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Abstract
Representation learning assumes that real-world
data is generated by a few causally disentan-
gled generative factors (i.e., sources of variation).
However, most existing works assume uncon-
foundedness (i.e., there are no common causes
to the generative factors) in the discovery pro-
cess, and thus obtain only statistical indepen-
dence. In this paper, we recognize the impor-
tance of modeling confounders in discovering
causal generative factors. Unfortunately, such
factors are not identifiable without proper induc-
tive bias. We fill the gap by introducing a frame-
work named Confounded-Disentanglement (C-
Disentanglement), the first framework that explic-
itly introduces the inductive bias of confounder
via labels/knowledge from domain expertise. We
further propose an approach for sufficient identifi-
cation under the VAE framework.

1. Introduction
Causally disentangled representation learning methods en-
deavor to identify and manipulate the underlying explana-
tory causes of variation (i.e., generative factors) within
observational data through obtaining causally disentan-
gled representations (Wang & Jordan, 2021; Eastwood &
Williams, 2018). Pursuing causal independence1 makes
it possible to identify the ground truth generative factors
that are not statistically independent, for example, the color,
shape and size in a fruit dataset as shown in ??, which is
more realistic and allows more controlled data generation,
improved robustness, and better generalization in out-of-
distribution problems.

Despite great success, existing methods suffer from the

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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1We will use causally disentangled and causally independent
interchangeably.

identifiability issue in discovering semantically meaningful
generative factors. The main reason is that most of them
equate disentangling in the latent space with enforcing statis-
tical independence (Higgins et al., 2016; Kim & Mnih, 2018;
Chen et al., 2016) in the latent space, or requiring no mutual
information(Eastwood & Williams, 2018). In other words,
they explicitly or implicitly assume that the observational
dataset is unconfounded, i.e., there are no common causes
among the learned latent factors. Such a limited assumption
leads to discrepancies in characterizing the statistical rela-
tionship of the generative factors on the observational set
and makes them non-identifiable. In addition, it has been
shown almost impossible to obtain disentangled representa-
tions through purely unsupervised learning without proper
inductive biases (Horan et al., 2021; Locatello et al., 2019).

In this paper, we recognize the importance of providing
inductive bias to confounder so that the ground truth gen-
erative factors can be identified and we fill the gap by in-
troducing the inductive bias via knowledge from domain
expertise. Specifically, we propose a framework called
Confounded-Disentanglement (C-Disentanglement). C-
Disentanglement is, to the best of our knowledge, the first
framework that discusses the identifiability issue of genera-
tive factors regarding the inductive bias of confounder, and
thus opens up the possibility to discover the ground truth
causally disentangled generative factors which are corre-
lated in the observational dataset. Under the framework, We
develop an algorithm to discover the causally disentangled
generative factors in the latent space with inductive bias C,
where C is a label set.

Summary of contributions: (1) We recognize the identifi-
ability issue of discovering generative factors in the latent
space. We accordingly introduce a framework, named Con-
founded Disentanglement (C-Disentanglement). It is the
first framework that discusses how inductive bias of con-
founder could be explicitly provided via labels/knowledge
from domain expertise and propose an algorithm, cdVAE,
to identify these factors in the latent space.

(2) We conduct extensive experiments and ablation studies
across various datasets and tasks. Empirical results verify
that cdVAE outperforms existing methods in terms of in-
ferring causally disentangled latent representation and also
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Figure 1: The left figure shows the ground truth generative process
while the right figure demonstrates the learning task.

show cdVAE’s superiority in downstream tasks under OOD
generalization.

2. Confounded causal disentanglement via
inductive bias

2.1. Problem formulation

We formally frame the task of discovering a set of generative
factors from the observational dataset from a causal perspec-
tive as shown in Figure 1. Let X denote the observational
data, the confounded causal generative process (Suter et al.,
2019; Reddy et al., 2022) assumes that X are generated from
K ground-truth causes of variations G = [G1, G2, ..., GK ]
(i.e., G → X) that do not cause each other. These generative
factors are generally not available, and they are confounded
by some unobserved confounding variables C∗. The task of
interest is to discover those generative factors in the latent
space (denoted as Z = [Z1, Z2, ..., ZD]) that best approxi-
mates G from X.

