
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INFERENCE SCALING OF LLM ENSEMBLING: BRIDG-
ING TOKEN SPACES WITH TOKEN TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) exhibit diverse strengths and weaknesses across
tasks, motivating recent efforts to ensemble multiple models to harness their com-
plementary capabilities, boosting test-time performance. While model diversity
and capability are known to influence ensemble effectiveness, a persistent challenge
in LLM ensembling arises from mismatched tokenizer vocabularies. Existing align-
ment strategies typically rely on token-level embeddings or string-level heuristics
of tokens, overlooking the tokenizer priors embedded during LLM pretraining.
Specifically, tokenizers such as Byte-Pair Encoding (BPE) and Unigram are con-
structed by statistically analyzing large pretraining corpora to identify frequent
subword units, and they tokenize text using greedy or probabilistic algorithms that
reflect these learned subword distributions. In this work, we propose a novel and
remarkably simple Token Translation (ToT) method that explicitly leverages these
tokenizer priors to bridge heterogeneous token spaces. Our method is lightweight,
requiring only a few lines of code, pre-computable, and highly efficient at inference.
To further enhance robustness, we incorporate token-level model uncertainty to
dynamically reweight each model’s contribution during decoding. Extensive evalu-
ations across diverse model combinations and tasks demonstrate that our method
consistently outperforms existing ensembling baselines.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; OpenAI, 2023) have demonstrated strong
performance across tasks such as question answering (Kamalloo et al., 2023), summarization (Zhang
et al., 2024), and reasoning (Jaech et al., 2024; Guo et al., 2025). Owing to differences in data,
architectures, and training objectives, LLMs exhibit complementary strengths and weaknesses (Jiang
et al., 2023b; Yao et al., 2025). This motivates test-time ensembling, a practical approach to combine
multiple pretrained LLMs for improved performance and adaptability without additional fine-tuning.

Test-time ensembling methods generally fall into two categories: response-level (Feng et al., 2024;
Jiang et al., 2023b; Lu et al., 2023) and logit-level (or token-level) ensembling (Yao et al., 2025; Yu
et al., 2024; Huang et al., 2024; Phan et al., 2025). Response-level approaches select among complete
outputs or route inputs to a model, offering a simple but coarse way to combine LLMs. Logit-
level approaches instead operate directly on token (or sub-token) distributions during generation,
enabling finer-grained integration of model predictions. However, they face a key challenge: tokenizer
mismatch, as models often adopt heterogeneous tokenization schemes and vocabularies, making the
alignment of token-level predictions nontrivial.

LLMs adopt distinct tokenization schemes (e.g., BPE (Sennrich et al., 2015), Unigram (Kudo, 2018)),
each trained on a separate pretraining corpus. These schemes differ in segmentation granularity,
vocabulary, and subword decomposition, resulting in heterogeneous token spaces. Such mismatches
prevent direct alignment of token-level distributions across models and can lead to sparse or unstable
mappings, especially when vocabularies only partially overlap.

Prior works attempted to align tokens across models by comparing token embedding similarities
(Huang et al., 2024) or using string-level heuristics such as string distance (Wan et al., 2024a). They
fail due to inconsistent token boundaries and lack of grounded semantic correspondence. However,
these strategies often overlook a critical source of information: tokenizer priors—the statistical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparisons of LLM ensemble methods. Left panel: Comparison across five methodological
dimensions. Right panel: Radar plot comparing ToT with the two base LLMs and the strongest ensemble
baseline across six benchmarks.

Method Mismatch
Handling

Minimal
Overhead

Tokenizer
Priors

Uncertainty
Aware Bidirectional

LLM-Blender (Jiang et al., 2023b) ✗ ✗ ✗ ✗ ✗

GAC (Yu et al., 2024) ✗ ✓ ✗ ✗ ✗

DeepEn (Huang et al., 2024) ✓ ✗ ✗ ✗ ✗

CES (Phan et al., 2025) ✓ ✗ ✗ ✗ ✗

UniTE (Yao et al., 2025) ✓ ✓ ✗ ✗ ✗

ToT (Ours) ✓ ✓ ✓ ✓ ✓

patterns captured during tokenizer training on large corpora. Widely deployed tokenizers like BPE
and Unigram segment text by greedily selecting high-frequency subword units, and this behavior
implicitly encodes valuable knowledge about how linguistic input is represented in each LLM.

To address the challenge of tokenizer mismatch in token-level LLM ensembling, we propose a
simple and highly effective alignment strategy that leverages tokenizer priors, i.e., the statistical
patterns implicitly captured by tokenizers during training on large corpora. Our key idea is to align
heterogeneous token spaces through an operation we term token translation: for any token from
a source model, we first decode it into its original text form using the source tokenizer, and then
re-encode this text using the target model’s tokenizer. This reveals how the target tokenizer interprets
the same content and provides a grounded correspondence between token spaces. Intuitively, it
approximates the token sequence the target model is likely to generate when expressing the same
underlying content, capturing both interpretation and generation preferences. To enhance alignment
quality, we further introduce a bidirectional translation scheme that integrates alignments in both
directions to capture complementary structures. This approach is easy to implement, pre-computable
for efficiency, and enables robust token-level fusion across models with diverse vocabularies. Detailed
comparisons of existing methods are provided in Table 1, with the left panel showing the method-level
characteristics and the right panel reporting quantitative performance. As highlighted, our proposed
ToT method consistently checks all the desired properties and achieves the best overall results.

After aligning token predictions into a shared space, we address the challenge of aggregating outputs
from models with varying reliability through an uncertainty-aware ensembling mechanism. In
practice, different models may exhibit varying levels of confidence depending on the context, and
treating them equally can dilute stronger signals. To address this, we dynamically reweigh each
model’s token distribution based on prediction entropy: models with lower uncertainty get greater
influence, while uncertain ones are downweighted. This adaptive weighting allows the ensemble to
emphasize more reliable token-level signals and improves reliability across diverse inputs.

We validate our method through extensive experiments across multiple model combinations, and
downstream tasks. Our results show that the proposed approach consistently outperforms existing
LLM ensembling methods in terms of accuracy. These results further demonstrate that ensembling
performance improves as more capable LLMs are incorporated, under optimal configurations using
our proposed method. Our main contributions are summarized as follows:

• We highlight the untapped potential of tokenizer priors for bridging heterogeneous token spaces
and addressing tokenizer mismatch, a key bottleneck in token-level LLM ensembling.

• We introduce a bidirectional token alignment method ToT based on token translation, a simple yet
effective operation that aligns tokens across models by leveraging their tokenizer behaviors.

• We propose an uncertainty-aware ensembling strategy that adaptively reweighs model contributions
at each token step based on prediction confidence, enhancing output quality.

• We demonstrate that our method consistently improves performance across diverse tasks and model
combinations, achieving an average absolute gain of 5.95 points, offering a scalable, well-founded
solution for training-free LLM ensembling.

2 RELATED WORKS

Ensembling large language models (LLMs) has emerged as a promising direction for improving
prediction accuracy, robustness, and calibration. Existing methods can be broadly grouped into three

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

categories: response-level, logit-level, and training-time ensembling. Our work focuses on token-level
fusion and introduces a lightweight token translation strategy to address tokenizer mismatch while
preserving fine-grained generation behavior.

Response-level ensembling aggregates complete outputs from different models. Early methods such
as PairRanker (Jiang et al., 2023b) and routing-based ensembles (Feng et al., 2024; Lu et al., 2023)
select the best response based on reranking or input-conditioned selection. More recent techniques
like SweetSpan (Xu et al., 2024a) attempt to fuse spans across responses. While conceptually simple,
these approaches ignore token-level information and often struggle to generalize across tasks and
model combinations.

