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Abstract

The number of different signed languages
presents novel challenges in cross-cultural sign
language processing. Our work takes a pio-
neering step into direct sign-to-sign translation
across different sign language families. We first
conduct a qualitative analysis of linguistic traits,
both shared and distinctive, within a parallel
corpus of multiple signed pairs of sentences.
We then introduce a novel generation frame-
work, CODA, for translating one sign language
to another, employing Large Language models
as intermediary text recognizers. We compile a
dataset for sign-to-sign translation pairs across
three signed languages: American Sign Lan-
guage (ASL), Chinese Sign Language (CSL),
and German Sign Language (DGS). We further
utilize sign glosses as an intermediate represen-
tation to construct a multi-task model that can
assist in preserving the semantic meaning of
generated sign skeletal videos. We show that
our model performs well on automatic metrics
for sign-to-sign translation and generation as
a novel first implementation. We make all our
code and models available upon acceptance.

1 Introduction

Our paper tackles the computational challenges of
translating between diverse sign languages, a cru-
cial step toward enhancing accessibility and com-
munication within deaf communities. The lack of
a global standard for sign languages that fully ac-
commodates the depth and complexity of regional
sign languages poses significant barriers to cross-
cultural communication.

Historically, distinct sign languages have devel-
oped across various regions since as early as the
fifth century BC(Bauman, 2008), each with its own
set of features and rules, from phonology and syn-
tax to semantics and pragmatics(Virginia Swisher,
1988). These visual languages harness gestures,
facial expressions, and the spatial dynamics of
communication, leveraging shared cognitive abil-
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Ll (Mountain) E (Snow)
English Translation of the Chinese Sign Language pictured above:
snow white on the mountain
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BERG (Mountain) SCHNEE (snow)

English translation of the the German Sign Language pictured above:
some snow is falling on the mountain

Figure 1: An example demonstrating how our CODA
framework translates a sentence from one sign language
to another.

ities and linguistic conventions that, to some ex-
tent, unify signed languages globally. However,
significant differences persist, highlighting the im-
portance of technological interventions in bridg-
ing these gaps. For instance, despite English be-
ing a commonly spoken language in both the U.S.
and the U.K., American Sign Language (ASL) and
British Sign Language (BSL) remain mutually un-
intelligible(Pyers, 2012), underscoring the critical
role of technology in exploring the meta-linguistic
skills that transcend the spoken-sign language di-
vide.

As shown in Figure 2, the glosses with the same
meaning (snowing) have shared spatial movements
and are more understandable across different sign
languages. Building on this inspiration and obser-
vation, this work aims to present the first study of
a computational approach to automatically learn
the mappings between sign languages and generate
sign video translations across them.

Recent advancements in sign language technol-
ogy have enhanced communication between sign
and spoken language users. However, they fail to



address the critical communication issues between
different groups of signers using separate signed
languages. Inspired by the successes in spoken lan-
guage Neural Machine Translation (Vaswani et al.,
2017a; Liu et al., 2020; Xue et al., 2021), this study
proposes translating sign videos across various sign
languages to bridge these communication gaps.

Our work introduces a parallel corpus to en-
able communication between signers from differ-
ent communities. Existing corpora, limited to sin-
gle sign languages with spoken transcriptions and
gloss annotations, lack cross-linguistic pairs with
similar meanings, severely hindering the transla-
tion of sign language. We present an automatically
aligned multilingual sign language corpus derived
from multiple uni-language sign corpora to fill the
gap of cross-lingual sign languages. It includes
over 3,000 pairs covering ASL-CSL, DGS-ASL,
and DGS-CSL parallel videos with the texts and
glosses annotations. Text samples of our corpus are
shown in Table 1. To our knowledge, this is the first
corpus on the multilingual sign language dataset.
Thus our effort not only facilitates cross-lingual
sign language understanding but also offers insights
into the social, cognitive, and linguistic nuances of
sign languages, improving our comprehension of
their use and processing across populations.

We begin by qualitatively analyzing the diversity
and similarities in sign languages, offering insights
into the challenges and opportunities in develop-
ing aligned sign language representations. With
those insights, we introduce a framework for di-
rect sign-to-sign translation, CODA. We propose
an end2end model to translate sign videos from
one language to another. We further investigated
whether an auxiliary task for gloss detection could
help the video translation quality. We further con-
ducted experiments with Foundation Models such
as GPT-4, in an attempt to refine the extraction of
intermediate translations like glosses to enhance
the capture of sign gloss patterns. Experiment re-
sults demonstrate that the proposed model gener-
ates moderate-quality videos and serves as a first
step to mitigating the gap between different sign
languages. We end the paper with suggestions for
future research in the sign translation tasks.

