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Abstract

Transformer models have achieved impressive
success in various natural language process-
ing tasks. But it is also limited used in some
areas and the heavy computation complexity
is one of the main limitations. Many model
structures have been proposed to reduce the
computation complexity and some are really
effective. The previous research can be divided
into two categories. One is to use more effec-
tive training and inference strategies and the
other is focused on how to replace the stan-
dard self-attention mechanism with linear atten-
tion method. Differently, we revisit the design
in Transformer and find that the feed forward
network (FFN) is also computationally expen-
sive, especially when the hidden dimension is
large. In this paper, we propose a new FFN
structure, named MSCFFN, which splits the
large matrix space to several small space to re-
duce the computation complexity and uses the
Multi-Space Cross method to ensure the accu-
rate result. To the best of our knowledge, this
is the first time to redesign FFN to accelerate
Transformers. We experimentally validate the
effectiveness of the proposed method on the
Long-Range Arena benchmark. And the re-
sults show MSCFFN can achieve a faster speed
with a similar or even better accuracy. Our
codes are available at https://github.com/
henriTang/Transformer_Speed.

1 Introduction

Since Transformer models (Vaswani et al., 2017)
were proposed, especially the Bert (Devlin et al.,
2018) with pre-trained language models, they have
achieved state-of-the-art results in various domains
of natural language processing, such as machine
translation (Liu et al., 2020; Bao et al., 2021), text
classification (Xiong et al., 2021; Yang et al., 2020),
natural language inference (Jiang and de Marneffe,
2019; Guo et al., 2019), question answering (Yang
et al., 2019; Heo et al., 2022) and so son.

The effectiveness of transformer comes from
the multi-head self-attention mechanism (MHSA),
fully connected feed-forward network (FFN) and
the deep layers. The MHSA helps model to learn
the relation between tokens in different position
of a sequence, the FFN helps enlarge the network
space and enhance the non-linear capability, and
the deep layers are helpful to build a more complex
sentence relationship. However, these operations
also cause the high computation complexity, and
it is hard to use for user with low computation re-
source. To tackle this essential obstacle, there has
been much prior literature on improving the effi-
ciency of Transformers. The main research consists
of two parts, one is to use more effective strategies.
For example, Pyramid-BERT (Huang et al., 2022)
uses the core-set based token selection method to
reduce complexity, and PCEE-BERT (Zhang et al.,
2022) accelerates BERT using patient and confi-
dent early exiting method. The other is focused
on how to reduce the computation complexity of
the standard self-attention, which is quadratic com-
plexity correlated with sequence length, to linear
attention method. Such as Performer (Choroman-
ski et al., 2020), Longformer (Beltagy et al., 2020),
Cosformer (Qin et al., 2022), Flowformer (Wu
et al., 2022) and so on.

Although these methods have been proven to
be very effective in reducing computation com-
plexity, they almost don’t discuss the influence of
hidden dimension to computation complexity. In
fact, transformer models are also quadratic com-
plexity correlated with hidden dimension. When
the hidden dimension is large, it is computation-
ally prohibitive to train or inference (Zhang and
Cai, 2022). Actually, to achieve better results, Bert
xlarge uses 2048 of hidden dimension and Albert
xxlarge (Lan et al., 2019) uses 4096 of hidden di-
mension, which is really computationally expen-
sive for a common researcher. For the transformer
models, the main unit with quadratic complexity of
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hidden dimension (d) is FFN which has the com-
plexity of O(8d2) in vanilla transformer, because
the dimension of inner-layer is usually set to 4d for
a better result. Therefore, in this paper, we focus
on how to reduce the computation complexity of
FFN.

According to the characteristic of quadratic com-
plexity related to hidden dimension, if we shrink
the hidden dimension to 1

nd, the computation com-
plexity will be reduced to 1

n2 of the original. There-
for, we firstly split the original large matrix space
to several matrix spaces, and we apply the different
weight parameters for each small matrix to con-
duct the feed-forward network separately. Obvi-
ously, the representation ability of n small matrices
with d2

n2 which is the space of weight parameters is
much less than it of d2, and it is easy to cause the
effect decline. In order to solve this problem, we
propose a method of space cross mechanism, and
we name the final model MSCFFN. Through the
cross of different small space, we can enlarge the
matrix space and obtain a stronger representation
capability. Furthermore, benefitting from the in-
formation from different representation subspaces,
a larger coefficient of inner-layer and the deeper
network of FFN, MSCFFN can achieve a better
accuracy with a faster speed. We conduct experi-
mental study on the Long-Range Arena benchmark
(Tay et al., 2020), and the results demonstrate that
our MSCFFN is effective in speeding up and per-
forms better than baselines.

