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ABSTRACT

The ubiquitous Transformer architecture suffers from two main bottlenecks: 1)
low computational and memory efficiency, leading to suboptimal hardware uti-
lization, and 2) quadratic time complexity with respect to sequence length N ,
making it slow and costly for large data contexts. We propose a novel DenseAtten-
tion Network architecture, a straightforward simplification of the standard Trans-
former block that addresses these issues and serves as a drop-in replacement for
language modeling tasks. We eliminate memory-bound components in DenseAt-
tention, including Softmax, masking, one skip connection, and both LayerNorms,
as well as key, value, and output projection matrices, as they become redundant.
Despite these removals, it maintains exact N × N pairwise interactions between
tokens. By exploiting the associativity of matrix multiplications, DenseAttention
can be computed with O(N2d) or O(Nd2) time and space complexity, depending
on the context. To handle the absence of Softmax and prevent numerical instabil-
ity, we introduce MaxNormActivation at both ends of the Transformer block. We
also devise Cosine Relative Positional Embeddings as a computationally efficient
replacement for RoPE, and simple LocalAttention variations of the block to help
the model focus on details in extremely long contexts.
DenseAttention competes with FlashAttention in speed on small sequences and
outperforms it by orders of magnitude on large contexts. We pre-train encoder
language models on sequences up to 16K in length, which perform similarly or
better than baseline BERT-large, while significantly improving speed and effi-
ciency. Finally, we achieve state-of-the-art on the LRA benchmark among the
Transformer-based architectures.

1 INTRODUCTION

Transformer architecture (Vaswani et al., 2017) has become ubiquitous in neural networks across
many domains and modalities, such as NLP (Devlin et al., 2019), images (Dosovitskiy et al., 2021),
video (Arnab et al., 2021), speech recognition (Radford et al., 2022), and even tabular data (Arik &
Pfister, 2019)). But most notably, it’s the core component of Large Language (Touvron et al., 2023a;
Brown et al., 2020) and Multi-modal (Bai et al., 2023) Models, which demonstrate surprisingly good
abilities in natural language understanding, comprehension and reasoning tasks.

The most prominent feature which distinguishes a Transformer layer from other architectures is
the attention mechanism which allows for all of the inputs to simultaneously interact with each
other. However, it’s also the source of its limitations: O(N2) time and space complexity w.r.t
context length N , and computational inefficiency of the constituents which make the architecture
work seamlessly. As reported by Ivanov et al. (2021), matrix multiplications account for 99.8% of
total FLOPs during BERT pretraining and only 61% of runtime, the discrepancy being caused by
low arithmetic intensity of memory bound operations, namely, LayerNorms, Softmaxs and other
activations as well as elementwise operations.

Numerous extensions and modifications to the standard Transformer (Katharopoulos et al., 2020;
Choromanski et al., 2022; Beltagy et al., 2020; Zhai et al., 2021; Hua et al., 2022) have been pro-
posed in the recent years to alleviate the restrictive O(N2) complexity. However, as these architec-
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Figure 1: DenseAttention architecture. Left: DenseAttention mechanism; center: multi-head inter-
pretation; right: the entire DenseAttention Network

tures in general rely on non-linear, memory-intensive and sparse operations to a much greater degree
than traditional attention mechanism, their throughput in terms of tokens per second and hardware
utilization are subpar in comparison with the latter on all but large sequence lengths (Tay et al., 2022;
Dao et al., 2022). Besides, some report (Xiong et al., 2022; Sun et al., 2024; Tay et al., 2023), that
their modeling capabilities may be limited in comparison with full-rank exact attention while their
conceptual complexity and incompatibility with standard architectures prevents their widespread
adoption.

Thus, we aim to achieve 3 main goals:

1. To create hardware efficient yet hardware-agnostic architecture with the arithmetic intensity
ratio as high as possible. An ideal algorithm should contain merely matrix multiplications
with no activations, normalizations and residual connections. However, while possible in
principle, it remains a challenging task due to numerical instabilities occurring both in
forward and backward pass and lagging performance of such architectures (Balduzzi et al.,
2017; Santurkar et al., 2018; Pascanu et al., 2013)

2. To create an algorithm which would efficiently process long sequences, preferrably with
O(N) time and space complexity.

3. To make the resulting architecture as simple as possible, and closely resembling original
Transformer architecture as well so it can serve as a drop-in replacement for the former and
be easily adopted by both research and practitioners communities.

We accomplished all of these goals with DenseAttention and DenseAttention Network (DANet)
blocks (Fig. 1). This architecture is a straight-forward simplification of the traditional Transformer
architecture which does not introduce any additional elements and complexities to the module and
can be freely swapped with it. On the contrary, we develop DenseAttention by removing all compu-
tationally inefficient elements of the original architecture: biases in all linear layers, masks, dropout,
residual connection between attention and FFN. Most importantly, we remove Softmax inside self-
attention. It results in the whole scaled dot-product attention mechanism becoming just a compo-
sition of matrix multiplications, which can be done in any order by associative property of matrix
multiplication. This duality allows to calculate DenseAttention using either O(N2d) or O(Nd2)
FLOPs, and the second option has linear time and space complexity w.r.t sequence length.

We remove LayerNorms and instead use a new MaxNormActivation, which scales token repre-
sentations by their l∞ norm. We place it at both ends of the DANet block. We also remove all
projection matrices except WQ in the self-attention module as they become redundant in the ab-
sence of non-linearities between attention and FFN. To empirically validate the architecture, we
test on the challenging Long Range Arena (LRA) benchmark (Tay et al., 2021) and achieve a new
SOTA result across all of the transformer-based models, even competing with State-Space-Models
(Gu et al., 2022a). We also replace Transformer modules in BERT-large model (Devlin et al., 2019)
with DenseAttention Network modules and pre-train it from scratch on sequences up to 16k tokens.
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Figure 2: Comparison of speed between DenseAttention and FlashAttention2 (Dao (2024)) models
across sequence lengths on a NVIDIA A100 40GB. Both models are used with the torch.compile()
module.

The model achieves better quality metrics than the original BERT while enjoying faster training and
inference both in O(N2) and O(N) regimes (Fig. 2).

To the best of our knowledge, we are the first to successfully train an NLP language model with no
Softmax or any replacement/approximation for it in the attention layer. However, for vision tasks,
such as object detection and instance segmentation, Zhuoran et al. (2021) propose two variations
of attention, one without Softmax and the other with two softmaxes applied individually to Key
and Query projections. However, they conduct experiments and report results only with second
architecture. Recently, Koohpayegani & Pirsiavash (2024) instead scale Queries and Keys separately
by their l1 norm which allows them to successfully train a vision Transformer on ImageNet1K (Deng
et al., 2009) and MS-COCO (Lin et al., 2014) datasets for different tasks with linear time complexity.

We opensource our code.

2 BACKGROUND

Here we give a brief exposition of essential elements of Transformer architecture and their variations.

