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ABSTRACT

We propose a new empirical PAC-Bayes approach to develop lifelong reinforce-
ment learning algorithms with theoretical guarantees. The main idea is to extend
the PAC-Bayes theory in supervised learning to the reinforcement learning regime.
More specifically, we train a distribution of policies, and gradually improve the
distribution parameters via optimizing the generalization error bound using trajecto-
ries from each task. As the agent sees more tasks, it elicits better prior distributions
of policies, resulting in tighter generalization bounds and improved future learning.
To demonstrate the superior performance of our method compared to recent state-
of-the-art methods, we test the proposed algorithms on various OpenAI’s Gym and
Mujuco environments and show that they adapt to new tasks more efficiently by
continuously distilling knowledge from past tasks.

1 INTRODUCTION

Deep reinforcement learning (RL) has demonstrated outstanding performance in many challenging
tasks, such as playing games, visual navigation, robotic control, and manipulation. However, most
DRL algorithms are trained to perform well on specific tasks and are not generalizable to many
different tasks. To handle this challenge, we resort to lifelong RL, in which an agent interacts with a
sequence of different but related tasks. The goal of lifelong RL is to let the agent quickly adapt to any
new task by distilling knowledge from past tasks, even in a few-shot learning (FSL) case where the
agent can only interact with each task for a small number of steps.

There are two major challenges for few-shot lifelong learning. (1) It is difficult to confidently
determine what knowledge should be transferred. For example, if an agent is deployed in a series
of mazes, seeking rewards located at random states. The ideal knowledge to be transferred among
tasks should be how to walk and how to navigate, instead of the specific goal locations. Inappropriate
knowledge could result in “negative transfer”, which harms the learning of future tasks. (2) It is
challenging to distill useful knowledge when the samples gained from each task is limited. The agent
needs to achieve fast adaptation in order to obtain both high rewards and meta knowledge.

To handle the above challenges, we propose a LRL algorithm named PB-LRL (PAC-Bayes Lifelong
RL) which learns common knowledge from past tasks and quickly adapts to new tasks, as well as
provide a reliable theoretical guarantee to avoid the negative transfer. Under lifelong PAC-Bayes
framework, the main idea of PB-LRL is to seek a default policy distribution that generalizes well
to all tasks in the underlying tasks distribution, and then for any new task, we start from a policy
sampled from the default policy distribution and use it to continuously update the default policy
distribution by repeatedly applying the PAC-Bayes bound. More specifically, we propose to “learn”
the prior policy distribution required in PAC-Bayes theory along with the default policy distribution.
Thus, our approach falls in an empirical Bayes framework which automatically upgrades the prior
and does not require additional expert knowledge.

The main idea of PB-LRL builds upon the works from Finn et al. (2017) and Majumdar et al. (2021).
In a lifelong reinforcement learning setting, Finn et al. (2017) exploits deep neural network policies
to demonstrate a good policy initialization can significantly improve the learning performance and
achieve fast adaptation. Though promising empirical results have been reported, their methods are
heuristic and lack theoretical guarantees. In recent work, Majumdar et al. (2021) proposes to optimize
a policy distribution over past tasks and directly use it for the following tasks. By applying the
PAC-Bayes theory, their algorithm has a nice theoretical guarantee and also works for deep neural

1



Under review as a conference paper at ICLR 2023

network policies. However, their algorithm can not be used in lifelong learning, where the tasks can
be very diverse, making the learnt policy from previous experiences hardly perform well in new tasks.
Also, their algorithm and theory require the selection of a “good" prior policy distribution, and a
bad prior selection may cause significant performance drop. In contrast, the PB-LRL algorithm can
continuously evolve by repeatedly utilizing the PAC-Bayes theory to optimize the policy distribution
and its prior, without any expert knowledge of environments. Other works Brunskill & Li (2013);
Sun et al. (2020) also exploit the PAC-Bayes theory to handle lifelong or multitask RL problems.
However, their theory mainly focuses on tabular settings, and can not easily adapt to large-scale
environments.

To demonstrate the efficacy of the PB-LRL algorithm, we also conduct thorough numerical bench-
marks on diverse OpenAI’s Gym environments. Our results show that the PB-LRL algorithm
outperforms the competing state-of-the-art lifelong RL algorithms.

2 RELATED WORKS

Meta-Learning: Agents’ lifelong learning requires the generalization guarantee of policy to new
tasks. Meta-learning has been studied by Bengio et al. (1991); Naik & Mammone (1992); Thrun
& Pratt (1998); Finn et al. (2017), which is mostly related to lifelong learning through an efficient
meta-leaner. Schmidhuber (1992); Bengio et al. have trained a meta-learner that learns how to update
the parameters of the learners model. Hochreiter et al. (2001); Andrychowicz et al.; Li & Malik
(2017); Ha et al. (2016) applied this approach to learn optimization of deep networks for FSL.

Koch; Ravi & Larochelle (2017); Vinyals et al. (2016); Reed et al. (2018); Snell et al. (2017) have
developed few-shot methods for supervised-learning. The different problem settings of supervised
learning than RL prevents the aforementioned methods from being applied to RL settings.

