially noisy
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Algorithm 1: Training graph reasoning model with LOGICDP
Input: Graph G, bootstrap set Tinit, budget B, threshold γ
Init: Reasoning model fθ, belief set T = Tinit, refined rulesR = {}
Rcand ← Apply ILP to G
for i = 1, ..., B do

R← argmaxR∈Rcand
cov(R), s.t. supp(R) > γ

λ← Obtain oracle score for R
R ← R∪ {⟨λ,R⟩} ; Rcand ← Rcand/{R}
Mlabel(t|R)← Construct labeling model with Eq.(7)
T ← Update belief set with Eq.(5)
repeat

Sample triples from T
Train fθ by updating θ with Eq.(1)

until Convergence;
end

and subject to spurious correlations in the data, which are harmful to generating labels. Therefore,
one must refine the rules via human weak supervision. Note that this process can be very expensive
in some data programming frameworks (Ratner et al., 2017) because the expert needs to manually
create the functions, whereas in LOGICDP, the expert only needs to refine them.

Budget-aware function refinement. An effective refinement process should minimize human effort.
We propose a budget-aware framework that iteratively refines the rule by querying an oracle and
obtaining a confidence score. Let B be the budget (the maximum number of interactions with the
oracle) andRcand be the initial set of rules obtained from ILP for predicate P (one can extend it to sets
of all predicates readily). The goal is to obtain a refined rule subsetR = {⟨λj , Rj⟩|Rj ∈ Rcand}Bj=1

with λj ∈ [0, 1] be the oracle assigned confidence score for rule Rj .

With a limited budget B, one should pick rules that balance between coverage: the number of triples
that can be generated from the rule, and support: the number of generated triples that are correctly
labeled. We quantify them through the belief set: the set of triples generated by the refined rules
during the refinement process. Formally, we denote Ti as the belief set at i-th iteration and we have

T0 = Tinit, Ti = Tinit ∪ {⟨x, P ∗, x′⟩|P ∗ = argmax
P∈P

Mlabel(⟨x, P, x′⟩|R), ⟨x, x′⟩ ∈ X 2}, (5)

where Mlabel (introduced in section 4.3) is the model that generates aggregated score of triple
⟨x, P, x′⟩ fromR, and P ∗ is the inferred label with the largest score. In other words, Ti is the set of
triples outputted by the labeling model at i-th iteration. It is first initialized into the bootstrap set Tinit;
then for every iteration i = 1...B, we first update the labeling model Mlabel, and then reconstruct the
belief set by inferring the labels for all pairs of entities and combining the inferred triples with Tinit.
Now we define the support and coverage of rule R. Let T R = {⟨x, P, x′⟩|R(x, x′) = 1, ⟨x, x′⟩ ∈
X 2} be the set of triples generated by rule R. Then, we define the true positive subset of T R at i-th
iteration as T R,tp

i = T R ∩ Ti, which is the intersection of the generated triples and the belief set.
Finally, we compute the support and coverage as

supp(R) = |T R,tp
i |/|T R| cov(R) = |T R|/|X |2. (6)

In other words, supp(R) is the ratio of the true positives in T R and cov(R) is the size of T R divided
by the total number of possible entity pairs.

For each iteration, we measure the support and coverage for each rule in Rcand and send the best
one to the oracle for weak supervision (i.e., λ). This is done by (1) filtering out rules with support
below a threshold γ; and (2) choosing the rule with the largest coverage and sending it to the oracle
(Algorithm 1). In the experiments, we demonstrate the noise introduced by the incorrect labels can
be alleviated by the aggregation model introduced in section 4.3. A similar strategy is also used in
previous work (Ratner et al., 2017; Varma & Ré, 2018).
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4.3 LABEL AGGREGATION

Once we obtain the refined rule setR, the last task is to aggregate the noisy and conflicting labels
generated by different rules and produce the final labels for training the reasoning model f . In
previous work (Ratner et al., 2017), this process is formalized with a generative model, which can be
expensive for graph data as it involves probabilistic inference. In LOGICDP, we approach this task
by utilizing the posterior regularization (PR) (Ganchev et al., 2010) technique as it is a principled
framework that can efficiently incorporate weak supervision and previous work (Guo et al., 2018; Hu
et al., 2016) has shown it is effective for alleviating the noise introduced by the imperfect logic rules.