Causal disentanglement among latent generative factors.
Generative factors, encoded in the latent representational
space, are causally disentangled, meaning that intervening
on the value of one factor does not affect the distribution of
the others. It is formally defined as:

Definition 2.1 (Causal Disentanglement on Data X((Pearl,
2009; Suter et al., 2019; Wang & Jordan, 2021))). A repre-
sentation is disentangled if, for i ∈ {1, ..., D},

P (Zi|do(Z−i = z−i),X) = P (Zi|X), ∀zi. (1)

where −i = {1, 2, ..., D}/i indicates the set of all indices
except for i.

Challenge of unobserved C∗. The generative factors G
are not identifiable without proper inductive bias of C∗ (Lo-
catello et al., 2019).

Previous works on discovering the generative factors ei-
ther obtain disentanglement by enforcing statistical inde-
pendence on latent variables (Higgins et al., 2016; Liu
et al., 2015; Chen et al., 2016), or require that latent vari-
ables do not capture information of each other (Eastwood

& Williams, 2018). Such a setting is equivalent to assum-
ing unconfoundedness of the generative factors. It ignores
the possibility that correlated latent variables can also be
causally disentangled in the observational distribution, and
hence is an assumption too restrictive. Fortunately, even
though the ground truth generative factors are unobserved,
domain expertise may inform a “reasonable” or “likely” in-
ductive bias of the confounder from an accessible label set,
denoted as C.

We thus introduce an operator doc(·) to estimate the in-
terventional distribution on the observational set under in-
ductive C. This C is used to account for all correlation
among Z. The framework that applies doc(·) is named C-
Disentanglement.

We empirically show in Section 4 that even partial infor-
mation of confounders improves accuracy, outperforming
existing methods in various tasks, even under distribution
shifts.

Definition 2.2 (C-Disentanglement and doc). Let X be the
observational data, Z = [Z1, Z2, ..., ZD] be a concatenation
of D random variables, C be a label set selected from do-
main expertise to provide inductive bias for confounders of
the observational data, we define doc operation as:

P (Zi|doc(Z−i = z−i),X) =∑
c∈C

P (Zi|X, Z−i = z−i,C = c)P (C = c)

∀i ∈ 1, 2, 3, ..., D, where c is realizations of C. Z obtains
C-Disentanglement on X given C if

P (Zi|doc(Z−i = z−i),X) = P (Zi|X). (2)

3. cdVAE: identify causally disentangled
factors in the latent space.

In this section, we provide an algorithm, cdVAE, for con-
founded disentangled VAE, to identify the latent causally
disentangled generative factors under confounder C in the
context of VAE.

3.1. Learning objective

Given X as the dataset, we hope to find a deterministic
function f , parameterized by θ, where f : Z → X such
that (1) P (X) =

∫
f(Z; θ)P (Z)dz is maximized and (2)

each Zi encodes causally disentangled generative factors,
with Z = [Z1, Z2, ..., ZD] as a concatenation of random
variables in the latent space.

More concretely, f(z; θ) is characterized by a probability
distribution P (Z|X; θ), and p(Z) is a prior distribution from
where Z can be easily sampled. For each Zi ∈ Z, we require

P (Zi|doc(Z−i),X) = P (Zi|X), ∀c ∈ C. (3)
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Applying the variational Bayesian method (Kingma &
Welling, 2013), even though the methodology is not re-
stricted to only VAEs, the learning object is to optimize the
evidence lower bound (ELBO) while satisfying the constrain
on causal disentanglement:

max
θ,ϕ

EZ∼Q[logP (X|Z; θ)]−D[Q(Z|X;ϕ)||P (Z)]

(4)

s.t. P (Zi|doc(Z−i),X)− P (Zi|X) = 0 ∀i ∈ 1, 2, ..., D
(5)

For simplicity, we omit all model parameters θ, ϕ in writing.

