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Abstract

The number of different signed languages001
presents novel challenges in cross-cultural sign002
language processing. Our work takes a pio-003
neering step into direct sign-to-sign translation004
across different sign language families. We first005
conduct a qualitative analysis of linguistic traits,006
both shared and distinctive, within a parallel007
corpus of multiple signed pairs of sentences.008
We then introduce a novel generation frame-009
work, CODA, for translating one sign language010
to another, employing Large Language models011
as intermediary text recognizers. We compile a012
dataset for sign-to-sign translation pairs across013
three signed languages: American Sign Lan-014
guage (ASL), Chinese Sign Language (CSL),015
and German Sign Language (DGS). We further016
utilize sign glosses as an intermediate represen-017
tation to construct a multi-task model that can018
assist in preserving the semantic meaning of019
generated sign skeletal videos. We show that020
our model performs well on automatic metrics021
for sign-to-sign translation and generation as022
a novel first implementation. We make all our023
code and models available upon acceptance.024

1 Introduction025

Our paper tackles the computational challenges of026

translating between diverse sign languages, a cru-027

cial step toward enhancing accessibility and com-028

munication within deaf communities. The lack of029

a global standard for sign languages that fully ac-030

commodates the depth and complexity of regional031

sign languages poses significant barriers to cross-032

cultural communication.033

Historically, distinct sign languages have devel-034

oped across various regions since as early as the035

fifth century BC(Bauman, 2008), each with its own036

set of features and rules, from phonology and syn-037

tax to semantics and pragmatics(Virginia Swisher,038

1988). These visual languages harness gestures,039

facial expressions, and the spatial dynamics of040

communication, leveraging shared cognitive abil-041

Figure 1: An example demonstrating how our CODA
framework translates a sentence from one sign language
to another.

ities and linguistic conventions that, to some ex- 042

tent, unify signed languages globally. However, 043

significant differences persist, highlighting the im- 044

portance of technological interventions in bridg- 045

ing these gaps. For instance, despite English be- 046

ing a commonly spoken language in both the U.S. 047

and the U.K., American Sign Language (ASL) and 048

British Sign Language (BSL) remain mutually un- 049

intelligible(Pyers, 2012), underscoring the critical 050

role of technology in exploring the meta-linguistic 051

skills that transcend the spoken-sign language di- 052

vide. 053

As shown in Figure 2, the glosses with the same 054

meaning (snowing) have shared spatial movements 055

and are more understandable across different sign 056

languages. Building on this inspiration and obser- 057

vation, this work aims to present the first study of 058

a computational approach to automatically learn 059

the mappings between sign languages and generate 060

sign video translations across them. 061

Recent advancements in sign language technol- 062

ogy have enhanced communication between sign 063

and spoken language users. However, they fail to 064
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address the critical communication issues between065