Logit-level ensembling operates at a finer granularity by aggregating token logits during generation.
We use this term broadly to include variants that operate on tokens, sub-tokens (bytes), or token
spans. UniTE (Yao et al., 2025) uses top-k token union for alignment, while GAC (Yu et al., 2024)
and DeePen (Huang et al., 2024) rely on dense mapping matrices between vocabularies to perform
projection-based fusion. Span-level ensembling (Xu et al., 2025) merges consecutive tokens into
larger segments, but substantially increases computation cost. Sub-token-level ensembling (Gu et al.,
2024; Phan et al., 2025) such as CES, instead decomposes tokens into smaller units, but suffers
from a lack of tokenizer priors, often requiring expensive search. Our method avoids these issues by
leveraging tokenizer priors to construct sparse, grounded token mappings via a translation mechanism.

Training-time ensembling focuses on distilling multiple model outputs into a student model.
FuseLLM (Wan et al., 2024a) and FuseChat (Wan et al., 2024b) perform logit-based distillation,
while EVA (Xu et al., 2024b) and EnsW2S (Agrawal et al., 2024) learn vocabulary projection lay-
ers to integrate predictions. Ent (Ruan et al., 2022) also explore weighted ensembling, but their
weights are learned during training, unlike our test-time aggregation of frozen heterogeneous LLMs.
While effective for model compression, these approaches require model retraining and full access to
parameters, making them inapplicable in test-time scenarios where models are frozen or proprietary.

3 METHODOLOGY

In this section, we present our test-time ensembling framework for token-level fusion across LLMs
with heterogeneous tokenizers. We first define the token alignment problem arising from vocabulary
mismatch, then introduce token translation to align token spaces, along with a bidirectional variant
for added robustness. Finally, we describe an uncertainty-aware ensembling strategy that reweights
model outputs by confidence. An overview is shown in Figure 1.

3.1 PROBLEM FORMULATION: TOKEN ALIGNMENT ACROSS HETEROGENEOUS TOKENIZERS

Token-level ensembling across LLMs requires the ability to align token distributions across models
with heterogeneous tokenizers. We follow the setting adopted by prior work such as UniTE (Yao
et al., 2025), GAC (Yu et al., 2024), and DeePen (Huang et al., 2024), where a designated main model
serves as the reference, and one or more assist models provide auxiliary signals. At each decoding
step, each model outputs a probability distribution over its own vocabulary: p(main) ∈ ∆|Vmain| of
tokenizer Tokmain and p(assist) ∈ ∆|Vassist| of tokenizer Tokassist, where ∆|V| denotes the probability
simplex, i.e., the set of non-negative vectors in R|V| that sum to one.

The goal is to construct a mapping matrix M ∈ R|Vassist|×|Vmain| for each assist model, where
Mi,j indicates the alignment between assist token v

(assist)
i and main token v

(main)
j . By per-

forming row-normalization on M , we obtain the transition matrix T ∈ R|Vassist|×|Vmain|, where
Ti,j = Pr(v

(main)
j |v(assist)

i) is the probability of transiting assist token v(assist)
i to main token v

(main)
j .

Using T , the assist model’s probability is projected into the main vocabulary space via T⊤p(assist).
Finally, these aligned distributions are ensembled by their linear combination.

3.2 TOKEN TRANSLATION VIA DECODE → ENCODE

Given the problem setting above, the key challenge lies in constructing a meaningful and efficient
transition matrix T , as the vocabularies Vmain and Vassist from different LLM families are often

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of our ToT framework for token-level ensembling across heterogeneous LLMs.
Assist model predictions are translated into the main model’s token space via bidirectional token
translation using tokenizer priors. Final predictions are fused using uncertainty-aware weighting for
robust ensemble decoding.

only partially overlapping. Traditional approaches based on string matching or embedding similarity
frequently fail due to inconsistent token boundaries and the absence of semantic correspondence.
To address this, we propose an alignment strategy based on tokenizer priors, which leverages the
statistical segmentation behavior inherently learned during tokenizer training, and further introduce a
simple yet effective mechanism, token translation, that uses these priors to construct T and establish
semantic correspondences across heterogeneous vocabularies.

Tokenizers such as BPE and Unigram are trained on large corpora to segment text into frequent
and meaningful subword units. These statistical segmentation behaviors encode valuable priors
about how each tokenizer decomposes natural language. Unlike model weights that are optimized
for downstream objectives, tokenizer behavior is fixed and deterministic once trained. Therefore,
it provides a stable and semantically grounded signal for reasoning about how different models
represent and generate language.

Previous alignment strategies often rely on post-hoc heuristics such as string similarity or embedding
proximity. However, such approaches fail to capture generation preferences intrinsic to each tokenizer.
Our key insight is that tokenizer segmentation behavior have already encoded a deterministic causal
structure for next-token generation, and leveraging these priors leads to more reliable cross-model
alignment. A formal justification and analysis are provided in Appendix C.

Example: Failure of Similarity-based Alignment

Suppose the assist tokenizer produces the token good, while the main tokenizer includes go,
goo, and nice. The intended continuation is goods. A surface-similarity heuristic might
align good to goo or even nice due to lexical or semantic resemblance. However, this ignores
how the main tokenizer actually segments and generates: in practice it may begin with go, then
continue with ods (e.g., go+od+s). Mapping good to goo or nice biases decoding toward
irrelevant continuations such as goose or nicely, deviating from the desired goods. By
respecting tokenizer priors, token translation aligns good to the main prefix go, preserving the
ideal generative priors.

Method. To account for such discrepancies, we propose to align tokens through their tokenizer-
internal decoding preferences. Specifically, for assist token id i, we decode it into its raw text form
v
(assist)
i using the assist tokenizer. We then re-encode v

(assist)
i using the main tokenizer to obtain a

sequence [t
(main)
i,1 , . . . , t

(main)
i,m] of token ids from Vmain. We map the assist token id i to the first token

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

id t
(main)
i,1 in this sequence:

Mi,j =

{
1 if t(main)

i,1 = j,

0 otherwise.
Intuitively, this token captures the initial prefix the main model is most likely to generate for the given
content, providing a generation-compatible alignment.

This procedure is repeated for all tokens in Vassist, yielding a sparse mapping matrix M ∈
R|Vassist|×|Vmain|. Each row has a single nonzero entry: Mi,j = 1 if v(assist)

i aligns with v
(main)
j . This

sparsity makes the alignment efficient to store and apply, and it reflects a semantically informed,
generation-aware projection from the assist to the main vocabulary spaces.

3.3 BIDIRECTIONAL TRANSLATION FOR COMPLEMENTARY ALIGNMENT

While unidirectional token translation offers a simple and effective means of token alignment, it
might be limited by the asymmetry. In particular, it may favor shorter prefixes or overlook longer and
semantically richer tokenizations that arise in the reverse direction. To enhance alignment robustness
and capture complementary structures, we propose a bidirectional translation scheme.

The key idea is to consider both translation directions between the assist and main vocabularies and
combine the outcomes. Specifically, in addition to the forward mapping M (pre) where each assist
token is mapped to the first token generated by the main tokenizer (as done in Section 3.2), we also
obtain a reverse mapping M (sup) where each main token is decoded and then re-tokenized using the
assist tokenizer. Intuitively, M (pre) maps the assist token to its prefix main token, while M (sup) maps
the assist token to its superstring main tokens. These complementary mappings are further fused to
yield a more robust bidirectional alignment.