2 Related Work

The study of sign languages has seen considerable
advancements across two main fronts: sign lan-
guage recognition (SLR) and sign language gener-

ation (SLG).

SLR has progressed from early visual recogni-
tion (Borg and Camilleri, 2019; Moryossef et al.,
2020; Camgoz et al., 2018; Ko et al., 2019; Yin
et al., 2021), segmentation (Fenlon et al., 2008;
Cormier et al., 2016) efforts to sophisticated mod-
els capable of end-to-end translation (Starner, 1995;
Yang and Sarkar, 2006; Huang et al., 2018; Camgoz
et al., 2018), heavily relying on deep learning tech-
niques like CNN/RNN(Huang et al., 2018; Cheng
et al., 2020) and Transformer-based models (Yin
and Read, 2020; Camgoz et al., 2020; Zhou et al.,
2021b; Cheng et al., 2023; Wu et al., 2023) for
state-of-the-art performances.

SLG, on the other hand, seeks to translate text
into sign language poses or videos, where recent
work has greatly benefited from larger datasets
such as PHOENIX-14T (Camgoz et al., 2018) and
CSL-Daily (Zhou et al., 2021a) and advanced neu-
ral networks, enabling the generation of accurate
and expressive human skeletal sequences. (Stoll
et al., 2018b; Zelinka and Kanis, 2020; Saunders
et al., 2020a, 2021; Viegas et al., 2022; Zhou et al.,
2021a)

Amidst these developments, translation and
alignment in sign language translation have
emerged as critical challenges. Notable efforts in
this area include the application of neural machine
translation (NMT) methods to translate spoken lan-
guage text into sign language (SL) glosses (Zhu
et al., 2023)(2023). They demonstrates substantial
improvements on both German SL and American
SL corpora. Similarly, earlier studies like Othman
et al. (2011) and projects such as DeepASL Fang
et al. have explored statistical and deep learning ap-
proaches to address the alignment and translation of
English text to ASL gloss. Bidirectional translation
systems, exemplified by Cate et al., have introduced
generative models to enhance alignment between
ASL and English, marking significant strides to-
ward more nuanced translation mechanisms.

Our contribution diverges from these established
paths by focusing on the direct translation between
different sign languages, aiming to leverage the
unique visual and linguistic features inherent to
sign languages. This novel approach, which builds
upon the foundational work in both SLR and SLG,
as well as the specific translation and alignment
challenges addressed by recent research, represents
a pioneering effort to enable direct, meaningful
communication across diverse sign language com-



DGS

SCHNEE

(snow)

Figure 2: The sign of the word snow/snowing in Chinese Sign Language (CSL) (Zhou et al., 2021a), German Sign
Language (DGS) (Camgoz et al., 2018), and American Sign Language (ASL) (Duarte et al., 2021) with their glosses.
Similar patterns of spatial movements (hands from top to bottom in the orange area) and hand gestures (bending
fingers for symbols of snow flower, as shown in the blue area) are shared across three languages. On the other hand,
the duration and repetition of hand movements differ (DGS repeats twice while signers in the other two languages
put the hand down only once). Our study is not limited to single gloss detection but to video translation.

Text Gloss
ASL Low self esteem or a low feeling about oneself N/A (not provided by the dataset)
is unfortunately very common.
CSL BE, W2 A LR —FRI - H Bl<gloss> A<gloss> A<gloss> M<gloss> H
Inferiority is a common manifestation of human beings. | Inferiority <gloss> human <gloss> human
<gloss> see <gloss> have
ASL | Good evening. N/A
DGS und damit schonen guten abend . BEGRUESSEN SCHOEN GUT ABEND BEGRUESSEN
and have a nice good evening. welcome good evening
CSL W EEE—kH- Lli<gloss> Hi i<gloss> & H
snow white on the mountain mountain <gloss> color <gloss> snow white
pGs | A0 den bergen fillt etwas schnee . BERG <gloss> SCHNEE
some snow is falling on the mountains. mountain <gloss> snow

Table 1: Example of our constructed parallel corpora in texts, where in the real dataset, we have the video paired up
as well. For non-English languages, we provide a Google translation for reference of meaning. Note that the ASL

dataset is not released with glosses.

munities.

