
Under review as a conference paper at ICLR 2024

MAPSELECT: SPARSE & INTERPRETABLE GRAPH
ATTENTION NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Attention Networks (GATs) have shown remarkable performance in captur-
ing complex graph structures by assigning dense attention weights over all neigh-
bours of a node. Attention weights can act as an inherent explanation for the model
output, by highlighting the most important neighbours for a given input graph.
However, the dense nature of the attention layer causes a lack of focus as all edges
receive some probability mass. To overcome this, we introduce MapSelect, a
new method providing a fully differentiable sparse attention mechanism. Through
user-defined constraints, MapSelect enables precise control over the attention den-
sity, acting as a continuous relaxation of the popular top-k operator. We propose
two distinct variants of MapSelect: a local approach maintaining a fixed degree
per node, and a global approach preserving a percentage of the full graph. Upon
conducting a comprehensive evaluation of five sparse GATs in terms of sparsity,
performance, and interpretability, we provide insights on the sparsity-accuracy
and sparsity-interpretability trade-offs. Our results show that MapSelect outper-
forms robust baselines in terms of interpretability, especially in the local context,
while also leading to competitive task performance on real-world datasets.

1 INTRODUCTION

Graph Attention Networks (GATs) employ the attention mechanism to weigh the importance of
neighbours of a node and their features when aggregating information. This ultimately allows for a
more adaptive learning for the task at hand (Veličković et al., 2018). The learned attention weights
can also be inspected to gain insights into what the model considers as discriminative features to-
wards a final decision (Ying et al., 2019; Ye & Ji, 2021; Rath et al., 2021). However, the dense nature
of the attention mechanism caused by the softmax transformation, which assigns probability mass to
all edges (even irrelevant ones) challenges interpretability, thereby resulting in a computation graph
as dense as the input graph itself. Thresholding attention probabilities is a straightforward solution
to the issue of dense attention, but it compromises the end-to-end differentiability of the network.

The importance of sparsifying GATs has been recognized by a number of works with applications
to robustness, task performance, and computational efficiency (Kipf et al., 2018; Srinivasa et al.,
2020; Luo et al., 2021; Shirzad et al., 2023; Ye & Ji, 2021). Particularly, the work by Rathee et al.
(2021) rely on sparsity to improve interpretability. Such methods are known as self-interpretable
approaches, where explanations are an integral part of the model’s decision process. Consequently,
self-interpretable techniques are renowned for producing more faithful explanations (Jacovi & Gold-
berg, 2020a; Wiegreffe & Pinter, 2019). However, it is important to note that these approaches typ-
ically involve a trade-off between task performance and interpretability, and the effects of sparsity-
inducing hyperparameters on this trade-off remain unclear Moreover, even if there is a focus on
interpretability, the ability to control the induced subgraph size, and thereby the interpretability, is
often sidestepped (Rathee et al., 2021).

In this paper, motivated by the success of controllable sparse attention methods in NLP (Correia
et al., 2019; Treviso & Martins, 2020; Guerreiro & Martins, 2021), we focus on self-interpretable
methods for GNNs, and develop a novel framework named MapSelect that produces sparse control-
lable subgraphs while maintaining a high task accuracy. In particular, we use SparseMAP (Niculae
et al., 2018) to create differentiable sparse attention masks. Differently from alternative solutions,
the proposed framework can be controlled both locally and globally, through two configurations:
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Figure 1: Overview of MapSelect. (A) The input graph is sparsified by applying SparseMAP (see
§2.2) in a local or global fashion, conditioned to the information processed by a GAT layer. (B) In the
local approach, MapSelect removes edges within the neighbourhood of a node, with B representing
the maximum number of active connections. (C) In the global approach, MapSelect sparsifies the
full graph, with B denoting the portion of active edges. In this example, in order to identify a
“house” structure within a graph, MapSelect-G retains only the edges in the “house” structure.

(i) MapSelect-L, which produces an attention mask that maintains only the essential edges per node
based on a fixed budget and (ii) MapSelect-G, a configuration that only maintains the most essen-
tial edges in the full graph based on a target budget. Both configurations allow for an easy control
to capture the most essential edges that will provide a more focused attention mask, allowing to
identify important substructures, as illustrated in Figure 1.

Using five node-level benchmark datasets, we study the effect of sparsity on both performance and
interpretability, ultimately, establishing a trade-off that provides deeper insights into interpretability.
We compare our method against five baselines and we also validate on a dataset with a ground-truth
explanation to highlight the explanatory capability of the learned sparse attention weights. We find
that MapSelect presents itself as the only method to consistently improve interpretability across all
datasets, and especially on denser graphs. Overall, our contribution is twofold:1

1. We propose MapSelect to control the sparsity of graph attention layers, both locally and
globally, leading to superior interpretability results compared to baselines.

2. We provide an extensive and unique evaluation of sparse GATs, examining trade-offs be-
tween sparsity-accuracy and sparsity-interpretability, and providing insights into architec-
tural choices that influence interpretability.

2 BACKGROUND

We denote a directed graph as G = (V, E) with nodes V = {1, ..., N} and edges E ⊆ V × V , where
(j, i) ∈ E represents an edge from j to i, and Ni = {j ∈ V | (j, i) ∈ E} the neighborhood of node i.

