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Abstract

Citation faithfulness detection is critical for en-
hancing retrieval-augmented generation (RAG)
systems, yet large-scale Chinese datasets for
this task are scarce. Existing methods face
prohibitive costs due to the need for manu-
ally annotated negative samples. To address
this, we introduce the first large-scale Chi-
nese dataset CITECHECK for citation faithful-
ness detection, constructed via a cost-effective
approach using two-stage manual annotation.
This method balances positive and negative
samples while significantly reducing annota-
tion expenses. CITECHECK comprises train-
ing and test splits. Experiments demonstrate
that: (1) the test samples are highly challeng-
ing, with even state-of-the-art LLMs failing to
achieve high accuracy; and (2) training data
augmented with LLM-generated negative sam-
ples enables smaller models to attain strong per-
formance using parameter-efficient fine-tuning.
CITECHECK provides a robust foundation for
advancing citation faithfulness detection in Chi-
nese RAG systems.

1 Introduction

Large Language Models (LLMs) are prone to
generating factual errors through hallucinations
when answering real-world questions. Retrieval-
augmented generation (RAG) systems (Lewis et al.,
2020; Guu et al., 2020; Borgeaud et al., 2022) ad-
dress this limitation by leveraging external infor-
mation retrieval to ground LLM responses in veri-
fiable sources. Recent advancements extend RAG
systems to generate text with inline citations (Gao
et al., 2023b), enabling users to validate the reli-
ability of generated content by cross-referencing
cited documents. However, studies reveal a crit-
ical weakness in these systems: citation faithful-
ness. A substantial portion of generated text may
lack proper support from the cited references (Liu
et al., 2023; Hu et al., 2024b), undermining the
trustworthiness and verification capability of RAG

outputs. This challenge necessitates accurate cita-
tion faithfulness detection—determining whether
cited passages genuinely support their associated
claims—as a fundamental requirement for improv-
ing RAG reliability.

Developing robust citation faithfulness detection
methods requires large-scale, high-quality datasets.
While English benchmarks have emerged (Yue
et al., 2023), Chinese datasets remain notably ab-
sent. Constructing such resources presents unique
challenges: realistic negative samples (unsupported
citations) from strong RAG systems are usually
highly judgmentally difficult and meaningful for
studies, yet these systems rarely produce such er-
rors. For instance, a RAG system with a 10% er-
ror rate would require annotating approximately
70,000 samples to collect 7,000 negative exam-
ples—a prohibitively expensive endeavor. This
tension between dataset quality and construction
cost demands innovative solutions for efficient data
curation without compromising sample integrity.

To bridge this gap, we introduce CITECHECK,
the first large-scale Chinese dataset for cita-
tion faithfulness detection. Our approach com-
bines 11,307 knowledge-intensive questions with
a novel two-stage annotation framework that re-
duces labeling costs while preserving data quality.
CITECHECK comprises two distinct components
designed to address both detection difficulty and
training efficacy.

The development and test sets each contain
500 positive (supported) and 500 negative (unsup-
ported) samples totaling 2,000 unmodified RAG
outputs. Experimental analysis demonstrates these
original samples pose significant challenges, with
state-of-the-art LLMs achieving limited detection
accuracy. The training set includes 9,796 samples
(4,898 positive/negative pairs) where negative in-
stances are generated through LLM-based docu-
ment modification rather than relying solely on rare
RAG errors. Despite this augmentation, parameter-



efficient fine-tuning on 7B-8B parameter models
yields strong detection performance, confirming
the preserved quality of modified negative samples.

Our contributions are threefold: CITECHECK
establishes the first comprehensive benchmark for
Chinese citation faithfulness detection; (2) We pro-
pose an efficient data augmentation strategy that
reduces annotation costs by 86% compared to con-
ventional approaches; (3) Extensive experiments
validate the dataset’s quality and utility, showing
that models trained on our augmented data effec-
tively generalize to challenging real-world samples.
This work advances reliable RAG development by
providing essential resources and methodologies
for building verifiable, citation-grounded LLM ap-
plications in Chinese.