3 Qualitative Analysis of Sign Language

Sign languages can compress the information of
similar spoken languages in different perspectives,
which may vary in gesture movements, facial
expressions, and duration of activity. We first
analyzed the average length of sign video frames

for glosses by dividing the frame counts by
the gloss numbers of each instance. This is an
approximation of the information compression
for individual glosses. Since the How2Sign
dataset (ASL) does not release the gloss, we
use the texts instead. As shown in Table 2,
ASL tends to utilize a longer time to present a
single gloss, while DGS is the most efficient
one. This may be affected by the domain



restriction of DGS where weather forecasting
has a narrower vocabulary and thus is more elegant.

Linguistic Analysis

ASL CSL DGS
min/mean/max min/mean/max min/mean/max
0.1/7.9/115.0 1.6/17.3/73.4 3.2/15.5/71.5

Table 2: The average frame counts per gloss across the
Sign Language Datasets.

Visual Modality Similarity Based on the visual
modality, we hypothesize that the overlapping or
similarity of sign languages can be attributed to the
similarity of hand gestures used for specific signs.
As the datasets studied in this paper belong to the
continuous sign language domain and lack gloss-
level mappings, we relied on an online sign lan-
guage dictionary, SpreadTheSign', and conducted
a qualitative analysis on thirteen selected triplets
of signs across American Sign Language (ASL),
Chinese Sign Language (CSL), and German Sign
Language (DGS). When examining glosses associ-
ated with natural phenomena, such as "snow" and
"mountains”, we found that these three languages
share similar gestures that mimic natural move-
ments. However, when it comes to more abstract
words like "sorry", the distinctiveness of spoken
languages leads to significant differences in body
language expressions. On the other hand, for words
that involve measuring distance or length, such as
"far" and "long", the three languages exhibit simi-
larities by extending body regions. Overall, these
findings highlight the effects of visual modality on
sign languages.

4 Challenges in Cross-lingual Sign
Translation

Although substantial efforts have been made in
both Sign Language Recognition and Generation,
connecting different sign languages proves to be
challenging due to their distinctiveness. Glosses,
which form the fundamental building blocks of sign
language, can serve as a means of bridging the gap.
One intuitive approach would be to employ a pipe-
lined model to unify the two sections with natural
languages (segmentation, then recognition of iso-
lated natural language glosses from language one

"https://www.spreadthesign.com/en.us/
search/

and generation based on the translations). However,
certain challenges existed.”

Firstly, there is a lack of research on accurately
segmenting and recognizing isolated signs in large-
scale sign language datasets with an open vocabu-
lary. The current state-of-the-art model(Renz et al.,
2021) achieves an mF1B boundary prediction F1
score of only 0.53 on the widely used PHOENIX-
14T dataset, limited to BSL and DGS. The largest
word-level ASL dataset(Li et al., 2019) reports a
Top-1 accuracy of 30% for a vocabulary of 2,000
words. Other sign languages have even smaller
vocabularies, ranging from 40 (DGS)(Ong et al.,
2012) to a few hundred (CSL), with low accuracy.
These poor performances raise questions about the
accuracy of isolated sign recognition for subse-
quent generation tasks.

Secondly, most works of continuous sign lan-
guage generations have primarily focused on the
PHOENIX-14T dataset, which comes from the
narrowed domain of weather forecast and is only
coupled with designed German sign glosses. This
pattern also holds for other datasets, typically an-
notated individually and incorporating specialized
glosses in their respective natural languages. Fur-
thermore, these datasets often feature open vocab-
ularies that differ significantly. There is a demand
for a high-quality gloss-translation parallel corpus
and a robust model that can generate sign videos
from the given textual inputs to unify the language
translation and later generations. Unfortunately,
the sign generation results are still poor, given the
automatic metrics, and not many explorations are
done on other datasets.

5 Dataset Construction

In this section, We create a new Multilingual-SIGN
corpus by pairing up sign videos from different sign
language corpora. We have developed a meticulous
matching methodology that considers the corre-
sponding text transcriptions and gloss annotations
associated with the sign videos. We describe the
details below.