1Our code is available at: blind review.
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2.1 GRAPH ATTENTION NETWORKS

A GAT layer computes a weighted average of vector representation of the neighbors of a
node (Veličković et al., 2018). Specifically, given a set of node representations {h(0)

i ∈ Rd | i ∈ V}
as input (at layer ℓ = 0), a GAT layer first computes attention scores for edges (i, j) ∈ E as:2
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where z
(ℓ)
i ∈ Rn represents the attention scores of node i, with n = |Ni|. That is, softmax maps

scores to probabilities Rn → △n−1, where △n−1 := {ξ ∈ Rn | ξ ≥ 0, 1⊤ξ = 1} is the (n− 1)-
probability simplex. The updated representation of node i, h(ℓ+1)
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weighted average of the transformed features from neighbouring nodes, potentially followed by a
non-linear function σ(·):
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While softmax is easy to implement and fully differentiable, its output is dense and thus all edges
will have some probability mass, which may hinder interpretability. This has been investigated in
(Treviso & Martins, 2020) for NLP tasks.

2.2 SPARSE ATTENTION

Previous studies have shown that incorporating sparsity into the attention mechanism results in a
more compact and transparent representation of G (Kipf et al., 2018; Ye & Ji, 2021). In this section,
we briefly review SparseMAP (Niculae et al., 2018), a technique that achieves this functionality
while preserving the necessary differentiability for backpropagation. In §3, we leverage SparseMAP
to introduce a new sparse attention method for GNNs.

Let z ∈ Rn be a vector of scores given to the edges of a particular node. To improve interpretability,
a possible approach is to transform z into a sparse probability vector π whose entries indicate in
probability the role of an edge towards the final decision. This can be achieved by the α-entmax
attention (Peters et al., 2019), a generalization of softmax, which has been to obtain sparse trans-
formers (Correia et al., 2019). For situations where one wants to specify precisely the number of
neighbors, a top-k operation can also be used, such that only the k largest entries in π are kept,
while the others are zeroed out (Gao & Ji, 2019). However, the top-k operation is not differentiable
and may inevitably introduce instabilities for training .

SparseMAP addresses this issue by casting subset selection as a relaxed structured prediction
problem. Specifically, when considering n-length binary sequences with at most B non-zeros,
SparseMAP is defined as:

SparseMAP(z;B) := argmax
µ∈MS

z⊤µ+
1

2
∥µ∥22

s.t. MS :=
{∑

i

πiyi : π ∈ △|S|−1,yi ∈ S
}

S := {y ∈ {0, 1}n | ∥y∥1 ≤ B},

(4)

where the cost function aims at finding a vector µ that is aligned with the scores z but with a
quadratic regularizer to ensure smoothness. The solution is confined to the marginal polytope MS

2We adopt the GAT variant proposed by (Brody et al., 2022), called GATv2, due to its superior expressivity.
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that imposes solutions to be in the space of bit vectors [0, 1]n with at most B non-zeros. Notably,
the vertices of MS represent binary solutions and in such cases we obtain u ∈ {0, 1}n, whereas its
edges represent a sparse convex combination of binary vectors, and thus u ∈ [0, 1]n. Finally, the
faces of this polytope lead to fully dense solutions. Because of the quadratic regularization term,
SparseMAP promotes sparse vectors u ∈ [0, 1]n that lie on the boundary of the marginal polytope
(vertices, edges, or other low-dimensional faces). For more information on SparseMAP, we refer
the reader to (Niculae et al., 2018; Niculae & Martins, 2020).

Therefore, given the vector scores zi ∈ Rn of node i ∈ V , SparseMAP will produce a vector
µi ∈ [0, 1]n as output, such that edges with µij = 0 can be ignored during the forward pass. While
the optimization problem described in Equation 4 does not have a closed-form solution, both the
forward and backward passes can be solved with an active set method that exhibits exact finite con-
vergence and yields the optimal sparsity pattern (Nocedal & Wright, 1999). Contrarily to stochastic
approaches, such as the reparameterization trick used in NeuralSparse (Zheng et al., 2020) and
SGAT (Ye & Ji, 2021), SparseMAP is deterministic and end-to-end differentiable, and thus easier to
optimize (Guerreiro & Martins, 2021). Next, we present MapSelect, a new sparse method for GNNs
that leverages SparseMAP.

3 MAPSELECT

We introduce two methods that leverage sparsity to design more interpretable GNNs by acting on
different levels of the computation graph. The first method, MapSelect-L, keeps a sparse subset
of local connections for each node, while the second approach, MapSelect-G, promotes sparsity
on the full computation graph; see Figure 1 for an overview. For both approaches, we start with a
GAT layer that takes the input graph representation and produces the attention scores z⋆ij and the
attention weights π⋆

ij for each edge (i, j) ∈ E , as described in §2.1. EWe pass the attention weights
(MapSelect-L) or the attention scores (MapSelect-G) to SparseMAP (cf. Equation 4) and obtain
a sparse distribution as output, which we leverage to obtain a sparse input graph G̃ that is used in
subsequent GAT layers. Next, we detail each variant of MapSelect.