different groups of signers using separate signed066

languages. Inspired by the successes in spoken lan-067

guage Neural Machine Translation (Vaswani et al.,068

2017a; Liu et al., 2020; Xue et al., 2021), this study069

proposes translating sign videos across various sign070

languages to bridge these communication gaps.071

Our work introduces a parallel corpus to en-072

able communication between signers from differ-073

ent communities. Existing corpora, limited to sin-074

gle sign languages with spoken transcriptions and075

gloss annotations, lack cross-linguistic pairs with076

similar meanings, severely hindering the transla-077

tion of sign language. We present an automatically078

aligned multilingual sign language corpus derived079

from multiple uni-language sign corpora to fill the080

gap of cross-lingual sign languages. It includes081

over 3,000 pairs covering ASL-CSL, DGS-ASL,082

and DGS-CSL parallel videos with the texts and083

glosses annotations. Text samples of our corpus are084

shown in Table 1. To our knowledge, this is the first085

corpus on the multilingual sign language dataset.086

Thus our effort not only facilitates cross-lingual087

sign language understanding but also offers insights088

into the social, cognitive, and linguistic nuances of089

sign languages, improving our comprehension of090

their use and processing across populations.091

We begin by qualitatively analyzing the diversity092

and similarities in sign languages, offering insights093

into the challenges and opportunities in develop-094

ing aligned sign language representations. With095

those insights, we introduce a framework for di-096

rect sign-to-sign translation, CODA. We propose097

an end2end model to translate sign videos from098

one language to another. We further investigated099

whether an auxiliary task for gloss detection could100

help the video translation quality. We further con-101

ducted experiments with Foundation Models such102

as GPT-4, in an attempt to refine the extraction of103

intermediate translations like glosses to enhance104

the capture of sign gloss patterns. Experiment re-105

sults demonstrate that the proposed model gener-106

ates moderate-quality videos and serves as a first107

step to mitigating the gap between different sign108

languages. We end the paper with suggestions for109

future research in the sign translation tasks.110

2 Related Work111

The study of sign languages has seen considerable112

advancements across two main fronts: sign lan-113

guage recognition (SLR) and sign language gener-114

ation (SLG). 115

SLR has progressed from early visual recogni- 116

tion (Borg and Camilleri, 2019; Moryossef et al., 117

2020; Camgoz et al., 2018; Ko et al., 2019; Yin 118

et al., 2021), segmentation (Fenlon et al., 2008; 119

Cormier et al., 2016) efforts to sophisticated mod- 120

els capable of end-to-end translation (Starner, 1995; 121

Yang and Sarkar, 2006; Huang et al., 2018; Camgoz 122

et al., 2018), heavily relying on deep learning tech- 123

niques like CNN/RNN(Huang et al., 2018; Cheng 124

et al., 2020) and Transformer-based models (Yin 125

and Read, 2020; Camgoz et al., 2020; Zhou et al., 126

2021b; Cheng et al., 2023; Wu et al., 2023) for 127

state-of-the-art performances. 128

SLG, on the other hand, seeks to translate text 129

into sign language poses or videos, where recent 130

work has greatly benefited from larger datasets 131

such as PHOENIX-14T (Camgoz et al., 2018) and 132

CSL-Daily (Zhou et al., 2021a) and advanced neu- 133

ral networks, enabling the generation of accurate 134

and expressive human skeletal sequences. (Stoll 135

et al., 2018b; Zelinka and Kanis, 2020; Saunders 136

et al., 2020a, 2021; Viegas et al., 2022; Zhou et al., 137

2021a) 138

Amidst these developments, translation and 139

alignment in sign language translation have 140

emerged as critical challenges. Notable efforts in 141

this area include the application of neural machine 142

translation (NMT) methods to translate spoken lan- 143

guage text into sign language (SL) glosses (Zhu 144

et al., 2023)(2023). They demonstrates substantial 145

improvements on both German SL and American 146

SL corpora. Similarly, earlier studies like Othman 147

et al. (2011) and projects such as DeepASL Fang 148

et al. have explored statistical and deep learning ap- 149

proaches to address the alignment and translation of 150

English text to ASL gloss. Bidirectional translation 151

systems, exemplified by Cate et al., have introduced 152

generative models to enhance alignment between 153

ASL and English, marking significant strides to- 154

ward more nuanced translation mechanisms. 155

Our contribution diverges from these established 156

paths by focusing on the direct translation between 157

different sign languages, aiming to leverage the 158

unique visual and linguistic features inherent to 159

sign languages. This novel approach, which builds 160

upon the foundational work in both SLR and SLG, 161

as well as the specific translation and alignment 162

challenges addressed by recent research, represents 163

a pioneering effort to enable direct, meaningful 164

communication across diverse sign language com- 165
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Figure 2: The sign of the word snow/snowing in Chinese Sign Language (CSL) (Zhou et al., 2021a), German Sign
Language (DGS) (Camgoz et al., 2018), and American Sign Language (ASL) (Duarte et al., 2021) with their glosses.
Similar patterns of spatial movements (hands from top to bottom in the orange area) and hand gestures (bending
fingers for symbols of snow flower, as shown in the blue area) are shared across three languages. On the other hand,
the duration and repetition of hand movements differ (DGS repeats twice while signers in the other two languages
put the hand down only once). Our study is not limited to single gloss detection but to video translation.

Text Gloss

ASL
Low self esteem or a low feeling about oneself N/A (not provided by the dataset)
is unfortunately very common.

CSL
自卑，就是人类常见的一种表现。 自卑<gloss>人<gloss>人<gloss>见<gloss>有
Inferiority is a common manifestation of human beings. Inferiority <gloss> human <gloss> human

<gloss> see <gloss> have

ASL Good evening. N/A

DGS
und damit schönen guten abend . BEGRUESSEN SCHOEN GUT ABEND BEGRUESSEN
and have a nice good evening. welcome good evening

CSL
山上雪白一片。 山<gloss>颜色<gloss>雪白
snow white on the mountain mountain <gloss> color <gloss> snow white

DGS
an den bergen fällt etwas schnee . BERG <gloss> SCHNEE
some snow is falling on the mountains. mountain <gloss> snow

Table 1: Example of our constructed parallel corpora in texts, where in the real dataset, we have the video paired up
as well. For non-English languages, we provide a Google translation for reference of meaning. Note that the ASL
dataset is not released with glosses.