Duan; Wang et al. (2017) has learned fast RL agents to adapt to multiple tasks by training memory
augmented recurrent learner. Saxe et al. (2014); Kirkpatrick et al. (2017); Krähenbühl et al. (2016);
Salimans & Kingma (2016); Husken & Goerick (2000); Maclaurin et al. have considered sensitivity
in deep networks using methods like good random initialization or data-dependent initialization. But
these methods are often data-inefficient.

Finn et al. (2017) directly updated the meta learner weights using the gradient based on the sensitivity
of a given task distribution. Their method is agnostic to the form of the model and to the particular
learning task, furthermore, their methods are complementary to the approach presented here and
could potentially be used as a baseline for our method. Our experiments show that our method
outperforms their approach.

RL Generalization: For RL, early works such as Nichol et al. (2018); Mnih et al. (2013); Song
et al. (2019) have quantified the generalization of learned policies. Subsequently, many works have
suggested that an effective generalization require an extremely large number of training environ-
ments (Cobbe et al., 2019; 2020), and the generalization gap in the policy space for new tasks and
environments always exists in sim-to-real problems (Tobin et al., 2018). Peng et al. (2018); Tan
et al. (2018); Srivastava et al. (2014); Ioffe & Szegedy (2015); Pacelli & Majumdar (2020); Goyal
et al. (2019) have applied regularization approaches to improve the generalization, but they do not
explicitly exploit the structure of the RL, or these methods are limited to a particular task which
prevents the learner to exploit causal relationships in the environment. Sinha et al. (2020) have done
adversarial perturbations to the underlying data distribution to provide robustness guarantees, but the
amount of perturbations is not easy to learn.

PAC-Bayes Theory: In classic supervised learning works by Langford & Shawe-Taylor (2002);
Seeger (2002); Germain et al. (2009) and in deep learning works by Dziugaite et al. (2020); Neyshabur
et al. (2018; 2017), PAC-Bayes theory (McAllester, 1999b) is utilized to study the generalization
bounds. For RL, Schulman; Fard & Pineau (2010); Fard et al. (2012) have applied PAC-Bayes
theory to learn controlled policies for MDP with provable sample complexity bounds. However, their
approaches require the learner with multiple interactions in a given MDP, which lacks efficiency.

Then Majumdar et al. (2021); Veer & Majumdar (2020) have made provable generalization guarantees
under distributional shifts and learned policies that could zero-shot generalize to novel environments
by obtaining upper bounds on the expected cost of policies on novel environments. However, they
have not shown whether or not the bound can be workable in generally more complicated multi-task
lifelong settings.
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In our work, we generate a PAC-Bayes bound as part of a lifelong learning algorithm to achieve
provably data-efficient control on novel tasks. While reusing knowledge from past tasks is a crucial
ingredient in making high-capacity scalable models, we focus on multi-task lifelong RL settings,
and we make policies zero-shot generalize to novel tasks by directly operating on policy space to
obtain upper bounds on the expected cost of meta policies. These policies function as a good policy
initialization for new tasks.

While resembling Finn et al. (2017) in the following places: our method also does not induce
additional parameters and uses the same gradient descent update for both learner and meta learner
to provide a good initialization, the main difference between our work and theirs is that we also
provide the theoretical guarantees, and empirically our work outperforms them in terms of achieving
extremely efficient adaptation to new tasks in only a few gradient steps in different OpenAI’s Gym
environments.

3 PRELIMINARIES

In this section, we discuss the primary technical background that we leverage in this paper.

3.1 REINFORCEMENT LEARNING

In RL, an agent interacts with the environment by taking actions, observing states and receiving
rewards. The environment is modeled by a MDP, which is denoted by a tupleM = 〈S,A, T,R, γ, ν〉,
where S is the state space, A is the action space, T is the transition kernel, R is the reward function,
γ ∈ (0, 1) is the discount factor, and ν is the initial state distribution.

A trajectory τ ∼ π generated by policy π is a sequence s1, a1, r1, s2, a2, · · · , where s1 ∼ ν,
at ∼ π(a|st), st+1 ∼ T (s|st, at) and rt = R(st, at). The goal of an RL agent is to find an optimal
policy π∗ that maximizes the expected total rewards η, which is defined as η(π) = Eτ∼π[r(τ)] =
Es1,a1,···∼ν,π,T,R[

∑∞
t=1 γ

t−1rt].

3.2 META LEARNING AND LIFELONG LEARNING

In lifelong RL, the agent interacts with a (probably infinite) sequence of tasks, which are i.i.d coming
from an underlying distribution of tasks (MDPs), denoted as D. Suppose that these tasks share
the same S,A, γ, ν, but may have different transition probabilities T and rewards R. The learning
process is:

1. initialize a policy π0;
2. sample a task (MDP)Mi ∼ D;
3. starting from π0, learn a policy πi for task Mi to maximize rewards.

3.3 PAC-BAYES THEORY IN SUPERVISED LEARNING

Suppose Z is an input space and Z ′ is a set of labels. Let D be the (unknown) true distribution on
Z . Let H be a hypothesis class consisting of functions hw : Z → Z ′ parameterized by w ∈ Rd

(e.g., neural networks parameterized by weights w ). Let l : H × Z → R be a loss function. We
will denote by P the space of probability distributions on the parameter space Rd. Informally, we
will refer to distributions on H when we mean distributions over the underlying parameter space.
PAC-Bayes analysis then applies to learning algorithms that output a distribution over hypotheses.
Generally, such algorithms will be given a "prior" distribution P0 ∈ P in the beginning and learns a
posterior distribution P ∈ P after observing training data samples.