MapSelect-L. In this approach, we fix a local budget B per node, such that each node keeps at
most B active connections. Formally, for each node i, let π⋆

i ∈ △n−1 be the attention weights ob-
tained with the first GAT layer, where n = |N (i)| and let SparseMAP(·;B) denote the SparseMAP
with a budget constraint B. In MapSelect-L, we apply SparseMAP on π⋆

i with a budget constraint
to get a sparse mask µi ∈ [0, 1]n:

µi = SparseMAP(π⋆
i /t;B), (5)

where t ∈ R is a temperature hyperparameter. Next, we use µi to re-scale the attention weights of
each subsequent ℓ-th GAT layer as:3
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where ⊙ represents the element-wise multiplication, and h
(0)
i the feature vector fed to the network

(see Figure 1). This procedure effectively deactivates the contribution of neighbouring nodes j ∈ Ni

when µij = 0. In other words, we condition SparseMAP on information processed by a GAT
layer and then use its output to sparsify the input graph by adjusting subsequent attention layers.
Notably, as the temperature t → 0, SparseMAP becomes the top-B operator and π̃i becomes a
re-normalized vector of probabilities with the top-B highest original probabilities. Therefore, our
proposed framework can also be seen as a continuous relaxation of the usual truncation approach.4

Remark 1. The current approach imposes the budget B as the maximum number of edges allowed
per node. In some cases, where statistical properties of the input graph (such as degree distribution or
centrality metrics) may be relevant this strategy can be changed by using a relative budget (B%) on
the available number of edges. In our experiments, we tested both approaches but have not noticed
a significant impact on performance. ■

3We ensure µi ̸= 0 by keeping self-loops (i.e., µii = 1 always).
4We employ a temperature parameter of 10−1 and 10−3 in training and test time, respectively.
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MapSelect-G. MapSelect-G evokes SparseMAP over all edges globally, disregarding specific
neighbourhoods. Here, we set the budget B as a percentage of the number of edges as:

z̄⋆ = concat-and-pad(z⋆
1 , ...,z

⋆
N ) (7)

µ̄ = SparseMAP(z̄⋆/t;B), (8)

where z̄⋆ ∈ RN2

is the concatenation of all attention scores z⋆
i from the 1st GAT layer for all 1 ≤

i ≤ N nodes, padding (i, j) positions with −∞ when (i, j) /∈ E . Here, we denote µi ∈ [0, 1]N as
the binary vector given to node i, indexed as the i-th contiguous chunk of size N in µ̄ ∈ [0, 1]N

2

. As
in MapSelect-L, we use µi to re-scale the attention weights of node i in subsequent GAT layers (see
Equation 6), keeping self-loops by setting µii = 1. Therefore, edges (i, j) ∈ E will be deactivated
whenever µij = 0, and as a result, they will not contribute towards the final output.

Connections with related approaches. Both MapSelect-L and MapSelect-G resemble techniques
that sparsify the input graph and then use it in a classification task, such as NeuralSparse (Zheng
et al., 2020), SGAT (Ye & Ji, 2021), and DropEdge (Rong et al., 2020). However, MapSelect differs
by: (i) leveraging SparseMAP to sparsify the input graph, effectively keeping the classification
problem end-to-end-differentiable; and (ii) applying the resulting mask to the attention mechanism
in subsequent GAT layers instead of masking irrelevant connections directly in the adjacency matrix.
More specifically, MapSelect-L is similar to NeuralSparse and the traditional top-k attention, as the
selection of relevant edges occurs in the neighbourhood of each node in the computation graph
and the selection budget is set to a pre-defined fixed number of edges. MapSelect-G is close in
spirit to SGAT and DropEdge, as the decision to deactivate irrelevant edges is carried globally over
the entire input graph. Finally, the way MapSelect conditions on the initial GAT layer mirrors the
design seen in models termed ”rationalizers” within the NLP literature (Lei et al., 2016; Bastings
et al., 2019; Guerreiro & Martins, 2021). Much like MapSelect, these models aim to provide faithful
explanations by conditioning the selection of input elements (e.g., words) on an encoder module, and
subsequently making a final decision solely on the basis of these selected items.

4 EVALUATION

We compare the proposed methods to five baselines that focus on producing a sparse subset of
the input graph. We perform experiments on five real-world datasets, and on one synthetic dataset
containing ground truth explanations. The detailed model configurations and the dataset information
can be found in §B.1 and §B.3, respectively.

4.1 BASELINES

Table 1: Characteristics of each base-
line method.

Method Sparsity
Level

Sparsity
Control

End-to-end
Differentiable

Top-k Local ✓ ✗
Entmax Local ✗ ✓
NeuralSparse Local ✓ ✗
MapSelect-L Local ✓ ✓
SGAT Global ✗ ✗
DropEdge Global ✓ ✗
MapSelect-G Global ✓ ✓

We assess the proposed approaches by comparing them
to the following alternatives. A summary of the charac-
teristics of each method is presented in Table 1.

Top-k. We apply a top-k operation on the softmax at-
tention weights of a standard two-layer GAT in a local
fashion. We control for sparsity by varying k at test time.

Entmax. This approach replaces the standard softmax
function found in GATs by the α-entmax transforma-
tion (Peters et al., 2019), detailed in §A. We control the
propensity to sparsity by varying α. Both Top-k and Ent-
max produce sparse attention probabilities directly rather
than implementing a separate attention layer that masks the input graph.

NeuralSparse. (Zheng et al., 2020) NeuralSparse utilizes Gumbel-Softmax (Jang et al., 2017) to
sample (local) sparse subgraphs consisting of k neighbours. We control sparsity by setting k as the
maximum number of edges per node.