Formally, we use Pre(v(assist)
i) to denote the mapped prefix of v(assist)

i and Sup(v(assist)
i) to denote

the set of mapped superstrings of v(assist)
i . Let v(assist)

i ∈ Vassist and v
(main)
j ∈ Vmain be tokens from

the assist and main vocabularies, respectively. Define the forward mapping matrix M (pre) such that
M

(pre)
i,j = 1 if v(main)

j = Pre(v(assist)
i) under token translation. Similarly, define the reverse mapping

matrix M (sup) such that M (sup)
i,j = 1 if v

(main)
j ∈ Sup(v(assist)

i) under reverse token translation.
Instead of taking the maximum of the two, we apply a weighted combination:

M (assist→main) = M (pre) + α ·M (sup),

where α ∈ [0, 1] is a tunable weight that controls the influence of reverse translation. We set α < 1 to
prioritize prefix translation, ensuring alignment remains consistent with the main model’s generative
behavior, while still allowing reverse direction signals to contribute additional coverage for longer or
nested token patterns.

This strategy reflects the intuition that forward translation maintains the semantics most compatible
with the main model’s own vocabulary, while reverse translation can introduce complementary
patterns that improve the recall. This is particularly useful when the reverse tokenizer favors
generating longer subwords that align with semantic units absent in the forward match.

To generate a valid transition matrix, the fused mapping matrix is further row-normalized to produce
a transition matrix T (assist→main), that is

T (assist→main) = diag(M (assist→main)1)−1M (assist→main).

Based on the translation matrix transition matrix T (assist→main), we can decompose the token transla-
tion process into two parts, including translating to prefix and translating to substring, as follows

p(assist→main)(i) =
(
T (assist→main)⊤p(assist)

)
(i)

=
∑
v
(assist)
j

Pr(Pre) Pr
(
v
(main)
i |v(assist)

j ,Pre
)
Pr

(
v
(assist)
j

)
+

∑
v
(assist)
j

Pr(Sup) Pr
(
v
(main)
i |v(assist)

j ,Sup
)
Pr

(
v
(assist)
j

)

=
∑
j

{ 1

1 + αN︸ ︷︷ ︸
Pr(Pre)

1

(
v
(main)
i =Pre(v(assist)

j)
)

︸ ︷︷ ︸
Pr

(
v
(main)
i |v(assist)

j ,Pre
)

p(assist)(j)︸ ︷︷ ︸
Pr

(
v
(assist)
j

)
+

αN

1 + αN︸ ︷︷ ︸
Pr(Sup)

Unif
(
1

(
v
(main)
i ∈Sup(v(assist)

j)
))

︸ ︷︷ ︸
Pr

(
v
(main)
i |v(assist)

j ,Sup
)

p(assist)(j)︸ ︷︷ ︸
Pr

(
v
(assist)
j

)
}
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Token Translation (ToT)
Input: Tokenizers Tokassist,Tokmain; Vocabularies Vassist,Vmain; weight α
Initialize: M (pre) ← 0|Vassist|×|Vmain|,M

(sup) ← 0|Vassist|×|Vmain|
for i = 1, 2, ..., |Vassist|

v
(assist)
i ← Tokassist.decode(i)

[t1, . . . , tm]← Tokmain.encode(v
(assist)
i)

M
(pre)
i,t1
← 1

for j ∈ 1, 2, ..., |Vmain|
v
(main)
j ← Tokmain.decode(j)

[t′1, . . . , t
′
n]← Tokassist.encode(v

(main)
j)

M
(sup)
t′1,j
← 1

M (assist→main) ←M (pre) + α ·M (sup)

Return: M (assist→main)

where N= |1(v(main)
i ∈Sup(v(assist)

j))| is the number of target tokens that are the prefix of v(main)
i . The

above equation provides insights on the translation process: with probability Pr(Pre) = 1
1+αN , the

probability mass on assist token is transited to the mapped prefix main token, and with probability
Pr(Sup) = αN

1+αN , the probability mass on assist token is uniformly transited to the mapped
supersting main tokens.

3.4 UNCERTAINTY-AWARE TOKEN-LEVEL ENSEMBLING

After establishing a shared alignment space, we ensemble token-level predictions from multiple
LLMs with an uncertainty-aware fusion strategy.

Different models exhibit varying levels of confidence depending on the input. Treating all models
equally may amplify noise or disproportionately emphasize low-confidence predictions. To address
this, we use entropy-based weighting, following observations from UniTE (Yao et al., 2025) that
low-confidence tokens tend to introduce noise. To improve robustness, we only compute entropy over
the top-k tokens in each model’s predicted distribution (Ma et al., 2025), filtering out uninformative
tails.

Specifically, define Topk(p
(assist)) as the top-k highest scoring assist tokens. The uncertainty-based

weight w(assist)
ent is computed as the inverse entropy of the Top-k tokens, that is

w(assist)
ent =

1

H(p(assist))
, where H(p(assist)) = −

∑
v∈Topk(p(assist))

p(assist)(v)

Z
log

p(assist)(v)

Z
,

where Z =
∑

v∈Topk(p(assist)) p
(assist)(v). A similar procedure can be applied to the main model,

denoted w
(main)
ent . We then normalize all weights across the main model and all assist models so that

they sum to one. The final ensembled distribution over the main model’s vocabulary is:

p̃ = w(main) · p(main) +

K∑
κ=1

w(assist#κ) · T (assist#κ)⊤p(assist#κ),

where [w(main), w(assist#1), · · ·w(assist#K)] ∈ ∆K+1 are the normalized uncertainty-based weights that
control the contribution of the main model and assist models. This formulation maintains alignment
with the main model’s prediction while allowing assist models to refine uncertain or ambiguous cases
when they are confident.

All token-translation matrices are precomputed and cached as highly sparse matrices. Each column
(corresponding to a single assist-model token) has only one or a small number of non-zero entries
that point to its top-ranked aligned tokens in the main model’s vocabulary. This sparsity enables very
fast lookup and efficient memory usage.

4 EXPERIMENTS

In this section, we design experiments to answer the following research questions:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results across datasets for base models and LLM ensemble methods in two-model
setting. Ensembling uses LLaMA-3.1-8B-Instruct (light blue) as the main model and InternLM-
2.5-7B-Chat (light pink) as the assist model. Best results are in bold, and second-best are underlined.

Model NQ TriviaQA ARC-c MMLU GSM8K PIQA Avg
Base Models

Gemma-2-9B-IT 13.49 52.53 49.57 41.56 78.23 61.96 49.22
GLM-4-9B-Chat 24.27 58.94 88.06 64.68 76.41 82.58 65.82
InternLM-2.5-7B-Chat 26.62 63.23 85.13 70.57 83.93 87.47 69.49
LLaMA-3.1-8B-Instruct 27.51 65.57 78.72 67.38 82.87 82.86 67.82
Mistral-7B-Instruct 25.37 66.61 73.42 58.76 61.74 69.55 59.91
Qwen2.5-7B-Instruct 15.04 53.23 87.35 70.46 78.67 85.25 65.67
Yi-1.5-9B-Chat 14.54 51.74 80.64 66.27 64.69 80.64 59.75

LLM Ensemble Methods

LLM-Blender 25.10 61.12 76.01 65.89 80.15 80.43 64.78
GAC 22.86 65.45 70.83 68.92 75.62 78.90 63.10
CES 30.54 66.20 81.80 68.10 81.10 87.72 69.24
DeepEn 28.63 66.32 75.49 68.23 81.33 79.24 66.21
Unite 29.11 67.45 83.23 69.56 84.43 86.63 70.07
ToT (Ours) 32.30 72.58 85.74 71.89 87.41 88.69 73.77
Improve over Base LLM (+4.79) (+7.01) (+7.02) (+4.51) (+4.54) (+5.83) (+5.95)

Oracle (Roofline) 39.11 78.53 89.06 80.48 91.20 94.90 78.88

• RQ1: Does our ensemble framework consistently improve the performance of base models across
diverse tasks?