2 Dataset Construction

2.1 Question Collection

We collect Chinese questions from the sources:
WebText (Xu, 2019): A large-scale Chinese com-
munity question-answering dataset spanning di-
verse topics.

WebCPM (Qin et al., 2023): A Chinese long-form
question-answering dataset focused on interactive
web search contexts.

Zhihu-KOL (Wang, 2023): A high-quality
question-answering dataset derived from Zhihu, a
prominent Chinese QA platform.

RGB (Chen et al., 2024): A bilingual question-
answering dataset based on news reports.

TrickQA: Questions with ambiguous, incorrect, or
unverifiable premises (see Appendix A for details).

After collecting these questions, we input them
into an open-sourced RAG system to simulate real-
world question-answering scenarios and analyze
how the system processes and responds to these
diverse inputs. The RAG system retrieves five ex-
ternal documents and generates responses. State-
ments in the answers are annotated with citation
marks (1-5), indicating alignment with information
from the corresponding documents. On average,
each statement spans 33.4 tokens, while each docu-
ment averages 177.3 tokens. An original sample is
formed by pairing a labeled statement with its cited
documents, represented as a tuple (question, an-
swer, statement, cited documents). See Appendix B
for more statistics.

2.2 Data Augmentation

The goal of data augmentation is to create negative
samples of high quality by making minor modifi-
cations to the cited documents in the original sam-
ples. Given the use of an industrial RAG system,
the number of negative samples in the original sam-
ples is estimated to be insufficient. To construct a
balanced training set, as well as a label-balanced
dev set and test set for evaluation, successfully aug-
mented negative samples can be used. The modi-
fied documents should not be inconsistent or inco-
herent, so as not to provide the trained model with
a false basis for judging the negative samples.

We use GPT-40 (OpenAl et al., 2024) for data
augmentation. After providing the original sample
to the LLM, it is asked to perform the following
steps in sequence:

Segments Identification: Find all key segments in
the cited document that directly support the infor-
mation in the statement.

Segments Grouping: Group the key segments by
the information they support, with each group con-
taining key segments that support the same or re-
lated information in the statement.

Segments Modification: Select a group of key seg-
ments and modify them so that they do not support
the corresponding information in the statement.

The modification changes only the portion that
relates to the supported information in the state-
ment. This maintains logical flow and non-
contradictory information within the key segments,
and keep the key segments logical in the context of
the document and non-contradictory to other infor-
mation in the document. If there is more than one
key segment in a group, the information in all of
them should be consistent after the modification.

For each sample, the LLM is asked to try two
methods of modification:

Content Revision: Alter specific details within a
key segment without introducing direct contradic-
tions to the original information.

Structure Preservation: Remove information
from a key segment while ensuring the overall co-
herence and integrity of the segment remain intact.

After completing the LLM augmentation, each
original sample is accompanied by the LLM-
labeled key segment information and corresponds
to the two augmented samples generated by the
LLM using the two modification methods. The
cost is 0.026$ per sample. See Appendix C for
more details of the augmentation.



Question RO T E MRS | % AN E 7% | AMF2SRE—RaEifUlR | mRENEETRERE - REL X
BEHRESD? A, FH 20 THIAET, W O| N, B-REAE -, B, BREAES A BT IR
What is Tesla’s share of all- | _E KHLEIFHFEHIREND? {2 2 R4 — ik 2 B B AL B, WEZHEL?
electric car sales in China? When I check a suitcase on an air- | JLIRET, S—3REEZEEME | If lightning strikes a concrete
plane and bring a 20” case, will % building or something like that,
the case be weighed when I bring Why is it that when you cut a can you get hurt even if you're in
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Label positive positive negative negative
Note supported by a single document supported by multiple documents contradictory information unmentioned information

Table 1: Sample examples of the dataset. For the answer and cited documents we show only part of the content. We
underline the selected statement in the answer. We mark in red and blue the key information associated with the label
in the statement and the cited documents. We provide English translations of the questions and key information.