3.2. Learning strategy

We start from the estimation of the causal disentanglement
constraint as shown in Equation (3). Because the probability
distribution is hard to be directly calculated, inspired by
(Suter et al., 2019), we resort to its first-order moment as
an approximation. Specifically, we estimate the L1 distance
between the expectation of probability P (Zi|doc(Z−i), X)
and P (Zi|X) as follows:

lc =

D∑
i=1

[E(Zi|doc(Z−i),X)− E(Zi|X)]. (6)

We show in the following theorem that restraining the
learned latent variable Z to be a Gaussian distribution with
diagonal covariance matrix minimizes loss lc. Proof can be
found in Appendix D.2.

Theorem 3.1. Suppose that the latent variable Z on dataset
X given C = c is Gaussian N (µc(X),Σc(X)). Specifi-
cally,

P (Z|C = c,X) = (2π)−D/2 det(Σc)−1/2

exp

(
−1

2
(Z− µc)T(Σc)

−1
(Z− µc)

)
,

where Z ∈ RD. If Σc(X) is diagonal for all c, we have

lc =

D∑
i=1

[E(Zi|doc(Z−i),X)− E(Zi|X)] = 0. (7)

From Theorem 3.1, we see that for each C = c, enforc-
ing the latent variable Z to be statistically independent
minimizes lc. Taking the whole C set into consideration,
P (Z|X) subjects to a mixture of Gaussian distribution
where each centroid is inferred from observational data
under a specific realization of the confounder C:

P (Z|X) =
∑
c∈C

πcN (µc(X),Σc(X)). (8)

The mixing coefficient πc = P (C = c|X) reads the
probability of occurrence of C = c. Nevertheless, such
a hard assignment of coefficient varies with observable
dataset and cannot accommodate scenarios in which the
label set C does not exist. In this paper, we parameter-
ize πc as a Gaussian distribution for a soft assignment of
samples: πc ∼ N (µπc(X),Σπc(X)). Parameters µπc(X)
and Σπc(X) are learned to minimize the discrepancy with
P (C = c|X).

In VAEs, the prior of the latent space P (Z) is assumed to
follow a Gaussian distribution with mean zero and identity
variance: Z ∼ N (0, I). To avoid enforcing statistical in-
dependence of the overall latent spaces we learn, we only
assume that the prior of Z to be a normal distribution with
variance one for each subset of C. Specifically, suppose that
the latent variable Z for X under C = c follows a Gaussian
distribution N (µc(X),Σc(X)), then the KL divergence in
(4) regulates the distribution to N (µc(X), I).

By the Lagrangian multiplier method, the new loss function
is

L = −E[logP (X|Z)]︸ ︷︷ ︸
Lrec

+E[logP (C|πc(X))]︸ ︷︷ ︸
Lcls

+DKL[P (Z|X,C)||P (Z|C)].

4. Experiments
In this section, we experimentally compare cdVAE with
various baselines on synthetic and real-world datasets, and
study properties of cdVAE through the ablation studies. Con-
cretely, we aim to answer the following questions regarding
the proposed model:

▷ Q1: How does it perform compared to the existing meth-
ods in the latent space?

▷ Q2: How does it perform in downstream tasks such as
classification under distribution shifts?

4.1. Basic setup

Datasets. we evaluate cdVAE on three datasets: synthetic
datasets 3dshape (Burgess & Kim, 2018) and Candle (Reddy
et al., 2022), and real-world dataset CelebA (Liu et al.,
2015).