Formally, let R = {⟨λj , Rj⟩}Bj=1 be the set of refined rules and confidence scores of predicate P
(one can extend it to sets of all predicates readily). The PR technique treats R not as independent
functions but as a set of constraints imposed on the posterior of the reasoning model fθ. This leads to
a constrained optimization problem (Appendix B). Solving the problem yields a labeling model

Mlabel (t|R) ∝ fθ (t) exp

−C B∑
j=1

λj(1−Rj(x, x
′))

 , t := ⟨x, P, x′⟩, (7)

where C is the weight of the exponential term. The score of Mlabel is proportional to the product of
fθ(t) and an exponential term. This term is effectively a log-linear model that sums over the scores
of rules in R weighted by λs. Mlabel balances between the supervision from R and the inference
from fθ: with a large C, the model generates scores that are close to that fromR and vice versa.

With Mlabel, we train the reasoning model fθ by constructing and sampling from the belief set
with Eq.(5). We summarize the overall pipeline in Algorithm 1. Note that this training process partly
contains self-learning: fθ is trained on the belief set which is in turn partly generated by fθ via Eq.(7).
This is intended as it is shown to lead to a smooth learning process (Hu et al., 2016).

5 EXPERIMENTS

In the experiments, we demonstrate the following properties of LOGICDP: (P1) the budget-aware
framework empowers LOGICDP to generate high-quality triples leading to better data efficiency than
generic weakly-supervised methods; (P2) LOGICDP is robust against the incorrect labels; and (P3)
the logic rule is interpretable, allowing humans to supervise the model efficiently.

5.1 DATASETS

Knowledge graphs. We evaluate LOGICDP on two KG datasets. FB15K-237 is a subset of the Free-
base dataset (Toutanova & Chen, 2015) which contains general knowledge facts. WN18RR (Dettmers
et al., 2018) is the subset of WordNet18 which contains relations between English words. We evaluate
the LOGICDP on standard graph reasoning on binary predicates with train/valid/test splits provided
in (Yang et al., 2017). In addition to it, we remove a large portion of triples from the train split,
effectively reducing the size of the bootstrap set Tinit, so that we can inspect how the size of Tinit
can influence the performance. And the removed triples are used as the unlabeled sets for baseline
methods such as active learning, where the ground-truth labels are hidden. (Statistics in Table 4).

Visual Genome. We also evaluate LOGICDP on the Visual Genome (VG) dataset provided in (Krishna
et al., 2016) which contains a scene graph for each image. The original dataset is highly noisy (Zellers
et al., 2018). We instead use a processed version provided in (Hudson & Manning, 2019). We further
process the relational data by filtering out the relation types that occur less than 1500 times. The
remaining set consists of 31 types of relations. For each scene graph, we filter out the isolated nodes
that are not connected by those relations. For this benchmark, the model is tasked to predict the class
label of an entity in the image. To do so, we rank the classes by their frequencies: triples belonging to
the top 50 classes together with all the binary predicate triples are treated as background knowledge
and given to the model; triples of the next 70 classes are split into bootstrap/valid/test/unlabeled sets
(triples of the rest of the classes are discarded as they are too sparse for evaluation). The bootstrap set
Tinit for each of the 70 classes contains 15 random triples, and the valid, test, and unlabeled sets are
split with a 10%/80%/10% ratio on the remaining triples.
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Table 1: Training the TransE and the RotatE models with 5%, 10% and 20% of the bootstrap set Tinit
on two knowledge bases. LOGICDP achieves the best scores (P1) and has similar performance as the
case trained with full ground-truth data, i.e. the ideal* case.