2.3 Two-stage Manual Annotation

The original samples need to be manually labeled
as positive or negative samples before they can be
used to form the dataset (examples are shown in Ta-
ble 1). In the LLM augmentation phase, although
we try to guide the LLM to augment negative sam-
ples with qualified quality, the LLM may generate
some samples that do not meet the requirements.
Therefore, the augmented samples also need to be
manually labeled for compliance before they can
be used to form the dataset. The goal of the two-
stage manual annotation is to complete the manual
annotation needed above.

In the first stage, the annotators (from the profes-
sional data annotation institution in China) need to
label whether the original sample is a positive or
negative sample, i.e., to determine whether the sum
of the information provided by the cited documents
fully supports the statement. In order to reduce
the difficulty of labeling, the information of key
segments labeled by LLM will be provided to the
annotators as a reference. However, since the LLM
labeling is not always accurate, if the annotators
are unable to make a judgment after reading the
key segments, they still need to read other parts of
the documents to make a judgment. In this stage,
the number of negative samples identified by the
annotation is 1,006, with a negative sample rate of

about 9%. We randomly selected 2,000 samples
(1,000 negative and 1,000 positive) and split them
equally to create the development and test sets. The
augmented samples corresponding to the positive
samples in the remaining original samples will be
labeled in the second stage.

In the second stage, the annotators need to deter-
mine whether an augmented sample is of accept-
able quality and whether it is a negative sample.
In order to reduce the difficulty of labeling, we
show the annotator a comparison of the documents
before and after the modification in the form of
modification traces. Among the augmented sam-
ples that the annotators determine to be negative
samples of acceptable quality, we select 2,449 sam-
ples that use the modification methods of changing
information and deleting information respectively,
totaling 4,898 samples. These augmented negative
samples together with the 4,898 positive samples
in the original samples identified by the first stage
of annotation constitute the training set. The two-
stage manual annotation costs 0.5$ per sample. See
Appendix D for more details on annotation.

3 Experiments

In our experiments, we evaluate the dataset using
two approaches. First, we assess the zero-shot
performance of state-of-the-art LLMs on the de-



Dev Acec  Accep, Acc,
GPT-4o 83.7 970 704
Qwen2.5-Plus | 81.6 97.0 66.2
DeepSeek-v3 | 69.4 99.2 39.6
Llama-3.1-8B | 914 916 91.2
Mistral-7B 89.5 912 87.8
Qwen2.5-7B | 912 950 874
Test Acc  Acc, Acg,
GPT-4o0 839 962 71.6
Qwen2.5-Plus | 81.2 94.8 67.6
DeepSeek-v3 | 69.4 994 394
Llama-3.1-8B | 90.6 90.4 90.8
Mistral-7B 89.8 920 87.6
Qwen2.5-7B 88.5 904 86.6

Table 2: Results of experiments on the dev set and the
test set. We report overall accuracy (Acc), accuracy
on positive samples (Acep), and accuracy on negative
samples (Acc,) in percentage form.

velopment and test sets. This aims to highlight
the challenge posed by the test samples. Second,
due to resource constraints, we conduct parameter-
efficient fine-tuning on smaller models using the
training data. This focuses on demonstrating the ef-
fectiveness of the training samples. See Appendix F
for more experiments for quality validation.

3.1 Settings

State-of-the-art LLMs that we use for zero-shot
performance tests include GPT-40 (OpenAl et al.,
2024), Qwen2.5-Plus (Qwen et al., 2024), and
DeepSeek-v3 (DeepSeek-Al et al., 2024). We pro-
vide the sample to the LLMs and ask for their judg-
ment. The relatively small language models we
use for training include Llama-3.1-8B (Grattafiori
et al., 2024), Mistral-7B (Jiang et al., 2023), and
Qwen2.5-7B (Qwen et al., 2024). The parameter-
efficient fine-tuning method we use is LoRA (Hu
etal., 2022). See Appendix E for input and training
details. We use accuracy as the metric. Since there
are equal numbers of positive and negative samples,
the accuracy is equivalent to the commonly used
balanced accuracy (Luo et al., 2023), which is the
average of the accuracy on positive and negative
samples. We also report the accuracy of positive
and negative samples separately.