munities.166

3 Qualitative Analysis of Sign Language167

Sign languages can compress the information of168

similar spoken languages in different perspectives,169

which may vary in gesture movements, facial170

expressions, and duration of activity. We first171

analyzed the average length of sign video frames172

for glosses by dividing the frame counts by 173

the gloss numbers of each instance. This is an 174

approximation of the information compression 175

for individual glosses. Since the How2Sign 176

dataset (ASL) does not release the gloss, we 177

use the texts instead. As shown in Table 2, 178

ASL tends to utilize a longer time to present a 179

single gloss, while DGS is the most efficient 180

one. This may be affected by the domain 181
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restriction of DGS where weather forecasting182

has a narrower vocabulary and thus is more elegant.183

184

Linguistic Analysis

ASL CSL DGS

min/mean/max min/mean/max min/mean/max

0.1/7.9/115.0 1.6/17.3/73.4 3.2/15.5/71.5

Table 2: The average frame counts per gloss across the
Sign Language Datasets.

185
Visual Modality Similarity Based on the visual186

modality, we hypothesize that the overlapping or187

similarity of sign languages can be attributed to the188

similarity of hand gestures used for specific signs.189

As the datasets studied in this paper belong to the190

continuous sign language domain and lack gloss-191

level mappings, we relied on an online sign lan-192

guage dictionary, SpreadTheSign1, and conducted193

a qualitative analysis on thirteen selected triplets194

of signs across American Sign Language (ASL),195

Chinese Sign Language (CSL), and German Sign196

Language (DGS). When examining glosses associ-197

ated with natural phenomena, such as "snow" and198

"mountains", we found that these three languages199

share similar gestures that mimic natural move-200

ments. However, when it comes to more abstract201

words like "sorry", the distinctiveness of spoken202

languages leads to significant differences in body203

language expressions. On the other hand, for words204

that involve measuring distance or length, such as205

"far" and "long", the three languages exhibit simi-206

larities by extending body regions. Overall, these207

findings highlight the effects of visual modality on208

sign languages.209

4 Challenges in Cross-lingual Sign210

Translation211

Although substantial efforts have been made in212

both Sign Language Recognition and Generation,213

connecting different sign languages proves to be214

challenging due to their distinctiveness. Glosses,215

which form the fundamental building blocks of sign216

language, can serve as a means of bridging the gap.217

One intuitive approach would be to employ a pipe-218

lined model to unify the two sections with natural219

languages (segmentation, then recognition of iso-220

lated natural language glosses from language one221

1https://www.spreadthesign.com/en.us/
search/

and generation based on the translations). However, 222

certain challenges existed.2 223

Firstly, there is a lack of research on accurately 224

segmenting and recognizing isolated signs in large- 225

scale sign language datasets with an open vocabu- 226

lary. The current state-of-the-art model(Renz et al., 227

2021) achieves an mF1B boundary prediction F1 228

score of only 0.53 on the widely used PHOENIX- 229

14T dataset, limited to BSL and DGS. The largest 230

word-level ASL dataset(Li et al., 2019) reports a 231

Top-1 accuracy of 30% for a vocabulary of 2,000 232

words. Other sign languages have even smaller 233

vocabularies, ranging from 40 (DGS)(Ong et al., 234

2012) to a few hundred (CSL), with low accuracy. 235

These poor performances raise questions about the 236

accuracy of isolated sign recognition for subse- 237

quent generation tasks. 238

Secondly, most works of continuous sign lan- 239

guage generations have primarily focused on the 240

PHOENIX-14T dataset, which comes from the 241

narrowed domain of weather forecast and is only 242

coupled with designed German sign glosses. This 243

pattern also holds for other datasets, typically an- 244

notated individually and incorporating specialized 245

glosses in their respective natural languages. Fur- 246

thermore, these datasets often feature open vocab- 247

ularies that differ significantly. There is a demand 248

for a high-quality gloss-translation parallel corpus 249

and a robust model that can generate sign videos 250

from the given textual inputs to unify the language 251

translation and later generations. Unfortunately, 252

the sign generation results are still poor, given the 253

automatic metrics, and not many explorations are 254

done on other datasets. 255

5 Dataset Construction 256

In this section, We create a new Multilingual-SIGN 257

corpus by pairing up sign videos from different sign 258

language corpora. We have developed a meticulous 259

matching methodology that considers the corre- 260

sponding text transcriptions and gloss annotations 261

associated with the sign videos. We describe the 262

details below. 263

5.1 Curation of Raw Datasets 264

We obtain the raw dataset from the corresponding 265

publications. In this task, we start with the three re- 266

cently released continuous sign language datasets, 267

2We experimented with a similar model that worked di-
rectly on the continuous signs in Appendix D and demon-
strated the limitations of the pipelined attempt.
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Dataset Language Samples (train/dev/test) Data type Sign Vocab

CSL-Daily Chinese Sign Language 18,401 / 1,077 / 1,176 img;gloss;text 2,000
How2Sign American Sign Language 31,128 / 1,741 / 2,322 video; img; text 16k
PHOENIX-14T German Sign Language 7,096 / 519 / 642 video; gloss; text 1,066

Table 3: Continuous Sign Language Datasets.