SGAT. (Ye & Ji, 2021) SGAT encourages sparse solutions by adding an ℓ0-penalty term to the loss
function, penalizing non-zero attention weights, resulting in global sparsification. SGAT resorts to
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the hard concrete estimator for model optimization (Louizos et al., 2018). We control sparsity by
adjusting the weight given to the ℓ0 penalty empirically.

DropEdge. (Rong et al., 2020) DropEdge randomly drops edges from the input graph, thus acting
in a global fashion. We consider this method as a baseline by controlling the portion of dropped
edges and maintaining the sparsified graph at test time.

4.2 EXPERIMENTAL SETUP

MapSelect. For both variants of MapSelect, a single GAT layer is employed to derive the set of
attention weights π⋆

i , which are used to form the sparse mask. Following this, two GAT layers are
employed to classify the input using the masked attention.5 We control the sparsity of MapSelect
by adjusting the SparseMAP’s budget constraint B. In the local approach, B can alternatively be
configured to retain a specific percentage of connections. However, for the sake of uniformity with
NeuralSparse and due to similar performance, we only assess the fixed configuration.

Metrics. We evaluate interpretability with the fidelity metric proposed by ZORRO (Funke et al.,
2023). More details on fidelity can be found in §B.2. Since the synthetic dataset provides binary
vectors as ground truth explanations, for this dataset we also compare our explanations with respect
to the ground truth in terms of AUC, which automatically accounts for multiple binarization thresh-
olds. Furthermore, an evaluation of the explanation entropy, as proposed by BAGEL (Rathee et al.,
2022), is presented in §D.1.

Explanation extraction. We employ two distinct strategies for extracting explanations. For real-
world datasets, we obtain node-level explanations by propagating an identity matrix over the com-
putation graph. We detail this strategy in §C. For the synthetic dataset, we follow the approach
proposed by (Ying et al., 2019), which produces edge-level explanations by averaging the attention
scores of all layers.

4.3 EXPERIMENTS

We hypothesize that as we progressively remove edges from the computation graph, the performance
will decline. In addition, we anticipate that a classification based on fewer edges will be more
interpretable To investigate these effects independently and identify a balance between them, we
pose the following research questions:

RQ1. What is the role of sparsity on model performance?
RQ2. What is the role of sparsification on model interpretability?
RQ3. What is the interpretability-performance trade-off?

4.3.1 ROLE OF SPARSITY ON TASK PERFORMANCE

In Figure 2, we present results for all methods on real-world datasets, with graphs sorted from
the least to the most dense.6 Among the local methods, MapSelect-L consistently outperforms
NeuralSparse and top-k. Notably, unlike its counterparts, MapSelect-L is not tied to a specified
budget, giving us the flexibility to select fewer edges than the targeted allocation. MapSelect-L
shows also a more stable convergence as more edges are discarded than the other local approaches.

Looking at the global methods, both MapSelect-G and SGAT surpass DropEdge. In the less dense
graphs, SGAT and MapSelect-G achieve similar results, while in more dense datasets SGAT out-
performs MapSelect-G. However, SGAT faces challenges in maintaining sparsity control in dense
graphs, as it quickly deviates from 10% to 60% sparsity. In contrast, MapSelect-G provides a tight
control over sparsity, respecting the desired budget pre-established before training. We provide de-
tailed view of sparsity controllability in §D.3. Regarding the impact of sparsity on accuracy, we
note that both SGAT and MapSelect-G can maintain or even improve accuracy as sparsity increases
on the Actor dataset, suggesting that this dataset might contain a considerable number of irrelevant

5To ensure a fair comparison, we use two GAT layers for classification in all methods, including MapSelect,
regardless of whether the input is a full or sparsified graph.

6Results for a 2-layer dense GAT is recovered by Entmax with 0% edges removed, corresponding to α = 1.
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Figure 2: The impact of sparsity on the model performance.
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Figure 3: Impact of sparsity on interpretability.

edges. This is expected because global approaches impose fewer limitations on which edges to
remove while during training.

Overall, we observe that global methods typically outperform local approaches when the primary
focus is on task performance, likely because global approaches impose fewer limitations on edge
removal. In a case where it is more beneficial to maintain all edges for one node and remove all
edges for a different one, a global approach should be considered. Interestingly though, the local
approaches achieve a similar performance on the more dense datasets and sometimes they outper-
form the global approaches in the most sparsified settings. In addressing RQ1, we find that sparsity
presents a nuanced trade-off in task performance. While extreme sparsity can indeed lead to de-
creased performance, a moderate degree of sparsity, around 40%, results in a minimal performance
drop, often less than 5% across all datasets, especially on denser ones.

4.3.2 ROLE OF SPARSITY ON INTERPRETABILITY

Towards answering RQ2, we evaluate the tradeoff between sparsity and interpretability on real-world
datasets first, and then move to the synthetic dataset with ground-truth explanations.

Real-world datasets. In Figure 3, we present the impact of sparsity on fidelity. Intuitively, a high
fidelity implies that the explanation is more faithful and is more robust to perturbations. Among the
local methods, the results vary as we increase the sparsity rate. Initially, top-k has a better fidelity
than MapSelect-L, however, as we remove more edges, MapSelect-L consistently outperforms other
methods. The early success of Entmax and top-k might be due to a better attention distribution. This
is supported by the lower entropy of Entmax, explored in §D.1. Regarding the global approaches,
MapSelect-G outperforms DropEdge and SGAT is the best performing among the global methods.
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In contrast to our findings in terms of the sparsity-accuracy tradeoff, global methods do not always
lead to a better interpretability than local the approaches. In the context of MapSelect, we see a
trend towards preferring local sparsification, which achieves a results competitive to SGAT. Lastly,
we remark that graph density significantly impacts the interpretability. For example, while SGAT
has the overall best interpretability results, MapSelect-L outperforms it in the Amazon Photo dataset.