Let us denote the training loss associated with the posterior distribution P as:

lS(P ) :=
1

N

∑
z∈S

E
w∼P

[l (hw; z)] (1)

and the true expected loss as:
lD(P ) := E

z∼D
E

w∼P
[l (hw; z)] (2)

We are interested in how "close" the training loss ls(P ) and the true expected loss lD(P ), such metric
can be obtained by using the KL divergence (Maurer, 2004; McAllester, 1999a). Based on that, the
following theorem provides an upper bound on the true expected loss by computing the KL inverse.
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Theorem 1 (PAC-Bayes Bound for Supervised Learning). For any δ ∈ (0, 1), with probability at
least 1− δ over samples S ∼ DN , the following inequality holds:

lD(P ) ≤ D−1
KL

lS(P )‖
DKL (P‖P0) + log

(
2
√
N

δ

)
2N

 (3)

D−1
KL, is called KL inverse, with its definition found in §A equation 9. Another practical upper bound

for the true expected loss that is useful for the purpose of optimization is provided by the following
theorem.
Theorem 2 (PAC-Bayes Upper Bound for Supervised Learning Maurer (2004); McAllester (1999a)).
For any δ ∈ (0, 1), with probability at least 1− δ over samples S ∼ DN , the following inequality
holds:

lD(P )︸ ︷︷ ︸
True expected loss

≤ lS(P )︸ ︷︷ ︸
Training loss

+

√√√√DKL (P‖P0) + log
(

2
√
N

δ

)
2N︸ ︷︷ ︸

Regularizer"

(4)

4 OUR METHODS

In this paper, we propose a guaranteed lifelong RL algorithm that incrementally distills knowledge
from previous tasks and quickly adapt to a new task. The algorithm is based on optimizing a PAC
bound for the true expected cost for lifelong RL. We derived this bound based on the PAC-Bayes
theory.

4.1 PAC-BAYES BOUND FOR LIFELONG RL

Our theoretical learning guarantee is mainly based on the PAC-Bayes theory, which was first applied
to RL by Majumdar et al. (2021). We carefully extend the work of Majumdar et al. (2021) to the
regime of lifelong RL.

Define Π as the whole policy space parameterized by θ ∈ Rd (θ could be a neural network). Let P be
any policy distribution over the policy space Π. Then the cost of P evaluated on taskM is defined as

C(P ;M) = E
π∼P

[C(π;M)] = E
π∼P

[−ηM(π)], (5)

where ηM(π) is the total expected reward of policy π in MDPM.

Then, the expected cost of P over the task distribution D can be bounded by the following theorem.
Theorem 3 (PAC-Bayes Bound for Lifelong RL). 1 For any δ ∈ (0, 1), over the lifelong task
distribution D and N i.i.d. sampled tasks {Mi}Ni=1, for any distribution over policy space P and
any prior distribution P0, the following inequality holds

E
M∼D

C(P ;M)︸ ︷︷ ︸
True cost

≤ 1

N

N∑
i=1

C(P ;Mi)︸ ︷︷ ︸
Training cost

+

√√√√DKL (P‖P0) + log
(

2
√
N

δ

)
2N︸ ︷︷ ︸

Regularizer

(6)

with probability at least 1− δ.

Remarks. (1) Theorem 3 guarantees that the expected loss/cost of the policy distribution over the
underlying task distribution is upper bounded by the loss/cost computed on the past tasks and a
regularization term.
(2) Theorem 3 holds for any policy distribution P and any prior distribution P0 in the policy space Π.
(3) The regularizer involves the number of training tasks N , and the KL-divergence between P and
P0. Therefore, the tightness of the bound depends on the selection of prior P0, and the number of
training tasks.

1We assume that costs are bounded in the range [0, 1], if not, we can always normalize them.
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Majumdar et al. (2021) use the PAC-Bayes bound to learn a policy distribution P over a set of similar
but noisy tasks so that the expected cost of the policy on a new task is bounded. However, their
method cannot be directly applied to our lifelong setting due to the following two reasons. (1) Task
divergence. the tasks in lifelong learning can be divergent. For example, task A is to find an apple in
the upper-right corner in a maze, and task B is to find an orange in the lower-left in the same maze;
although the two tasks share the same transition dynamics, they require totally different policies, so
that learning one single policy distribution for all tasks will not work well. This is similar to the first
challenge we stated in the introduction about transferring proper knowledge. (2) Choosing prior. As
pointed out by the remarks above, the tightness of the bound depend on the prior policy distribution
P0. However, in practice, it is hard to choose a good prior before learning starts. Majumdar et al.
(2021) select the prior randomly, which is not optimal, or by expert knowledge, which is usually
unrealistic.

Therefore, in the next section, we propose a new algorithm for lifelong RL that overcomes the
aforementioned two problems.

4.2 IMPROVE LIFELONG LEARNING WITH PAC-BAYES BOUND

Based on Theorem 3, we introduce our algorithm called PAC-Bayes Lifelong RL (PB-LRL, illustrated
in §B Algorithm 1), which achieves efficient knowledge transfer and fast adaptation to novel tasks.
Note that PB-LRL is a meta-learning algorithm that be combined with any single-task RL algorithm,
provided that the base policy is a form of policy search defined on the same space of parameters that
the PAC-Bayes bound uses.