CSL-Daily (Zhou et al., 2021a), How2Sign (Duarte268

et al., 2021), and PHOENIX-14T (Camgoz et al.,269

2018) – in which sign videos are cut into clips270

with individual sentences and their corresponding271

transcriptions.3 Table 3 shows the statistics of sen-272

tences included in the three corpora.273

5.2 Paraphrase Detection274

We first aim to build a parallel corpus with cross-275

lingual sign language pairs. As the original corpora276

covered different data domains (i.e., CSL-Daily277

consists of daily life contents while PHOENIX-14T278

includes sign videos and corresponding text tran-279

scriptions from weather broadcasting series), esti-280

mating the degree of content overlap was challeng-281

ing. Unlike traditional activity recognition tasks,282

directly classifying the long video clips as a single283

action is infeasible, as the video clips encoded sen-284

tences with complete meanings. Instead, we relied285

on the provided sentence transcriptions and gloss286

annotation to find the paraphrases across different287

datasets.288

To tackle the issue that each sign language289

dataset has its spoken language, we first utilized290

a machine translation model4 to translate all texts291

(Chinese and German) into English. Afterward, we292

relied on a neural paraphrase identification model293

(Reimers and Gurevych, 2019) to discover the para-294

phrases across the datasets. We carefully tune the295

threshold on the similarity scores with a held-out296

subset of human-annotated paraphrase pairs to guar-297

antee the quality of extracted pairs. While it is pos-298

sible that some pairs still lack a similar meaning,299

we considered the curated dataset as a valuable yet300

noisy training set for cross-lingual sign translations.301

Please refer to table 4 for detailed statistics on the302

final curated datasets. All three corpora except the303

3For CSL-Daily, we have signed an agreement of
data use and followed the regulations on the us-
age of dataset from http://home.ustc.edu.cn/
~zhouh156/dataset/csl-daily/. The other two
datasets are released publicly available for research purposes
only, and we strictly followed the agreements.

4https://github.com/Helsinki-NLP/
Opus-MT

How2Sign dataset have both gloss and text anno- 304

tations. We obtained the predicted gloss from the 305

state-of-the-art text-to-gloss translation models for 306

the How2Sign dataset. 307

5.3 Construction and Postprocessing 308

Since multiple signers are signing the same sen- 309

tence in the dataset, once we found the paraphrased 310

sentence pair, we iteratively mapped the video pairs 311

among the candidates’ pool. This procedure dra- 312

matically enlarges the final dataset size but also 313

introduces the issue of duplicated training signals. 314

Yet, as the size of the sign language is orders of 315

magnitude smaller than the spoken language ma- 316

chine translation corpus (i.e., several million pairs 317

(Bojar et al., 2018)), we posit that such duplication 318

can facilitate the model better to capture the nuance 319

mapping between different sign languages. Once 320

we obtained the video pairs, following prior work 321

(Saunders et al., 2020b), we converted the sequence 322

of sampled frame images into a 3D skeleton pose. 323

The 2D skeletal joint positions are extracted from 324

each video using OpenPose (Cao et al., 2019). We 325

then lifted the 2D joints into 3D poses utilizing 326

the skeletal model estimation improvements pre- 327

sented in (Zelinka and Kanis, 2020). Additionally, 328

since those datasets are constructed with camera 329

shots from different angles, we applied the skeleton 330

normalization similar to (Stoll et al., 2018a). Re- 331

garding the text and glosses, for ASL and DGS, we 332

do the normal space splitting. For CSL, we apply 333

a Chinese text segmentation tool5 on the texts for 334

tokenization. We ended up with six pairs of parallel 335

corpora. 336

Dataset Train Test

CSL-Daily - PHOENIX 2,274 669
How2Sign - PHOENIX 317 435
CSL-Daily - How2Sign 630 677

Table 4: Statistics of final constructed parallel dataset.