2 Related work

As mentioned in section 1, The most common meth-
ods to reduce the computation complexity are as
follows:

Effective strategies: with this method, they
don’t change the structure of MHSA and FFN, but
change the strategies of layers to train or tokens
to train. For example, (Dai et al., 2020) proposed
Funnel-Transformer which gradually compresses
the sequence of hidden states to a shorter one and
hence reduces the computation cost. (Huang et al.,
2022) proposed Pyramid-BERT which used a core-
set based token selection method to successively
shorten sequence length and void expensive compu-
tation resource. PCEE-BERT (Zhang et al., 2022)
was proposed by Zhang et al., and it achieves the
goal of speedup through exiting early when enough
numbers of consecutive intermediate layers are con-
fident about their prediction. GroupBERT (Ch-

elombiev et al., 2021) uses grouped transforma-
tions to reduce the density of fully connected layers.
Sparse mixtures of experts (sparse MoEs) reduce
the computation cost through conditional compu-
tation which only activates a subset of the overall
model, such as (Zhang et al., 2021; Fedus et al.,
2022).

Linear attention method: This method is to
resolve the quadratic complexity of vanilla self-
attention mechanism and try to reduce the complex-
ity of O(n2) to O(nlog(n)) or even O(n). For ex-
ample, Locally-sensitive hashing (LSH) attention
(Kitaev et al., 2020) applies a multi-round hashing
scheme to compute dot-product attention. Long-
former utilizes a sliding windows to learn the token
relation in a local window. Performer introduces
an unbiased linear estimation of the attention matri-
ces. Cosformer proposes a linear attention by using
the kernel methods with a non-linear re-weighting
scheme.

3 Method

3.1 Preliminaries of vanilla Transformers

In this paper, we only talk about the encoder struc-
ture, but our model is universal for all FFN. The
Transformers is composed of a stack of N identical
layers, and each layer contains a MHSA and a FFN.
Let us use Xs ∈ Rl×d and Xf ∈ Rl×d to repre-
sent the input of MHSA and FFN respectively, in
which l is the sequence length and d is the hidden
dimension.

For the MHSA, the input is firstly linearly pro-
jected to Q ∈ Rn×d, K ∈ Rn×d, V ∈ Rn×d by the
parameter matrices WQ ∈ Rd×d, WK ∈ Rd×d,
W V ∈ Rd×d:

(Q,K, V ) = (XsW
Q, XsW

K , XsW
V ) (1)

And then the attention can be computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where dk is the dimension of Q and K. After that,
the attention will be linearly transformed to the
output by the parameter matrices WO ∈ Rd×d.
And a residual connection with layer normalization
will be added. The output is also the input of FFN:

Xf = LN(Attention(Q,K, V )WO +Xs) (3)

For the FFN, two linear transformations with a



ReLU activation will be implemented as:

FFN(Xf ) = max(0, XfWf1 + bf1)Wf2 + bf2
(4)

where Wf1 ∈ Rd×di and Wf2 ∈ Rdi×d are weight
parameters. bf1 ∈ Rdi and bf2 ∈ Rd are bias
parameters. After that a residual connection with
layer normalization will be added.

OX = LN(FFN(Xf ) +Xf ) (5)

From the above equations, we can calculate and
obtain the computation complexity of MHSA in
each layer is approximately equal to O(4ld2 +
2l2d), the computation complexity of FFN in each
layer is approximately equal to O(8ld2) and the
total computation complexity in each layer is ap-
proximately equal to O(12ld2 + 2l2d). The ratio
of FFN to MHSA equals 4d

d+l . Of course, when
l >> d, the complexity of FFN is not worth con-
sidering. But in many cases, this condition is not
true, and even l << d, such as the daily dialogue
system, real-time machine translation and so on.
Therefore, optimizing the structure of FFN is really
meaningful for reducing the computation complex-
ity. What’s more, for the improved linear attention
mechanism, the FFN occupies a large proportion
no matter how long the sequence is. Our MSCFFN
can be combined with linear attention and speedup
the transformer models further.