Standard Transformer block consists of self-attention and feed-forward-network (FFN) sub-blocks
(Vaswani et al., 2017). Let X ∈ RN×d, where N is the sequence length and d is an embedding
dimension of one token. Define Q = XWQ as queries, K = XWK as keys, and V = XWV

as values, where WQ,WK ,WV ∈ Rd×dh are learnable parameters. Then the Scaled Dot-Product
Attention is formulated as:

Attention (X) = Attention(Q,K,V) = Softmax
(
QK⊤
√
dh

+M

)
V, (1)

with Softmax applied row-wise and mask M ∈ RN×N with values 0 or −∞ which effectively
disables some positions from calculation to account for causal sequence processing or to conceal
’PAD’ token used for batch processing of sequences with different lengths.

Default implementation in some Transformer-based models (e.g. Devlin et al. (2019)) use biases in
Q,K, and V projection layers.

Essentially, all transformer-based models use some form of Multi-Head Attention which has H
heads. Attention 1 is calculated for each head independently and the results are concatenated along
the embedding dimension and projected back to full block’s output dimension by a matrix WO ∈
Rd×dout :

MultiHeadAttn(Q,K,V) = Concat(head1, . . . , headH)WO (2)
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Feed-Forward Network which follows self-attention is composed of two linear layers and an acti-
vation (usually ReLU or GeLU) in between. Intermediate inner dimension between the two layers
is usually chosen to be 4x larger than input/ output dimension. Finally, a LayerNorm layer and a
residual connection are applied around both blocks, their relative positions dictated by PreNorm or
PostNorm architectural choice (Xiong et al., 2020). The formulation of the whole Transformer layer
l with PreNorm is:

X′
l = Xl + Attention(LayerNorm(Xl))

Xl+1 = X′
l + FFN(LayerNorm(X′

l))

Thus, each full Transformer block has two LayerNorms and two residual connections.

Depending on the implementation, dropout (Srivastava et al., 2014) might also be used in various
parts of the block, specifically after FFN and attention sub-blocks as in original Transformer, and in
attention matrix before softmax as in BERT.

3 DESIGNING DENSEATTENTION

In this section, we describe the DenseAttention architecture and motivations that led to specific
changes as compared to the Transformer. Then we outline two extensions aimed at adapting compo-
nents widely and successfully used in contemporary models to the architecture: Cosine RelPE, and
LocalAttention layers.

3.1 DENSEATTENTION

Since we aim to achieve as much computationally efficient and simple module as possible, we
proceed with eliminating inefficient components of original self-attention and Transformer architec-
tures.

The most straightforward idea which we exploit first is to abstain from using Dropout module any-
where in the model. Even though the module can be removed altogether at inference time, we also
do it for the training as we believe it won’t slow down the convergence with a large corpora dataset
typical for LLM pre-training. Besides, as noted by Clark et al. (2019), dropout in attention proba-
bilities might be the reason of redundancies among attention heads. Next, we remove the attention
mask before Softmax. Note that if there are no biases in FFN, Query and Output linear layers and
FFN activation is ReLU, then for a row vector 0⊤

d = [0, 0, . . . , 0]1×d

Attention(0⊤
d WQ,K,V) = 0⊤

d and MultiHeadAttn(0⊤
d WQ,K,V) = 0⊤

d ,

FFN(0⊤
d ) = 0⊤

d ,

and
LayerNorm(0⊤

d ) = 0⊤
d ,

i.e. zero vector stays intact when acted upon by all components of the Transformer module. So we
refrain from using biases throughout the new block, fix representation of the ”PAD” token at the
output of embedding layer to 0⊤

d , and remove masking from the self-attention layer.

Subsequently, probably the most important modification that we impose on the old architecture is
removal of row-wise Softmax activation from attention. We argue that the primary source of unparal-
leled modeling power of the original Transformer architecture which made it dominant architecture
across multiple domains is the ability for all inputs to directly interact with each other in multiplica-
tive way. This is the feature that all previous popular architectures like MLPs, CNNs and RNNs
lack. We hypothesize that the role of softmax activation is ancillary to multiplicative interactions as
it acts as a feature selection tool for the outputs of raw interactions matrix and normalizes them to
be in [0, 1] range and to add up to 1. We suggest these restrictions may be lifted without detrimental
effect on performance.

However, removing Softmax proves to be a very challenging task exactly for this reason: without
it attention outputs become unbounded which can lead for them to either diverge to ∞ or shrink to
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0. We formalize this statement with the following proposition considering simplified version of the
new mechanism where W = WQW

⊤
K and WV = I:

Proposition 1. Let X ∈ RN×d and W ∈ RN×d be matrices composed of i.i.d. random variables,
respectively Xij with E[Xij ] = 0, Var(Xij) = σ2

X , and Wkm with E[Wkm] = 0, Var(Wkm) =
σ2
W . Let Xij and Wkm also be independent for all i, j, k,m. Then each element of the matrix

Y = XWX⊤X ∈ RN×d has zero expectation and variance σ2
Y ≥ Nd2σ6

Xσ2
W .

Essentially, it means that variance of an output grows at least as a cube of an input variance in the
new architecture layer. And since σ2

Y along with tail probability P(|Yij | ≥ t) are not bounded from
above and depend on the form of an unknown distribution, we can’t just fix σ2

X e.g. with the help of
LayerNorm to ensure numerical stability.

Instead, we enforce max(|Xij |) ≤ a for some positive a which is equivalent to setting fixed L∞
norm for the inputs. Consequently, even in worst case scenario where

Xij = a for ∀ i, j (3)

it holds for Z = XX⊤X ∈ RN×d:

max(|Zij |) ≤ Nda3, (4)

i.e. L∞ norm of output values is bounded above. Furthermore, we make the following observation:

Proposition 2. If elements Wkm of W are i.i.d normal variables with mean 0 and variance σ2
W ,

independent with ∀ Xij , Var[(XW)pq] ≤ σ2
Wa2d

It follows from Prop. 2. that σW and a can be chosen such that P[|(XW )pq| ≥ ϵ] ≤ δ for
some ϵ > 0, δ > 0 depending on σW and a. Thus, we can assume that the matrix product Y =
XWX⊤X ∈ RN×d will not explode with right selection of priors.

Specifically, we set a = 1

N
1
3

, so that 4 becomes max(|Zij |) ≤ d. We choose not to downscale

inputs by further degree, e.g. by d
√
n because resulting small values may hurt modeling quality

during training in low-precision formats (fp16 and bf16).

We fix each embedding vector Xi to have constant l∞ norm of 1 by applying our novel MaxNor-
mActivation function:

MaxNormActivation(Xi) =
Xi

maxj(|X|ij) + ϵ

where ϵ is a very small number put to prevent division by 0. Note that similarly to RMSNorm (Zhang
& Sennrich, 2019), MaxNormActivation doesn’t center its inputs. However, it uses l∞ norm instead
of l2 and doesn’t have scale and bias parameters as in Zhang & Sennrich (2019); Ba et al. (2016).

After MaxNormActivation we scale output by 1

N
1
3

. We acknowledge that both these calculations are
memory bound but together they incur at most the same memory movement and compute cost as
LayerNorm. In our ablation experiments any other activation or normalization function or absence
thereof would lead to a prompt and unrecoverable numerical instability early on during training.

Consequently, it allows the removal of Softmax, which doesn’t only lift a major computational and
memory bottleneck which otherwise could be alleviated mainly with clever low-level algorithms
as in Dao et al. (2022); Rabe & Staats (2021). Without Softmax and masking attention mecha-
nism becomes a raw product of three matrices QK⊤V. Exploiting associative property of matrix
multiplication, we can compute the product as

1. either (QK⊤)V which yields 2N2d FMA operations,
2. or Q(K⊤V) which yields 2Nd2 FMA operations and is linear w.r.t N both in time and

memory complexity.