5https://github.com/fxsjy/jieba
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6 Model337

In this section, we first introduce an end2end model338

that models the sign language video translation in339

an end-to-end manner (section §6.1). To better340

utilize the multi-modality of the sign languages,341

we further propose a model (Figure 3) that makes342

use of the corresponding glosses come with the343

input sign sequence to introduce more in-domain344

knowledge into the encoder part.345

Language BLEU1 BLEU4 ROUGE

Oracle ASL 18.90 2.93 17.51
Oracle DGS 30.42 12.36 30.10
Oracle CSL 23.30 2.25 23.19

Table 5: Sign Language Translation Results using the
oracle skeletal joints, glosses and texts.

6.1 End2End Model346

The main goal of the cross-lingual sign language347

translation model is to transform a signing video348

from the source language into the video in the tar-349

get language. Formally, given a sign skeletal se-350

quence X = [x1, ...xN ], a translation model aims351

to learn the conditional probability p = (Y |X)352

where Y represents the corresponding language’s353

skeletal pose coordinate sequence Y = [y1, ...yT ].354

We build a Transformer-based model (Vaswani355

et al., 2017b) as our baseline. This model can gen-356

erate output skeletal sequence in an auto-regressive357

manner. Following prior work (Saunders et al.,358

2020b), we fed the encoded input skeletal joints359

sequence into a modified decoder, which employs360

a counter-based decoding mechanism to guide the361

generation of continuous joint sequences y1:T and362

to decide the end of the generated sequence. This363

strategy can be formulated as:364

[ŷt+1, ĉt+1] = Model(ŷt|ŷ1:t−1, x1:N ) (1)365

where ŷt+1 and ĉt+1 are the generated joint se-366

quence and the counter value for the generated367

frame t+1. This generation model is trained using368

the mean square error (MSE) loss between the gen-369

erated sequence ŷ1:T and the ground truth y1:T as370

LMSE = 1
T

∑T
i=1(yi − ŷi)

2.371

6.2 End2End with an Auxiliary Task372

We propose to frame the task as a multi-task prob-373

lem and separate it into two subparts.374

The first is source-side sign language recognition,375

where we use a continuous sequence-to-sequence 376

learning function, CTC(Graves et al., 2006), for 377

gloss recognition. Following prior work (Camgoz 378

et al., 2020), given a video input V , we can ob- 379

tain the gloss probabilities at each time stamp as 380

p(gt|V ), using a linear projection layer followed 381

by a softmax activation function. We then uti- 382

lize CTC to compute p(G|V ) by marginalizing 383

over all possible Video to Gloss alignments as: 384

p(G|V ) =
∑

π∈B p(π|V ) where π is a path and B 385

are the sets of all viable paths for the Gloss, as did 386

in (Camgoz et al., 2020). The final recognition loss 387

function is computed as LRecog = 1 − p(G∗|V ) 388

where G∗ is the oracle path obtained from the 389

dataset. 390

We optimize the recognition loss together with 391

the aforementioned MSE loss for sign joint genera- 392

tion. The final loss is: 393

L = α ∗ LRecog + LMSE . (2) 394

, where α is a tunable hyperparamter. 395

Language BLEU1 BLEU3 BLEU4

ASL > DGS 19.9 1.89 1.09
ASL > CSL 3.2 0.00 0.00
DGS > ASL 53.25 4.85 2.71
DGS > CSL 5.2 0.00 0.00
CSL > ASL 39.22 4.94 2.83
CSL > DGS 49.74 4.49 2.50

Table 6: Gloss translations using GPT-4 (source –>
target) results on the test set.

6.3 Experiments using GPT-4 396

We also conducted experiments with Foundation 397

Models, such as GPT-4, in an attempt to refine the 398

extraction of intermediate translations. 399

6.3.1 Spoken language to Gloss 400

We first evaluate the accuracy of converting ASL 401

text to ASL gloss, comparing manually annotated 402

glosses from the How2Sign dataset with those gen- 403

erated by GPT-4. This comparison was crucial to 404

assess the linguistic alignment and translation ac- 405

curacy of GPT-4. Although GPT did pretty well 406

in generating glosses, it was observed that manual 407

glosses better captured the context and idiomatic 408

expressions unique to ASL, a challenging aspect 409

for AI models like GPT-4. 410

6.3.2 Gloss-to-Gloss 411

We further investigated the efficacy of converting 412

one sign language gloss to another. Specifically, we 413
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Figure 3: This figure shows the two stages of our CODA framework. We first include the identification and
construction of parallel corpora using the transcriptions (§5).We then introduce an end2end model architecture with
the additional gloss recognition auxiliary task (§6).