Methods

TransE RotatE

FB15K-237 WN18RR FB15K-237 WN18RR

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10
5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

AL-RND 0.21 0.21 0.22 36.1 36.7 36 0.28 0.29 0.31 28.4 32.8 36.5 0.24 0.25 0.27 37.1 39.5 41.2 0.27 0.27 0.32 29.7 34.0 43.5
AL-MaxEnt 0.22 0.22 0.23 36.1 37.2 36.5 0.29 0.31 0.36 29.5 35.1 45.9 0.24 0.28 0.29 38.5 43.2 47.5 0.31 0.32 0.37 33.2 42.2 51.2
LabelProp 0.22 0.23 0.24 35.9 38.6 40.2 0.30 0.32 0.38 31.2 38.3 43.6 0.25 0.28 0.29 38.8 43.8 46.9 0.31 0.33 0.37 34.8 43.9 50.8

LOGICDP 0.27 0.28 0.29 43.1 43.8 44.5 0.38 0.42 0.43 46.7 49.8 50.5 0.31 0.32 0.32 49.5 51.7 52.0 0.41 0.43 0.44 49.4 52.9 53.7
ideal* 0.29 46.5 0.45 51.2 0.34 52.6 0.46 55.2

5.2 EXPERIMENTAL SETTINGS

Oracle. We evaluate LOGICDP with two oracle settings: (1) synthetic. Experiments in section 5.3
(P1) is conducted with a synthetic oracle. We simulate human weak supervision by computing
supp(R) on a separate held-out set and sending it back as λ. (2) Human. To better demonstrate the
interpretability of LOGICDP (P3), we also evaluate LOGICDP on a fixed set of questions with human
oracles who are asked to judge the quality of the rule based on commonsense.

Graph reasoning models. For FB15K and WN18RR, we use TransE (Bordes et al., 2013) and
RotatE (Sun et al., 2019) as the reasoning models as they are widely used methods for KG reasoning.
For VG, the generated triples are effectively class labels of the scene entities; the task reduces to a
multi-class classification task, therefore, we use a standard MLP model which takes in the RCNN
feature (provided in (Hudson & Manning, 2019)) of the entity and outputs its class label.

ILP model. LOGICDP is agnostic to the choice of ILP model. We choose the ILP model based
on the type of benchmark dataset. For FB15K and WN18RR, the predicate and entity spaces are
moderate, we use the forward-chaining method dNL-ILP (Payani & Fekri, 2019) for rule learning.
For VG, the predicate and entity spaces are significantly larger, we use the backward-chaining
method NLIL (Yang & Song, 2020) as it is more scalable than the forward-chaining ones. In general,
LOGICDP is insensitive to the choice of ILP methods (Appendix F) and performs similarly across
different configurations.

Baselines. LOGICDP utilizes a budget-aware framework for supervision where we train the model
with a bootstrap set Tinit and a limited budget B. This setting is comparable to those generic
weakly-supervised methods. We demonstrate (P1) by comparing against 4 generic weakly-supervised
methods: (1) AL-RND: a naive method that trains fθ with ground-truth triples; (2) AL-MaxEnt: the
active learning method with maximum entropy criterion with budget size as B; (3) LabelProp: a
semi-supervised method that infers labels using label propagation algorithm (Zhu & Ghahramani,
2002); (4) MAML (Finn et al., 2017): a meta-learning framework that learns the optimal parameter
initialization (this is only evaluated on VG as there is no balanced set of sub-graphs in72 FB15K and
WN18RR). Apart from Tinit, methods (1)(3)(4) are given B randomly sampled ground-truth triples,
and method (2) can acquire B ground-truth triples from the unlabeled sets.

Parameters and evaluation. We set hyper-parameters γ = 0.7, and C = 20 by running a grid search
over the validation set. For FB15K and WN18RR, we evaluate the mean reciprocal rank (MRR) and
hits@10. For the scene graph dataset, We evaluate the Recall@1 (R@1) score. Experiments are
conducted on a machine with i7-8700K and one GTX1080ti. Implementation available here 1.

5.3 DATA EFFICIENCY

Knowledge graphs. We evaluate the methods by changing the size of the Tinit while fixing B = 5.
We show the results with 5%, 10% and 20% of the original Tinit in Table 1. We also show the
performance when the model is trained with full ground-truth data, i.e. the ideal* case. LOGICDP
outperforms all baselines in both two benchmarks. Note that the gap is large for WN18RR because
many triples can be inferred with similar logic rules. LOGICDP also achieves similar performance as
that in the ideal* case with 10% of the data.