• RQ2: How do different components, such as uncertainty modeling and prefix/superstring-based
token mappings, and alignment strategies contribute to ensemble effectiveness?

• RQ3: How efficient is our method in terms of preprocessing overhead, inference latency, and
GPU memory compared to existing ensemble baselines?

• RQ4: How does performance scale with the number and capacity of involved models?

4.1 EXPERIMENTAL SETUP

Models. We conduct all experiments using a diverse set of open-source chat and
instruct-tuned models, including LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024),
InternLM-2.5-7B/20B-Chat (Team, 2023), GLM-4-9B-Chat (GLM et al., 2024),
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a), Qwen2.5-7B-Instruct (Yang et al.,
2024), Yi-1.5-9B-Chat (Young et al., 2024), and Gemma-2-9B-IT (Team et al., 2024). These
models reflect a range of widely adopted architectures spanning practical model sizes and are among
the most recent publicly available versions at the time of the experiments.

Baselines. We compare against four representative test-time ensembling methods. LLM-
Blender (Jiang et al., 2023b) uses a reward model (PairRanker) and a fusion model (GenFuser)
to rerank and merge responses. Due to over-generation issues with GenFuser, we use only the
reward-based selection. GAC (Yu et al., 2024) maps token probabilities into a unified space using a
learned matrix and performs token-level aggregation. CES (Phan et al., 2025) ensembles probabilities
at the sub-token (byte) level for fill-in-the-middle tasks. DeepEn (Huang et al., 2024) projects model
outputs into a shared latent space based on overlapping vocabularies, using relative representation
theory. UniTe (Yao et al., 2025) uses a top-k union strategy to align and filter tokens.

Benchmarks. We evaluate nine benchmarks across four task categories. (1) Comprehensive
exams: MMLU (5-shot) (Hendrycks et al., 2020) and ARC-C (0-shot) (Clark et al., 2018), assessing
subject knowledge and natural science reasoning. (2) Reasoning: GSM8K (Cobbe et al., 2021)
(4-shot with chain-of-thought prompting (Wei et al., 2022)), PIQA (0-shot) (Bisk et al., 2020), and
HumanEval (0-shot) (Chen et al., 2021), covering arithmetic, commonsense, and program synthesis.
(3) Knowledge-intensive QA: TriviaQA (5-shot) (Joshi et al., 2017) and NaturalQuestions
(NQ) (5-shot) (Kwiatkowski et al., 2019). (4) Summarization: SAMSum (0-shot) (Gliwa et al.,
2019), a dialogue summarization dataset. Dataset details are in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Experimental Setup. We evaluate both two-model and multi-model ensembling across the afore-
mentioned benchmarks. For the two-model setting, we select LLaMA-3.1-8B-Instruct and
InternLM-2.5-7B-Chat as the main pair, chosen for their strong and comparable performance.
For multi-model settings, we include Qwen2.5-7B-Instruct and additional models to assess
scalability. We also explore diverse model pairings to test generality. Unless otherwise specified, we
fix the hyperparameters to α = 0.5 and set the top-k tokens for uncertainty estimation to k = 50. All
experiments are conducted on NVIDIA A100 80GB GPUs.

4.2 MAIN RESULTS (RQ1)

As shown in Table 2, our method (ToT) achieves the best performance across all benchmarks, with
an average improvement of +5.95 points over the main model (LLaMA-3.1-8B-Instruct). It
delivers consistent gains across tasks (e.g., +4.79 on NQ, +7.01 on TriviaQA, +7.02 on ARC-C),
and remains robust even when the main model underperforms, for example, surpassing both base
models on ARC-C (85.74 vs. 78.72 and 85.13).

We also report a roofline accuracy, the percentage of examples answered correctly by at least one
base model, as an empirical upper bound for training-free ensembles. ToT closely tracks this upper
bound across tasks, especially on reasoning-oriented benchmarks (GSM8K and ARC-c), indicating
that it effectively aggregates complementary reasoning signals at inference. The remaining headroom
is concentrated in knowledge-intensive settings, suggesting that integrating external knowledge or
task-specific priors could further narrow the gap. Compared to prior methods, LLM-Blender
relies on coarse-grained output ranking and shows limited improvement. Unite uses top-k token
selection but lacks generation-awareness. Other methods like GAC and DeepEn suffer from poor
token alignment across vocabularies. These results highlight the value of tokenizer-aware alignment
and uncertainty modeling in test-time LLM ensembling.

4.3 ABLATION STUDY (RQ2))

Table 3: Ablation study on NQ. We
compare ToT with different variants
and token mapping strategies.

Setting NQ Acc.

Baselines

InternLM-2.5-7B-Chat 26.62
LLaMA-3.1-8B-Instruct 27.51
ToT (2 models) 32.30
+Mistral-7B (3 models) 32.94

Ablations

w/o Uncertainty 32.11
w/o M pre 30.75
w/o M sup 31.86
w/o β 32.12

Alternative Mapping Strategies

with Semantic 27.63
with Lexical 28.55
with MinED (Wan et al., 2024a) 29.12

We perform ablation experiments on the NQ benchmark to
assess the contribution of each module and the effectiveness
of alternative alignment strategies (Table 3). Our two-model
ToT ensemble improves the main model by +4.79 points
(32.30), and adding a third model (Mistral-7B-Instruct) fur-
ther boosts performance to 32.94, demonstrating scalability.
Among core components, removing uncertainty weighting
yields a minor drop (32.11), indicating stability benefits.
In contrast, removing the prefix-based alignment matrix
M pre significantly reduces performance (30.75), confirming
the importance of generation-aware alignment. Omitting
the reverse mapping M sup (31.86) or the clipping factor β
(32.12) also leads to degradation, highlighting the utility of
bidirectional alignment and confidence balancing. We also
compare ToT with alternative alignment strategies, including
semantic similarity (27.63), lexical matching (28.55), and
edit-distance-based alignment (Wan et al., 2024a) (29.12).
All underperform our method, underscoring the benefit of
leveraging tokenizer priors over surface heuristics.

Hyperparameter studies for α - k (Appendix B.1) show stable performance across wide ranges, with
fixed defaults near-optimal and consistently outperforming baselines. Results across diverse model
combinations (Appendix B.2) demonstrate gains that persist when swapping the main and assist
roles; the improvement magnitude correlates with the assist model’s strength. Token-alignment
visualizations (Appendix B.3) reveal sparse, semantically grounded mappings and cases where the
fused distribution corrects errors even when both base models’ predictions are wrong. Appendix B.4
presents empirical studies on tokenizer alignment properties, scalability across models and languages,
and the effect of alternative uncertainty measures that further confirm our approach’s effectiveness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Time & memory cost across
methods (lower is better).

(b) Performance scaling on PIQA
(ToT vs. UniTE).

(c) Performance scaling on Trivi-
aQA (ToT vs. UniTE).

Figure 2: Efficiency and scaling overview. Left: wall-clock time and peak memory across ensembling
methods. Middle/Right: scaling behavior of ToT vs. UniTE across base models.