3.2 MSCFFN Model
In this part, we present the proposed MSCFFN
model in detail.

The structure of MSCFFN is shown in Figure 1.
First of all, we transfer linearly the input of FFN
to a new space by the parameter Wf3 ∈ Rd×d and
bf3 ∈ Rd so that we can split it into n subspaces
easily.

I = XfWf3 + bf3 = Concat[I1, I2, ..., In] (6)

where Ii ∈ Rl× d
n is the i− th matrix in subspace.

And then we use n different parameters to trans-
former the Ii to a larger space.

Li = IiWIi + bIi (7)

In this equation, WIi ∈ R
d
n
×md

n and bIi ∈ R
md
n

are the parameters in which m indicates the coeffi-
cient of inner-layer. To make the network easier to
learn, the inner-layer usually has a bigger dimen-
sion and in vanilla FFN m is set to 4. In our work,
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Figure 1: General framework of MSCFFN (here n = 6)

we set m to 6 to achieve a better result. We have
to admit that the sum of n subspace of R

d
n
×md

n

is smaller than the original space of Rd×d, so the
cross method of subspace is proposed to improve
the range of representation space. Firstly, The input
L is divided into pairs. Secondly, we use non-linear
method to one of pairs. Finally, the element-wise
product is applied to one with the other in pairs.

Ci = Relu(L2i−1)⊙ L2i (8)

After that a linear transformation is used to project
from high dimension to low dimension. And we
concat the results to map it linearly to the original
dimension of Xf .

CLi = CiWCi + bCi (9)

Of = Concat(CLi)WCL + bCL (10)

where WCi ∈ R
md
n

× d
n and WCL ∈ R

d
2
×d. Finally,

a residual connection followed by a layer normal-
ization is applied as the original FFN.

3.3 Theoretical Analysis for MSCFFN

Effectiveness of speed: Through equations above,
we can calculate the theoretical computation
complexity of MSCFFN which equals O((1.5 +
2m
n )ld2). Usually, we set m to 6 and n to 12, so the

theoretical computation complexity is O(2.5ld2).



Model ListOps Text Retrieval Image Pathfinder Avg
Performer 18.01 65.40 53.82 42.77 77.05 51.41
Longformer 35.63 62.85 56.89 42.22 69.71 53.46
Transformer 36.37 64.27 57.46 42.44 71.40 54.39
Flowformer 38.70 64.29 62.24 43.20 73.95 56.48
Performer+MSCFFN 19.67 66.21 56.82 42.77 76.83 52.46 (+1.05)
Longformer+MSCFFN 36.70 63.61 57.59 41.26 70.25 53.88 (+0.42)
Transformer+MSCFFN 37.25 64.51 60.32 43.61 71.58 55.45 (+1.06)
Flowformer+MSCFFN 38.65 64.74 61.98 43.96 74.26 56.72 (+0.24)

Table 1: Results on the Long-Range Arena.

Model ListOps Text Retrieval Image Pathfinder Avg
Flowformer+MSCFFN 38.65 64.74 61.98 43.96 74.26 56.72
Flowformer+FFNlow−di 36.75 63.32 60.47 42.12 71.48 54.83 (-1.89)
Flowformer+FFNS−MoE 37.59 64.16 61.18 42.91 72.96 55.76 (-0.96)

Table 2: Comparing multi-space cross method with FFNlow−di and FFNS−MoE . The FFNlow−di indicates the
vanilla FFN with low dimension of inner-layer. The FFNS−MoE indicates the method of sparse mixture of experts
from Switch Transformer (Fedus et al., 2022) used to FFN.

Model Steps per second
Sequence Length 128 1K 4K
Transformer 20.21 3.45 -
Longformer 12.30 2.44 -
Performer 25.48 4.17 1.18
Flowformer 14.29 4.50 1.16
Transformer+ 29.09 4.55 -
Longformer+ 20.38 2.70 -
Performer+ 41.22 6.67 1.85
Flowformer+ 24.93 7.14 1.82

Table 3: Efficiency analysis with the hidden dimen-
sion 768, layers 6, number of heads 12, inner-layer
dimension 3072, and batch size 32 on byte-level text
classification benchmark. "+" represents + MSCFFN.
“-” indicates the out-of-memory situation.