3.2 Results

Table 2 reveals significant differences in perfor-
mance between LLMs tested under zero-shot condi-
tions and smaller models fine-tuned with parameter-

efficient methods. Among the zero-shot LLMs,
GPT-40 achieved the highest overall accuracy, out-
performing Qwen2.5-Plus and DeepSeek-v3. How-
ever, even GPT-4o struggled with negative samples,
achieving only 70.4% accuracy on the dev set and
71.6% on the test set. This limitation highlights
a persistent challenge in distinguishing negative
cases, which significantly impacts overall accuracy.
DeepSeek-v3, while demonstrating near-perfect ac-
curacy on positive samples, performed poorly on
negative samples (39.6% dev, 39.4% test), indicat-
ing a clear trade-off between the two categories.

In contrast, smaller models fine-tuned with the
training set achieved remarkable improvements,
particularly in handling negative samples. Llama-
3.1-8B stood out as the top performer, achieving
91.4% accuracy on the dev set and 90.6% on the
test set, while maintaining a strong balance be-
tween positive and negative samples. These re-
sults suggest that the training data effectively ad-
dressed the challenges posed by negative samples,
enabling the fine-tuned models to achieve signifi-
cantly higher overall accuracy. Overall, the results
underscore the effectiveness of fine-tuning in im-
proving model robustness, particularly for nega-
tive samples. The dataset’s training data appears
to play a crucial role in enhancing model perfor-
mance, as evidenced by the fine-tuned models’ abil-
ity to achieve high accuracy across both positive
and negative samples. These insights suggest that
tailored training strategies and targeted fine-tuning
can significantly enhance model capabilities, even
for smaller models.

4 Conclusion

In this work, we propose the first large-scale Chi-
nese dataset CITECHECK for citation faithfulness
detection. To solve the high-cost problem caused
by the lack of negative samples when constructing
the dataset using strong RAG systems, we propose
the method of data augmentation with two-stage
manual annotation. This method allows us to con-
struct a dataset with a balanced number of positive
and negative samples at a relatively low cost and
guarantees the quality of the dataset. We conduct
experiments and validate the quality of the dataset
in two aspects: (1) the test samples consisting of
the original samples are challenging for detection,
and (2) the training samples consisting of the orig-
inal positive samples and the augmented negative
samples can be effectively applied for training.



Limitations

The main limitation of the dataset is the availability
of only binary judgment labels (positive or nega-
tive). We do not manually label which part of the
statement in the negative sample is unsupported,
nor do we manually label the evidence in the doc-
uments that the statement in the positive sample
is supported. However, key segments labeling and
modifications in the LLM augmentation phase are
available, which compensates for the limitation to
some extent.

The main limitation of the experiments is the
lack of more experiments on other test sets for
the model obtained from training to show the gen-
eralization performance. This limitation comes
from the lack of relevant Chinese datasets. We
will continue to track the relevant Chinese datasets
proposed and conduct experiments.

Ethics Statement

We comply with the license to use language models
for scientific research purposes only. Questions
are collected with the permission of the license
of open-source datasets or with the consent of the
relevant users. The datasets we construct will also
be open source for scientific research purposes. We
conduct checks to minimize potential risk issues
with datasets, including personal privacy concerns
and harmful content.

The Al assistant we use in our work is Copilot
(for simple code completion).
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A TrickQA Details

Real-world questions do not always have the cor-
rect premises. For example, in the question "7K{%
R ISR 1E AT 42 (What is the route of in-
fection for Minamata disease?)", Minamata disease
is not an infectious disease. Taking this situation
into account, we add a small number of human-
written questions with incorrect premises and LLM-
generated questions with hard-to-verify premises
in the question collection phase. The number of
these questions in the total number of questions is
about 3%.