4.4 EFFICIENCY ANALYSIS (RQ3)

Figure 2a compares the time and memory costs of different ensembling methods. ToT achieves clear
efficiency advantages in both preprocessing and inference. Unlike DeepEn, which requires costly
offline alignment, ToT relies only on lightweight decode-encode operations to construct a sparse
mapping (0.03 min vs. 3.6 min). At inference, ToT performs a single sparse matrix multiplication
without altering model architecture or decoding logic, yielding substantially lower time (12 min vs.
85 min) and memory use (30.2 GB vs. 63.7 GB). Compared to UniTE, ToT is also more efficient
due to its sparse and fixed-tokenizer design. Overall, ToT delivers strong accuracy (Table 2) while
maintaining practical speed and memory scalability.

4.5 SCALABILITY ACROSS MODEL SIZES AND QUANTITIES (RQ4)

Table 4: Ensemble performance across model
scales on four tasks.

Model HumanEval SAMSum NQ PIQA

LLaMA-3.1-8B-Instruct 73.17 31.70 27.51 82.86
InternLM2.5-20B-Chat 79.73 32.29 28.53 88.19
UniTe 78.43 32.45 31.65 88.96
ToT (Ours) 90.24 32.92 34.82 89.79

To evaluate scalability, we consider two settings:
(1) ensembling models of different scales, and
(2) increasing the number of ensembled models.

As shown in Table 4, ToT achieves substan-
tial gains when applied to large-scale models.
By ensembling InternLM2.5-20B-Chat
with LLaMA-3.1-8B-Instruct, ToT con-
sistently outperforms both base models across
all four tasks (e.g., +10.51 on HumanEval, +7.31 on NQ). This highlights the flexibility of our
approach in handling model pairs with heterogeneous capacities and confirms its effectiveness in
large-model regimes.

Furthermore, Figure 2b-2c illustrates performance scaling trends as more models are added to the
ensemble. For both TriviaQA and PIQA, ToT demonstrates a clear upward trajectory, achieving
steady improvements from 2 to 4 models. In contrast, UniTE’s performance plateaus or even degrades
when additional models are introduced, likely due to its less robust token selection strategy and lack
of generation preference modeling. This further confirms ToT’s robustness and generality when
scaling across both model diversity and ensemble size.

5 CONCLUSION

We propose a lightweight and effective framework ToT for token-level ensembling of LLMs, ad-
dressing the core challenge of tokenizer mismatch. Our method aligns heterogeneous token spaces
via a simple token translation based on tokenizer priors, enhanced by bidirectional alignment and
uncertainty-aware fusion. Extensive experiments across tasks, model sizes, and ensemble settings
show that ToT consistently outperforms existing baselines while maintaining high efficiency. Looking
ahead, a key challenge is selecting complementary model combinations. As the LLM landscape
grows, developing adaptive strategies for model pairing and ensemble configuration will be essential
for maximizing performance and diversity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethical Statement. This work focuses on algorithmic methods for test-time ensembling of publicly
available large language models. No human subjects or sensitive personal data are involved. All
datasets used in our experiments (e.g., MMLU, ARC-C, GSM8K, TriviaQA, NaturalQuestions,
SAMSum, HumanEval, PIQA) are standard public benchmarks widely adopted in prior research.
We have taken care to follow the ICLR Code of Ethics by ensuring appropriate dataset usage,
acknowledging limitations, and avoiding any harmful applications. The proposed method is purely
methodological and does not pose direct risks related to privacy, security, or fairness.

Reproducibility Statement. We provide detailed descriptions of our methodology in Section 3,
including the construction of token translation matrices, bidirectional alignment, and uncertainty-
aware weighting. Experimental settings, datasets, and evaluation protocols are specified in Section
4 and Appendix A. Ablation studies and hyperparameter analyses are presented in Section 4.3
and Appendix B to demonstrate robustness. All token translation matrices are precomputable and
lightweight. To further support reproducibility, we’ve incorporated code, precomputed mappings,
and experiment scripts in the supplementary material.

REFERENCES

Aakriti Agrawal, Mucong Ding, Zora Che, Chenghao Deng, Anirudh Satheesh, John Langford, and
Furong Huang. Ensemw2s: Can an ensemble of llms be leveraged to obtain a stronger llm? arXiv
preprint arXiv:2410.04571, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
arXiv preprint arXiv:2410.03834, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Kevin Gu, Eva Tuecke, Dmitriy Katz, Raya Horesh, David Alvarez-Melis, and Mikhail Yurochkin.
Chared: Character-wise ensemble decoding for large language models. arXiv preprint
arXiv:2407.11009, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration.
Advances in Neural Information Processing Systems, 37:119838–119860, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023a.
doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.
06825.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–14178, 2023b.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiei. Evaluating open-domain question
answering in the era of large language models. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 5591–5606, 2023.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. arXiv preprint arXiv:1804.10959, 2018.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Huan Ma, Jingdong Chen, Guangyu Wang, and Changqing Zhang. Estimating llm uncertainty with
logits. arXiv preprint arXiv:2502.00290, 2025.

OpenAI. Gpt-4 technical report. 2023. URL https://api.semanticscholar.org/
CorpusID:257532815.

Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew J Muckley, and Karen Ullrich. Exact
byte-level probabilities from tokenized language models for fim-tasks and model ensembles. In
The Thirteenth International Conference on Learning Representations, 2025.

Yangjun Ruan, Saurabh Singh, Warren Morningstar, Alexander A Alemi, Sergey Ioffe, Ian Fis-
cher, and Joshua V Dillon. Weighted ensemble self-supervised learning. arXiv preprint
arXiv:2211.09981, 2022.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

11

https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities,
2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.
org/CorpusID:257219404.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. In ICLR, 2024a.

Fanqi Wan, Longguang Zhong, Ziyi Yang, Ruijun Chen, and Xiaojun Quan. Fusechat: Knowledge
fusion of chat models. arXiv preprint arXiv:2408.07990, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Yangyifan Xu, Jianghao Chen, Junhong Wu, and Jiajun Zhang. Hit the sweet spot! span-level
ensemble for large language models. arXiv preprint arXiv:2409.18583, 2024a.

Yangyifan Xu, Jinliang Lu, and Jiajun Zhang. Bridging the gap between different vocabularies for
llm ensemble. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 7133–7145, 2024b.

Yangyifan Xu, Jianghao Chen, Junhong Wu, and Jiajun Zhang. Hit the sweet spot! span-level
ensemble for large language models. In Proceedings of the 31st International Conference on
Computational Linguistics, pp. 8314–8325, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Yuxuan Yao, Han Wu, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, Linqi Song, et al.
Determine-then-ensemble: Necessity of top-k union for large language model ensembling. In The
Thirteenth International Conference on Learning Representations, 2025.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Yao-Ching Yu, Chun-Chih Kuo, Ziqi Ye, Yu-Cheng Chang, and Yueh-Se Li. Breaking the ceiling of
the llm community by treating token generation as a classification for ensembling. arXiv preprint
arXiv:2406.12585, 2024.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024.