Visual Genome. We evaluate the methods by varying the budget B from 1 to 500 while fixing
|Tinit| = 15. We show the results in Table 2 and example logic rules in Figure 5. Similar to Table 1,

1https://github.com/gblackout/logic-data-programming
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Table 2: Training the MLP with varied budget sizes on
VG dataset. LOGICDP achieves the best R@1 (P1) and
80% performance as the case trained with full ground-
truth data (ideal* case) with B = 10.

R@1 of MLP on Visual Genome

Method
w/ MLP

Budget

1 5 10 50 200 500

AL-RND 0.47 0.47 0.5 0.52 0.57 0.6
AL-MaxEnt 0.47 0.47 0.51 0.52 0.58 0.61
LabelProp 0.49 0.51 0.51 0.57 0.59 0.59
MAML 0.48 0.48 0.5 0.54 0.58 0.6

LOGICDP 0.56 0.57 0.58 0.6 0.62 0.63
ideal* 0.71

syntheticsynthetic

synthetic synthetic

#
 o

f 
e
v
a
lu

a
ti
o
n

P@1

Figure 2: Human evaluation score distribu-
tions of 4 questions. The red bar corresponds
the score of the synthetic oracle.

LOGICDP achieves the best R@1. The improvement moving from budget 1 to 10 is small because
most triples can be generated with less than 3 rules and additional rules typically cover rare triples
that only occur less than 50 times for each class. As a verification, we see that LOGICDP achieves
80% of the ideal* performance with B = 10, meaning most of the correct samples are covered in the
belief set. Note that ILP generates at most |Tinit| number of rules (i.e. one unique rule per sample),
thus for B > 15, LOGICDP simply fills in the belief set with random triples just as that in AL-RND,
in which case, the performance improves at a rate similar to other baselines.

Technically, the budget size of LOGICDP and other methods are not comparable as a logic rule carries
more information than a single triple. However, the main motivation of LOGICDP is to train the
model efficiently with questions that generalize to many triples. In this way, being able to carry more
information in a single query is by itself an advantage over the traditional paradigm. In section 5.5,
we further quantify this difference by comparing the efforts spent on evaluating a rule vs. a triple.

5.4 ANALYSIS ON LABELING ERRORS

Imperfect logic rules introduce noisy labels into the belief set. We analyze the robustness of LOGICDP
against these errors (P2) on VG dataset with B = 5. In Figure 3, we show the ratio of false positives
(FP), false negatives (FN), and true positives (TP) for each of the 70 classes with respect to the size
of their ground-truth triples.

Ideally, if one learns a perfect set of rules for a class P , then the TP ratio should be 100% and FP and
FN be zero. However, a noisy rule can introduce (1) FP, where triples of other classes are incorrectly
classified as P . Introducing FP deteriorates the belief set and is harmful to the training. Here, figure 3
suggests that the FP ratio is small across all classes and the total FP ratio is 6.7%, suggesting the rules
are of high support. On the other hand, there are (2) FN, where ground-truth triples of class P are not
covered by any rules and thus fall outside of the belief set. We found that logic rules are generally
of high coverage for frequent classes and less for infrequent ones. This suggests that these classes
contain more diverse graph patterns and the rules learned from a small bootstrap set cannot cover
all of them. This aligns with the fact that VG contains massive scene graphs of various structures.
Unlike FP, FN does not deteriorate the performance and one can readily improve the coverage by
increasing the size of the bootstrap set.

5.5 WEAK SUPERVISION VIA INTERPRETABLE LOGIC RULES

As one of the key motivations, we argue that human supervision via logic rules is data-efficient
because humans can evaluate rules directly with commonsense (P3). To see this, we compare two
types of supervision paradigms: (1) sample-wise labeling, where humans supervise the model by
labeling individual samples; and (2) rule-wise labeling, where humans supervise the model by
evaluating the rules (i.e., the function refinement introduced in section 4.2).
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Figure 3: The class-wise ratio of true positive, false
negative, and false positive triples.
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Figure 4: P@1 scores of the 35 logic questions
sorted in descending order with respect to the
human score.