We can utilize both methods interchangeably depending on what’s more favorable given particular
values of N and d. O(N) complexity gives way to processing very large sequences in linear time
with the same result as if done in traditional O(N2) paradigm as it calculates exactly the same all
N ×N pairwise interactions but just in another order.
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Next, we consider reducing the number of heads in the multi-head attention as they are computa-
tionally inefficient. As extensive research efforts have shown (Bhojanapalli et al., 2020; Voita et al.,
2019; Kovaleva et al., 2019; Michel et al., 2019), significant portion of heads in multi-head attention
are redundant, output low-rank representations and can be pruned without decrease in quality in
downstream tasks, at least in BERT-sized models. Specifically, Bhojanapalli et al. (2020) find that
increasing number of heads past a certain threshold degrades performance in BERT. Motivated by
this, we propose increasing dh from conventional value 128 up to 1024. In case of BERT example
from C it leads to a single-head attention with arithm. int. 204.8 FLOPs/B which makes it computa-
tionally efficient even on NVIDIA A100. For LLMs with larger model dimension dh = 1024 would
still leave room for multiple heads. We also use dh = 256 in experiments. And asymptotic arithm.
int. in O(N)-regime is d

2 just like in an ordinary d× d dense layer.

We note that the matrix W = WQW
⊤
K in the expression QK⊤ = XWQW

⊤
KX⊤ is essentially

low-rank as in standard attention dh ≪ d. But in our implementation this rank is much higher, in
the extreme case being equal to d. It results in multiplication of two high or full rank matrices. That
is a redundant operation from DL perspective because composition of linear maps is just another
linear map which could be learned using half of the parameters. Thus, we decide to keep the WQ

and discard WK .

We also decide to remove LayerNorm and residual connection between attention and FFN sub-
blocks as it improves computational efficiency of the architecture and appears not to hinder model
performance. This leads to yet another simplification in the model design: WV and WO also
become redundant by similar reasoning as in case of WQ because there are no more non-linearities
between attention outputs and FFN block.

Finally, the new attention mechanism in the case of a single head is formulated as:

DenseAttention (X) = XWQX
⊤X ∈ RN×d

And in the case of multiple heads H it slightly changes:

DenseAttentionh (X) = XWQh
X⊤

hXh ∈ RN×dh

DenseAttention (X) = Concath[DenseAttentionh (X)]

We call our attention algorithm ”DenseAttention” and the entire block as ”DenseAttention Network”
or DANet (spelled ”dah-net”) because it basically consists of dense matrix multiplications with little
else. We notice that DenseAttention in multi-head setting resembles popular multi-query attention
design from Shazeer (2019) as it also calculates different representations only for Queries.

To complete the DenseAttention Network, we apply MaxNormActivation and residual connection to
outputs of FFN. Final architecture to the layer l can be summarized as follows:

X′
l = DenseAttention(MaxNormActivation(Xl) ·N− 1

3 )

Xl+1 = Xl + MaxNormActivation(FFN(X′
l))

3.2 COSINE RELPE

Many modern Language Models use (Minaee et al., 2024) Rotary Positional Embeddings (RoPE)
(Su et al., 2024) which evidently perform better than learned or sinusoidal positional embeddings and
don’t increase parameters count. The former two types of embeddings are applied once before the
first layer and rely on skip-connections for propagating positional information to other layers in the
stack. While it may be suitable for shallow networks, in deeper ones the signal gets decayed as more
layers add their outputs to the residual branch. On the contrary, RoPE inject positional information
into each of the Transformer layers by directly applying a transformation to the matrices Q and K
which can be summarized as follows:

f(xi,m) =

[
cosmθi − sinmθi
sinmθi cosmθi

] [
xi1

xi2

]
,

where xi = [xi1 xi2]
T is a chunk i, i ∈ {0, . . . , d

2}, of a vector x with d dimensions which can be
either a query qm or key km with position m out of N in the sequence. Essentially, the transforma-
tion rotates the 2 two-dimensional vectors q′ and k′ with the intention to maximize their dot product

6
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when they share the same position in sequence, and decay it to zero when the positions largely differ.
However, direct calculation shows that it’s not always true, as the result for some fixed i:

f⊤(q′,m)f(k′, n) = (q1k1 + q2k2) cos(m− n)θ + (q2k1 − q1k2) sin(m− n)θ (5)

is only guaranteed to follow the pattern in case q′ and k′ are collinear. The total dot product of
q and k is even less benign, for in each position i of the model dimension, corresponding two-
dimensional vector chunk has a possibly distinctive prior angle from the origin, and θi is also unique
by construction:

θi = 10000−2i/d, (6)

But Su et al. (2024) show that this parameterization leads to long-term decay in norm of attention
scores with the increase of relative distance m− n.

Besides, RoPE are computationally inefficient as their calculation induces memory-expensive
changes of tensor layout and several element-wise operations with low arithmetic intensity, sepa-
rately for Q and K. We notice that there exist two other transformations with more favorable effi-
ciency properties which can be applied to scalars at individual positions i ∈ {0, . . . , d} of vectors q
and k rather than paired numbers: g1(xi,m) = xi cosmθi and g2(xi,m) = xi(cosmθi− sinmθi).
These produce similar expansions to 5:

g1(qi,m)g1(ki, n) = qiki cosmθi cosnθi = qiki[cos(m− n)θi − sinmθi sinnθi]

g2(qi,m)g1(ki, n) = qiki[cos(m− n)θi − sin(m+ n)θi]

We tested all three functions f , g1 and g2 on LRA tasks with DenseAttention and found out that
all of them impact the performance very similarly. However, when we set a constant θ for all
positions in an embedding dimension, the quality dropped, adding evidence to the leading role of
parameterization 6 in the RoPE potential.

We choose the simpler function g1 as the new computationally efficient alternative to RoPE and
name it Cosine RelPE. We use it extensively in conjunction with DenseAttention, however it can be
readily applied to standard Transformer in place of RoPE.

We find that application of Cosine RelPE to X before DenseAttention layer, while affecting even
matrix X = V inside it, doesn’t degrade the performance. Thus, we proceed with this architec-
tural choice, which allows for one instead of two element-wise multiplications and can be further
optimized by fusing with scaling factor N−1/3.

3.3 LOCALATTENTION FOR DENSEATTENTION

In the years following invention of Transformer, many variations of local attention, also known as
sliding window attention, patterns and implementations have been proposed (Zaheer et al., 2020;
Beltagy et al., 2020; Child et al., 2019; Roy et al., 2021; Dao et al., 2022). Recently, some of
the open-weights Large Language Models (Jiang et al., 2023; Team et al., 2024) started partially
or fully adopting some forms of local attention with the primary goal of alleviating quadratic cost
of full attention for large contexts with the trade-off of not being able to fully process the entire
sequence at once.

We also develop a form of local attention pattern for discretionary use with DenseAttention on
very long contexts, however, with the goal of improving modeling quality as opposed to increasing
speed. The reason of this extension is outlined by Qin et al. (2022a): in linear Transformer family
of models, attention scores of a query are distributed along the sequence length more uniformly as
compared to Softmax attention, so the model is not fully able to focus at details in the vicinity of a
query’s token.