12

https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

A Dataset Statistics 14

B Further Ablation Study and Visualization 14

B.1 Hyper-parameter Study . 14

B.2 Ablation Study on Various Model Ensembling . 14

B.3 Demonstration of Alignment and Ensembling . 16

B.4 Empirical Analysis of Tokenizers and Performance 19

C Formal Analysis of Token Translation 20

C.1 Problem Setup . 20

C.2 Tokenizer Assumptions . 21

C.3 Causal Alignment . 21

C.4 ToT Recovers the Exact Alignment . 21

C.5 Causal Validity . 22

D Use of Large Language Models 22

E Limitations 22

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASET STATISTICS

We evaluate nine benchmark datasets across four representative task categories to assess language
model performance under diverse reasoning and comprehension requirements. (1) Comprehensive
Exams: MMLU (5-shot, 5,000 test examples) (Hendrycks et al., 2020) is a multiple-choice benchmark
that spans 57 diverse subjects across STEM, humanities, social sciences, and more. Each question
contains four answer choices, and models are evaluated using in-context few-shot prompting and
accuracy as the metric. ARC-Challenge (0-shot, 1,172 examples) (Clark et al., 2018) is a science
reasoning benchmark targeting difficult grade-school level questions with multiple-choice formats.
Models must directly select the correct answer without in-context examples. (2) Reasoning: GSM8K
(4-shot with chain-of-thought prompting (Wei et al., 2022), 1,319 examples) (Cobbe et al., 2021) con-
sists of grade-school math word problems. The model is prompted with four examples that explicitly
demonstrate step-by-step intermediate reasoning, and the final prediction is considered correct only
if the numeric answer matches the gold label exactly. PIQA (0-shot, 1,838 examples) (Bisk et al.,
2020) evaluates physical commonsense reasoning: models are given a naturalistic question involving
physical interactions and must choose between two plausible outcomes. HumanEval (0-shot, 164
examples) (Chen et al., 2021) is a code generation benchmark where each input specifies a function
signature and docstring in Python, and the model is expected to synthesize correct code. Performance
is evaluated using pass@1, indicating the percentage of problems solved correctly in a single attempt.
(3) Knowledge-Intensive QA: TriviaQA (5-shot, 11,313 examples) (Joshi et al., 2017) contains
open-domain factoid questions curated from trivia websites, with Wikipedia-based ground truth
answers. Each input includes five QA exemplars followed by a new question; accuracy is measured
by exact match. NaturalQuestions (NQ) (5-shot, 3,610 examples) (Kwiatkowski et al., 2019)
consists of real anonymized Google search queries, paired with short answers derived from Wikipedia
articles. We follow prior work in using short-form extractive answer strings and compute exact match
as the evaluation metric. (4) Summarization: SAMSum (0-shot, 818 examples) (Gliwa et al., 2019)
is a single-document summarization task where the input is a multi-turn dialogue between fictitious
participants, and the model must produce a concise and coherent summary. No demonstrations are
provided, and performance is measured using ROUGE-L.

Following prior work (Yao et al., 2025; Huang et al., 2024), we construct the prompt by providing
the question followed by the answer format, optionally including in-context examples and chain-of-
thought prompting using the phrase “let’s think step-by-step” (Wei et al., 2022).

B FURTHER ABLATION STUDY AND VISUALIZATION

In this section, we first perform a comprehensive hyperparameter study to demonstrate the robustness
of our method under various settings. We then conduct an ablation study using different pairs of
large language models (LLMs) in the ensemble to further verify its robustness across diverse model
combinations. Finally, we present representative output examples and token alignment visualizations
to provide qualitative insights into the behavior and effectiveness of our approach.

B.1 HYPER-PARAMETER STUDY

Figures 3, 4, and 5 demonstrate robustness across the key hyperparameters α, β, and k. Here,
α controls the blend between prefix and superstring mappings when aligning token sequences; β
controls the strength of the main model by enforcing a minimum contribution—implemented as
clipping the normalized weight so that w(main) ← max

(
β, w(main)

)
and renormalizing the remaining

mass across assist models; and k sets how many (top) tokens are used to compute model uncertainty.
Despite their different roles, all three are easy to configure and yield stable performance over wide
ranges. Across settings, our method consistently outperforms the base models, making it practical
without tuning; thus we fix these values uniformly in all experiments.

B.2 ABLATION STUDY ON VARIOUS MODEL ENSEMBLING

Figure 6 provides a comprehensive view of the performance gains achieved when ensembling different
main and assist model pairs. Two key observations emerge.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 3: Performance with respect to α, representing the ratio between prefix and superstring
mappings on the NQ dataset with InternLM and LLaMA models.

Figure 4: Performance with respect to β, denoting the minimum contribution of the main model to
the final prediction, evaluated on the NQ dataset with InternLM and LLaMA.

Figure 5: Performance with respect to log k, where k is the number of tokens used to compute
uncertainty, evaluated on the NQ dataset using InternLM and LLaMA.

First, our method is highly robust, as it consistently delivers substantial performance improvements
across all combinations of main and assist models. No matter which model is used as the main
model—GLM, InternLM, LLaMA, or Mistral—the introduction of an assist model yields a notable
gain over the base performance. This demonstrates that our ensembling strategy generalizes well and
is not overly sensitive to the choice of models involved.

Second, the magnitude of the gain tends to correlate with the strength of the assist model. Specifically,
using stronger models like InternLM and LLaMA as assist models leads to the largest improvements,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

with performance gains exceeding 5 points in some cases. For example, pairing InternLM as the assist
model with GLM as the main model yields the highest observed gain. This suggests that stronger
assist models provide more informative or complementary signals during ensembling, thus boosting
the overall prediction quality.

Together, these results validate the versatility and effectiveness of our method, showing it works well
in diverse model settings and particularly excels when high-capacity assist models are available.

Figure 6: Performance gain with different main and assist models.

B.3 DEMONSTRATION OF ALIGNMENT AND ENSEMBLING

Table 5 compares three token mapping methods: string similarity, embedding similarity, and our
proposed Token Translation. String similarity is based on edit distance at the string level, while
embedding similarity measures cosine similarity between token embeddings. In contrast, Token
Translation (using prefix-based mapping) leverages both the model’s generation preferences and
tokenizer priors to identify mappings that align more closely with actual generation behavior. As
evidenced by the performance results in Table 3, both string- and embedding-based methods often pro-
duce suboptimal or irrelevant mappings—for example, mapping "Papa" to "Luna" or "Administrator"
to a Chinese token—because they overlook how tokens function during decoding. In contrast, Token
Translation consistently produces compact, semantically coherent segments such as “Admin” and
“P” that better match the tokenizer’s segmentation and generation dynamics. This demonstrates the
effectiveness of our approach in generating mappings that are not only linguistically and structurally
aligned, but also more suitable for downstream ensemble generation.

Table 5: Comparison of Token Mapping Methods

Method Source Token Mapped Token
String sim Administrator Administr
Embedding sim Administrator Administrator in Chinese
Token Translation Administrator Admin

String sim _CAT _CA
Embedding sim _CAT _VAR
Token Translation _CAT _C

String sim Papa Pap
Embedding sim Papa Luna
Token Translation Papa P

Next, we present output examples of our ensemble method in Tables 6 and 7, which not only correct
errors made by the base models but also outperform baseline methods on the GSM8K dataset.
Correct answers are highlighted in green, while incorrect ones are marked in red. These cases clearly
demonstrate the effectiveness of our method in enhancing reasoning accuracy and robustness by
leveraging complementary strengths of different models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Case study of ToT and other ensembling methods on GSM8K.

Question Blake and Kelly are having a contest to see who can run the most in 15 minutes. They
decide to do it on a football field that is 100 yards long. Blake runs back and forth 15
times. Kelly runs back and forth once, and then decides that she doesn’t want to run next
to Blake, so she starts to run to the 40-yard line and back. She does this 34 times. How
much farther does the winner run than the loser?