The key to PB-LRL is to learn a policy distribution P as a policy initializer, called default policy.
More specifically, we optimize the default policy P with Theorem 3, and whenever there is a new
task, we sample a behavior policy from P and use any single-task learning method to fine-tune the
policy. Hence, every task gets a “customized” policy, while the common knowledge is shared by
the default policy, which solves the task divergence problem. Since in lifelong setting, the tasks are
streaming in, we update the default policy every N tasks and estimate the training cost of P by the
most recent N tasks.

To remedy the challenge of choosing prior, PB-LRL uses an “evolving” prior rather than a fixed prior.
After every N tasks, we update P by minimizing the PAC-Bayes bound evaluated at the current
prior P0. Then, we update the prior policy distribution by making it closer to the new default policy.
Because the default policy is updated to minimize the expected cost, a fixed prior may result in larger
and larger DKL(P ||P0), then looser and looser PAC-Bayes bound. In contrast, we slowly move the
prior towards the default policy by P0 = (1 − λ)P0 + λP , where λ ∈ [0, 1] is a hyper-parameter
controlling the moving speed. In this way, even if the prior is initialized with a bad choice, we are
still able to find a good prior during learning, and use it to improve the default policy.

In §B Algorithm 1, we use d-dimensional Gaussian distributions as the default and prior policy
distribution, i.e., N (µ, σ) and N (µ0, σ0). It is noteworthy to mention that our algorithm and
theoretical guarantees also work for other distributions. Before learning starts, the agent initializes a
default policy distribution P and a prior policy distribution P0 randomly or by domain knowledge
(Line 2-3). For every task, the agent first samples a policy θ ∼ P (Line 6-8), estimate the cost of θ
(Line 9-11), and then fine-tune the policy with any single-task learning algorithm (Line 13-15). After
every N tasks, the agent summarizes its recent experience, and updates default policy P by seeking
to minimize the generalization error bound (6) evaluated at the current prior P0 (Line 18-19). Then,
the agent also updates the policy prior by P0 = (1− λ)P0 + λP (Line 20-21). Note that the prior P0

is only used to construct the PAC-Bayes bound and optimize the default policy P .

The cost function C(π,M) is approximated by C(T ) = 1
|T |

∑
τ∈T r(τ), where T is the trajectories

generated by the current policy. More specifically, for each step, we sample a ∼ π(a|s; θ), where
θ = µ+

√
σ � ε and ε ∼ N (0, Id), which is in line 7-9.

The regularization function L in line 18-19 is defined as

L(µ, σ, µ0, σ0, N) =

√
DKL[N (µ, σ)||N (µ0, σ0)] + log 2

√
N

δ

2N

We note that while P is chosen by optimizing PAC-Bayes Bound (i.e., the RHS of inequality (6)), this
is a valid not final upper bound. Upon having the optimal policy distribution P ∗ := N (µ∗, σ∗) and
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the corresponding policy function π∗ ∼ P ∗, a tighter final upper bound on true cost EM∼D C(P ;M)
is available based on the inequality (3) and parameters sampled from P ∗. Theoretically, we provide
such bound in the following theorem.

Theorem 4 (Final PAC-Bayes Bound for Lifelong RL). After optimizing the PAC-Bayes Bound and
outputting the θ∗ from PB-LRL algorithm, we draw a large number of samples (θ1, · · · , θK) from
N (µ∗, σ∗), for any δ ∈ (0, 1), δ′ ∈ (0, 1), over the lifelong task distribution D and N i.i.d. sampled
tasks {Mi}Ni=1, for the distribution under policy P ∗ and any prior distribution P0, the following
inequality holds

E
M∼D

C(P ∗;M) ≤ D−1
KL

Ĉ(P ∗;M)‖
DKL (P ∗‖P0) + log

(
2
√
N

δ

)
2N

 (7)

with probability at least 1 − δ − δ′. Where the Ĉ(P ∗;M) is an upper bound on the
training cost C(P ∗;M) with high probability 1 − δ′: C(P ∗;M) ≤ Ĉ(P ∗;M) :=

D−1
KL

(
1

NK

∑N
i=1

∑K
j=1 C(π∗;Mi)‖ 1

K log( 2
δ′ )

)
We defer all proofs of our theorems to the §A.

Importance of the update frequency N . The value of hyper-parameter N controls how quickly the
meta learner – default policy and prior policy – are updated. The larger N is, the slower the meta
learning learns. However, a large N also implies the PAC-Bayes upper bound is tighter and thus the
update is more confident. Hence, there is an interesting trade-off between efficiency and accuracy.
We empirically evaluate the influence of N in experiments in Section 5.4.

5 EXPERIMENTS

In this section, we show the performance of our proposed algorithm on various environments for the
lifelong learning tasks and compare it with the baseline algorithms.

Environments. We evaluate our proposed PB-LRL in multiple OpenAI’s Gym and Mujuco en-
vironments, including discrete control (CartPole, LunarLander) and continous control (Swimmer)
(§C.1). For each environment, we extend the original implementation to the lifelong setting, where
the tasks have varying goals or dynamics. The agent needs to sequentially learn multiple tasks, each
for a small number of steps. We introduce the detailed settings and results of the three environments
respectively in Section 5.1, 5.2 and 5.3.