5.1 Curation of Raw Datasets

We obtain the raw dataset from the corresponding
publications. In this task, we start with the three re-
cently released continuous sign language datasets,

“We experimented with a similar model that worked di-
rectly on the continuous signs in Appendix D and demon-
strated the limitations of the pipelined attempt.
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Dataset Language Samples (train/dev/test) Data type Sign Vocab
CSL-Daily Chinese Sign Language 18,401/ 1,077/ 1,176 img;gloss;text 2,000
How2Sign American Sign Language 31,128 /1,741/2,322 video; img; text 16k
PHOENIX-14T | German Sign Language 7,096 /519 /642 video; gloss; text 1,066

Table 3: Continuous Sign Language Datasets.

CSL-Daily (Zhou et al., 2021a), How2Sign (Duarte
et al., 2021), and PHOENIX-14T (Camgoz et al.,
2018) — in which sign videos are cut into clips
with individual sentences and their corresponding
transcriptions.® Table 3 shows the statistics of sen-
tences included in the three corpora.

5.2 Paraphrase Detection

We first aim to build a parallel corpus with cross-
lingual sign language pairs. As the original corpora
covered different data domains (i.e., CSL-Daily
consists of daily life contents while PHOENIX-14T
includes sign videos and corresponding text tran-
scriptions from weather broadcasting series), esti-
mating the degree of content overlap was challeng-
ing. Unlike traditional activity recognition tasks,
directly classifying the long video clips as a single
action is infeasible, as the video clips encoded sen-
tences with complete meanings. Instead, we relied
on the provided sentence transcriptions and gloss
annotation to find the paraphrases across different
datasets.

To tackle the issue that each sign language
dataset has its spoken language, we first utilized
a machine translation model* to translate all texts
(Chinese and German) into English. Afterward, we
relied on a neural paraphrase identification model
(Reimers and Gurevych, 2019) to discover the para-
phrases across the datasets. We carefully tune the
threshold on the similarity scores with a held-out
subset of human-annotated paraphrase pairs to guar-
antee the quality of extracted pairs. While it is pos-
sible that some pairs still lack a similar meaning,
we considered the curated dataset as a valuable yet
noisy training set for cross-lingual sign translations.
Please refer to table 4 for detailed statistics on the
final curated datasets. All three corpora except the

3For CSL-Daily, we have signed an agreement of
data use and followed the regulations on the us-
age of dataset from http://home.ustc.edu.cn/
~zhouhl56/dataset/csl-daily/. The other two
datasets are released publicly available for research purposes
only, and we strictly followed the agreements.

*https://github.com/Helsinki-NLP/
Opus—-MT

How2Sign dataset have both gloss and text anno-
tations. We obtained the predicted gloss from the
state-of-the-art text-to-gloss translation models for
the How2Sign dataset.

5.3 Construction and Postprocessing

Since multiple signers are signing the same sen-
tence in the dataset, once we found the paraphrased
sentence pair, we iteratively mapped the video pairs
among the candidates’ pool. This procedure dra-
matically enlarges the final dataset size but also
introduces the issue of duplicated training signals.
Yet, as the size of the sign language is orders of
magnitude smaller than the spoken language ma-
chine translation corpus (i.e., several million pairs
(Bojar et al., 2018)), we posit that such duplication
can facilitate the model better to capture the nuance
mapping between different sign languages. Once
we obtained the video pairs, following prior work
(Saunders et al., 2020b), we converted the sequence
of sampled frame images into a 3D skeleton pose.
The 2D skeletal joint positions are extracted from
each video using OpenPose (Cao et al., 2019). We
then lifted the 2D joints into 3D poses utilizing
the skeletal model estimation improvements pre-
sented in (Zelinka and Kanis, 2020). Additionally,
since those datasets are constructed with camera
shots from different angles, we applied the skeleton
normalization similar to (Stoll et al., 2018a). Re-
garding the text and glosses, for ASL and DGS, we
do the normal space splitting. For CSL, we apply
a Chinese text segmentation tool’ on the texts for
tokenization. We ended up with six pairs of parallel
corpora.

Dataset ‘ Train  Test

CSL-Daily - PHOENIX | 2,274 669
How2Sign - PHOENIX 317 435
CSL-Daily - How2Sign 630 677

Table 4: Statistics of final constructed parallel dataset.