We adopt the approach to partition the whole sequence into equal non-overlapping chunks of win-
dow size w, similar to Dao et al. (2022); Qin et al. (2022a). We choose this design because of
its simplicity and straight-forward implementation with minimal invocations of memory-intensive
data layouts. However, this form of chunked attention leads to all of the tokens not being able to
interact with up to a half of the tokens constituting their neighbourhood. To mitigate this issue,
we extend our local attention framework beyond one layer and propose a 3-layer structure 3. It
consists of LocalAttention, ShiftedLocalAttention, and global DenseAttention layers. The second,
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Figure 3: Local attention for DenseAttention scheme. Left: Chunked attention pattern of an indi-
vidual local attention layer. Right: 3 layer structure of Local – LocalShifted – global attentions.

Table 1: Long Range Arena performance. Accuracy is the metrics for all benchmarks. Best results
are in bold.

Models Listops Text Retrieval Image Pathfinder PathX Avg.
Transformers + Rotary 47.90 79.08 82.31 75.04 76.64 84.72 74.28
S4-v1 58.35 76.02 87.09 87.26 86.05 88.10 80.48
DenseAttention 50.50 81.19 87.51 72.55 87.40 88.82 77.99

ShiftedLocalAttention layer is shifted by w/2 relative to the first, which allows for all tokens to have
symmetric neighbourhood after two consecutive layers. The full global attention of the last layer in
the scheme combines fine-grained local results to capture all context of a sequence. The triples of
layers then may be stacked together like ordinary Transformer layers to form a deep network.

We find local attention to be very effective in our experiments.

4 EXPERIMENTS

To prove the viability of DenseAttention architecture, we conduct two sets of experiments: 1) long
range sequence modeling on Long Range Arena benchmark; 2) pretraining of BERT-like encoder
architecture on sequences of different lengths. We train all of the models with fp16 precision, unless
stated otherwise.

4.1 LONG RANGE ARENA

Long Range Arena is a challenging suite of 6 classification benchmarks dedicated to examining the
abilities of efficient and long-context models on large sequence lengths spanning from 1k to 16k to-
kens. The tasks are diverse in nature and modalities: from synthetic and purely algorithmic, such as
long version of ListOps benchmark (Nangia & Bowman, 2018), to character-level text classification
on IMDB reviews (Maas et al., 2011). At the time of publication, the best model tested by Tay et al.
(2021) achieved average of 55.01%, and all of the models failed to learn above the level of change
on the most difficult task, Pathfinder-X (seq. len 16K) adopted from Linsley et al. (2018); Kim*
et al. (2020).

Later, novel State-Space-Models-inspired architectures (Gu et al., 2022a;b; Ma et al., 2023; 2024)
demonstrated by far superior performance considered to be out of reach for any Transformer-based
model due specific inductive biases of the SSMs. But recently, Amos et al. (2024) showed that
by using MLM-style pre-training the Transformer with RoPE is competitive with the SSMs. Inter-
estingly, even without pre-training, but with RoPE, they reached a SOTA score on the benchmark
among all Transformer-based architectures with a large margin.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablations on the Retrieval task of LRA

Model Accuracy
DANet + Sinusoidal Embedding (bf16 format) 82.69
DANet + Cosine RelPE 83.98
DANet + Cosine RelPE + local attention (w=10) 87.51

We take their scores as well as results from original S4 paper (Gu et al., 2022a) as two strong base-
lines and conduct extensive experiments on LRA dataset with DANet model to see if our architecture
is capable of matching or surpassing them. We mostly follow specifications outlined in the original
LRA paper including number of heads and model dimensions, adjusting sometimes number of pa-
rameters to the one used by Amos et al. (2024). We report the results in Table 1. DenseAttention
Network establishes new SOTA score among the Transformer-based models and even outperforms
the SSM in 4 out of 6 benchmarks.

Thus, we prove that DenseAttention architecture is competitive with standard attention even despite
the simplifications, the absence of Softmax and the presence of non-smooth functions in the DANet
architecture (MaxNorm and ReLU). We also show that Transformers can match the performance of
SSMs in principle.

We use Cosine RelPE and Local-ShiftedLocal-Global attention scheme in all of LRA models. These
extensions are useful for improving results which is exemplified in table 2. Local attention proves
to be instrumental and, often, its window size is the most important hyperparameter to tune.

4.2 BERT PRETRAINING

We pre-train an encoder model with the approximately same number of parameters as in BERT-large
(Devlin et al., 2019). We keep model dimension d = 1024 as in original work but increase number
of layers from 24 to 32 to keep parity in number of parameters. We use the same MLM (Masked
Language Modelling) + NSP (Next Sentence Prediction) combination of training objectives and
pre-train on the same datasets, namely Wikipedia and BookCorpus (Zhu et al., 2015).

Table 3: Evaluations of MLM loss and accuracy for DenseAttention models w.r.t to BERT on C4
dataset. N is the maximum sequence length with which a model was trained or/and evaluated.

N=128 N=512 N=1024

Model MLM
Loss

Acc. MLM
Loss

Acc. MLM
Loss

Acc.

BERT-large 2.67 0.561 2.42 0.59 - -
DenseAttention (1 head, N=128) 2.13 0.577 - - - -
DenseAttention (1 head, N=512) 2.19 0.572 1.92 0.603 - -
DenseAttention (1 head, N=1024) 2.19 0.572 1.91 0.606 2.51 0.545
DenseAttention (4 heads, N=128) 2.19 0.568 - - - -
DenseAttention (4 heads, N=512) 2.27 0.558 2.05 0.582 - -
DenseAttention (4 heads, N=1024) 2.3 0.554 2.04 0.584 2.08 0.575

We pre-train two models: one with single head of size d = 1024 and the other with 4 heads of size
d = 256. There are 4 training stages, each one resuming from the last checkpoint of the previous:
first with approximately 850 million samples of sequence length 128, second with 150 mil. samples
of seq. len 512, third with 80 mil. samples of seq. len 1024, and the last stage with 27 mil. samples
of sequence length 16384 conducted exclusively with single head model. The single head model
was trained in O(N2) regime with context sizes 128, 512 and, partially, 1024, and in O(N) for
the rest of the run with 1k and 16k contexts. The 4 heads model utilized the O(N) regime for all
sequence lengths.

Then we validate and compare the results with BERT-large, using Google’s original pretrained
checkpoint available from Hugging Face’s Transformers library (Wolf et al., 2020). We evaluate
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the models on out of domain texts of C4 dataset’s subset ”RealNewsLike” (Raffel et al., 2019) for
all contexts lengths besides 16k because train/test splits for wiki + books dataset are almost surely
different for our model and BERT training procedures. We use MLM loss which can be interpreted
as logarithmic perplexity, and MLM accuracy as evaluation metrics. The results are presented in
Table 3.

Key highlights. DenseAttention models uniformly outperform baseline in terms of MLM loss by a
large margin. Perhaps, this may be contributed partially to dampening output logits (see appendix
G) which lead to probabilities more calibrated to the ambiguity of natural language. Nevertheless,
single-headed DenseAttention models also uniformly outperform standard BERT in terms of accu-
racy, although the difference is not so pronounced, as with log-perplexity.