Baselines. Our PB-LRL is a meta RL method and can use any single-task RL algorithm as the base
learner. For simplicity of comparison, we use Vanilla Policy Gradient (VPG) Sutton et al. (1998) as
the base learner. And we compare our PB-LRL with the following two baselines, both of which use
VPG as their base learning algorithm.

• Single-task learning. The Single-task learning baseline is to learn each task separately and
update policy based on each task separately.

• MAML Finn et al. (2017). MAML is a state-of-the-art meta-learning method, which uses a
heuristic method to optimize the meta policy. By simply aggregating the losses of a batch of
tasks after one-step learning and taking gradient with respect to the meta policy, MAML
aims to find model parameters that are valuable for all tasks.

Note that in both baselines, they treat the policy as a single point in the parameter space rather than a
distribution as in our algorithm.

Hyper-parameters. In each lifelong environment, we run the agent on 2000 tasks (or 1000 tasks
for Swimmer). In every task, we only run 10 episodes with at most 300 steps per episode. Note that
the number of per-task steps is much less than that usually required in traditional learning, so that the
agent has to achieve fast adaptation to gain high rewards. More details are in §C.2.

The selection of update frequency N for our algorithm is specified in the captions of the figures.
Similarly, MAML also updates its meta policy for every batch of tasks; for a fair comparison, we set
MAML’s update frequency to be the same with N in all experiments.
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Figure 1: Comparison between our algorithm PB-LRL and
baselines on CartPole-Goal. (a) xgoal ∼ N (0, 0.1), N = 25;
(b) xgoal ∼ N (0, 0.5), N = 50; All results are averaged over
10 random seeds, with C.I. by a 0.32(10%) standard deviation
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Figure 2: Comparison between our
algorithm PB-LRL and baselines
on LunarLander (with 0.1 standard
deviation interval). The meta learn-
ing update frequency is N = 50.
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Figure 3: Comparison between our algorithm PB-LRL and
baselines on CartPole-Mass. The meta-learning update fre-
quency N = 50, Different Cart Mass: (a) µc = 0.5, σc = 1.0;
(b) µc = 1.0, σc = 1.0;
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Figure 4: Comparison between our
algorithm and baselines on Swim-
mer. The meta learning update fre-
quency is N = 25.

5.1 IN THE CARTPOLE ENVIRONMENT

We extend the original setting into a lifelong setting by defining two variants of CartPole, as respec-
tively shown in Section 5.1.1 and Section 5.1.2.

5.1.1 TASKS WITH VARYING GOALS.

We implement a variant of CartPole, called CartPole-Goal, where the agent is supposed to reach
a “goal position” on the track rather than keep the pole upright. The reward is defined by r(x) =
− exp |x− xgoal|, where x is the cart’s current position, and xgoal is the goal’s position. In a lifelong
setting, the agent interacts with a series of tasks with different goal positions. For every task, the
goal position is sampled from a Gaussian distribution centered at 0. The variance/standard deviation
controls how divergent those random tasks are. We separately test two different standard deviations:
0.1 and 0.5. Goals with a standard deviation of 0.1 are more similar to each other, but the goals with
a standard deviation of 0.5 are more divergent and harder to transfer knowledge. (Note that the active
position range along the track is [−2.4, 2.4], thus > 99.9% goals with a standard deviation of 0.5 are
spread out over the track.) An ideal agent should distill the knowledge of “how to keep balance” from
previous tasks, and quickly adapt to new tasks with different goals.

A comparison of the performance of our PB-LRL and baselines is shown in Figure 1, on CartPole-
Goal environments with standard deviations of 0.1 and 0.5. We can see that PB-LRL significantly
outperforms MAML and the single-task learner in both cases. As it sees more and more tasks,
PB-LRL gradually and constantly improves its performance on each of the tasks. In Figure 1, because
of the high divergence of goals, we observe some fluctuation of PB-LRL, but in the end, PB-LRL
successfully overcomes the divergence of tasks, and achieves fast adaptation to the later tasks with
the highest reward. In contrast, the performance of MAML increases much slower than PB-LRL. In
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Figure 1(b), MAML achieves small progress compared with the naive single-task due to the high
divergence of tasks.

5.1.2 TASKS WITH VARYING DYNAMICS.

In this section, we provide experimental results to show our algorithm outperforms baselines when
the underlying tasks have different dynamics.

The intrinsic dynamics would affect lifelong learning performance. For example, in the Cart-Pole
environment (§C.1 Figure 6(a)), different mass of the cart could generate different friction forces
between the cart and the track, which later affects the acceleration of the cart (the acceleration of
the cart is less with a heavier cart) and the rotation of the pole, then it will result in alternated MDP
models so the knowledge transfer between meta learner and learner changed.

To help illustrate the above situation, we compared our algorithm with baselines by changing the
single task mass, called CartPole-Mass (mc). With other conditions of the environment fixed (friction
force, controller force, etc.). Specifically, we set mc ∼ N (µc, σc), and for every task, we sampled
{mci}20001 from the above distribution.

Figure 3 shows performance of our method with baselines under different single task dynamics when
we set µc = 0.5 or µc = 1. Every single task has different mci which results in 2000 different small
dynamics.

Figure 3(a) and 3(b) show that our method is able to learn the policy that leads to the highest reward
compared to baselines. We also see that MAML outperforms Single-task learning under different task
dynamics. The performance of our method is invariant to which single task dynamics it encountered,
indicating its generalization ability to divergent dynamics for lifelong learning.