B Supplementary Statistics

B.1 Question Sources

The percentages of different question sources are:
WebText (29.5%), WebCPM (33.6%), Zhihu-KOL
(29.8%), RGB (3.8%), TrickQA (3.3%).

B.2 The Number of Documents

The percentages of the number of cited documents
in one sample are: 1 (74.9%), 2 (15.0%), 3 (5.2%),
4 (2.9%), 5 (2.0%).

C Augmentation Details

See Table 5 for the prompt for LLM augmentation.
Table 6 provides an English version.

D Annotation Details

D.1 Instructions for the First Phase

In the first stage, we provide the annotators with
the question, answer, statement, and cited docu-
ments. What LLM considers to be key segments
are highlighted in red in the cited documents. We
instruct the annotators to follow the process below:

(1) First look at the highlighted text. If the high-
lighted text fully supports the statement, then the
annotation is positive; if the highlighted text contra-
dicts the statement, then the annotation is negative.

(2) If the annotation cannot be derived from the
highlighted text, then look at the rest of the doc-
uments to make the annotation. When the doc-
uments fully support the statement, the label is
positive, and when there is any information in the
statement that contradicts the documents or infor-
mation that is not mentioned in the documents, the
label is negative.
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D.2 Instructions for the Second Phase

In the second stage, we provide the annotator with
the statement and the modified documents. In the
documents, the modified parts are highlighted in
green, where the dashed and crossed-out text is
deleted and the rest is added.

For the annotation of whether the quality of the
modification is acceptable, the annotators are in-
structed to note that qualified modifications need to
satisfy the following two requirements: (1) There
are no contradictions within each modified docu-
ment. (2) The modified key segments are fluent in
their own right and in the context of the document.
The annotation for support is the same as the first
stage, but based on the modified documents.

D.3 Label Consistency

Our annotation is carried out in batches. At the
end of each batch, we carry out consistency rate
checking and provide feedback to the annotators
to gradually achieve a labeling consistency rate of
over 80%. Samples with inconsistent labeling are
discarded to ensure label consistency.

E Input and Training Details

We input the statement and the cited documents
into the model and ask the model to determine
whether the statement is fully supported by the doc-
uments, outputting yes or no. For input, we label
and concatenate the cited documents in order (as
shown in Table 1). For training, we use the fol-
lowing settings: For training, we use the following
settings: learning rate is 5Se-4, number of epochs is
10, scheduler is cosine scheduler, warmup ratio is
0.03, batch size is 256, and LoRA setting is r = 8§,
a = 32 and 0.1 dropout. We report the model
performance for the epoch that achieves the best
performance on the dev set.

F Supplementary Experiments

F.1 Shortcut Features

By prompt guidelines in the data augmentation
phase and revalidation in the annotation phase, we
attempt to prevent shortcut features in the aug-
mented samples that do not reflect the true support
relationship. To verify the effectiveness of the con-
trol, we supplement the experiment by providing
only the statement or documents when fine-tuning
LLama-3.1-8B. Table 3 shows the results. The
performances when only the statement or the doc-
uments are provided are much lower than when



Dev Acc  Acc, Acce,
statement only | 62.2 70.0 54.4
documents only | 58.8 59.0 58.6
full sample 914 91.6 91.2
Test Acc  Acc, Acce,
statement only | 60.2 65.8 54.6
documents only | 58.7 57.4 60.2
full sample 90.6 904 90.8

Table 3: Results of experiments on LLama-3.1-8B
when providing only the statement or documents for
fine-tuning. We show a comparison with using the full
sample.