ASL –> X CSL DGS

BLEU1 BLEU3 BLEU4 ROUGE BLEU1 BLEU3 BLEU4 ROUGE
end2end 17.00 0.94 0.00 16.46 14.18 6.80 5.73 13.22
end2end + recog 17.16 1.19 0.00 16.82 15.86 8.08 6.81 14.53

CSL –> X ASL DGS

BLEU1 BLEU3 BLEU4 ROUGE BLEU1 BLEU3 BLEU4 ROUGE
end2end 10.97 2.22 0.96 10.32 14.68 6.36 5.21 13.91
end2end + recog 10.77 2.18 0.93 10.34 14.67 6.32 5.16 14.09

DGS –> X ASL CSL

BLEU1 BLEU3 BLEU4 ROUGE BLEU1 BLEU3 BLEU4 ROUGE
end2end 9.01 1.51 0.69 7.71 25.62 0.00 0.00 27.75
end2end + recog 9.29 1.40 0.55 7.90 20.91 4.34 0.00 22.16

Table 7: Cross-lingual sign language pair translation (source –> target) results on the test set, bolded lines are better
results of the two models.

focused on the translation between American Sign414

Language (ASL), Chinese Sign Language (CSL),415

and German Sign Language (DGS), exploring all416

possible translations of these glosses. The experi-417

ments were designed to understand the linguistic418

transformation and alignment challenges in sign419

language translation when done using foundation420

models.421

We employed GPT-4 for gloss-to-gloss conver-422

sion, which was then evaluated against the ground423

truth of manually annotated glosses. This step re-424

quired understanding the structural and idiomatic425

differences between languages.The results from426

this experiment can be observed in Table 6.427

7 Evaluations and Results 428

We present the automatic metrics we use and the 429

evaluation paradigm for signed languages in this 430

section. Then we talk about our results of our ex- 431

periments with these metrics. 432

7.1 Metrics and Back-Translation Model 433

To evaluate the generated skeletal joints’ quality, 434

following previous work (Saunders et al., 2020b; 435

İnan et al., 2022), we back-translated the poses to 436

the text domain and compared them with ground 437

truth text, reporting ROUGE-L and BLEU scores 438

for automatic evaluation. We provide the upper 439

bound performances of the back-translation mod- 440

els built with SLT (Camgoz et al., 2020) in Table 441
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5. Model implementation details are given in Ap-442