Compared with the original FFN whose complex-
ity is O(8ld2), MSCFFN can save more than 60
percent of the computing resources.

Ability of model representation: Multi-subspace
help the model to learn different representations
actively. The cross mechanism of subspace and
the larger coefficient of inner-layer are beneficial
to enlarge the matrice space and obtain a stronger
representation capability. What’s more, MSCFFN
has a deeper network which is 5 compared with 2
in original FFN, and this motivates the model to
learn more complex representations.

4 Experiments

In this section, we testify the effectiveness and
generality of our proposed model MSCFFN on the
dataset of Long-Range Arena (LRA).

LRA is a benchmark which contains five dif-
ferent tasks: Long sequence ListOps (Nangia
and Bowman, 2018), Byte-level text classification
(Maas et al., 2011), document retrieval (Radev
et al., 2013), image classification on sequence of
pixels (Krizhevsky et al., 2009), and Pathfinder
(Linsley et al., 2018). Their length of sequences
ranges from 1K to 16K. LRA is a suitable bench-
mark for testing the quality of efficient transformer
variants, especially for the ability of long input
sequence. We chose this dataset to verify that
MSCFFN is general for different tasks and is effi-
cient in different sequence length. We utilize di-
rectly the official method of data processing, exper-
iment protocol and training parameters1 to ensure
the fair comparison. And we use MSCFFN directly
to replace the original FFN in four base models.
The experiment is conducted on 4 V100 GPUs. To
ensure result reliability, we conducted five sepa-
rate experiments for each task with different seed
values, averaging them for the final reported result.

The experimental results are shown in Table 1.
And we can see that they all achieve a better per-
formance in average score than baselines. The

1https://github.com/google-research/
long-range-arena
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MSCFFN brings 1.06 on Transformer and 1.05 on
Performer averaged promotion respectively. There-
fore MSCFFN has a more competitive performance
over the original FFN.

To further prove the effectiveness of our multi-
space cross method, we conduct ablation studies
whose results shown in Table 2. The FFNlow−di

indicates the vanilla FFN with low dimension of
inner-layer, and we set it to

√
5
2 d to ensure that

the computation complexity is close to that of
MSCFNN. The FFNS−MoE indicates the method
of sparse mixture of experts from Switch Trans-
former (Fedus et al., 2022) used to FFN, meanwhile
we set numbert of experts to 6 and the hidden di-
mension of single expert to

√
5
2 d. The experimental

results show that directly reducing the dimension
of FFN for faster speed is harmful to the effect,
even if sparse moe are used.

We also conduct experiment in efficiency anal-
ysis, which is shown in Table 3. To make the re-
sults more general, we use the model parameters
of common big models and test it over a larger
range of length (128-> 4K). The results indicate
that MSCFFN can speedup all these models both
in short and long sequence. The MSCFFN can
achieve at most 1.7x speedup on Flowformer and
1.6x speedup on Performer in Table 3.

5 Conclusions

In this paper, we propose a new FFN structure
named MSCFFN, which can replace the original
FFN in Transformer models and speedup model
training and inference no matter how long or short
the input sequence is. In MSCFFN, we reduce the
computation complexity through splitting the ma-
trix space to several small space. Benefiting from
multi-space cross mechanism, a larger coefficient
of inner-layer and a deeper network, MSCFFN can
achieve comparable or even better performances
than the vanilla FFN. The experiment results on
five tasks of LRA demonstrate the effectiveness
and generality of our proposed model MSCFFN.
Furthermore, the proposed model is probably not
only used for FFN in transformer models, but also
for other model structures which contain FFN.

Limitations

We have to note that the cross mechanism of sub-
space by element-wise product will fail to a smaller
space in a small probability. For example, if two
spaces are orthogonal, the element-wise product

equals zero. Therefore, although it happens with
low possibility, a constraint should be added to
avoid it. What’s more, we believe that there are
more efficient methods to conduct the cross mecha-
nism. We leave all this for future work and we will
refine it more perfect theoretically and experimen-
tally.

Ethical Considerations

All the datasets in our experiments are already pub-
lic by other researches and can be acquired easily
from network. And they don’t contain real per-
sonal information and will not cause any harm. To
simplify the research of others, we will release the
code later.
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