Synthetic dataset. To investigate whether an extracted rationale agrees with the ground truth ex-
planation, we evaluate the models on the BA-Shapes dataset. We show the trade-off between sparsity
and AUC in Figure 4. The task accuracy of each method can be found in §D.2.

For local methods, we observe a standout performance from MapSelect-L. As more edges are re-
moved, its AUC score increases. However, after removing more than 60% of edges, the score drops.
This indicates that MapSelect-L provides better explanations with a moderate sparsity rate. Neu-
ralSparse shows a more significant increase in AUC but starts with a much lower initial score. Top-k
performs as expected, producing less faithful explanations as more edges are removed.

0 20 40 60 80 100
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0.8

AU
C

MapSelect-L
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Entmax
Top-K

MapSelect-G
SGAT
DropEdge

Figure 4: The impact of graph sparsifi-
cation on the similarity of the extracted
rationale to the ground truth explanation
(in terms of AUC) on the BA-Shapes
dataset.

Turning to global methods, SGAT outperforms other ap-
proaches, mirroring the trend seen with MapSelect-L.
The trajectory of MapSelect-G starts with high AUC
scores, and then we get lower scores as sparsity increases.
The lower performance of MapSelect-L compared with
MapSelect-G can be attributed to the nature of the BA-
Shapes dataset, which emphasizes the discovery of small
structures within a vast graph, deeming all other edges
irrelevant. These irrelevant edges are retained in the lo-
cal approach, as it keeps only a small absolute number of
edges per node.

From the increased trend in the AUC scores, we conclude
that attention-based methods can be explored to extract
plausible explanations. Notably, both MapSelect-G and
SGAT outperform the AUC scores presented by the atten-
tion, gradient, and GNNExplainer baselines in (Luo et al.,
2020, §5.3). We show an example of an explanation ex-
tracted with MapSelect-G for BA-Shapes in Figure 1C.

4.3.3 PERFORMANCE-INTERPRETABILITY
TRADE-OFF

As seen in Figure 2 and Figure 3, the lowest accuracy and the best fidelity scores are reported when
most edges are removed. Since a consistent explanation of a wrong classification may be irrelevant,
we investigate the effect of interpretability in accuracy directly in Figure 5. For clarity, we removed
the baselines that did not show sufficient improvement in interpretability.

First, we can see that MapSelect-L is the only local method offering an appropriate and consistent
trade-off between accuracy and fidelity. Second, we see that MapSelect-G is more suitable for
denser datasets (e.g., Amazon Photo), where its ability to control the sparsity allows improving the
fidelity score by up to a factor of two while retaining the accuracy. Contrarily, SGAT works best in
sparser datasets but in denser ones it strugles to enhance the fidelity due to limited control over edge
removal. Both MapSelect methods consistently demonstrate their ability to yield more interpretable
networks by robustly removing edges in all scenarios. The preference for either the local or global
approach appears to strongly hinge on the task as well as the dataset. Overall, these analyses show
that studying the trajectory of task accuracy and interpretability score as we change sparsity reveals
a more profound understanding of the capabilities of each method.

5 RELATED WORK

Graph sparsification can be applied for a variety of goals, such as robustness, mitigating over-
smoothing, removing noise, decreasing computation times or improving interpretability. Here, we
focus on existing works that apply sparsity to improve interpretability.
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Figure 5: The trade-off between the accuracy and the fidelity score.

Post-hoc approaches. The majority of methods targeting the enhancement of GNN interpretabil-
ity adopt a post-hoc approach, pinpointing relevant nodes and features for decisions made by a
trained network. Significant contributions in this category include GNNExplainer (Ying et al., 2019),
PGExplainer (Luo et al., 2020), XGNN (Yuan et al., 2020), GraphMask (Schlichtkrull et al., 2021),
and Zorro (Funke et al., 2023). Although post-hoc methods can be readily applied to any black-
box model, they overlook the intrinsic explainable elements of the model, potentially compromising
their faithfulness (Rudin, 2019; Kakkad et al., 2023).

Local self-interpretable methods. A second perspective of interpretability is given by self-
interpretable approaches. Contrasting with post-hoc methods, these are integrated directly within
the model’s architecture. Within this view, the subgraph generated during forward propagation can
be considered a faithful explanation for a particular decision. For instance, NeuralSparse (Zheng
et al., 2020) learns a k-neighbor subgraph for each node by sampling an adjacency from a Gumbel-
Softmax distribution and employs the reparametrization trick to address non-differentiability.
SEGNN (Meng et al., 2022) constructs an explanation subgraph by grouping k nodes with simi-
lar structure and features, learning the grouping process by adding a contrastive penalty to the loss
function. In contrast, MapSelect can also act locally within a neighborhood (MapSelect-L), while
still being deterministic and end-to-end differentiable without requiring a multi-task objective.