pendix §B.443

7.2 Automatic Results444

We first train end-to-end baseline models on the six445

different language pairs. As shown in the first row446

of Table 7, the model performs best while trans-447

lating ASL into the other two languages. These448

improvements could be attributed to the better449

back-translation quality than CSL and DGS (Ta-450

ble 5). At the same time, the ASL language is451

hard to back-translate, given its open vocabulary.452

This is amenable with recent studies on training453

sign language transformer model (Camgoz et al.,454

2020) over the How2Sign dataset (Duarte et al.,455

2022a). We also observe that although the model456

can translate high precision tokens from DGS to457

CSL and ASL, due to the narrow domain of the458

German Sign Language dataset (mainly weather459

forecasting), BLEU-4 scores are 0 for both mod-460

els. With the introduction of the gloss recognition461

task, for ASL -> X tasks, we observe significant462

improvements across BLEU scores and ROUGE-L463

F1 scores. However, for CSL -> X tasks, the gloss464

does not help much. One other difference is that for465

DGS -> CSL tasks, though a lower BLEU1 score466

is obtained with the introduction of the auxiliary467

task, we observe that the BLEU3 score is improved.468

One of our main takeaways is that current advanced469

transformer-based models may not be able to gener-470

ate satisfying results, especially given the noisiness471

of training and evaluation data. Meanwhile, when472

evaluating sign languages with a larger vocabulary473

and less repetitive patterns of inputs, current back-474

translation metrics fail to evaluate the quality of475

the generated videos. We leave this challenging476

problem to future work.477

8 Discussions478

We now discuss essential challenges that demand479

future efforts in sign-to-sign generation. One such480

challenge is the difficulties in cross-cultural align-481

ments. Similar to spoken languages, sign languages482

can be affected by the physical and cultural factors483

of the user population. Thus, the representations484

of signs can be localized. Meanwhile, a lack of485

multilingual signers also hinders the iterations of486

model developments and evaluation. Current eval-487

uations are restricted to the back-translation results488

of the generated sign videos, which lack spatial489

and temporal context, as discussed by (Inan et al.,490

2022). The lack of a proper evaluation metric re- 491

mains a problem that needs to be addressed by an 492

aggregated effort from different fields surrounding 493

the sign language research community. Moreover, 494

the fact that there are significantly few publicly 495

available resources for sign language with glosses 496

limited our choice and scope of datasets to the 497

PHOENIX-14T and CSL-Daily dataset. The Amer- 498

ican Sign Language, such as How2sign (Duarte 499

et al., 2021) came without oracle glosses, and we 500

have to utilize non-perfect sign language transla- 501

tion models to derive glosses from the original text, 502

thus introducing more errors. 503

9 Conclusions and Future Work 504

In this work, we address the problem of cross- 505

lingual sign language translation, introducing a 506

challenge for automatic video translation between 507

sign languages. Our paper performs direct sign lan- 508

guage translation on extracted human skeletal joints 509

of videos to remove the overheads of pipelined 510

Sign Language Generation (SLG) and Sign Lan- 511

guage Recognition (SLR) tasks. We also release 512

the first automatically aligned corpus with cross- 513

lingual pairs that span three sign languages which 514

can serve as a benchmark for future research. We 515

demonstrate that incorporating the gloss informa- 516

tion can assist in understanding the video, which 517

highlights the need for using glosses to integrate 518

more structure or stronger signals for better trans- 519

lation systems. 520

Future work could involve facial expression and 521

motion capture for better understanding semantic 522

meaning (Viegas et al., 2022) and spatial aspects of 523

sign language. One other way is to employ the text- 524

to-video retrieval approaches (Duarte et al., 2022b; 525

Zuo et al., 2023) to verify the video alignments 526

across different sign languages. Additionally, lever- 527

aging Large Language Models for refining dataset 528

quality through better translation extraction and 529

employing multimodal generative models(Li et al., 530

2022; Wu et al., 2023) could offer realistic sign 531

video generation, aiding deaf community commu- 532

nication. 533

Ethics 534

We advocate for recognizing different signed lan- 535

guages and employing computational linguistics 536

techniques for the preservation, documentation, un- 537

derstating, and generation of these languages. All 538

models and analyses are built on publicly available 539
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datasets. Privacy is an important issue in general540

in sign language processing. This work presents541

an example of ways that we can employ automatic542

skeleton and then avatar generation to preserve the543

singers’ privacy. The generated human skeletal544

joints could be combined with an avatar and syn-545

thetic video techniques to create more real videos.546

Our work depends on pretrained models such as547

word and image embeddings. These models are548

known to reproduce and even magnify societal bias549

present in training data. Moreover, like many ML550

NLP methods, our methods are likely to perform551

better for content that is better represented in train-552

ing, leading to further bias against marginalized553

groups. We can hope that general methods to miti-554

gate harms from ML bias can address these issues.555

Limitations556

One limitation of our work is the cumulative error557

propagation that dissipates through the paraphrase558

identifier, sign language translation model, and559

back-translation, amplifying the total error. Due to560

the domain gap between different corpora, it is im-561

practical to identify identical sign language video562

pairs based on transcriptions for those with longer563

and more complicated meanings. Experimental re-564

sults demonstrate the need for better-constructed565

large-scale datasets with high-quality alignments566

and a more focused study from the linguistics per-567

spective. Though imperfect, we hope this work568

could stimulate future studies looking at the cross-569

lingual aspects of sign languages and assist prospec-570

tive sign language users in communicating better571

and breaking the language barrier.572

Another limitation of this work is on the eval-573

uation side. The current back-translation method574

is the only tool we have for evaluation on the text575

side, and we have limited resources available in the576

sign language area. Meanwhile, directly evaluat-577

ing signs differs greatly from gesture evaluation,578

while gestures seem particularly vaguer than signs,579

and the accuracy and evaluation required are chal-580

lenging. We encourage researchers from CV and581

NLP areas to work more closely and bridge the582

gap of understanding sign languages across multi-583

modalities.584
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We retrained a sign language translation model 837

which produces glosses from the texts using the 838

transformer-based model (Yin and Read, 2020). 839

The model is trained on ASLG-PC12 (Othman and 840

Jemni, 2012), which contains 87,709 training pairs. 841

Following the setup in (Yin et al., 2021), we used 842

their pre-processed glosses as the target. 843

B Model Implementation Details 844

We implemented all models for the sign video trans- 845

lation task based on the codebase released by (Saun- 846

ders et al., 2020b). Different from their gloss/text to 847

sign language generation, we modified the encoder 848

part to accept human skeletal joints as inputs. For 849

the end2end model, Both the encoder and decoder 850

are built with two layers, 4 heads and embedding 851

size of 512. We apply Gaussian noise with a noise 852

rate of 5, as proposed by Saunders et al. (2020b). 853

All network parts are trained with Xavier initializa- 854

tion (Glorot and Bengio, 2010), Adam optimization 855

(Kingma and Ba, 2015) with default parameters and 856

a learning rate of 1e-3. The model takes 3 hours 857
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to train on 1 NVIDIA RTX 5000 GPU. We keep858