Baselines and tasks. We compare the performance of cd-
VAE in the task of image generation and classification under
distribution shift with the following architectures: (1) VAE-
based methods (vanilla VAE (Kingma & Welling, 2013),
β-VAE (Higgins et al., 2016), FactorVAE (Kim & Mnih,
2018)) that equate disentanglement as statistical indepen-
dence, (2) Existing causal regulation methods, CAUSAL-
REP (Wang & Jordan, 2021), (3) cVAE (Kingma & Welling,
2013) as it also applies the label information (4) GM-
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Table 1: Compare with baselines in image generation task on celebA and candle. The reconstruction error indicates the
end-to-end performance of the image generation task. D-score measures from a non-causal perspective and requires that the
generation process is unconfounded. We expect that a good method that recovers causally disentangled factors should obtain
poor (i.e., low) D-scores. IOSS, UC and CG are causal metrics that measure the level of disentanglement of a representation.

CelebA Candle

Methods Recon ↓ D ↑
(non-causal)

IOSS ↓
(causal) Recon ↓ D ↑

(non-causal)
UC ↑

(causal)
CG ↑

(causal)
IOSS ↓
(causal)

VAE 0.33 0.11 0.78 .024 0.14 0.10 0.18 0.69
β-VAE 0.27 0.15 0.74 .017 0.18 0.11 0.24 0.54
FactorVAE 0.25 0.17 0.68 .014 0.15 0.13 0.26 0.51

CAUSAL-REP 0.29 0.16 0.34 .012 0.18 0.20 0.32 0.31

cVAE 0.32 0.14 0.64 .020 0.14 0.12 0.21 0.62
GMVAE 0.30 0.13 0.71 .018 0.12 0.09 0.16 0.71

cdVAE 0.18 0.12 0.21 .008 0.11 0.35 0.54 0.16

Methods MIC ↑ TIC ↑ IRS ↑
VAE 21.9 12.1 0.82
β-VAE 22.1 12.4 0.85
FactorVAE 24.3 15.6 0.89

CAUSAL-REP 26.8 16.1 0.88

cVAE 22.4 12.4 0.84
GMVAE 23.2 12.8 0.81

cdVAE 31.9 20.2 0.89

Table 2: Compare how ground truth generative factors are recov-
ered (MIC/TIC) and how disentangled they are in the latent space
in classification on 3dshape dataset with shift severity = 0.5.

VAE (Dilokthanakul et al., 2016) as it also adopts a mixture
of Gaussian model in a variational autoencoder framework.
A detailed introduction of these metrics can be found in
Appendix E.

4.2. Experimental results

(Q1) cdVAE significantly outperforms various baselines
in end-to-end measurement.
We compare our cdVAE with baseline models in the image
generation task on the CelebA, and Candle datasets. More
details can be found in Appendix E.

As shown in Table 1, cdVAE are evaluated by several groups
of metrics. Our method outperforms all baselines on these
metrics except for the D score. Note the D score is only an
effective measurement when there are no confounders in the
observational dataset, resulting in a low D score with our
model as expected.

(Q2.1) cdVAE are more robust under distribution shifts.
We conduct the task of shape classification on the 3dshape
dataset with distribution shift and use the classification accu-
racy as a metric for out-of-distribution generalization. The
level of distribution shift is measured by the shift severity.

Figure 2: Compare cdVAE with β-Vae, CAUSAL-REP on clas-
sification under distribution shift. T represents accuracy on the
target data, S-T represents the performance drop when the classi-
fier trained on the source data is directly tested on the target data.

We train cdVAE, β-VAE, and CAUSAL-REP using images
from the source set, with decoders being replaced by classi-
fiers. The trained classifier is then tested on the targets set.
We report the classification accuracy on the target set and
the performance drop in Figure 2. We could observe that cd-
VAE is more robust than other baselines under distribution
shift as it has the lowest performance drop and the highest
target set accuracy.