The models with 4 heads are inferior in both metrics to single head ones which supports our hy-
pothesis that larger head sizes lead to better quality. The only exception is the performance of the
models trained with context length 1024 on sequences of the same size, where 4 heads DenseAtten-
tion model variant produces significantly better metrics. This might hint that it’s easier for several
heads to comprehend long sequences than for one. Note that the original BERT wasn’t trained with
sequence length 1024, so we couldn’t compare it with our models in this setup.

Table 4: Throughput, sequences per second, of single head DenseAttention model in O(N) and
O(N2) regimes in comparison with BERT, and BERT with FlashAttention 2 across various sequence
lengths. FLOPs ratio is total MatMul FLOPs of forward pass of DenseAttention BERT implemen-
tation in O(N2) regime divided by total MatMul FLOPs of forward pass of standard BERT. All
experiments were conducted on a single NVIDIA A100 40Gb GPU.

Seq. Len. DenseAttention BERT BERT with FlashAttn 2 bs FLOPs ratio
O(N) O(N2) O(N2) O(N2)

128 1403 1721 1450 1584 512 1.01
512 400.1 431.8 304.9 379.5 256 1.03
1024 208.9 208.8 117.9 181.6 128 1.05
2048 96.42 85 - 81.69 64 1.08
4096 48.09 33.38 - 33.93 32 1.13
8192 24.18 11.81 - 12.52 16 1.19
16384 13.47 4.1 0.943 4.12 8 1.24
32768 6.02 0.985 - 1.224 4 1.28
65536 3.03 0.378 - 0.338 2 1.30
131072 1.604 - - 0.089 1 1.32

We also evaluate (Table 4) DenseAttention single head model speed, as measured by throughput, in
comparison with standard BERT model and with highly-optimized, low-level FlashAttention-2 im-
plementation which is the fastest conventional kernel for attention computation as of mid 2024 (Dao,
2024). All evaluations are performed using torch.compile() directive. As expected, DenseAttention
model vastly outperforms even FlashAttention-2 algorithm with either quadratic or linear regime,
depending on the sequence length. But, surprisingly, we also observed that with the increase of
the sequence length the performance of the DenseAttetntion in the O(N2) regime is slightly worse
or even similar to FlashAttention-2 despite being written in high-level language and having more
FLOPs per iteration than a standard model with comparable size. It leads to conclusion that the
DenseAttention indeed achieves very high computational intensity and FLOPs utilization in com-
parison with the alternatives.

Moreover, we observe that quality evaluation metrics stay the same for a fixed lengths validation
context if the regime gets switched from O(N) to O(N2) or vice versa regardless of the mode and
sequence length with which a DenseAttention model has been trained. This invariance property
holds even for the model trained on 16k context and applied to sequence length 128. Thus, we can
train the models with DenseAttention on very large contexts in O(N) time and then use it both short
and long sequences with optimal speed and equal quality.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from scratch: Fair comparison of long-
sequence models requires data-driven priors. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=PdaPky8MUn.
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Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, and Robert Stojnic. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In Shipra Agrawal and Francesco Orabona (eds.), Proceedings of
The 34th International Conference on Algorithmic Learning Theory, volume 201 of Proceedings
of Machine Learning Research, pp. 597–619. PMLR, 20 Feb–23 Feb 2023. URL https://
proceedings.mlr.press/v201/duman-keles23a.html.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.
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A CONCLUSION & FUTURE WORK

In this paper, we propose DenseAttention Network – a general architecture which simplifies the
Transformer block and can serve as a drop-in replacement in every model architecture using it. We
conduct experiments on the diverse modalities spanning from logic to language modeling and image
classification and from short to extremely long sequence lengths using the LRA suite of benchmarks
and MLM-style language model pre-training on text data. The results show that DenseAttention is
capable of generalizing to many different tasks and context sizes and achieving favorable perfor-
mance in comparison with standard Transformer and its augmented variants while being faster and
more computationally efficient even with no specialized, low-level computation algorithms such as
in Dao et al. (2022).

We acknowledge that there are other modalities and specialized architectures that would benefit
from long-context efficiency improvements if the DenseAttention is ported or applied to them, such
as ViT (Dosovitskiy et al., 2021) and SAM (Kirillov et al., 2023) for Computer Vision tasks, and
LLAMA (Touvron et al., 2023a) for decoder-style language modeling. We hope to address them
in future work. In particular, we look forward to adapting DenseAttention architecture to causal
LLAMA-style LLMs and studying their scaling laws at billions parameter ranges.

B HARDWARE EFFICIENCY

All calculations performed by a hardware accelerator such as a NVIDIA GPU are either compute-
bound or memory-bound (Williams et al., 2009). It depends on whether the operation in question
spends the majority of time directly on computation or on data movements between High-Bandwidth
Memory (HBM) and processing units. Customary unit of measurement for computational perfor-
mance is TeraFLOPs (TFLOPs) per second and for memory it’s bandwidth (throughput) in TB/s.
Arithmetic intensity unifies both and is calculated as number of FLOPs/number of bytes accessed. It can be at-
tributed both to hardware accelerator (usually referred to as ops:byte ratio in this case) and to a
computational kernel, e.g. layer of neural network, and it’s necessary but not sufficient for the ker-
nel to maintain the arithmetic intensity higher than the accelerator in order to be computationally
intensive (Docs, a). Otherwise, processing units stay idle part of the time waiting for the data to be
brought from or written to HBM.

In latest generations of GPUs, FLOPs count rapidly grows but memory bandwidth progression falls
behind, which results in latest generations of GPUs having much higher arithmetic intensity. Thus,
it’s increasingly hard for existing Deep Learning (DL) primitives to achieve hardware efficiency.
Most operations besides matrix-matrix multiplications are inherently memory limited even on older
GPUs. For example, the arithm. intensity of ReLU is 0.25 FLOPS/B, and for LayerNorm it’s ¡ 10
FLOPS/B on NVIDIA V100 as stated in Docs (b). Moreover, GPUs feature fast Tensor Cores (312
TFLOPs for half-precision formats in NVIDIA A100) specialized for matrix multiplications, and
general purpose cores with significantly lower throughput (19.5 TFLOPS in NVIDIA A100) which
in turn process non-MatMul operations even slower as reported in He (2022).

So, from the view of computational efficiency, all activations, elementwise operations and reductions
are detrimental to high ratios of hardware utilization.

C DISSECTING INEFFICIENCIES IN TRANSFORMER

Non-linearities, namely Softmax, LayerNorms, activation in FFN, dropouts, and skip-connections,
which are present in Transformer architecture, indeed contribute majorly to its computational in-
efficiency, as documented in Ivanov et al. (2021); Pati et al. (2022); Portes et al. (2023). But
other affine or linear transformations might also require further exploration. Consider two matri-
ces A ∈ RM×Nand B ∈ RN×K stored in half-precision floating point format which is common
for DL apllications. Each element in the matrices has a size of 2 bytes, and each fused multiply-
add (FMA) operation takes 2 FLOPs to compute (Docs, a). Then the arithmetic intensity of matrix
multiplication in such setting is:

arithm.int.MatMul =
M ·N ·K

M ·N +N ·K +M ·K
FLOPs/B, (7)
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as factors of 2 in the numerator and denominator both cancel out.