LLaMA Blake runs 15 times back and forth on a 100-yard field, so he runs 15*2*100=3000 yards.
Kelly runs 34 times to the 40-yard line and back, so she runs 34*2*40=2720 yards.
Blake runs 3000 yards and Kelly runs 2720 yards, so Blake runs 3000-2720=280 yards
more than Kelly.
The answer is 280

InternLM First, let’s calculate how far Blake runs. A football field is 100 yards long, and he runs
back and forth 15 times.
So, Blake runs 100 yards * 15 = 1500 yards.
Next, let’s calculate how far Kelly runs. She runs back and forth once, which is 100 yards
* 2 = 200 yards.
Then, she starts running to the 40-yard line and back, which is 40 yards * 2 = 80 yards.
She does this 34 times, so she runs an additional 80 yards * 34 = 2720 yards.
In total, Kelly runs 200 yards + 2720 yards = 2920 yards.
To find out how much farther the winner runs than the loser, we subtract the distance that
Blake ran from the distance that Kelly ran: 2920 yards - 1500 yards = 1420 yards.
The answer is 1420

UniTE Blake and Kelly are having a running contest on a 100-yard football field. Blake runs back
and forth 15 times, and since each round trip is 100 yards, he runs a total of 15 × 100 =
1500 yards.
Kelly first runs one full trip across the field and back, which is 2 × 100 = 200 yards.
After that, she runs to the 40-yard line and back 34 times.
Since the 40-yard line is not the full length, we compute her additional distance as 40 × 34
= 1360 yards.
Adding this to her initial 200 yards, Kelly runs a total of 1560 yards.
Comparing the two, Kelly runs 1560 − 1500 = 60 yards more than Blake.
The answer is 60

ToT (Ours) Blake runs back and forth 15 times on a 100-yard field, so he runs 15*2*100=3000 yards.
Kelly runs back and forth once, which is 2*100=200 yards.
Then she runs to the 40-yard line and back, which is 2*40=80 yards.
She does this 34 times, so she runs 34*80=2720 yards.
The total distance that Kelly runs is 200+2720=2920 yards.
The difference between the distances that Blake and Kelly run is 3000-2920=80 yards.
The answer is 80

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Case study of ToT and other ensembling methods on GSM8K.

Question John buys milk for 2 dollars, eggs for 3 dollars, light bulbs for 3 dollars, cups for 3 dollars,
and roach traps for 4 dollars. If there is a 10% tax on all nonfood items how much did
everything cost?

LLaMA John buys milk for 2 dollars, eggs for 3 dollars, and roach traps for 4 dollars, so the total
cost of the food items is 2+3+4=9 dollars.
The nonfood items are the light bulbs, cups, and roach traps. The total cost of the nonfood
items is 3+3+4=10 dollars.
There is a 10% tax on the nonfood items, so the tax is 10% of 10 dollars, which is 0.1*10=1
dollar.
The total cost of the nonfood items with tax is 10+1=11 dollars.
The total cost of everything is the cost of the food items plus the cost of the nonfood items
with tax, so the total cost is 9+11= 20

InternLM First, let’s calculate the cost of the non-food items before tax. The non-food items are the
light bulbs, cups, and roach traps.
The cost of the light bulbs is $3, the cups are also $3, and the roach traps are $4.
So the total cost of the non-food items is $3 + $3 + $4 = $10.
The answer is 10

UniTE John buys milk for 2 dollars, eggs for 3 dollars, and roach traps for 4 dollars, so the total
for food items is 2 + 3 + 4 = 9 dollars.
The nonfood items include light bulbs, cups, and roach traps, totaling 3 + 3 + 4 = 10
dollars.
A 10% tax applies to nonfood items, so the tax is 10% of 10 dollars, which is 0.1 × 10 = 1
dollar.
Adding the tax, the nonfood total becomes 10 + 1 = 11 dollars.
Combining the food and taxed nonfood totals, the final amount is 9 + 11 = 20

ToT (Ours) First, let’s calculate the total cost of the non-food items. The non-food items are the light
bulbs, cups, and roach traps.
The cost of the light bulbs is $3, the cups are $3, and the roach traps are $4.
So the total cost of the non-food items is $3 + $3 + $4 = $10.
Next, we need to calculate the tax on the non-food items. The tax rate is 10%, so we need
to find 10% of $10.
To do this, we multiply $10 by 0.10 (which is the decimal equivalent of 10%).
So the tax on the non-food items is $10 * 0.10 = $1.
Now, we can add the tax to the cost of the non-food items to find the total cost of the
non-food items.
The total cost of the non-food items is $10 + $1 = $11.
Finally, we need to add the cost of the milk and eggs to the total cost of the non-food items
to find the total cost of everything.
The cost of the milk is $2 and the cost of the eggs is $3.
So the total cost of everything is $2 + $3 + $11 = 16

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 EMPIRICAL ANALYSIS OF TOKENIZERS AND PERFORMANCE

To complement the formal analysis in Appendix C, we present an empirical study of tokenizer
behavior and its effect on cross-model alignment. This analysis examines how heterogeneous
vocabularies interact in practice and how these structural properties influence ensemble performance.
We begin by measuring token alignment coverage across representative LLM families.

B.4.1 TOKEN ALIGNMENT COVERAGE ACROSS MODELS

We begin by quantifying token-level alignment coverage across five representative LLM families.
Table 8 reports the percentage of tokens in one vocabulary that find direct alignment matches in
another. Coverage varies substantially across model pairs (e.g., 85.43% for LLaMA3→Qwen2.5
vs. 36.30% for GLM4→Mistral), revealing the strong tokenizer-induced structural differences that
motivate a deterministic translation mechanism such as ToT.

Table 8: Cross-token alignment coverage among representative LLM tokenizers.

Model Pair internlm2 (92k) Qwen2.5 (152k) LLaMA3 (128k) GLM4 (151k) Mistral (32k)

internlm2 (92k) – 61.51% 62.70% 54.75% 79.65%
Qwen2.5 (152k) 61.51% – 85.43% 33.05% 75.57%
LLaMA3 (128k) 62.70% 85.43% – 39.15% 75.79%
GLM4 (151k) 54.75% 33.05% 39.15% – 36.30%
Mistral (32k) 79.65% 75.57% 75.79% 36.30% –

B.4.2 FORWARD/BACKWARD MAPPING PRECISION

Next, we examine how many non-shared tokens can be mapped via ToT. Table 9 reports results when
mapping several assist models into the internlm2 vocabulary. Because vocabularies differ greatly
in size and segmentation granularity, forward (assist→main) and backward (main→assist) mapping
coverage can be highly asymmetric—for example, Qwen2.5→internlm2 achieves 91.35% forward
coverage but only 23.09% backward coverage. Smaller vocabularies (e.g., Mistral’s 32k) also show
the opposite pattern. These results illustrate why alignment would be better to consider tokenizer
directionality rather than assume symmetric similarity.

Table 9: Forward (assist→main) and backward (main→assist) mapping coverage into internlm2.

Model → internlm2 Direction Mapped Non-Shared Coverage

Qwen2.5 (152k) Forward 32,540 35,616 0.9135
Backward 21,969 95,136 0.2309

LLaMA3 (128k) Forward 17,004 34,521 0.4927
Backward 6,283 70,233 0.0894

GLM4 (151k) Forward 37,705 41,876 0.9006
Backward 32,371 100,884 0.3210

Mistral (32k) Forward 1,061 66,443 0.0159
Backward 5,719 6,667 0.8576

B.4.3 SEMANTIC COHERENCE ANALYSIS

To evaluate whether ToT’s alignments are semantically meaningful, Table 10 reports the average
BGE embedding (Xiao et al., 2023) similarity between paired tokens. Scores are consistently
high (0.70–0.97), confirming semantic coherence while remaining below the theoretical maximum,
indicating that alignment is still governed by tokenizer, induced structural decomposition rather than
semantic nearest neighbors.