5.2 IN THE LUNARLANDER ENVIRONMENT:

For the LunarLander environment, the agent (lunar module) needs to learn to land at different goal
positions. The goal position in a task is defined as the expected landing location xgoal. We sample
uniformly to get different goals/landing locations. The reward is given by the distance between the
landing position x and goal position as r(x) = − exp |x− xgoal|.
The learning progress of PB-LRL is shown as in Figure 2. During the training, the agent is learning
from different goals and samples, our algorithm can still learn to improve its performance throughout
the time. This shows the ability of our algorithm can learn to quickly adapt to new tasks by distilling
knowledge from previously seen tasks.

We also conduct the comparison between our algorithm and the two baselines. As shown in Figure
2, we can see that the MAML performs better than Single-task learning, this is not surprising
since during training MAML takes additional consideration in performing well on the overall task
distribution rather than only on a single task. Our algorithm is more efficient in adapting to new tasks
by learning from previously seen tasks compared to the two baselines.
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Figure 5: Comparison of different update frequency N on (a) CartPole-Goal; (b) LunarLander; (c)
Swimmer.
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5.3 IN THE SWIMMER ENVIRONMENT

The goal of the Swimmer is to make the robot swim forward as fast as possible by actuating the two
joints. We simulate different environments by generating random goal velocity for the robot, which is
uniformly chosen from [0.1, 0.2]. The reward is defined as r(s, a) = −1.5||vx−vgoal||2−1e−4||a||22,
where ||vx − vgoal||2 is the difference between the current velocity of the agent and the goal velocity.

We present the comparison results between our algorithm and the baselines in Figure 4. Our PB-LRL
algorithm can efficiently adapt to new tasks and steadily improve the performance, and constantly
outperform MAML and the single-task baseline.

5.4 INVESTIGATING THE EFFECTS OF N

As we discussed in Section 4.2, the hyper-parameter, update frequency N , balances the trade-off
between efficiency and accuracy of updating policies. In theory, the smaller N leads to a faster update
but will make the learning less stable. The effect of larger N results in a slower but more stable
learning. Our experiment results have verified this theoretical interpretation. However, from our
experiment results, we can also see that the practical effect of N on the performance of learning also
depends on the environment.

In the CartPole environment as shown in Figure 5(a), N = 25 exhibits the fast and unstable learning
behavior as in theory and performs the best in the learning in terms of the final reward. In contrast,
in LunarLander (as in Figure 5(b)) and Swimmer (as in Figure 5(c)) environments, for all N cases,
learning curves are nearly stable. In LunarLander all three N cases reach similar final rewards; in
Swimmer N = 25 reaches the highest reward. One common thing is in all three environments, the
largest N leads to the slowest learning, which is consistent with the theory.

The interpretation of the dependency on environments for learning behaviors, as shown in our results,
can be intuitive. If tasks in a specific environment all share high portions of general features, then
the effect of N on stability will be negligible. In addition, in practice when we test the outcome of
learning, we only learn from a finite sample of tasks, this actually imposes an implicit requirement on
both efficiency and accuracy for learning, which leads to that the moderate N performs the best as in
our results.

6 DISCUSSION AND FUTURE WORKS

We would also like to point out that PB-LRL can be further extended and improved in a number of
possible directions, which are exciting to explore in the future.

Automatic and adaptive selection of the meta update frequency N . As we discussed in Sec-
tion 4.2 and 5.4, the selection of hyper-parameter N is essential for both the theory and the experiment.
Moreover, the best selection of N usually depends on the underlying task distributions. In practice,
one may need to try different N ’s manually to determine which N works better. However, we can get
rid of the manual selection by designing an automatic and adaptive algorithm. Our algorithm 1 uses a
fixed N , but it also works if N changes after each meta update. More specifically, one can increase
N if the learning performance is unstable, and decrease N if the performance is stable but raises
slowly. Based on our observation in experiments, it is better to start from a small N and increase
it when the performance fluctuates. In this way, we can hopefully converge to an optimal N and
maximize the average rewards.

More gradient descent steps for optimizing default policy. The current PB-LRL uses a one-step
gradient descent to update the default policy in the “meta update” (Algorithm 1 line 16-22). The
gradient step reduces the PAC-Bayes upper bound, but does not necessarily achieve the minimum.
If one wants to really minimize the upper bound, more gradient steps are needed. The difficulty of
doing so is that we already lost access to the past tasks, thus we cannot directly evaluate the cost
of a new default policy on an old task. There are two approximate solutions: (1) using importance
sampling to evaluate the new policy with the old trajectories, and (2) building a deep prediction model
for each task M̂i during single-task learning and evaluate new policies on M̂i, in the scenario where
the interactions with each task suffice to build a good approximate model.
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7 ETHICS STATEMENT

We have read the code of ethics carefully and ensured that our paper conforms to them.

8 REPRODUCIBILITY STATEMENT

We make our best effort to ensure the reproducibility of the paper’s experiments and provide clear
guidelines. More specifically, we include detailed experiment setup information in C.1. Besides,
we give detailed description on the architecture of the neural network we use and we explain how
we control and adjust different variables in C.2. We list all the important hyperparameters and their
default values in C.2. There is no extra data processing steps to be conducted. All the work is done
in the code in an end-to-end manner. We also give the link to the source code in the supplementary
material.