Shttps://github.com/fxsjy/jieba
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6 Model

In this section, we first introduce an end2end model
that models the sign language video translation in
an end-to-end manner (section §6.1). To better
utilize the multi-modality of the sign languages,
we further propose a model (Figure 3) that makes
use of the corresponding glosses come with the
input sign sequence to introduce more in-domain
knowledge into the encoder part.

Language | BLEU; | BLEUs | ROUGE
Oracle ASL | 18.90 2.93 17.51
Oracle DGS | 30.42 12.36 30.10
Oracle CSL | 23.30 2.25 23.19

Table 5: Sign Language Translation Results using the
oracle skeletal joints, glosses and texts.

6.1 End2End Model

The main goal of the cross-lingual sign language
translation model is to transform a signing video
from the source language into the video in the tar-
get language. Formally, given a sign skeletal se-
quence X = [z1,...x ], a translation model aims
to learn the conditional probability p = (Y|X)
where Y represents the corresponding language’s
skeletal pose coordinate sequence Y = [y1,...y7].
We build a Transformer-based model (Vaswani
et al., 2017b) as our baseline. This model can gen-
erate output skeletal sequence in an auto-regressive
manner. Following prior work (Saunders et al.,
2020b), we fed the encoded input skeletal joints
sequence into a modified decoder, which employs
a counter-based decoding mechanism to guide the
generation of continuous joint sequences 37 and
to decide the end of the generated sequence. This
strategy can be formulated as:

[yt-‘rl7 ét-i-l] — MOdel(yAtkl)l:t_l,l‘l:N) (1)

where §t! and é*! are the generated joint se-
quence and the counter value for the generated
frame t+1. This generation model is trained using
the mean square error (MSE) loss between the gen-
erated sequence §j;.7 and the ground truth y,.7 as

Luse = 4 1 (yi — 9i)%
6.2 End2End with an Auxiliary Task

We propose to frame the task as a multi-task prob-
lem and separate it into two subparts.
The first is source-side sign language recognition,

where we use a continuous sequence-to-sequence
learning function, CTC(Graves et al., 2006), for
gloss recognition. Following prior work (Camgoz
et al., 2020), given a video input V, we can ob-
tain the gloss probabilities at each time stamp as
p(g¢|V'), using a linear projection layer followed
by a softmax activation function. We then uti-
lize CTC to compute p(G|V) by marginalizing
over all possible Video to Gloss alignments as:
p(G|V) = > repp(m|V) where 7 is a path and B
are the sets of all viable paths for the Gloss, as did
in (Camgoz et al., 2020). The final recognition loss
function is computed as Lgecog = 1 — p(G*|V)
where G* is the oracle path obtained from the
dataset.

We optimize the recognition loss together with
the aforementioned MSE loss for sign joint genera-
tion. The final loss is:

L=ax LRecog + Lyse- ()

, where « is a tunable hyperparamter.

Language | BLEU; | BLEU; | BLEU,
ASL > DGS 19.9 1.89 1.09
ASL > CSL 3.2 0.00 0.00
DGS > ASL 53.25 4.85 2.71
DGS > CSL 5.2 0.00 0.00
CSL > ASL 39.22 4.94 2.83
CSL > DGS 49.74 4.49 2.50

Table 6: Gloss translations using GPT-4 (source —>
target) results on the test set.

6.3 Experiments using GPT-4

We also conducted experiments with Foundation
Models, such as GPT-4, in an attempt to refine the
extraction of intermediate translations.

6.3.1 Spoken language to Gloss

We first evaluate the accuracy of converting ASL
text to ASL gloss, comparing manually annotated
glosses from the How2Sign dataset with those gen-
erated by GPT-4. This comparison was crucial to
assess the linguistic alignment and translation ac-
curacy of GPT-4. Although GPT did pretty well
in generating glosses, it was observed that manual
glosses better captured the context and idiomatic
expressions unique to ASL, a challenging aspect
for Al models like GPT-4.

6.3.2 Gloss-to-Gloss

We further investigated the efficacy of converting
one sign language gloss to another. Specifically, we
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Figure 3: This figure shows the two stages of our CODA framework. We first include the identification and
construction of parallel corpora using the transcriptions (§5).We then introduce an end2end model architecture with

the additional gloss recognition auxiliary task (§6).