the model size fixed for our proposed model with859

auxiliary tasks. The output layer for gloss recog-860

nition has a dimension of 512. The model takes 4861

hours to train on 1 NVIDIA RTX 5000 GPU. For862

the end2end model, we search the recognition loss863

weight α between (1, 0.1, and 0.01), and use 0.01864

in the final result table.865

We implemented the back-translation model on866

top of the original SLT code (Camgoz et al., 2020).867

The transformer models are built with one layer,868

two heads, and an embedding size of 128. The fea-869

ture size is changed to 150, which is the sequence870

length of generated skeleton joints sequence. The871

recognition loss weight and translation loss weight872

are set to 5 and 1 for CSL and DGS back-translation873

models. We set the recognition loss of 0 for ASL,874

given that the dataset does not come with oracle875

gloss annotation. Back-translation models take876

around 1-3 hours for training and evaluation for877

all three languages. All models introduced above878

are implemented with Pytorch (Paszke et al., 2019).879

C Error Analysis880

We present a qualitative error analysis on Table8.881

D Pipe-lined Model882

For the pipelined model, we build the pipelines as883

follow: for each source sign language, we reuse884

the back-translation model that can recognize texts885

from the continuous skeletal joints sequneces. For886

machine translation, we use Google Translate to887

translating the recognized texts into the correspond-888

ing language. We further feed the translated results889

into the corresponding Progressive-Transformer890

based models (Saunders et al., 2020b) that are891

trained on the 3 datasets. For ASL, we find that892

the first stage recognizer performed poorly and893

failed to recognize the accurate meanings of ASL894

videos. We thus experimented with the pair of895

DGS-CSL, where the models are working relatively896

better. We reported the result of DGS-CSL transla-897

tion: BLEU-1 15.75, BLEU-2 of 1.10, BLEU-4 of898

0.0 and ROUGE-L of 16.57, which is worse than899

end2end models (bottom right corner) in Table 7900

(BLEU-1 25.62 and ROUGE of 27.75).901

To go beyond the limitations of automatic back-902

translation metrics and investigate how our system903

generates the videos, we perform a qualitative anal-904

ysis of our model outputs, both on back-translated905

texts (Table 8). One issue is the low BLEU4 score906

of 0 for the ASL/DGS to CSL translation task. As 907

shown in the first row of Table 6, since the Chinese 908

texts are pre-tokenized with the tokenization tool, 909

it is less usual that continuous 4-grams appear in 910

both the reference and oracle texts. Meanwhile, for 911

ASL and CSL datasets with open-domain vocab- 912

ularies, current alignments are not perfect enough 913

and may introduce errors in the training stage. For 914

instance, in the second example, there is no men- 915

tion of specific food names for breakfast in the 916

source video of ASL. However, both the generated 917

video and the automatically paired reference video 918

in CSL surprisingly produced milk as one of the 919

foods ordered/eaten. This can be related to the 920

domain of CSL, which covers entities that appear 921

much in our daily life. Meanwhile, for ASL and 922

CSL to DGS generation tasks we could look at the 923

back-translated results to examine the generation 924

quality. As illustrated in the third row of Table 8, 925

though over-generating the “good evening” spans, 926

the back-translation result matches the paired DGS 927

target sentences. However, several pairs in the test 928

set have distinct meanings, as shown in the last row. 929

Such noises in the dataset can misguide the model 930

and make the generated results nonsense. 931

12



Source Text Generated (back-translation) Paired Target

da haben wir am morgen schnee und 明天||白天||会||下雨。 下雪 ||了||，||今天||真冷。
schneeregen .
Here we have snow and sleet in the
morning. It will rain during the day tomorrow. It’s snowing, it’s so cold today.

我||想||一杯||牛奶 ||，||你||要|| 早饭||我||吃||的||是||面包
Now, a typical day starts with 什么||饮料||？ ||和||牛奶||。
breakfast. I want a glass of milk, what do you want? I had bread and milk for breakfast.

Hi hallo und guten abend hallo und guten abend
Hello and good night Hello and good night

Table 8: Qualitative analysis of model outputs, for non-English texts, we provide English translations (underlined)
in the bottom of each row. Bold words are correctly translated across languages. For Chinese texts, we use the
symbol “||” to mark the tokenized word boundaries of prediction, which leads to the poor BLEU4 performance
in Table 7. We find that, although sometimes the automatically aligned pairs do not covey the identical meaning,
our model can produce reasonable results and covering salient tokens. The examples are selected from DGS-CSL,
ASL-CSL, and ASL-DGS from top to bottom.
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