Global self-interpretable methods. Other self-interpretable methods seek to induce sparsity
globally, without restricting this process to a specific neighborhood. This goal is shared by PTD-
Net (Luo et al., 2021), KEdge (Rathee et al., 2021), SGAT Ye & Ji (2021), and others (Feng et al.,
2022; Zhang et al., 2022; Miao et al., 2022). Analogous to NeuralSparse, PTDNet samples a sub-
graph that is used for classification, but its sparsity is imposed via a loss penalty, complicating its
controllability. KEdge (Rathee et al., 2021) produces a subgraph by sampling binary masks from a
HardKuma distribution over the adjacency matrix. Meanwhile, SGAT (Ye & Ji, 2021) prunes edges
through attention weights, but requires sampling from a Hard-Concrete distribution. Both KEdge
and SGAT resort to the reparameterization trick for optimization. MapSelect-G aligns with SGAT in
its methodology, but with SparseMAP, the selection is entirely differentiable and flexible, allowing
users to define a specific sparsity budget. Finally, we note that differently to MapSelect, SGAT,
PTD-NET, and NeuralSparse do not primarily concentrate on improving interpretability; rather, it
emerges as a by-product of their built-in sparse approaches.

Connections to rationalizers in NLP. As mentioned in §3, MapSelect aligns with the objectives
of rationalizers, colloquially termed mask-then-predict techniques, which are prevalent in NLP for
extracting faithful explanations (Jain et al., 2020; Jacovi & Goldberg, 2020b). Classical examples
include rationalizers that sample masks from a Bernoulli (Lei et al., 2016) or HardKuma distri-
bution (Bastings et al., 2019). Addressing training instabilities triggered by stochastic estimators,
Treviso & Martins (2020) suggests leveraging the α-entmax transformation (Peters et al., 2019) for
the selection mechanism. Guerreiro & Martins (2021) introduced SPECTRA, a method providing
differentiability and control over sparsity through SparseMAP (Niculae & Martins, 2020), exhibiting
superiority over the aforementioned stochastic alternatives. In this work, we assess α-entmax atten-
tion as baseline in §4. While both MapSelect and SPECTRA incorporate SparseMAP, MapSelect is
specifically tailored for graph structures, allowing for both local and global applications.
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6 CONCLUSION

We presented MapSelect, a method to learn sparse and interpretable attention scores in graph neu-
ral networks. MapSelect relies on SparseMAP, conventionally used in NLP (Guerreiro & Martins,
2021), to prune the attention scores both in a locally and globally controlled manner. The local
approach, MapSelect-L, is more beneficial when we deal with node-centric tasks and want to en-
hance the sparsity at the surroundings of each node. The global approach, MapSelect-G, is more
beneficial when we deal with graph-centric tasks and focus on the whole graph sparsity without any
local constraints. Upon studying different trade-offs between sparsity, task performance, and inter-
pretability, MapSelect-L achieved consistently the best performance w.r.t. different state-of-the-art
alternatives in five datasets. Instead, MapSelect-G showed that it is more appropriate than alterna-
tive sparse solutions on denser graphs, where its stronger ability to control sparsity proved beneficial.
By controlling the sparsity of the graph, the proposed approaches carry the potential advantage of
overcoming over-smoothing Rathee et al. (2021) and over-squashing (Alon & Yahav, 2021). Such
a task could be achieved by introducing different constraints into the MapSelect such as maximum
spanning tree constraints and will be studied in future work. Furthermore, we note that MapSelect’s
flexibility opens the door for future research to easily incorporate it into various GNN architectures.
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A α-ENTMAX

The α-entmax transformation (Peters et al., 2019) is a natural way to obtain a sparse attention dis-
tribution from a given vector of scores, z ∈ Rn. It is defined as the regularized argmax problem:

α-entmax(z) := argmax
π∈△n−1

z⊤π +Hα(π), (9)

where Hα is a generalization of the Shannon and Gini entropies proposed by (Tsallis, 1988), param-
eterized by a scalar α ≥ 0:

Hα(π) :=

{
1

α(α−1)

∑
j(πj − πα

j ), α ̸= 1

−
∑

j πj log πj , α = 1.
(10)

Given the attention scores zi ∈ Rn of node i, the attention weights of α-entmax can be computed in
a thresholded form:7

πij = α-entmax(zi)j = [(α− 1)zij − τ(zi)]
1/α−1

+ , (11)

where [·]+ is the ReLU function, and τ : Rn → R is a normalizing function to ensure
∑

j πij = 1.
Scalar α determines the propensity of sparsity: with α = 1, α-entmax simplifies to the softmax
function, whereas for α > 1, it returns sparse solutions. As α increases, the resulting probability
distribution becomes more sparse. For α = 2, the transformation recovers sparsemax (Martins &
Astudillo, 2016), defined as the Euclidean projection of zi onto the probability simplex. We refer to
Peters et al. (2019) on how to compute τ(·) efficiently in O(n log n).

We use α-entmax in §4 as baseline. Remarkably, in a GAT setup, edges with a score zij ≤ τ(zi)/α−1

will receive zero probability (i.e., πij = 0), and therefore can be excluded from the computation
graph. Since α-entmax promotes solutions that hit the boundary of the simplex (discouraging uni-
form distributions), it can mitigate the lack of expressiveness present in softmax-based GATs (Brody
et al., 2022; Fountoulakis et al., 2023). Still, α-entmax is restricted to produce solutions in the proba-
bility simplex, which may limit its applicability towards sparsifying the computation graph globally.