For this study, we invite 25 graduate students to go through these two paradigms on VG dataset and
record the “wall clock time taken” for completing the task (Details in Appendix E). For sample-wise
labeling, the participant is shown 50 images randomly sampled from the target classes. Target objects
are highlighted with the bounding boxes and the participant is asked to mark true or false on whether
or not the image patch belongs to the target class. For rule-wise labeling, We collect 35 logic rules
and convert them into natural language questions (Figure 6). For each question, the participants
choose from a 4-point scale that reflects how they think the rule is generally true or not; we interpret
this as the intuitive support score supp(R).

Table 3: Average/amortized time taken
in evaluating the individual samples and
the logic rules.

Eval. type Avg. time (s) Std. (s)

Sample 3.7 1.8
Rule 8.3 3.1

Amortized 0.03 -

We summarize the average labeling time of two types
of supervision in Table 3. Rule-wise labeling takes 8.3s
which is 2x longer than the sample-wise labeling, but this
time is amortized as the rule applies to many samples,
leading to an amortized time of 0.03s, which is 100x faster
than the sample-wise counterpart.

Synthetic oracle vs. human oracle. We compare the
scores of two oracles of the 35 questions in Figure 4.
The 4-point scores of the human oracle are converted to
{1, 0.66, 0.33, 0} respectively and are averaged across par-
ticipants for each question. Overall, the human evaluations
tend to agree with that of the oracle: we fit the scores with

a linear trend line (in light blue) and it is close to the score curve of the oracle. However, there are
also outliers: Figure 2 showcases the score distributions of four questions, where the two oracles
agree on the first row but disagree on the second row. This is due to the inherent bias in the dataset: in
real-life, a Chair does not always have arms, but in VG, the Arm is highly correlated with Chair
in the dataset, leading to counter-intuitive statements. Addressing this issue involves altering the
original dataset and we leave this for future investigation.

Additionally, Figure 2 also suggests that human evaluations are generally consistent for different
participants. This observation is verified in Appendix E, where we found the standard deviations
of the scores are small. This aligns with (P3) that human commonsense is a reliable source of
weak supervision for tasks such as image classification. Nevertheless, for domains that involve
graphs of complex reasoning or procedures, such as theorem proving and molecular synthesis, human
commonsense will not be as effective. In future work, we investigate extending the framework to
these domains.

6 CONCLUSION

In this work, we propose LOGICDP, a data programming framework optimized for creating labels for
graph data. The framework is capable of automatically learning labeling functions in the form of
logic rules via ILP and refining them with a budget-aware interactive framework. Experiments show
that LOGICDP is more data-efficient than generic weakly-supervised methods and supports efficient
human-in-the-loop supervision.
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A LOGIC RULES AND INDUCTIVE LOGIC PROGRAMMING

A first-order logic (FOL) rules consists of (i) a set of predicates defined in P , (ii) a set of logical
variables such as X and Y , and (iii) logical operations {∧,∨,¬}. For example,

GrandFatherOf(X,X ′)←FatherOf(X,Y )∧ (8)

MotherOf(Y,X ′)

involves predicates GrandFatherOf, FatherOf and MotherOf. Components such as
FatherOf(X,Y ) are called atoms which correspond to the predicates that apply to the logical
variables. Each atom can be seen as a lambda function with its logical variables as input. This function
can be evaluated by instantiating the logical variables such as X into the object in X . For example,
let X = {Amy,Bob,Charlie}, we can evaluate FatherOf(Bob/X,Amy/Y ) by instantiating X
and Y into Bob and Amy respectively. This yields 1 (i.e. True) if “Bob is the father of Amy”. The
outputs of all atoms are combined using logical operations {∧,∨,¬} and the imply operation p← q
is equivalent to p ∨ ¬q. Thus, when all variables are instantiated, the rule will produce an output as
the specified combinations of those from the atoms. By using the logical variables, the rule encodes
the “lifted” knowledge that does not depend on the specific data. Such representation is beneficial
because (i) the rules are highly interpretable and can be translated into natural language for human
assessment, and (ii) the rules guarantee to generalize to many examples.