If there are no biases, then the two linear transformations in Transformer’s FFN with model dimen-
sion d and standard inner dimension 4d have arithm. int. of 4Nd

5N+4d which equals 4d
5 as N → ∞.

N dimension can accumulate both batch size b and sequence length s dimensions, and for BERT-
large size model with d = 1024, s = 512, and b = 128 arithm. int. is approx. 809 FLOPs/B. For
largest LLaMA 2 70B model with d = 8192, s = 4096, and b = 1 theoretical arithm. int. without
using tensor parallelism (Narayanan et al., 2021) would be 2520 FLOPs/B. It’s far greater than even
NVIDIA H100 ops:byte ratio in both cases. Therefore, linear layers in the FFN are the most com-
putationally efficient component of the Transformer and should be preserved in any hardware-aware
architecture.

Similar argument may be applied to K,Q, V projection layers in the self-attention, whose matrices
can be concatenated together to yield 3d

4 asymptotic arithm. intensity, and to the output projection
by WO matrix in 2 (d2 asymptotic arithm. int.). However, it follows from 7 that both products
S = QK⊤ ∈ RN×N , and O = PV ∈ RN×d, where P = Softmax(S/

√
dh+M) have arithmetic

intensity N ·dh

N+2dh
with limit dh when N → ∞. Also, batch and sequence dimensions cannot be fused

for these operations because they are performed on per sequence level as opposed to per embedding
level in FFN and KQV projections.

Large number of attention heads also contributes to inefficiency. Projection dimension of a head i
Qi,Ki, and Vi is d

h and typically equals 64 for smaller NLP language models like BERT, 256 for
Google’s PaLM (Chowdhery et al., 2022), and 128 for most others in the billions-parameters range,
including LLAMA model family (Touvron et al., 2023a;b), Mistral (Jiang et al., 2023) and Mixtral
8x7B (Jiang et al., 2024), and GPT-3 (Brown et al., 2020).

Since the most common choice for dh is 128, the upper bound of arithm. int. of matrix multipli-
cations inside attention mechanism is lower than even ops:byte ratio of an older V100 generation
GPU. In the case of real-life configurations of BERT and LLaMA 2 from above the values are 32
and 120.5 FLOPs/B correspondingly. Thus, these operations are memory bound and inefficient.

So, from the computational perspective it is be beneficial to change number of heads in the attention
to fewer or even single head with larger dimension dh. Furthermore, it keeps the total number of
flops constant because it equals h ·N2 d

h = N2d for all heads in total.

D SUB-QUADRATIC ALGORITHMS FOR SEQUENCE PROCESSING

Given entries Qi,Kj , Vj ∈ R1×d of matrices Q,K and V, standard softmax attention for input i
can be reformulated as

Ai =

∑N
j=1 Sim(Qi,Kj)Vj∑N
j=1 Sim(Qi,Kj)

∈ R1×d,

where Sim(Qi,Kj) = exp(QiK
⊤
j ). Conceptually, linear attention class of algorithms, described in

Katharopoulos et al. (2020) and built upon in numerous subsequent works, approximates or replaces
this similarity function with separable kernel Sim(Qi,Kj) = K(Qi,Kj) = ϕ(Qi)ϕ(K

⊤
j ), where

ϕ : Rd → Rr
+ maps query and key vectors to non-negative vectors with possibly different dimension

r.

Hence, the attention mechanism becomes:

Ai =

∑N
j=1 ϕ(Qi)ϕ(K

⊤
j )Vj∑N

j=1 ϕ(Qi)ϕ(K⊤
j )

=
ϕ(Qi)

∑N
j=1 ϕ(K

⊤
j )Vj

ϕ(Qi)
∑N

j=1 ϕ(K
⊤
j )

, (8)

which can be computed in linear time.

The function ϕ(·) can take various forms, such as 1 + ELU (Katharopoulos et al., 2020), ReLU (Qin
et al., 2022b), squared ReLU (Hua et al., 2022), Taylor (Duman Keles et al., 2023; Arora et al., 2024;
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Zhang et al., 2024) or Random Feature (Choromanski et al., 2022; Peng et al., 2021) expansions,
and even MLPs trained to mimic softmax attention (Zhang et al., 2024). They aim to approximate
softmax without its explicit calculation when being applied jointly to queries and keys, or to retain
its properties, most importantly, non-negativity of resulting dot products ϕ(Qi)ϕ(K

⊤
j ).

The latter property, together with reweighting attention scores (denominator in the formula 8) are
defining for Linear Transformer algorithms. Absence of scaling by 1

ϕ(Qi)
∑n

j=1 ϕ(K⊤
j )

leads to nu-
merical instabilities, and the scaling factor itself is not guaranteed to be bounded without non-
negative ϕ(·). However, both mappings ϕ(·) (even relatively simple), and memory intensive non-
MatMul operations for reweighting contribute to subpar speed and computational efficiency in com-
parison with ordinary and fast self-attention algorithms on all but large context sizes.

DenseAttention is substantially different from LinearTransformers. We forgo both transforming
Q,K by ϕ(·) and reweighting in DenseAttention as we believe the main factor of success of Trans-
former is the ability of all N × N interactions between tokens. It results in an improved computa-
tional efficiency and simpler design which can be expressed entirely by matrix multiplications:

A = QK⊤V

Another promising line of work focuses on applying deep State Space Models (SSMs) (Gu et al.,
2022a; Gupta et al., 2022; Ma et al., 2023; Gu & Dao, 2024) and Linear RNNs (Beck et al., 2024;
Orvieto et al., 2023; Peng et al., 2023) to long-range sequence and language modeling. Fundamen-
tally, these architectures model interactions in sequence dimension by a linear recurrence:

xt = Axt−1 +But

yt = Cxt +Dut,

where A is some data-independent matrix which form and initialization are defining properties for
a particular SSM/ RNN architecture. The linear recurrence is advantageous during inference as it
runs in O(N) time. For training, it also can be unrolled into a convolutional kernel

K =
[
CB, CAB, . . . , CAL−1B

]
to compute

y = K ∗ u.
via Fast Fourier Transform (FFT) in O(log n) time.

While being sub-quadratic, these algorithms are still slower than linear time as in DenseAttention.
However, recently Gu & Dao (2024) introduced data-dependent gating in A and low-level, hard-
ware efficient CUDA implementation for parallel-scan operation which allows for fast linear-time
processing both during training and inference.
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E THE LRA BENCHMARK

E.1 DISCUSSION OF THE LRA TASKS

The Long Range Arena is, in fact, not a single benchmark but a suite of 6 challenging and diverse
tasks designed to test modeling capabilities across different domains. Below is a brief description of
each task.

ListOps(Nangia & Bowman, 2018). This is a purely logical synthetic task which is dedicated to
modeling evaluation results of long hierarchically structured sequences. Each sequence has length
up to 2000 symbols and consists of whole numbers from 0 to 9, mathematical operators, such as
MAX, MIN, MEDIAN and SUM MOD, and parentheses.

Text Classification (IMDB) (Maas et al., 2011). This task tests Natural Language Understanding
(NLU) abilities of models by letting them classify the sentiment of movie reviews in the IMDB
dataset. To make the task more challenging, the texts of the reviews are split into tokens not on
a word level, but on a character (or byte) level. This leads to much longer sequences of 4K max
length.