(Q2.2) cdVAE better discovers the ground truth genera-
tive factors.
In the task of shape classification, we further examine how
well the learned representations approximate the ground
truth generative labels and to what extent they are causally
disentangled. Table 2 shows that cdVAE outperforms all
baselines in approximating the generative factors and the
disentanglement.
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A. Related Work
Disentangled Representations The pursuit for disentangled representation can be dated to the surge of representation
learning and is always closely associated with the generative process in modern machine learning, following the intuition
that each dimension should encode different features. (Chen et al., 2016) attempts to control the underlying factors by
maximizing the mutual information between the images and the latent representations. (Eastwood & Williams, 2018) propose
a quantitative metric with the information theory. They evaluate the disentanglement, completeness, and informativeness by
fitting linear models and measuring the deviation from the ideal mapping. (Higgins et al., 2016; Kim & Mnih, 2018; Chen
et al., 2018; Mathieu et al., 2019) encourage statistical independence by penalizing the Kullback-Leibler divergence (KL)
term in the VAE objective. However, the non-causal definitions of disentanglement fail to consider the cases where correlated
features in the observational dataset can be disentangled in the generative process. Such a challenge is well-approached
through a line of research from the causal perspective.

Causal Generative Process. Causal methods are widely used for eliminating spurious features in various domains and
improving understandable modelling behaviours(Wang et al., 2020; Xu et al., 2022; Liu et al., 2023). It is not until (Suter
et al., 2019) that it was introduced for a strict characterization of the generative process. (Suter et al., 2019) first provided a
rigorous definition of a causal generative process and the definition of disentangled causal representation as the non-existence
of causal relationships between two variables, i.e., the intervention on one variable does not alter the distribution of the
others. The authors further introduce interventional robustness as an evaluation metric and show its advantage on multiple
benchmarks. (Reddy et al., 2022) follow the path of (Suter et al., 2019) and further propose two evaluation metrics and
the Candle dataset. The confounded assumption allows for correlation in the latent space without tempering with the
disentanglement in the data generative. Despite effective evaluation tools, there is still a missing piece on how to infer a
set of causally disentangled features. Using the proposed evaluation metric as regulation, the model implicitly assumes
unconfoundedness and it falls back to finding statistical independence in the latent space. The problem of unrealistic
unconfoundedness assumption is identified by (Wang & Jordan, 2021). They assume that confounders exist but they are
unobservable. They further propose an evaluation metric considering the existence of confounders, that causally disentangled
latent variables have independent support measured by the IOSS score. Similar to the evaluation metrics introduced in (Suter
et al., 2019; Reddy et al., 2022), IOSS is also a necessary condition of the causal disentanglement. More importantly, as in
previous work focusing on obtaining statistical independence, such a regulation suffers from the identifiability issue.

Weak Supervision for Inductive Bias. The identifiability issue in unsupervised disentangled representation learning is
first identified in (Locatello et al., 2019). Specifically, they show from the theory that such a learning task is impossible
without inductive biases on both the models and the data. Naturally, a series of weak-supervised or semi-supervised
methods (Chen & Batmanghelich, 2020; Ahuja et al., 2022; Brehmer et al., 2022) are proposed with a learning objective
of statistical independence or alignment. In this paper, we take a step further for the confounding assumption, assuming
that the confounders are observable with proper inductive bias so that the latent representation can be better identified. We,
similarly, adopt partial labels of the dataset as the supervision signal. We treat the labels as a source of possible confounders
and allow the learning of correlated but causally disentangled latent generative factors to be learned.

B. Preliminaries
In this section, we introduce basic concepts in causal inference and then show how to evaluate the causal relationship among
variables in latent space.

Causal graph through DAG. The causal relationship among variables can be reflected by a Directed Acyclic Graph (DAG).
Each (potentially high-dimensional) variable is denoted as a node. The directed edges indicate the causal relationships and
always point from parents to children.

Intervention and do-operator. Intervention is one of the fundamental concepts in causal inference. When we intervene on
a variable, we set the value of a variable and cut all incoming causal arrows since its value is thereby determined only by
the intervention (Pearl, 2012). The intervention is mathematically represented by the do-operator do(·). Let Z1 and Z2 be
two variables, P (Z2|do(Z1 = z1)) characterizes an interventional distribution and reflects how a change of Z1 affects the
distribution of Z2. The do-operation and the interventional distribution should be estimated on the interventional dataset.
However, in practice, the true distribution of the data is unavailable but an observational subset. As a result, we estimate the
interventional distribution from the observational set following do-calculus introduced by (Pearl, 2009).