In section 4.1, we learn a set of rules Rcand from bootstrap set Tinit via ILP. Given a query triple
⟨x, ?, x′⟩, ILP seeks to learn a logic rule that captures a graph pattern within which the query triple is

True. This can be formulated as finding a relational path x
P (1)

−−−→ ...
P (T )

−−−→ x′ which starts from one
node x and ends at the other node x′, where P (t) ∈ P, t = 1, ..., T . Finding such path is equivalent
to learning a chain-like entailment rules (Yang et al., 2017) as

R : P (x, x′)← P (1)(x, z1) ∧ P (2)(z1, z2)... ∧ P (T )(zT−1, x
′). (9)

where the knowledge is encoded as “if the path exists, then P (x, x′) is True”. Numerically, we have
R : X × X 7→ {0, 1}, that is R(x, x′) = 1 if the query is True. Note that if the path does not exist,
the rule outputs R(x, x′) = 0 or abstain. Due to the nature of logical implication “←”, “abstain”
simply means the rule does not apply instead of logical False. In other words, the rule R can be
used to infer positive triples but not negative ones. Since many of the KG completion models are
optimized with margin loss Eq.(1) and thus do not rely on the negative triples for training, we omit
the learning of the negative rules. This chain-like rule is also applicable to unary predicate P (X) by
instantiating X ′ into a localized entity (see details in (Yang & Song, 2020)).

To compute the path efficiently, one encodes a graph into a set of adjacency matrices. Each predicate
P can be represented as M ∈ {0, 1}|X |×|X|, where mij = 1 indicates ⟨xi, P, xj⟩ exists in the graph.
In the case of unary predicate, the matrix is diagonal such that mii = 1 indicates ⟨xi, P, xi⟩ exists
in the KG. Here, we duplicate the same variable for notation consistency. Recall that vx is the
one-hot vector with dimensionality |X |. We can represent each hop in the relational path as matrix
multiplication, such that the (t)th hop of the reasoning along the path is computed as

v(0) = vx, v(t) = v(t−1)⊤M (t),

where M (t) denotes the adjacency matrix of the predicate used in (t)th hop. One can verify that the
jth element v(t)j in v(t) is the count of unique paths from x to j (Guu et al., 2015). After (T ) steps of
reasoning, we compute the score of P (x, x′) being True as

score(vx, v
′
x) = v⊤x

T∏
t=1

M (t) · v′x. (10)

Finding the chain-like rule is equivalent to finding a sequence of matrix multiplication M (t), t =
1, ..., T , such that Eq.(10) is maximized for all the triples in Tinit. This hard search problem can be
relaxed into learning the weighted sums of all possible paths

score(vx, v
′
x|α, β) = v⊤x

T∑
t′=1

α(t′)

 t′∏
t=1

K∑
k=1

β
(t)
k Mk · v′x

 , (11)
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where α = [α(1), ..., α(T )]⊤ is the path attention vector, and β(t) = [β
(t)
1 , .., β

(t)
K ]⊤ is the matrix

attention vector at (t)th step, and we denote all the attentions as ⟨α, β⟩. Therefore, for each triple
P (x, x′) one can find the optimal logic rule by maximizing Eq.(11) with respect to ⟨α, β⟩. To extract
the actual discrete rule, one takes the ArgMax on ⟨α, β⟩, which returns the index of the max value.
The optimal rule length is T ∗ = ArgMax(α) and the (t)th matrix is M (t) = ArgMax(β(t)) which
corresponds to the predicate P (t).

These attentions can be generated differentiably by deep models. For example, NeuralLP (Yang
et al., 2017) uses an RNN controller to generate the sequence of attention vectors with x as the initial
input. And NLIL (Yang & Song, 2020) generates attentions with a stacked Transformer module with
predicate embeddings as the input. Let ILPω be the differentiable ILP model, we optimize paramter
ω such that

argmax
ω

∑
⟨vx,P,v′

x⟩∈Tinit

score(vx, v
′
x|α, β), (12)

where ⟨α, β⟩ = ILPω(⟨vx, P, v′x⟩|G). The LOGICDP framework is agnostic to the actual choice of
the ILP model, one can also apply forward-chaining methods such as ∂ILP (Evans & Grefenstette,
2018) or dNL-ILP (Payani & Fekri, 2019) to achieve similar outcomes. Finally, we collect all rules
learned from Tinit as our rule setRcand.