Document Retrieval (AAN) (Radev, 2013). This task tests the abilities of producing encoded rep-
resentations of the textual information and further matching/ retrieving them. Namely, given a pair
of the documents from ACL Anthology Network (AAN; Radev et al., 2013) dataset, a model should
independently process them and, based on their final embeddings, classify if the two documents
have a citation link. As in the IMDB tasks, individual input texts are tokenized on a character (byte)
level with max sequence length 4K.

Image Classification (CIFAR-10) (Krizhevsky & Hinton, 2009). This is an image classification
task with 10 classes on a classical CIFAR-10 benchmark with one specific condition: images should
be ingested into models as 1-d sequences, thus setting the input length to 1024 tokens (pixels) and
making the task more challenging.

Pathfinder (Kim* et al., 2020) . This is a binary classification task of 32x32 pixels grayscale images
with corresponding sequence length 1024 tokens, which, formally, makes it similar to CIFAR-10
task. However, it’s different on a conceptual level, as the task measures a model’s ability to discern
spatial dependencies. Given a multitude of intertwined, dashed line paths, a model should correctly
determine if two rounded dots are connected by a dashed line.

Pathfinder-X (Pathfinder-128). It’s a version of Pathfinder task with 16K (128x128) pixels images
which makes it significantly more challenging. At the time of publication of the original LRA
paper Tay et al. (2021), none of the tested models managed to achieve a score above chance on this
benchmark.

Therefore, the Long Range Arena arguably represents a wide range of tasks, spanning from logic
and reasoning to language modeling and image classification. To perform well on all of the 6 bench-
marks, a model’s architecture should be powerful and versatile enough to generalize to different
modalities.

E.2 EXTENDED COMPARISONS WITH TRANSFORMER-BASED MODELS

Full comparisons with an exhaustive list of Transformer-based models which, to the best of our
knowledge, have been tested on the LRA, including the most recent ones, show that DenseAttention
outperforms all of them.
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Table 5: Long Range Arena performance. Accuracy is the metrics for all benchmarks. Best results
are in bold and second best are underscored. To ensure consistent comparisons, the averages for the
models which report the result on Path-X task are computed without it.

Model Listops Text Retrieval Image Pathfinder PathX Avg.
Transformer (Tay et al., 2021; Dao et al., 2022) 36.37 64.27 57.46 42.44 71.40 61.40 54.39
Local Attention (Tay et al., 2021) 15.82 52.98 53.39 41.46 66.63 - 46.06
Sparse Trans. (Tay et al., 2021) 17.07 63.58 59.59 44.24 71.71 - 51.24
Longformer (Tay et al., 2021) 35.63 62.85 56.89 42.22 69.71 - 53.46
Linformer (Tay et al., 2021) 35.70 53.94 52.27 38.56 76.34 - 51.36
Reformer (Tay et al., 2021) 37.27 56.10 53.40 38.07 68.50 - 50.67
Sinkhorn Trans. (Tay et al., 2021) 33.67 61.20 53.83 41.23 67.45 - 51.29
Synthesizer (Tay et al., 2021) 36.99 61.68 54.67 41.61 69.45 - 52.88
BigBird (Tay et al., 2021) 36.05 64.02 59.29 40.83 74.87 - 55.01
Linear Trans. (Tay et al., 2021) 16.13 65.90 53.09 42.34 75.30 - 50.55
Performer (Tay et al., 2021) 18.01 65.40 53.82 42.77 77.05 - 51.41
RFA (Peng et al., 2021) 36.80 66.00 56.10 - - - -
Luna-256 (Ma et al., 2021) 37.98 65.78 79.56 47.86 78.55 - 61.95
Nyströmformer (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 - 58.95
Kernelized Attention (Chen et al., 2021) 38.78 60.22 81.77 41.29 70.73 - 58.56
Informer (Chen et al., 2021) 32.53 62.64 77.57 38.10 57.83 - 53.73
Skyformer (Chen et al., 2021) 38.69 64.70 82.06 40.77 70.73 - 59.39
cosFormer (Qin et al., 2022b) 37.90 63.41 61.36 43.17 70.33 - 55.23
FNet (Lee-Thorp et al., 2022) 35.33 65.11 59.61 38.67 77.80 - 55.30
FLASH-quad (Qin et al., 2022a) 42.20 64.10 83.00 48.30 63.28 - 60.18
FLASH (Qin et al., 2022a) 38.70 64.10 86.10 47.40 70.25 - 61.31
TransNormer T1 (Qin et al., 2022a) 41.03 66.90 83.11 51.60 75.92 - 63.71
TransNormer T2 (Qin et al., 2022a) 41.60 72.20 83.82 49.60 76.80 - 64.80
KDEformer (Zandieh et al., 2023) 36.64 62.00 73.52 45.45 68.13 - 57.15
Hedgehog (Zhang et al., 2024) 37.15 64.60 82.24 40.15 74.16 - 59.66

Transformers + Rotary (Amos et al., 2024) 47.90 79.08 82.31 75.04 76.64 84.72 72.89

DenseAttention (ours) 50.50 81.19 87.51 72.55 87.40 88.82 75.83

F PROOFS

Proof of Proposition 1:

Yij =

N∑
n=1

d∑
m=1

d∑
k=1

XikWkmX⊤
mnXnj

Denote S(i; k;m;n; j) = XikWkmX⊤
mnXnj . Since E[Wkm] = 0 and Wkm is indepen-

dent from X , E[S(i; k;m;n; j)] = 0 and E[Yij ] =
∑

k,m,n E[S(i; k;m;n; j)] = 0. Hence,
Var[S(i; k;m;n; j)] = E[X2

ikW
2
km(X⊤

mn)
2X2

nj ]− 0.

As some of the indices i, k,m, n, j can be the same number, there are three possible options for
Var[S(i; k;m;n; j)]:

1. E[x2
1x

2
2x

2
3]E[w2] = σ6

Xσ2
W by independence of all x and w.

2. E[x4
1x

2
2]E[w2] = E[x4

1]E[x2
2]σ

2
W ≥ σ6

Xσ2
W , because by Jensen’s inequality E[g(x2)] ≥

g(E[x2]) and we let g(f) = f2.
3. E[x6]E[w2] ≥ σ6

Xσ2
W by similar reasoning (g(f) = f3 is convex on (0,∞)).

Finally, Cov(Sp, Sq) = 0 if the set of indices p is not identically equal to set q because even one
distinct index between p and q leads to independent factors inside the covariance operator. Therefore,
Var[Yij ] ≥ Nd2σ6

Xσ2
W . □

Proof of Proposition 2: If we let Xij = a be a degenerate R.V. as in worst case, 3, then
Var[(XW)pq] = σ2

Wa2d by C.L.T and properties of variance. In all other cases, from Xij ∈ [−a, a]
follows that σ2

Xij
≤ a2 by Popoviciu’s inequality (Popoviciu, 1935). Then Var[XpjWjq] =

σ2
Xpj

σ2
Wjq

≤ a2σ2
W , and Var[(XW)pq] =

∑d
j=1 Var[XpjWjq] ≤ σ2

Wa2d even if some Xpj is
dependent with some Xpj′ , because Cov[σ2

Xpj
σ2
Wjq

;σ2
Xpj′

σ2
Wj′q

] = 0 for j ̸= j′. □
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G DETAILS OF THE BERT TRAINING PROCEDURE AND RESULTS ON 16K
CONTEXT.