We explain all assumptions of our theorems clearly, and provide the complete proof of the theorems
in the appendix §A.
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APPENDICES TO FEW-SHOT LIFELONG REINFORCEMENT LEARNING WITH GENERALIZA-
TION GUARANTEES: AN EMPIRICAL PAC-BAYES APPROACH

A DETAILED PROOFS

We first give some useful definitions and backgrounds.
Definition 1 (KL divergence between two Bernoulli distributions with probability of success a and
probability of success b). For scalars a, b ∈ [0, 1], we define

DKL(a‖b) := DKL(B(a)‖B(b)) = a log
a

b
+ (1− a) log

1− a

1− b
(8)

where B(a) denotes the Bernoulli distribution on {0, 1} with parameter (i.e. mean) a
Definition 2 (KL inverse). PAC-Bayes bounds are typically expressed as bounds on a quantity
b∗ ∈ [0, 1] of the form DKL(a‖b∗) ≤ c (for some a ∈ [0, 1] and c ≥ 0). These bounds can then be
used to upper bound b∗ by the KL inverse as follows:

b∗ ≤ D−1
KL(a‖c) := sup {b ∈ [0, 1]|DKL(a‖b) ≤ c} . (9)

One can treat D−1
KL(a‖c) as the supreme of all b such that DKL(a‖b) ≤ c.

Now we provide the proofs of our main theorems. We first prove the theorem 2.

Proof. Based on the upper bound for the KL inverse in theorem 1, we applying the Pinsker’s
inequality: D−1(a‖c) ≤ a+

√
c/2 to the RHS of equation (3), so we get

D−1
KL

lS(P )‖
DKL (P‖P0) + log

(
2
√
N

δ

)
2N

 ≤ lS(P )︸ ︷︷ ︸
Training loss

+

√√√√DKL (P‖P0) + log
(

2
√
N

δ

)
2N︸ ︷︷ ︸

Regularizer"

, combines the inequality (3), which proves the equation (4)

We now prove the theorem 3.

Proof. The proof follows from theorem 2 given a reduction from the lifelong RL problem to the
supervised learning setting.

In the supervised learning, we are provided with the input data, e.g. z, in the lifelong RL, we have
the taskM. Choosing a hypothesis hw of supervised learning corresponds to choosing a lifelong RL
policy π. A hypothesis hw sends z to a label z′, while the τ is a roll-out trajectory from taskM’s
MDP under the policy π. The label incurs a loss l(hw; z), while the τ has a total expected reward
C(π;M) = −ηM(π).

Let Π be the whole policy space parameterized by θ ∈ Rd. Let P be any policy distribution over
the policy space Π. Let P0 be any prior distribution. By the analogy of theorem 2, we have the

training cost over multiple tasks 1
N

∑N
i=1 C(P ;Mi), and a regularizer term

√
DKL(P‖P0)+log

(
2
√

N
δ

)
2N ,

which together bounds the true expected loss/cost of the policy distribution over the underlying task
distribution EM∼D C(P ;M).

Definition 3. Follow the notations from section 3.3 for the supervised learning, we let S be a sample
set of N pairs (z, z′), and we define true error e(h) := PD(h(z) 6= z′), and the empirical error
rate ê(h) := PS(h(z) 6= z′). Let P be a distribution over the hypotheses which can be found in
an example dependent manner. Let P0 be a distribution over the hypotheses which is chosen a
prioriwithout dependence on the examples. Let eP (h) = Eh∼P e(h) be the true error rate of the
stochastic hypothesis which, in any evaluation, draws a hypothesis h from P , and outputs h(z).
Let êP (h) = Eh∼P ê(h) be the average empirical error rate of the same stochastic hypothesis. Let
ê(h)P̂ (h)

:= PS,P̂ (h(z) 6= z′) be the observed rate of failure of a K random hypotheses drawn
according to P and applied to a random training example.

13



Under review as a conference paper at ICLR 2023

Theorem 5 (Sample Convergence Bound Langford & Caruana (2002)). For all distributions, P , for
all sample sets S, for any δ ∈ (0, 1)

PP

(
DKL(ê(h)P̂ (h)‖ê(h)P (h)) ≥

ln 2
δ

K

)
≤ δ (10)

where K is the number of evaluations of the stochastic hypothesis.

Finally, we give the proof of the theorem 4.

Proof. Upon having the optimal policy distribution P ∗ := N (µ∗, σ∗) and the corresponding policy
function π∗ ∼ P ∗, we obtain the θ∗ = µ∗ +

√
σ∗ � ε from PB-LRL algorithm. We are interested in

the training cost
C(P ∗;M) = E

π∼P∗
[C(π∗;M)],

so we draw large number of independent, identically distributed parameter samples θ1, · · · , θK from
N (µ∗, σ∗) to estimate the above expectation. Thus, we denote this estimator as

C̄(P ∗;M) :=
1

NK

N∑
i=1

K∑
j=1

C(π∗;Mi).