B POSTERIOR REGULARIZATION

In section 4.3, we apply the posterior regularization (Ganchev et al., 2010) on the rule set and
construct Mlabel as a teacher model that aggregates the joint inferences of the rules inR. Formally, a
teacher model is defined as the solution to a convex optimization problem

min
Mlabel,ξ

KL (Mlabel (t|R) ∥fθ (t)) + C

B∑
j=1

ξj , (13)

s.t. λj(1− EMlabel [Rj(x, x
′)]) ≤ ξj , j = 1, ..., B, (14)

where ξ = ξ1, ..., ξB ≥ 0 are the slack variables and C is the regularization coefficient controlling
the weight of the penalty term. Intuitively, we want the teacher to reflect the belief of the logic rules.
This is done by putting the inequality constraint Eq.(14). On the other hand, while rule constraints
are all satisfied, we want the teacher to stay close to fθ which is the reasoning model we seek to
train, such that it creates a smooth optimization surface that makes it easy for the fθ to learn from
the teacher. This is done by minimizing the KL divergence in Eq.(13) between Mlabel and fθ. This
problem is solved analytically

Mlabel (t|R) ∝ fθ (t) exp

−C B∑
j=1

λj(1−Rj(x, x
′))

 , t := ⟨x, P, x′⟩, (15)

C DATASET STATISTICS

We summarize the statistics of the three datasets in Table 4.

Table 4: Statistics of FB15K-237, WN18RR and Visual Genome datasets.

KG # facts # entities # predicates

FB15K 272K 15K 237
WN18RR 93K 41K 11
VG 1.9M 1.4M 2100

D EXAMPLE LOGIC RULES

We show example logic rules learned from the Visual Genome dataset in Figure 5.
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Ocean

Bike(X) ← Person(Y) 

∧ Riding(Y, X)
Book(X) ← Shelf(Y) 

∧ On(X, Y)
Food(X) ← Person(Y) 

∧ Eating(Y, X)

Flag(X) ← Pole(Y) 

∧ On(X, Y)

Ball(X) ← Player(Y) 

∧ Holding(Y, X)

Building(X) ← Roof(Y) 

∧ Has(X, Y)

Bed(X) ← Pillow(Y) 

∧ On(Y, X)

Boat(X) ← Ocean(Y) 

∧ In(X, Y)

Figure 5: Showcases of logic rules learned from the scene graphs.

E LOGICDP WITH HUMAN ORACLE

Figure 6: Screenshot of the question forms

The screenshot of the question forms used in the human oracle study is shown in Figure 6. This study
is approved by the institute IRB. The document will be made available after the review phase for
anonymous purposes.
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Figure 7: Mean and std of human evaluation scores of the 35 questions collected in section 5.5.

Human score distribution. We show the mean and std of human evaluation scores in Figure 7 for
the 35 questions. We find the confidence scores are generally consistent for all participants, which
suggests that the logic rules can be evaluated with general human commonsense. However, note that
LOGICDP does not require a consistent score distribution to function: each rule R obtains only a
single confidence score λ.

F ADDITIONAL ABLATION STUDIES

Table 5: Performance of LOGICDP with three different ILP methods on the FB15K and VG datasets:
NeuralLP (Yang et al., 2017), NLIL (Yang & Song, 2020), and dNL-ILP (Payani & Fekri, 2019).

ILP method FB15K-237 VG
MRR Hits@10 R@1

NeuralLP 0.26 38.9 0.55
NLIL 0.28 42.9 0.57
dNL-ILP 0.28 43.8 0.54

LOGICDP is agnostic to the choice of ILP methods. In the experiments, we found LOGICDP
performs similarly with both dNL-ILP (Payani & Fekri, 2019) and NLIL (Yang & Song, 2020)
methods, indicating LogicDP is also insensitive to the choice of ILP methods. To further validate this
observation, we show LOGICDP performance on FB15K and VG datasets with three ILP methods.
We use the same budget and bootstrap set size as in section 5.3. For FB15K, we set |Tinit| to 10%
and B = 5; for VG, |Tinit| = 15 and B = 5. The results are shown in Table 5, which suggests that
LOGICDP is not sensitive to the choice of the ILP methods.
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