B EXPERIMENTAL SETUP

B.1 TRAINING

For all models, we employ the cross-entropy loss for training and optimize the loss with
Adam (Kingma & Ba, 2015). For MapSelect-L, we found that feeding SparseMAP with atten-
tion weights rather than raw attention scores works better in practice. Similarly, for MapSelect-G,
we found that applying an exponential operation before passing scores to SparseMAP improves sta-
bility. We report average numbers of five distinct random seeds. We used a single machine equipped
with a GeForce RTX 2080 Ti (11GB) GPU. We summarize relevant training hyperparameters in
Table 2.

Table 2: Training hyperparameters.

Hyperparam. CiteSeer Cora PubMed Actor Amazon Photos BA-Shapes

Hidden size 8 8 8 8 8 20
Dropout 0.6 0.6 0.6 0.3 0.6 0.1
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Weight decay 0.0005 0.0005 0.01 0.0005 0.0005 0.001

Concerning the model architecture, all approaches conduct their classification using two GAT lay-
ers. Methods that incorporate a masking layer, such as MapSelect and NeuralSparse, include an
additional layer dedicated to learning a graph mask directly from the input. To ensure a balanced
comparison across all methods, this masking layer does not modify the input features for the two
classification layers, except for adjustments related to the graph itself. In the case of BA-Shapes,

7We drop the dependence on the layer ℓ for ease of exposition.
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all models employ a standard GNN layer to encode all input features.The necessity of this initial
pass arises from the fact that the standard GAT implementation alone is incapable of exclusively
detecting the graph structure. For instance, in cases where all node feature vectors consist solely of
’1’, our GAT implementation will aggregate and normalize the surrounding feature vectors, yielding
once again a feature vector of ’1’ for all nodes.

We present the hyperparameters used for controlling the sparsity of all methods employed in this
work in Table 3. For SGAT, we set γ to different values depending on the dataset. Specifically, we
set γ = 10−5 for CiteSeer, Cora and BA-Shapes, γ = 10−6 for PubMed and Amazon Photo, and
γ = 10−7 for Actor.

Table 3: Configuration of hyperparameters used for controlling sparsity.

Method Hyperparam. Values

SGAT weight of ℓ0 penalty {0, 1.0, 1.5, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 5.0, 6.0} ×γ
DropEdge portion of dropped edges {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
NeuralSparse maximum number of edges per node {1, 2, 4, 6, 8, 10, 12, 16, 20, 25, 50, 100}
Entmax propensity to sparsity (α) {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 10.0}
Top-k maximum number of edges per nodes {1, 2, 4, 6, 8, 10, 12, 16, 20, 25, 50, 100}
MapSelect-L SparseMAP absolute budget (B) {1, 2, 4, 6, 8, 10, 12, 16, 20, 25, 50, 100}
MapSelect-G SparseMAP percentage budget (B) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

B.2 METRICS

We evaluate interpretability with the sparsity and fidelity metrics proposed by BAGEL (Rathee et al.,
2022) and ZORRO (Funke et al., 2023), defined next. These scores are calculated over the explana-
tions of 300 randomly selected nodes. The random selections are kept consistent for each dataset.
Both metrics are evaluated against the percentage of removed edges, where an edge is considered
removed when its explanation score is zero.

Rationale sparsity. Computes the Shannon entropy over the explanation vector p ∈ △n−1:

H(p) = −
∑
i

pi log pi. (12)

RDT-fidelity. Given explanations pi ∈ △n−1 for each node 1 ≤ i ≤ n, let M ∈ [0, 1]n×n denote
a mask matrix, such that Mij = pij . The RDT-Fidelity concerning the network Φ and the noise
distribution N , is expressed as follows:

F(M) = E
[
1Φ(X)=Φ(X̃(M))

]
, (13)

where X ∈ Rn×n represents the input, and X̃(M) is a perturbed input defined as:

X̃(M) = M ⊙X + (1−M)⊙Z, Z ∼ N . (14)

As Rathee et al. (2022), we set the noise distribution as the global empirical distribution of the input
features.

B.3 DATASETS

As a node classification task the Cora, PubMed, CiteSeer, Actor and Amazon Photo datasets (Yang
et al., 2016; Pei et al., 2020; Shchur et al., 2018) are evaluated using the default configurations
provided by PyTorch Geometric (Fey & Lenssen, 2019). These datasets can be classified as trans-
ductive, indicating that there is no isolation of the training set from the validation set as all data
points are part of a single graph. We provide an overview of the datasets in Table 4.

To evaluate our method with ground-truth explanations, we opted for the Barabasi-Albert (BA-
Shapes) dataset (Ying et al., 2019). This is a dataset with 300 random nodes and a set of 80 “house”-
structured graphs connected to it. The dataset contains 4 classes; a node can be classified as the
top, the middle or the bottom of a house or as not being part of a house. Each node has a single
input feature equal to 1, forcing the network to only classify based on the graph structure. As a
ground truth, an edge and node mask are passed containing all edges and nodes that are part of a
house-structure.
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Table 4: Overview of the datasets used in our experiments.