Do-calculus consists of three rules that help with identifying causal effects.
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Rule B.1 (Insertion/deletion of observations).

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
(9)

Rule B.2 (Action/observation exchange).

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
(10)

Rule B.3 (Insertion/deletion of actions).

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

(11)

where GX is the graph with all incoming edges to X being removed, GW is the graph with all outcoming edges to W being
removed, and Z(W ) is the set of Z-nodes that are not ancestors of any W -node.

Intuitively, Rule B.1 states when an observant can be omitted in estimating the interventional distribution, Rule B.2 illustrates
under what condition, the interventional distribution can be estimated using the observational dataset, and Rule B.3 decides
when we can ignore an intervention.

Confounders bring in spurious correlation. Although the detailed definitions vary from literature, a confounder usually
refers to a common cause (i.e., a common parent in the causal graph) of multiple variables and it brings in a certain level
of correlation among these variables. Consequently, to estimate the causal effect of one variable on the other from the
observational dataset, we have to eliminate the correlation introduced by the confounders. For example, when analyzing
the causal relationship between the number of heat strokes and the rate of ice cream consumption, we may find that there
is a correlation. However, the temperature is a confounder in the situation. If we eliminate this spurious correlation by
conditioning on the temperature, heat stroke is not correlated to the rate of ice cream consumption.

Evaluation of interventional distribution. We specifically consider the case where there are variables Z1 and Z2, and we
analyze how the existence of parental nodes affects the estimation of P (Z2|do(Z1 = z1)) on the observational distribution.

Proposition B.4. Let Z1 and Z2 be two random variables, C∗ be the ground truth confounder set. If C is a superset of or
is equivalent to C∗, i.e., C∗ ⊆ C, with c being a realization of C, we have

P (Z2|do(Z1)) =
∑
c∈C

P (Z2|Z1,C = c)P (C = c) (12)

if no C ∈ C is a descendent of Z.

The proof can be found in Appendix D.1.

Intuitively speaking, Proposition B.4 states that to accurately estimate the causal relationship between variables, we have to
eliminate the spurious correlation by conditioning on confounders. In addition, conditioning on additional variables will not
affect the estimation if they are not decedents of Z.

C. Relationship between C and C∗

The generative factors G are not identifiable without proper inductive bias of C∗ (Locatello et al., 2019). Previous
works on discovering the generative factors either obtain disentanglement by enforcing statistical independence on latent
variables (Higgins et al., 2016; Liu et al., 2015; Chen et al., 2016), or require that latent variables do not capture information
of each other (Eastwood & Williams, 2018). Such a setting is equivalent to assuming unconfoundedness of the generative
factors. It ignores the possibility that correlated latent variables can also be causally disentangled in the observational
distribution, and hence is an assumption too restrictive. Fortunately, even though the ground truth generative factors are
unobserved, domain expertise may inform a “reasonable” or “likely” inductive bias of the confounder from an accessible
label set, denoted as C. This C is used to account for all correlation among Z.

Note here that we do not assume the accessible label set C equals to C∗ (but hope that it is close to C∗). The relationship
between C∗ and label set C must fall into one of the following scenarios, despite the immeasurability of their exact
relationships.
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Case 1 The label set contains no information about the confounders, i.e., C = ∅

Case 2 The label set contains partial information about the confounders, i.e.,C ⊂ C∗,

Case 3 The label set contains all information about the confounders, i.e.,C = C∗

One may argue that C may contain information irrelevant to the ground truth confounders. We show in Appendix D that in
the confounded generative process described in this paper, irrelevant information in C does not affect the evaluation of the
interventional distribution, and therefore can be ignored. We only take into consideration how much information in C∗ is
captured here without loss of generality.

According to Proposition B.4, in case 3, we can estimate P (Zi|do(Z−i = z−i,X) on the observational set with inductive
bias from C. However, in the rest of the cases, the equation does not hold. Therefore, we introduce an operator doc(·) to
estimate the interventional distribution on the observational set under inductive C. The framework that applies doc(·) is
named C-Disentanglement, shorten for Confounded Disentanglement.