ASL —> X CSL DGS

BLEU; BLEU3; BLEU; ROUGE | BLEU; BLEUs; BLEU; ROUGE
end2end 17.00 0.94 0.00 16.46 14.18 6.80 5.73 13.22
end2end + recog | 17.16 1.19 0.00 16.82 15.86 8.08 6.81 14.53
CSL —> X ASL DGS

BLEU; BLEU; BLEU; ROUGE | BLEU; BLEU; BLEU; ROUGE
end2end 10.97 2.22 0.96 10.32 14.68 6.36 5.21 13.91
end2end + recog | 10.77 2.18 0.93 10.34 14.67 6.32 5.16 14.09
DGS —> X ASL CSL

BLEU; BLEU; BLEU; ROUGE | BLEU; BLEU; BLEU; ROUGE
end2end 9.01 1.51 0.69 7.71 25.62 0.00 0.00 27.75
end2end + recog 9.29 1.40 0.55 7.90 2091 4.34 0.00 22.16

Table 7: Cross-lingual sign language pair translation (source —> target) results on the test set, bolded lines are better

results of the two models.

focused on the translation between American Sign
Language (ASL), Chinese Sign Language (CSL),
and German Sign Language (DGS), exploring all
possible translations of these glosses. The experi-
ments were designed to understand the linguistic
transformation and alignment challenges in sign
language translation when done using foundation
models.

We employed GPT-4 for gloss-to-gloss conver-
sion, which was then evaluated against the ground
truth of manually annotated glosses. This step re-
quired understanding the structural and idiomatic
differences between languages.The results from
this experiment can be observed in Table 6.

7 Evaluations and Results

We present the automatic metrics we use and the
evaluation paradigm for signed languages in this
section. Then we talk about our results of our ex-
periments with these metrics.

7.1

To evaluate the generated skeletal joints’ quality,
following previous work (Saunders et al., 2020b;
Inan et al., 2022), we back-translated the poses to
the text domain and compared them with ground
truth text, reporting ROUGE-L and BLEU scores
for automatic evaluation. We provide the upper
bound performances of the back-translation mod-
els built with SLT (Camgoz et al., 2020) in Table

Metrics and Back-Translation Model



5. Model implementation details are given in Ap-
pendix §B.

7.2 Automatic Results

We first train end-to-end baseline models on the six
different language pairs. As shown in the first row
of Table 7, the model performs best while trans-
lating ASL into the other two languages. These
improvements could be attributed to the better
back-translation quality than CSL and DGS (Ta-
ble 5). At the same time, the ASL language is
hard to back-translate, given its open vocabulary.
This is amenable with recent studies on training
sign language transformer model (Camgoz et al.,
2020) over the How2Sign dataset (Duarte et al.,
2022a). We also observe that although the model
can translate high precision tokens from DGS to
CSL and ASL, due to the narrow domain of the
German Sign Language dataset (mainly weather
forecasting), BLEU-4 scores are 0 for both mod-
els. With the introduction of the gloss recognition
task, for ASL -> X tasks, we observe significant
improvements across BLEU scores and ROUGE-L
F1 scores. However, for CSL -> X tasks, the gloss
does not help much. One other difference is that for
DGS -> CSL tasks, though a lower BLEU; score
is obtained with the introduction of the auxiliary
task, we observe that the BLEUj3 score is improved.
One of our main takeaways is that current advanced
transformer-based models may not be able to gener-
ate satisfying results, especially given the noisiness
of training and evaluation data. Meanwhile, when
evaluating sign languages with a larger vocabulary
and less repetitive patterns of inputs, current back-
translation metrics fail to evaluate the quality of
the generated videos. We leave this challenging
problem to future work.

8 Discussions

We now discuss essential challenges that demand
future efforts in sign-to-sign generation. One such
challenge is the difficulties in cross-cultural align-
ments. Similar to spoken languages, sign languages
can be affected by the physical and cultural factors
of the user population. Thus, the representations
of signs can be localized. Meanwhile, a lack of
multilingual signers also hinders the iterations of
model developments and evaluation. Current eval-
uations are restricted to the back-translation results
of the generated sign videos, which lack spatial
and temporal context, as discussed by (Inan et al.,

2022). The lack of a proper evaluation metric re-
mains a problem that needs to be addressed by an
aggregated effort from different fields surrounding
the sign language research community. Moreover,
the fact that there are significantly few publicly
available resources for sign language with glosses
limited our choice and scope of datasets to the
PHOENIX-14T and CSL-Daily dataset. The Amer-
ican Sign Language, such as How2sign (Duarte
et al., 2021) came without oracle glosses, and we
have to utilize non-perfect sign language transla-
tion models to derive glosses from the original text,
thus introducing more errors.