Dev Acec  Accp, Acc,
GPT-40 (0-shot) 837 970 704
GPT-40 (10-shot) 824 966 682
Qwen2.5-Plus (0-shot) | 81.6 97.0 66.2
Qwen2.5-Plus (10-shot) | 76.7 98.2 55.2
DeepSeek-v3 (0-shot) 69.4 992 396
DeepSeek-v3 (10-shot) | 80.0 98.8 61.2
Test Ace  Acc, Acc,
GPT-40 (0-shot) 839 962 71.6
GPT-40 (10-shot) 82.1 96.0 68.2
Qwen2.5-Plus (0-shot) | 81.2 94.8 67.6
Qwen2.5-Plus (10-shot) | 74.4 954 534
DeepSeek-v3 (0-shot) 694 994 394
DeepSeek-v3 (10-shot) | 78.5 98.2 58.8

Table 4: Results of experiments on LLMs Results of
experiments on LLMs in O-shot and 10-shot settings.

the full sample is provided, suggesting that relying
only on shortcut features (rather than real support
relationships) is insufficient to discriminate the pos-
itivity or negativity of the sample well.

F.2 Few-shot Experiments

We supplement the 10-shot (5 positive, 5 nega-
tive) experiments on LLMs. Table 4 shows the
results. For Qwen-Plus and GPT-40, the 10-shot
setting does not improve the overall accuracy. For
DeepSeek-v3, few-shot improves overall accuracy,
but the accuracy does not exceed GPT-40 under the
0-shot setting. This complements the support for
the conclusions about the difficulty of the samples.

G Related Works

Language models are known to produce hallu-
cinations - statements that are inaccurate or un-
founded (Maynez et al., 2020; Hu et al., 2024a). To
address this limitation, recent research has focused
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on augmenting LL.Ms with external tools such as
retrievers (Guu et al., 2020; Borgeaud et al., 2022;
Liu et al., 2024) and search engines (Nakano et al.,
2021; Komeili et al., 2022; Tan et al., 2024). While
this approach suggests that generated content is
supported by external references, the reliability of
such attribution requires careful examination. Re-
cent studies have investigated the validity of these
attributions. Liu et al. (2023) conducted human
evaluations to assess the verifiability of responses
from generative search engines. Hu et al. (2024b)
further investigate the reliability of such attribu-
tions when giving adversarial questions to RAG
systems. Their findings revealed frequent occur-
rences of unsupported statements and inaccurate
citations, highlighting the need for rigorous attribu-
tion verification (Rashkin et al., 2023). However,
human evaluation processes are resource-intensive
and time-consuming. To overcome these limita-
tions, existing efforts (Gao et al., 2023a,b; Luo
et al., 2024) proposed an automated approach us-
ing Natural Language Inference models to eval-
uate attribution accuracy. While several English-
language benchmarks have been developed for this
purpose (Yue et al., 2023), comparable resources in
Chinese are notably lacking. Creating such datasets
presents unique challenges, particularly in gener-
ating realistic negative samples (unsupported cita-
tions). To address this gap, we introduce the first
large-scale Chinese dataset for citation faithfulness
detection, developed through a cost-effective two-
stage manual annotation process.



X B — B PRIR TN R — B S B U - EHA N PR GERAESS, TSR B s S T
H
(1) ¥®EBNSHZCARF T BEECERRHEENRGRE B (TREE1, 808K
2) o BITHH-ANRERBE LB LEERETENRRFNEE, BB ERmS: i
B CGCERRAFRIER: ERER) 7.

(2) WHRREESE, BHAE PR ESERATOHERSARNER, BH—1To
HEER . AR BB F-H (BB YEBRE) | B GBEHREY
BmS) 2. B, BRdENMER, REXEITEGEERL, BB EFER2, RET
B3 IEERL, Aokt B ad. H—H. (1, 3) , BF-H. (2)”

(3) HEFF—H R, WHAFSERASE BRI EN, R LU EK:

- BB A A S B S BT VR SE & SRR RS LB B, -

- BRI R S B IB EE T - B B RIE B RIS E -
-@ﬂﬁgm%%I&&ﬁE%%IKWL?I%ﬁ*%%ﬁﬁﬁm,EE%%IK$%E@W
BTG -

- RIBHMCHERR R E BRI, HEH A REEAEE .