D. Proofs
D.1. Proof of Proposition B.4

Proposition D.1. Let Z1 and Z2 be two random variables, C∗ be the ground truth confounder set. If C is a superset of or
is equivalent to C∗, i.e., C∗ ⊆ C, with c being a realization of C, we have

P (Z2|do(Z1)) =
∑
c∈C

P (Z2|Z1,C = c)P (C = c) (13)

if no C ∈ C is a descendent of Z.

Proof.

P (Z2|do(Z1)) = P (Z2|do(Z1),C)P (C|do(Z1))

P (Z2|do(Z1),C)
Rule B.2
====== P (Z2|Z1,C)

P (C|do(Z1))
Rule B.3
====== P (C)

P (Z2|do(Z1)) =
∑
c∈C

P (Z2|Z1,C = c)P (C = c)

D.2. Proof of Theorem 3.1

Theorem D.2. Suppose that the latent variable Z on dataset X given C = c is Gaussian N (µc(X),Σc(X)). Specifically,

P (Z|C = c,X) = (2π)−D/2 det(Σc)−1/2 exp

(
−1

2
(Z− µc)T(Σc)

−1
(Z− µc)

)
,

where Z ∈ RD. If Σc(X) is diagonal for all c, we have

lc =

D∑
i=1

[E(Zi|doc(Z−i),X)− E(Zi|X)] = 0. (14)

Proof. We suppose that

P (Z|C = c,X) = (2π)−D/2 det(Σc)−1/2 exp

(
−1

2
(Z− µc)T(Σc)

−1
(Z− µc)

)
(15)
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where we omit X for simplicity and D is the dimension of Z for any given c. By definition of lc (Equation (6)) and
proposition B.4,

lc =

D∑
i=1

d (E[Zi|doc(Z−i),X]− E[Zi|X]) (16)

=

D∑
i

d(E[Zi|Z−i,X, C = c], E[Zi|X, C = c]) (17)

=

D∑
i

d(E[Zc
i |Zc

−i], E[Zc
i ]) (18)

where we denote Zc = [Z|X, C = c] for simplicity. Notice that Zc ∼ N (µc,Σc) ∈ RD, we therefore know that the
conditional distribution of any subset vector Zc

k, given the complement vector Zc
j , is also a multivariate Gaussian distribution

(Soch et al., 2020)
Zc
k|Zc

j ∼ N (µc
k|j ,Σ

c
k|j) (19)

where
µc
k|j = µc

k +Σc
k,j(Σ

c
j,j)

−1(Zc
j − µc

j), Σc
k|j = Σc

k,k − Σc
k,j(Σ

c
j,j)

−1Σc
j,k, (20)

given that Σc
j,j is nonsingular.

Hence we know that the first expectation in Equation (18) becomes

E[Zc
i |Zc

−i] = µc
i +Σc

i,−i(Σ
c
−i,−i)

−1(Zc
−i − µc

−i) (21)

assuming that Σc
−i,−i is nonsingular. Since E[Zc

i ] = µc
i , the loss lc can be written as

lc =

D∑
i

d(µc
i +Σc

i,−i(Σ
c
−i,−i)

−1(Zc
−i − µc

−i), µ
c
i ). (22)

We assume further that Σc is a diagonal matrix. Therefore Σc
−i,−i = 0 is a zero row vector. Then

lc =

D∑
i

d(µc
i , µ

c
i ) = 0 (23)

E. Experimental Details
E.1. Basic setup

Datasets. we evaluate cdVAE on three datasets: synthetic datasets 3dshape (Burgess & Kim, 2018) and Candle (Reddy et al.,
2022), and real-world dataset CelebA (Liu et al., 2015). 3dshape is a dataset of 3D shapes generated from 6 ground-truth
independent latent factors. These factors are floor color, wall color, object color, scale, shape, and orientation. Candle is
a dataset generated using Blender, a free and open-source 3D CG suite that allows for manipulating the background and
adding foreground elements that inherit the natural light of the background. It has floor hue, wall hue, object hue, scale,
shape, and orientation as latent factors. We use 3dshape and Candle as synthetic datasets.