B.4.4 SCALING TO LARGER BACKBONES

To assess scalability, we evaluate ToT on Mixtral-8×7B and Qwen2.5-32B-Instruct. Table 11 shows
that ToT consistently improves over both individual models and the UniTe baseline, demonstrating
that the alignment benefits persist even for strong dense and MoE backbones.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Semantic similarity of aligned tokens using BGE embeddings.

Model → internlm2 Direction Avg Sim Max Avg Sim

Qwen2.5 (152k) Forward 0.7778 0.8347
Backward 0.9407 0.9904

LLaMA3 (128k) Forward 0.6999 0.7969
Backward 0.8863 0.9880

GLM4 (151k) Forward 0.7818 0.8398
Backward 0.9669 0.9959

Mistral (32k) Forward 0.7142 0.7679
Backward 0.8411 0.9508

Table 11: Scalability evaluation on larger backbones.

Model SAMSum NQ Avg
Mixtral-8×7B 32.8 30.9 31.9
Qwen2.5-32B-Instruct 34.1 33.7 33.9
UniTe (baseline) 34.0 34.5 34.3
ToT (Ours) 35.3 36.9 36.1

B.4.5 MULTILINGUAL EVALUATION: FLORES EN→DE AND EN→ZH

We further test robustness on FLORES En→De and En→Zh translation. Table 12 shows that ToT
improves over both single models and UniTe, particularly in En→Zh where tokenization differences
are largest.

Table 12: Multilingual evaluation on FLORES subsets.

Dataset Model BLEU (↑)

En→De

LLaMA 29.87
InternLM 26.74
UniTe 33.17
Ours 36.13

En→Chinese

LLaMA 27.45
InternLM 32.10
UniTe 34.82
Ours 37.56

B.4.6 UNCERTAINTY MEASURE COMPARISON

Finally, we compare several uncertainty metrics within the same routing framework. As shown in
Table 13, top-k entropy achieves the strongest average performance. This aligns with the observation
that long-tail logits introduce noise, while the top-k region contains the meaningful decision mass for
autoregressive decoding.

C FORMAL ANALYSIS OF TOKEN TRANSLATION

In this section, we provide a rigorous justification for our Token Translation (ToT) framework. We
show that ToT is not a heuristic approximation, but a deterministic implementation of Exact Causal
Alignment between heterogeneous token spaces. Under standard tokenizer assumptions, ToT recovers
the ground-truth conditional probability required for cross-model alignment.

C.1 PROBLEM SETUP

Let Vassist and Vmain denote the vocabularies of the assist and main models, respectively. We posit a
shared, continuous text space S representing all possible raw text strings. The alignment objective is

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 13: Comparison of uncertainty measures for routing.

Uncertainty Measure Description Avg Score (↑)
Entropy Full-distribution entropy 32.13
Variance Variance of the distribution 31.10
Calibration 1−max(p) confidence proxy 31.56
Disagreement KL(main∥assist) 31.28
Top-k Entropy (Ours) Entropy over normalized top-k mass 32.30

to compute

P
(
v(main) | v(assist)

)
, v(assist) ∈ Vassist, v

(main) ∈ Vmain.

The true conditional probability is

P
(
v(main) | v(assist)

)
=

∑
s∈S

P
(
v(main) | s

)
︸ ︷︷ ︸

Main Prior

·P
(
s | v(assist)

)
︸ ︷︷ ︸

Assist Decoding

. (1)

C.2 TOKENIZER ASSUMPTIONS

Modern BPE and Unigram tokenizers satisfy the following assumptions.

Assumption 1 (Deterministic Decoding). Each assist token v(assist) deterministically decodes to a
unique raw string:

P (s | v(assist)) = 1

[
s = Tokassist.decode(v

(assist))
]
.

Assumption 2 (Canonical Encoding Prior). For any string s, the main tokenizer produces a
unique canonical sequence Tokmain.encode(s) = [t1, t2, . . .]. Due to autoregressive causality,

P
(
v(main) | s

)
= 1

[
v(main) = First(Tokmain.encode(s))

]
.

C.3 CAUSAL ALIGNMENT

Under Assumptions 1–2, the intractable sum in Eq. 1 collapses to

Ptrue

(
v(main) | v(assist)

)
= 1

[
v(main) = First

(
Tokmain.encode

(
Tokassist.decode(v

(assist))
))]

.

This is the exact causal mapping from assist-token space to main-token space.

C.4 TOT RECOVERS THE EXACT ALIGNMENT

ToT constructs a forward translation matrix M (pre):

P̂ToT

(
v(main) | v(assist)

)
≜ M

(pre)
v(assist),v(main) ,

where
M

(pre)
i,j = 1[j = First(Tokmain.encode(Tokassist.decode(i)))] .

Thus,

E

[
P̂ToT

]
= Ptrue,

showing that ToT exactly recovers the deterministic causal alignment induced by the tokenizers.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.5 CAUSAL VALIDITY

Consider an assist token that expands to a multi-token main sequence [t1, t2, . . . , tn]. Define:

• Eseq: the event that the main model generates the full sequence;
• Et1 : the event that it generates t1.

Since
Eseq ⊆ Et1 =⇒ P (Eseq) ≤ P (Et1),

the first token t1 is a necessary causal precursor for generating the entire sequence. If the assist model
assigns probability p to v(assist), then the main model must assign at least p to t1. Therefore,

P̂ (t1)← p

preserves probability mass and yields a deterministic causal mapping for next-token prediction.

As shown in Table 3, this prefix-only mapping already surpasses strong baselines. Moreover, the
backward translation matrix M (sup) restores the residual probability mass spread across longer
sequences, providing improved robustness through bidirectional alignment.

D USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, we made limited use of large language models (LLMs), specifi-
cally ChatGPT, as an auxiliary writing tool. The LLM was used exclusively for stylistic refinement,
including improvements to fluency, grammar, and readability of text initially drafted by the authors.
All scientific content, including problem formulation, methodology, experiments, analyses, and
overall narrative, was entirely conceived and validated by the authors. Thus, the role of LLMs was
restricted to text polishing and does not constitute authorship.

E LIMITATIONS

Our approach assumes access to model tokenizers and output probabilities, which may not be available
for all proprietary APIs. Additionally, selecting optimal model combinations for ensembling remains
an open challenge.

22

	Introduction
	Related Works
	Methodology
	Problem Formulation: Token Alignment Across Heterogeneous Tokenizers
	Token Translation via Decode Encode
	Bidirectional Translation for Complementary Alignment
	Uncertainty-Aware Token-Level Ensembling

	Experiments
	Experimental Setup
	Main Results (RQ1)
	Ablation Study (RQ2))
	Efficiency Analysis (RQ3)
	Scalability Across Model Sizes and Quantities (RQ4)

	Conclusion
	Dataset Statistics
	Further Ablation Study and Visualization
	Hyper-parameter Study
	Ablation Study on Various Model Ensembling
	Demonstration of Alignment and Ensembling
	Empirical Analysis of Tokenizers and Performance

	Formal Analysis of Token Translation
	Problem Setup
	Tokenizer Assumptions
	Causal Alignment
	ToT Recovers the Exact Alignment
	Causal Validity

	Use of Large Language Models
	Limitations