- MR —HAE 2R, BEUE ENE BRI AR —E

TR EZ A ME LT

-REEE: FREEANE—OERBE N AINIEE . EAEHATERERSTEER MR
FIER . Flan, JERAG B R Bl A7TREMLAR Y B = s % b B — A, A E R IB IR s AT
R B v T B — R OB IE BB O R BRI AT RE AR A B el b B — 8 (I
SO, 5REREHZEME) |, NEIE B R B ATHE AR ) 5 s 3 A B — R (R
&g, 5RESERWR) -

-MIBRE S RSB R — A0S B - RSB R R B AT, HIRE EERNIZ
TRR— BN ATF - i, FEXB R ETRSER, MEHERE3IAISHRY” (FENA)
F) ., AEMBHEHTRSIER, TEEREIARBE (BREZENATF) . NEENE
BoEHTREER ONHEZEBIATF) -

SRR, BIHBEE CRESCEL, AR EEBHEEIEE, AH— N 1~10LAAEEUE R
WA (BRFRRBIEIR) - BT — MERUE R ICEL, WS T BB UG B O S E
Gis: BRI R (BHIEINEE: 250 7.

Table 5: The complete prompt for the LLM augmentation.
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Here is a statement and a corresponding piece of reference text. Please complete the task as follows,
strictly following the format I have given for the output:

(1) Find all the original key passages in the reference text that directly support the information in the
statement (there may be more than one, find each one). Output one original key passage per line and
the information in the statement it directly supports in the format “Key passage number: key passage
(information in the supporting statement: supporting information)”.

(2) Please group key passages, each group contains key passages supporting the same or related information
in the statement, output one line of the grouping results in the format of “Key passage grouping: Group 1:
(first group of key passage numbers), Group 2: (second group of key passage numbers) ...”. For example, if
there are 2 pieces of information in the statement, key paragraph 1 supports information 1, key paragraph
2 supports information 2, and key paragraph 3 supports information 1, then the output is “Key Paragraph
Grouping: Group 1: (1, 3), Group 2: (2)”.

(3) Select a group of key text segments and modify the parts of them that support the information in the
statement to meet the following requirements:

- The modification should make it impossible for the key passage to fully support the corresponding
information in the statement.

- The modifications should maintain the logical flow of the key passages and no contradictions between
the information in the key passages.

- The modification should keep the key paragraph logically coherent in the context of the reference text
and not contradict the rest of the reference text.

- Modify only the parts that support the information in a statement, leaving the rest unchanged.

- If there is more than one key passage in a set, the information in them should remain consistent after
revision.

You need to try two methods of modification:

- Changing the message: modifying the message in one part of the key paragraph to another. Do not make
changes that directly conflict with the original information. For example, if the original message is “The
Audi A7 Signature Edition has a faster top speed than its predecessor”, an appropriate change would be
“The Audi A7 Luxury Edition has a faster top speed than its predecessor”, and an inappropriate changel
would be “The Audi A7 Signature Edition has a slower top speed than its predecessor” (using an antonym,
which is in direct conflict with the original message), and inappropriate modification 2 is “The top speed
of the Audi A7 Signature Edition is not faster than the previous generation’ (adding a negative word,
which is in direct conflict with the original message).

- Delete Information: Remove information from a place in a key paragraph. If the key paragraph is a
complete sentence, it should still be a complete sentence after deleting the information. For example, if the
original paragraph reads “Due to weather conditions, the project was delayed until March 15” (complete
sentence), an appropriate change would be “Due to weather conditions, the project was delayed until
March” (still a complete sentence), an inappropriate change would be “Due to the weather” (no longer a
complete sentence).

For each method, output the key passage that was modified and check its logical fluency, giving an integer
within 1 to 10 as a rating (higher means more fluent). Output one modified key passage per line in the
format “method-modified key passage number: modified key passage (logical fluency: score)”.

Table 6: The complete prompt for the LLM augmentation (translated into English).
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