Baselines and tasks. We compare the performance of cdVAE in the task of image generation and classification under
distribution shift with the following architectures: (1) VAE-based methods (vanilla VAE (Kingma & Welling, 2013),
β-VAE (Higgins et al., 2016), FactorVAE (Kim & Mnih, 2018)) that equate disentanglement as statistical independence, (2)
Existing causal regulation methods, CAUSAL-REP (Wang & Jordan, 2021), (3) cVAE (Kingma & Welling, 2013) as it also
applies the label information (4) GMVAE (Dilokthanakul et al., 2016) as it also adopts a mixture of Gaussian model in a
variational autoencoder framework.

Note that in this paper, we do not compare cdVAE with CausalVAE (Yang et al., 2021), despite the latter also obtaining
“disentanglement” in the latent space. The main reason is that CausaslVAE aims to disentangle known ground truth generative
factors in the latent space, which is fundamentally different from the learning objective in this paper.
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Figure 3: Learning paradigm of cdVAE. The input data X is partitioned by realizations of the confounder C. We infer
from each partition a Gaussian distribution and form a mixture of Gaussian model to characterize the distribution of Z on
the observational distribution. We assume soft assignment of samples and further infer πc(X) that resembles C.

Evaluation metrics. The experimental results are evaluated on (1) end-to-end evaluation metrics: the accuracy of
classification under distribution shifts and reconstruction loss in image generation task. (2) how well the learned latent
generative factors recover the ground truth one: Maximal Information Coefficient (MIC) and Total Information Coefficient
(TIC) (Kinney & Atwal, 2014). (3) Existing disentanglement scores from a causal perspective: IRS (Suter et al., 2019),
UC/CG (Reddy et al., 2022), IOSS (Wang & Jordan, 2021), and statistical perspective: D-Score (Eastwood & Williams,
2018). The higher these evaluation metrics, the better the model except for IOSS (the lower, the better).

The experiments are conducted on 4 NVIDIA GeForce RTX 2080Ti. In each experiment, we repeat 5 times with different
seeds and report the averaged results. In all experiments, only partial information on the ground truth confounder is provided.
Specifically, for example, the 3dshape dataset, we first make some predefined rules, such as “ 70% cubes are red”. Then we
generate 700 red cubes and 300 cubes in other colors. The generation process naturally divides the dataset into different
subgroups, and we can thus explicitly control how inductive bias is provided, i.e., the grouping. In the celebA dataset, since
we do not have access to the ground truth generative factors, so we assume any label sets only contain partial information.

In the shape classification experiments on the 3dshape dataset with distribution shift, we use the classification accuracy
as a metric for out-of-distribution generalization. Specifically, in the source distribution, we sample a certain percentage
of images in which the object hue is correlated with the object shape (i.e., red objects are cubes). The rest of the images
are evenly generated by disentangled factors, while in the target domain, all images are generated by disentangled factors.
The proportion of highly-correlated data is denoted by shift severity. For example, shift severity = 0.4 means that 40% of
training images are sampled under preset correlation between object hue and object shape.

E.2. Ablations studies

We further conduct ablation studies to show that providing inductive bias indeed improves the discovery of generative
factors in the latent space. Concretely, we compare cdVAE with conditional VAE (cVAE) (Kingma & Welling, 2013) and
GMVAE (Dilokthanakul et al., 2016). Compared with vanilla VAE, the method proposed uses label information to provide
inductive bias to confounders for partitioning the observational dataset cVAE has the label information compared with
vanilla VAE and GMVAE is a VAE modelled by a mixture of Gaussian. As shown in Table 1, cdVAE has universally better
results, showing the necessity of introducing bias to factors discovered in the latent space.

F. Algorithms
We show the flow chart of cdVAE as in Figure 3.
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