For any δ′ ∈ (0, 1), by theorem 5, we have with high probability 1− δ′

C(P ∗;M) ≤ Ĉ(P ∗;M) := D−1
KL

(
C̄(P ∗;M)‖ 1

K
log(

2

δ′
)

)
(11)

We then bound the difference between the true expected cost EM∼D C(P ∗;M) and training cost
C(P ∗;M). Followed from theorem 1, for any δ ∈ (0, 1), with high probability 1− δ,

E
M∼D

C(P ∗;M) ≤ D−1
KL

C(P ∗;M)‖
DKL (P ∗‖P0) + log

(
2
√
N

δ

)
2N

 (12)

holds. Since C(P ∗;M) ≤ Ĉ(P ∗;M), using the definition from 8, for any c >= 0, we have

sup
{
b ∈ [0, 1]‖DKL

(
Ĉ(P ∗;M)‖b

)
= c

}
≥ sup {b ∈ [0, 1]‖DKL (C(P ∗;M)‖b) = c} ,

therefore, we have

sup

b ∈ [0, 1]‖DKL

(
Ĉ(P ∗;M)‖b

)
≤

DKL (P ∗‖P0) + log
(

2
√
N

δ

)
2N


≥ sup

b ∈ [0, 1]‖DKL (C(P ∗;M)‖b) ≤
DKL (P ∗‖P0) + log

(
2
√
N

δ

)
2N

 ,

i.e.,

D−1
KL

Ĉ(P ∗;M)‖
DKL (P ∗‖P0) + log

(
2
√
N

δ

)
2N

 ≥ D−1
KL

C(P ∗;M)‖
DKL (P ∗‖P0) + log

(
2
√
N

δ

)
2N


Let A1 be the event of equation (11) not held, and A2 be the event of equation (12) not held, each
condition of two equations has probability 1− δ and 1− δ′, by the union bound, the total event

E
M∼D

C(P ∗;M) ≤ D−1
KL

Ĉ(P ∗;M)‖
DKL (P ∗‖P0) + log

(
2
√
N

δ

)
2N

 (13)

is bounded with

P(the bounds satisfied) := 1− P(
2⋃

i=1

Ai) ≥ 1−
2∑

i=1

P(Ai) = 1− δ − δ′
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B PB-LRL

Algorithm 1 PAC-Bayes Lifelong RL (PB-LRL)

1: Input: policy dimension d; learning rates α, β; update frequency N ; failure probability δ; the
number of steps allowed in each task T ; prior evolving speed λ

2: Initialize default policy mean and derivation µ, σ ∈ Rd;
3: Initialize prior policy mean and derivation µ0, σ0 ∈ Rd;
4: Initialize cost gradients gµ[i] = 0, ∀i = 1, 2, · · · , N , gσ[i] = 0, ∀i = 1, 2, · · · , N
5: for i = 1, 2, 3, · · · do
6: Receive a new taskMi ∼ D
7: Sample ε ∼ N (0, Id)
8: Set initial policy θ ← µ+

√
σ � ε

9: Use θ to rollout trajectories T
10: Compute cost c = C(T )
11: Compute gradients gµ[i] = ∇µc, gσ[i] = ∇σc
12: Make a copy of policy θi = θ
13: for t = 1, 2, · · · , T do
14: Optimize θi forMi with any single-task method with learning rate α
15: end for
16: if i mod N = 0 then
17: {Meta Update by using regularization loss function L}
18: µ← µ− β(

∑N
k=i−N gµ[k] +∇µL(µ, σ, µ0, σ0, N))

19: σ ← σ − β(
∑N

k=i−N gσ[k] +∇σL(µ, σ, µ0, σ0, N)))

20: µ0 ← (1− λ)µ0 + λµ
21: σ0 ← (1− λ)σ0 + λσ
22: end if
23: end for
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C ENVIRONMENT AND EXPERIMENT

C.1 OPENAI AND MAMUJOCO ENVIRONMENT

(a) (b) (c)

Figure 6: The illustration of three environments. (a) CartPole, (b) LunarLander, (c) Swimmer

C.1.1 CARTPOLE ENVIRONMENT

In the classic CartPole environment depicted in §C.1 Figure 6(a), a pole is attached by an un-actuated
joint to a cart, which moves along a frictionless track. The system is controlled by applying a force of
+1 or -1 to the cart. A reward of +1 is provided for every timestep that the pole remains upright. The
episode ends when the pole falls or the cart moves far away from the center.

C.1.2 LUNARLANDER ENVIRONMENT

The general task in LunarLander environment (as shown in §C.1 Figure 6(b)) is to let lunar module
land at a pre-defined goal location.

C.1.3 SWIMMER ENVIRONMENT

The swimmer (as shown in §C.1 Figure 6(c)) is a planar robot with 3 links and 2 actuated joints.
Fluid is simulated through viscosity forces, which apply drag on each link, allowing the swimmer to
move forward.

C.2 HYPER-PARAMETERS

In all experiments, we use a 2-layer MLP with 32 nodes per layer to parametrize the policy. The
single-task learning rate α and meta learning rate β are both set to be 10−4. The prior-update-speed
parameter λ is set as 0.5. The default policy and the prior policy are both initialized as standard
normal distributions.

C.3 EXPERIMENTS

All experimental results are averaged over 10 random seeds to reduce noise, and we plot the confidence
interval by a 0.32 (10%) standard deviation. And to increase readability, we smooth all the curves in
plots using the exponential moving average algorithm with smoothing parameter 0.99.

The code is located at https://www.dropbox.com/sh/5m91t7xvems7ncy/
AACjZTYPOaJqDHWQYf6mKUDEa?dl=0.
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