9 Conclusions and Future Work

In this work, we address the problem of cross-
lingual sign language translation, introducing a
challenge for automatic video translation between
sign languages. Our paper performs direct sign lan-
guage translation on extracted human skeletal joints
of videos to remove the overheads of pipelined
Sign Language Generation (SLG) and Sign Lan-
guage Recognition (SLR) tasks. We also release
the first automatically aligned corpus with cross-
lingual pairs that span three sign languages which
can serve as a benchmark for future research. We
demonstrate that incorporating the gloss informa-
tion can assist in understanding the video, which
highlights the need for using glosses to integrate
more structure or stronger signals for better trans-
lation systems.

Future work could involve facial expression and
motion capture for better understanding semantic
meaning (Viegas et al., 2022) and spatial aspects of
sign language. One other way is to employ the text-
to-video retrieval approaches (Duarte et al., 2022b;
Zuo et al., 2023) to verify the video alignments
across different sign languages. Additionally, lever-
aging Large Language Models for refining dataset
quality through better translation extraction and
employing multimodal generative models(Li et al.,
2022; Wu et al., 2023) could offer realistic sign
video generation, aiding deaf community commu-
nication.

Ethics

We advocate for recognizing different signed lan-
guages and employing computational linguistics
techniques for the preservation, documentation, un-
derstating, and generation of these languages. All
models and analyses are built on publicly available



datasets. Privacy is an important issue in general
in sign language processing. This work presents
an example of ways that we can employ automatic
skeleton and then avatar generation to preserve the
singers’ privacy. The generated human skeletal
joints could be combined with an avatar and syn-
thetic video techniques to create more real videos.
Our work depends on pretrained models such as
word and image embeddings. These models are
known to reproduce and even magnify societal bias
present in training data. Moreover, like many ML
NLP methods, our methods are likely to perform
better for content that is better represented in train-
ing, leading to further bias against marginalized
groups. We can hope that general methods to miti-
gate harms from ML bias can address these issues.

Limitations

One limitation of our work is the cumulative error
propagation that dissipates through the paraphrase
identifier, sign language translation model, and
back-translation, amplifying the total error. Due to
the domain gap between different corpora, it is im-
practical to identify identical sign language video
pairs based on transcriptions for those with longer
and more complicated meanings. Experimental re-
sults demonstrate the need for better-constructed
large-scale datasets with high-quality alignments
and a more focused study from the linguistics per-
spective. Though imperfect, we hope this work
could stimulate future studies looking at the cross-
lingual aspects of sign languages and assist prospec-
tive sign language users in communicating better
and breaking the language barrier.

Another limitation of this work is on the eval-
uation side. The current back-translation method
is the only tool we have for evaluation on the text
side, and we have limited resources available in the
sign language area. Meanwhile, directly evaluat-
ing signs differs greatly from gesture evaluation,
while gestures seem particularly vaguer than signs,
and the accuracy and evaluation required are chal-
lenging. We encourage researchers from CV and
NLP areas to work more closely and bridge the
gap of understanding sign languages across multi-
modalities.
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A ASL gloss extraction

We retrained a sign language translation model
which produces glosses from the texts using the
transformer-based model (Yin and Read, 2020).
The model is trained on ASLG-PC12 (Othman and
Jemni, 2012), which contains 87,709 training pairs.
Following the setup in (Yin et al., 2021), we used
their pre-processed glosses as the target.

B Model Implementation Details

We implemented all models for the sign video trans-
lation task based on the codebase released by (Saun-
ders et al., 2020b). Different from their gloss/text to
sign language generation, we modified the encoder
part to accept human skeletal joints as inputs. For
the end2end model, Both the encoder and decoder
are built with two layers, 4 heads and embedding
size of 512. We apply Gaussian noise with a noise
rate of 5, as proposed by Saunders et al. (2020b).
All network parts are trained with Xavier initializa-
tion (Glorot and Bengio, 2010), Adam optimization
(Kingma and Ba, 2015) with default parameters and
a learning rate of le-3. The model takes 3 hours
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to train on 1 NVIDIA RTX 5000 GPU. We keep
the model size fixed for our proposed model with
auxiliary tasks. The output layer for gloss recog-
nition has a dimension of 512. The model takes 4
hours to train on 1 NVIDIA RTX 5000 GPU. For
the end2end model, we search the recognition loss
weight a between (1, 0.1, and 0.01), and use 0.01
in the final result table.