# nodes # edges # features # classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Actor 7,600 30,019 932 3
Amazon Photo 7,650 238,162 500 3
BA- Shapes 700 3936 1 4

C EXPLANATION EXTRACTION

Node-level explanation. Node-level explanations are generated by (i) setting the value of edge
weights as the attention weights of GAT network that produced the original classification, and (ii)
propagating an identity matrix of size N , the number of nodes in the graph. We can formally describe
this as follows. Let π̃(ℓ)

ij ∈ R be the attention weight associated with the edge between node i and
its neighbour j at layer ℓ in the original GAT network, extracted after applying an interpretability
method. For example, in MapSelect, π̃(ℓ)

ij is masked according to SparseMAP’s output and then
re-normalized, as stated in the left part of Equation 6. Overall, for each explainability method, we
perform the following steps to extract node-level explanations:

1. Recover the attention weights π̃
(ℓ)
ij by running the GAT network on the input graph with

original feature vectors hi ∈ Rd, for each node i.

2. Create a new one-hot vector representation for node i, h(0)
i = {0, 1}N , where hij = 1 if

i = j and hij = 0 otherwise.
3. Propagate the new representation through a weighted-message passing network, with as

many layers as the original network. That is, we compute new node features as follows:

h
(ℓ+1)
i =

∑
j∈Ni

π̃
(ℓ)
ij h

(ℓ)
j , (15)

where Ni represents the set of neighbors of node i. That is, the new node representation is
simply a weighted sum of one-hot vectors.

4. Obtain the explanation for node i from its final node features (h(final)
i ∈ RN ):

pi =
h
(final)
i∑N

j=1 h
(final)
ij

∈ △N−1, (16)

where pij represents the importance of node j to the classification of node i. Therefore, to
get a final node-level explanation with respect to a target node i⋆, we simply extract pi⋆ .

Note that all nodes outside of the computation graph of node i will receive an importance score of
zero. When calculating the fidelity and sparsity scores, these importance scores are not included.

Calculating fidelity and sparsity. The fidelity and sparsity scores are calculated over each ex-
tracted node-level explanation. The scores have been computed and averaged for 300 randomly
selected nodes. For each dataset, the same 300 nodes were used to evaluate all methods.

D ADDITIONAL RESULTS

D.1 REAL-WORLD DATASETS

Sparsity-entropy tradeoff. Figure 6 shows the impact of sparsification on entropy (described in
§B.2), where a low entropy indicates a more focused rationale. The initial performance of Entmax
and top-k can be attributed to a better allocation of the attention distribution. This is seen by the
lower entropy of Entmax, indicating a more focused explanation.

17



Under review as a conference paper at ICLR 2024

0 20 40 60 80

0

1
E

nt
ro

py

Citeseer

0 20 40 60 80

0

1

2

Cora

0 20 40 60 80
Edges removed (%)

0

1

2

3

E
nt

ro
py

Pubmed

0 20 40 60 80
Edges removed (%)

0.0

0.5

1.0

1.5
Actor

0 20 40 60 80 100
Edges removed (%)

0

2

4

Amazon Photo

MapSelect-L
NeuralSparse
Entmax

MapSelect-G
SGAT
DropEdge

Figure 6: Trade-off between graph sparsity and explanation sparsity.
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Figure 7: Trade-off between fidelity and sparsity, with and without maintaining self-loops.

Sparisty-interpretability tradeoff. Forcing the model to maintain the self-loops (not allowing
them to be masked out) greatly improved the fidelity scores as shown in Figure 7. Only Entmax
produces a better result when not maintaining the self-loops, however, this approach also presented
more instability. As a remark, in the main paper we provide the Entmax version that preserves the
self-loops for the sake of consistency.

D.2 SYNTHETIC DATASET

Tradeoffs. In Figure 8a, we illustrate the trade-off between sparsity and performance in the BA-
Shapes dataset. Interestingly, even with the removal of all edges, an accuracy of 85% is achieved.
This can be attributed to the initial pass through a single GNN layer for all methods, since this
layer helps all methods to learn sparse subgraphs. In addition to assessing the AUC score, we also
conducted an evaluation of the extracted rationales in relation to the ground truth in terms of raw
accuracy, as depicted in Figure 8b. For this, we set a threshold of 0.5 for binarizing explanations.
Intuitively, the accuracy metric applies a greater penalty to values approaching zero rather than
exactly zero, treating them with the same severity as values that are higher but still fall below the
threshold. This accounts for the disparity observed in Figure 4, where the AUC score exhibits
differing starting points due to certain models learning weights that approach zero more than other
models. Via this accuracy score, the trend of explanations improving as more edges are removed
becomes even more pronounced.
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Figure 8: Additional results on the BA-Shapes dataset.

Explanation example. In the BA-Shapes dataset, edges that do not pertain to a “house” structure
are considered irrelevant. We anticipate that MapSelect will effectively filter out these non-structural
edges, offering the remaining edges as a rationale. As illustrated in Figure 9, a subgraph from the
BA-Shapes dataset showcases the attention weights learned in one of our experiments. As antici-
pated, the majority of attention is directed towards the edges constituting this house-like structure.

Figure 9: Example of the generated attention values by MapSelect-L on the BA-Shapes dataset with
a budget of B = 2. Here we show all nodes within a k-hop distance of 2 from node 350. A red
border indicates that a node is part of a “house”.

D.3 CONTROL OVER SPARSITY

Here, we investigate the sensitivity of the sparse hyperparameters in SGAT and MapSelect-G to-
wards the actual computed sparsity levels (percentage of edges removed from the graph), employing
two dense datasets, namely, CiteSeer and PubMed. Results are shown in Figures 10 and 11.
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cording to the sparsity parameter λ in SGAT.
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