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Boosting Speech Recognition Robustness to Modality-Distortion
with Contrast-Augmented Prompts

Anonymous Authors

ABSTRACT
In the burgeoning field of Audio-Visual Speech Recognition (AVSR),
extant research has predominantly concentrated on the training
paradigms tailored for high-quality resources. However, owing
to the challenges inherent in real-world data collection, audio-
visual data are frequently affected by modality-distortion, which
encompasses audio-visual asynchrony, video noise and audio noise.
The recognition accuracy of existing AVSR method is significantly
compromised when multiple modality-distortion coexist in low-
resource data. In light of the above challenges, we propose PCD:
cluster-Prompt with Contrastive Decomposition, a robust framework
for modality-distortion speech recognition, specifically devised to
transpose the pre-trained knowledge from high-resource domain to
the targeted domain by leveraging contrast-augmented prompts. In
contrast to previous studies, we take into consideration the possibil-
ity of various types of distortion in both the audio and visual modal-
ities. Concretely, we design bespoke prompts to delineate each
modality-distortion, guiding the model to achieve speech recogni-
tion applicable to various distortion scenarios with quite few learn-
able parameters. To materialize the prompt mechanism, we employ
multiple cluster-based strategies that better suits the pre-trained
audio-visual model. Additionally, we design a contrastive decom-
position mechanism to restrict the explicit relationships among
various modality conditions, given their shared task knowledge
and disparate modality priors. Extensive results on LRS2 dataset
demonstrate that PCD achieves state-of-the-art performance for
audio-visual speech recognition under the constraints of distorted
resources.

CCS CONCEPTS
• Computing methodologies → Speech recognition; Computer
vision tasks.

KEYWORDS
multi-modal learning, audio-visual speech recognition, modality-
distortion

1 INTRODUCTION
Audio-Visual Speech Recognition (AVSR), which leverages the syn-
ergistic interaction between human speech and temporally aligned
lip movement videos to generate natural language, has emerged
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Audio-visual 
asynchrony

Visual noise

Audio noise

Figure 1: Examples of potential distortion in audio-visual
datasets. Audio-visual asynchrony: the audio and video are
out of sync temporally or mismatched across different seg-
ments; Visual noise: the video is disturbed by blackouts, blur-
riness, frame drops, or screen flickering; Audio noise: the
audio contains environmental noise.

as a vibrant frontier in the applications of multi-modal learning
[1, 19, 20, 27].With learning audio-visual features, AVSR has demon-
strated superior performance compared to single-modality input
models (including audio-only and visual-only input models). While
the complementarity of audio and visual modalities is often as-
sumed, the reality frequently deviates from this ideal scenario due
to recording equipment and environmental constraints. Instances
where data is distorted, such as audio-visual asynchrony induced
by storage device malfunctions, audio noise in outdoor interview
scenes, or visual noise in video conferencing scenarios (as shown in
Fig. 1), often result in the confusion of AVSR model. With modality-
distortion, models may even fall short in effectiveness compared
to their single-modal counterparts, especially given the presence
of multiple distortion scenarios. On the other hand, distorted data
can possess inherent value due to the challenges associated with
acquiring high-resource datasets and the high cost of label annota-
tion, particularly evident in endeavors such as the preservation of
minority languages or data recovery. The ubiquitous presence of
distortion in real-life scenarios poses substantial challenges to the
application of AVSR.

Established AVSR models are typically trained on high-resource
datasets, with the objective of attaining peak performance under
circumstances of data completeness or in scenarios where one
modality exhibits incompleteness. For instance, numerous AVSR
investigations [2, 19, 28, 36] evaluate the efficacy of models amidst
audio noise, thereby validating methodological robustness. Con-
currently, alternative research endeavors [4, 5, 10] concentrate on
addressing issues pertaining to visual modality missing or noisy.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, none of these methods address the challenge of train-
ing with low-quality datasets containing simultaneous audio and
visual modality-distortion which are commonly encountered in
real-life situations, lacking robustness across diverse distortion
scenarios. Training a separate optimal model for each potential
distortion scenarios is ideal but impractical, given the substantial
computational resources required. Constrained by the availability
of high-quality datasets, there is a need for more robust approaches
that consume fewer computational resources to adapt to data with
modality-distortion.