To ensure numerical stability, we scale weight matrices of FFN layers to have a constant l∞ norm
after each optimizer step during pre-training. After pretraining, we merge each weight with its fi-
nal scaling factor so there is no additional overhead at the inference time. The choice of the norm
type is motivated largely by the bounds it provides for the layer outputs as in the case with the
DenseAttention layer. The scaling factor of a layer is a standalone non-trainable scalar decoupled
from its corresponding weight tensor at the train time. This means that the weight itself doesn’t get
re-scaled constantly which would otherwise induce tug-of-war dynamics with the direction of gra-
dient. This way, the weight also has natural proportions compared to ADAM optimizer’s ((Kingma
& Ba, 2015)) weight update as it would in the absence of scaling. By employing this technique, we
eliminate the need for weight decay and warmup. We also use constant learning rate 2× 10−4 in all
training runs.

We observed that scaling the Queries weight in the DenseAttention hinders loss convergence speed
to a certain degree so we proceeded with scaling just FFN layers.

The models which continued training with seq. len. 1k slightly outperform their counterparts which
stopped after seq. len. 512. on sequences of this same size 512 which indicates that training on
longer contexts is indeed beneficial for modeling quality. However, performance degrades when
models trained on N = 512 or N = 1024 get tested on seq. len. 128 which is a consequence of the
models’ specialization on the longer sequences.

This property gets even more noticeable with the single head model trained on 16k context (Table
6). The pre-training was performed on the dataset which contains 26% of sequences with max
size of 16k tokens, and 45% with size ≥ 1024. Therefore, the model is adapted to long-context
and performs much better in terms of evaluation metrics on the datasets and context lengths with
greater maximum size. We argue that quality metrics of the model trained on 16k context size, while
inferior to the metrics of the smaller-context checkpoints on their respective lengths, is actually quite
impressive, as it correctly finds the right token out of 30.5 thousand vocabulary options 45% of the
time for approximately 2000 masked tokens in a single sequence of size 16k. And with the decrease
of the context length to 2048 tokens, the model quality becomes almost equal to the smaller-context
models evaluated with their native sequence sizes.

Table 6: Quality metrics for single-head DenseAttention model trained on the context of up to 16k
tokens. Books dataset contains > 98% of sequences with length > 1024, and for each tested max.
seq. len. it’s guaranteed to contain at least. 80% of sequences with such length. C4 dataset for max
seq. lengths 1024 and 2048 has approx. 9.5% sequences with context size ≥ 1024.

max seq. len. Books C4
MLM loss acc. MLM loss acc.

16384 2.76 0.451 - -
8192 2.64 0.482 - -
4096 2.45 0.511 - -
2048 2.21 0.549 2.4 0.545
1024 - - 2.59 0.506
512 - - 2.55 0.513

We code the model in plain PyTorch (Paszke et al., 2019) and train it in distributed mode using Deep-
Speed (Rasley et al., 2020) in fp16 precision, using the framework’s native implementation which
is similar to NVIDIA’s AMP (Micikevicius et al., 2018). We found out during ablation experiments
that training in bf16 format converges significantly slower, likely because it has less precision bits
than fp16. bf16 also has a disadvantage that it doesn’t work on older GPUs such as NVIDIA V100.
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H ADDITIONAL EXPERIMENTS

H.1 PATHFINDER-256

Pathfinder-256 is an extremely challenging version of the Pathfinder task with sequence length 65k
which is on par with input context size of recent generations of proprietary Large Language Models.

Table 7: Accuracy on Pathfinder-256 task

Algorithm Accuracy on the validation set, %
FlashAttention (Dao et al., 2022) 63.1
S4 (Amos et al., 2024) 67.8
DenseAttention 72.6
DenseAttention after additional 550 epochs 77.1

DenseAttention model outperforms (Table 7) existing results from the literature of standard Trans-
former augmented with FlashAttention (Dao et al., 2022) and S4-v2 model (Gu et al., 2022b) as
reported in Amos et al. (2024). The result holds both when the training procedure is carried out for
200 training epochs as in Dao et al. (2022) and then it’s prolonged for 550 additional epochs.

This experiment lets us make several observations:

• DenseAttention Network architecture performs well even on very long input sequences
which is promising given current trend of increasing context size in modern Large Lan-
guage and Multimodal Models;

• DenseAttention shows favorable scaling properties with respect to the amount of training
iterations, even with the fixed dataset size. The validation accuracy for the task kept im-
proving throughout the whole training and would likely have continued if the experiment
had not been stopped;

• Truly linear scaling in sequence length is crucial for improvements in quality for large
contexts. It took approximately 3 days on 4 H100 GPUs to train our model for 750 epochs
in linear mode, while the projected runtime of quadratic FlashAttention-2 (Dao, 2024)
and log-linear (S4) algorithms in the same setting would be at best 3 and 0.5 months,
respectively, which renders them impractical for prolonged training.

H.2 ABLATION STUDY ON RELPE

Regular Rotary Positional Embeddings (RoPE) (Su et al., 2024) are known to enhance modeling
performance and generalization in Transformer models and are widely used (Biderman et al., 2023;
Black et al., 2022; Chowdhery et al., 2022; Dubey et al., 2024). In fact, just by incorporating it into
a standard Transformer model, Amos et al. (2024) managed to beat all efficient and long-context
modifications of Transformer on the Long Range Arena benchmark.

Table 8: Ablation on RelPE. Comparison of training and inference speeds (in sequences per sec-
onds) on the LRA’s Pathfinder task.

Model variant Training Speed, (speed-up) Inference Speed (speed-up)
Rotary Embeddings 7025 (1.00x) 16908 (1.00x)
Cosine Embeddings q,k 10276 (1.46x) 28467 (1.68x)
Cosine Embeddings 10438 (1.49x) 29630 (1.75x)

However, regular RoPE are not computationally efficient. Our primary motivation behind designing
Cosine RelPE is speed and efficiency gains, as we aimed to make DenseAttention as efficient as
possible. As we demonstrated in the paper, expanded expressions for RoPE and Cosine RelPE are
similar while the latter form of embeddings involves much less memory-intensive computations.
Empirically, we found that the difference in modeling quality between the two types is negligible.
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We present the results of the ablation study on speed in the table 8. Cosine RelPE are significantly
faster in both scenarios. “q, k” in the second row denotes that Cosine RelPE were applied separately
to Q and K matrices like in regular RoPE.

H.3 SCALING EFFECT STUDY

Table 9: Scaling study on DenseAttention-BERT architecture

Model Parameters Configuration MLM loss MLM accuracy
DANet-BERT-small 31M L=6, D=512 2.74 49.5
DANet-BERT-base 110M L=16, D=768 2.02 60.0
DANet-BERT-large 336M L=32, D=1024 1.70 64.9

The table H.3 depicts three single-head DenseAttention Network models of different sizes pre-
trained on Wiki+BookCorpus dataset with MLM objective for 100B tokens. MLM loss and accuracy
are reported for out-of-sample data from C4 dataset (Raffel et al., 2019). L and D parameters denote
number of layers and hidden dimension of FFN input, respectively.
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