We implemented the back-translation model on
top of the original SLT code (Camgoz et al., 2020).
The transformer models are built with one layer,
two heads, and an embedding size of 128. The fea-
ture size is changed to 150, which is the sequence
length of generated skeleton joints sequence. The
recognition loss weight and translation loss weight
are set to 5 and 1 for CSL and DGS back-translation
models. We set the recognition loss of O for ASL,
given that the dataset does not come with oracle
gloss annotation. Back-translation models take
around 1-3 hours for training and evaluation for
all three languages. All models introduced above
are implemented with Pytorch (Paszke et al., 2019).

C Error Analysis

We present a qualitative error analysis on TableS.

D Pipe-lined Model

For the pipelined model, we build the pipelines as
follow: for each source sign language, we reuse
the back-translation model that can recognize texts
from the continuous skeletal joints sequneces. For
machine translation, we use Google Translate to
translating the recognized texts into the correspond-
ing language. We further feed the translated results
into the corresponding Progressive-Transformer
based models (Saunders et al., 2020b) that are
trained on the 3 datasets. For ASL, we find that
the first stage recognizer performed poorly and
failed to recognize the accurate meanings of ASL
videos. We thus experimented with the pair of
DGS-CSL, where the models are working relatively
better. We reported the result of DGS-CSL transla-
tion: BLEU-1 15.75, BLEU-2 of 1.10, BLEU-4 of
0.0 and ROUGE-L of 16.57, which is worse than
end2end models (bottom right corner) in Table 7
(BLEU-1 25.62 and ROUGE of 27.75).

To go beyond the limitations of automatic back-
translation metrics and investigate how our system
generates the videos, we perform a qualitative anal-
ysis of our model outputs, both on back-translated
texts (Table 8). One issue is the low BLEU4 score
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of 0 for the ASL/DGS to CSL translation task. As
shown in the first row of Table 6, since the Chinese
texts are pre-tokenized with the tokenization tool,
it is less usual that continuous 4-grams appear in
both the reference and oracle texts. Meanwhile, for
ASL and CSL datasets with open-domain vocab-
ularies, current alignments are not perfect enough
and may introduce errors in the training stage. For
instance, in the second example, there is no men-
tion of specific food names for breakfast in the
source video of ASL. However, both the generated
video and the automatically paired reference video
in CSL surprisingly produced milk as one of the
foods ordered/eaten. This can be related to the
domain of CSL, which covers entities that appear
much in our daily life. Meanwhile, for ASL and
CSL to DGS generation tasks we could look at the
back-translated results to examine the generation
quality. As illustrated in the third row of Table 8,
though over-generating the “good evening” spans,
the back-translation result matches the paired DGS
target sentences. However, several pairs in the test
set have distinct meanings, as shown in the last row.
Such noises in the dataset can misguide the model
and make the generated results nonsense.



Source Text \ Generated (back-translation)

Paired Target

da haben wir am morgen schnee und | BRI HRI 21 T . | FENTH 145RIER -
schneeregen .
Here we have snow and sleet in the
morning. It will rain during the day tomorrow. It’s snowing, it’s so cold today.
FI B — AR A0, 1R LRI RZIEN =20 T
Now, a typical day starts with 201k 2 I AN A= 4500
breakfast. I want a glass of milk, what do you want? | I had bread and milk for breakfast.
Hi hallo und guten abend hallo und guten abend
Hello and good night Hello and good night

Table 8: Qualitative analysis of model outputs, for non-English texts, we provide English translations (underlined)
in the bottom of each row. Bold words are correctly translated across languages. For Chinese texts, we use the
symbol “II” to mark the tokenized word boundaries of prediction, which leads to the poor BLEU, performance
in Table 7. We find that, although sometimes the automatically aligned pairs do not covey the identical meaning,
our model can produce reasonable results and covering salient tokens. The examples are selected from DGS-CSL,
ASL-CSL, and ASL-DGS from top to bottom.
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