Incorporating three real-world concerns into consideration: (i)
distortion occurrences are always diverse and scattered across vari-
ous modalities; (ii) distortion often stems from equipment and en-
vironment limitations, hence the distortion forms within the same
batch of data may be unique and uniform, limited to a single modal-
ity; (iii) in scenarios where both modalities suffer from severe distor-
tion, the data is chaotic and devoid of value, leading to confusion in
model even human recognition. Thereby, we introduce a general set-
ting to simulate real-world modality-distortion, where the dataset
comprises three types of scenarios: clean data, data with audio dis-
tortion, and data with visual distortion. We propose a novel method
called PCD: Cluster-Prompt with Contrastive Decomposition to
enhance speech recognition robustness across diverse modality-
distortion conditions within a unified framework. Drawing inspira-
tion from the notable success of prompt learning within the field
of multi-task fine-tuning in natural language processing [8, 18, 37],
we design tailored prompts for each modality-distortion conditions
instead of training individual model with a myriad of parameters.
Building upon a fully pre-trained transformer-based model with
audio-visual alignment [27], we effectively utilize prompts to facil-
itate the transfer of knowledge from a pre-trained high resource
domain to a low-quality domain with modality-distortion. In or-
der to enhance compatibility with pre-trained models, we develop
a cluster module and explore two attachment strategies. Follow-
ing the computation of features by the cluster module, generated
prompts are then combined with either the input or key&value
during multi-head self-attention operations. Furthermore, we em-
ploy low-rank decomposition and contrastive regularization term,
supervising the task-specific part of cluster-prompts to provide
more refined guidance tailored to particular scenarios. Under the
explicit constraint of task interaction, the modality-distortion tasks
prompts tends to approach the clean task prompts while diverg-
ing from each other, allowing prompts to learn more task-relevant
features. The main contributions are as follows:

• We propose a novel framework, PCD, which is the first work
dedicated to enhancing robustness in modality-distortion
speech recognition.

• We introduce two cluster-based strategies tailored for im-
plementing the prompt mechanism, which are especially
optimized to complement pre-trained audio-visual models.

• We design a novel contrastive decomposition mechanism for
prompts, aiming to mine the interactions between diverse
modality-distortion conditions.

• PCD achieves the state-of-the-art performance on the LRS2
dataset, demonstrating its outstanding efficacy in AVSR tasks
involving modality-distortion.

2 RELATEDWORK
2.1 Audio-Visual Speech Recognition
Recently, AVSR which aims to translates synchronized audio and
video into corresponding text, has been attracting increasing re-
search interest as it presents a viable solution for employing the
fusion of audio and visual modalities as an alternative to ASR[21,
23, 26]. TM-seq2seq [1] first introduce transformer architecture
into AVSR task, utilizing pre-computed visual features and audio
Log-Mel filter features as inputs. E2E Conformer [20] leverages
Conformer architectures [7] to extract visual and audio features,
facilitating end-to-end training. Moreover, LUSSL-AVSR [22] uti-
lize self-supervised learning for AVSR task by incorporating the
pre-trained model trained in massive unlabelled single modality
data. Similarly employing self-supervised learning, AV-HuBERT
[27] learns the correspondence of audio and video modalities by
masking multi-stream video input and predicts automatically dis-
covered and iteratively refined multi-modal hidden units. Recently,
Auto-AVSR [19] effectively expand the audio-visual dataset by uti-
lizing pre-trained ASRmodels to automatically transcribe unlabeled
video data.

Typically, AVSR research leverages the visual modality to en-
hance robustness against audio noise [16, 17, 28, 34], while some
studies also address potential video noise in audio-visual dataset.
[3, 4] tackles scenarios with missing video frames, while [9] fo-
cuses on resolving occlusions that may occur in videos. However,
the aforementioned methodologies only address a singular type
of distortion, thus lacking robustness across diverse scenarios. In
contrast, this paper conducts a more thorough study on AVSR’s
robustness where various modality-distortion would occur for any
data sample and anywhere in learning phases, particularly focusing
on reducing the computation of model fine-tuning.

2.2 Prompt Learning
In prompt-driven approaches, task-specific textual descriptions or
cues are utilized to guide models towards integrating and concur-
rently processing data originating from various sensors, sources,
or formats such as text, images, audio, or video [6, 14, 18]. This
methodology has found extensive usage within the field of natural
language processing and has recently been introduced into vision
problems [12, 33, 38], audio generation [11, 32] and multi-modal
learning tasks[35, 40]. [15, 25] introduce prefix tuning, exploring
additional interactions between prompts and pre-trained model.
[14, 31, 39] fine-tune pre-trained models by optimizing continuous
set of prompt vectors called soft prompt instead of hand-crafted
prompts. In multi-modal tasks, MaPLe [13] applies prompts in both
vision and language encoders to improve the alignment between
vision and language representation. TRIPLET [24] further employs
decoupled prompts and prompt interaction strategies to capture the
complex interactions between modalities. These studies investigate
the remarkable adaptability of prompt learning across various tasks
involving diverse input domains. Inspired by the aforementioned
work, we introduce prompt learning into AVSR task, transferring
knowledge from high-resource domains to target domains contain-
ing various types of modality-distortion which can be regarded
as different learning tasks. We further experiment with various
prompt strategies to better align with the pre-trained AVSR model.
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Figure 2: The overall framework of our proposed PCD approach. Upon pre-training a audio-visual alignment transformer
on high-resource dataset, we freeze the structure and finetune the prompts on distorted dataset. Specifically, we train the
cluster module 𝐶𝑀𝑛 tailored to data with distorted modality 𝑛 to generate bespoke prompts. In addition to the seq2seq loss, a
contrastive decomposition mechanism is utilized to supervise the learning of task-specific features in prompts.

3 METHOD
3.1 Problem Formulation
We formulate the problem setting for AVSRwithmodality-distortion
in this section. Suppose we have an audio-visual dataset contains
modality-distortion �̃� = {�̃�, �̃� , 𝑆}, where �̃�, �̃� represents the audio
and video utterance thatmay be contaminated by randomdistortion,
and 𝑆 represents corresponding natural sentence. Neglecting the
scenario where distortion concurrently affects both modalities, as
explained earlier, we partition the dataset into three subsets: clean
data 𝐷𝑐 = {𝐴,𝑉 , 𝑆}, data with audio distortion 𝐷𝑎𝑑 = {�̃�,𝑉 , 𝑆},
data with video distortion 𝐷𝑣𝑑 = {𝐴, �̃� , 𝑆}. Under such real-world
conditions, there are two challenging problems, one is to adapt one
model framework to multiple types of distortion while minimiz-
ing computational resources. The other is to avoid confusion from
distorted data during the training process.

3.2 Transformer with Audio-Visual Alignment
Since AVSR can be viewed as a sequence-to-sequence transforma-
tion task, current state-of-the-art AVSR methods are all based on
transformer structures. To fully exploit multi-modal knowledge, we
employ the audio-visual aligned encoder, similar to AV-Hubert[27],
which is a self-supervised representation learning method for audio-
visual speech. The AV-Hubert structure integrates and extracts

audio-visual features from raw data, which are then utilized by a
transformer decoder to generate natural sentences.

The pre-training process of AV-Hubert alternates between fea-
ture clustering and mask prediction. The model leverages clustering
to generate self-supervised targets and strengthens cross-modal
fusion through mask prediction, facilitating the mapping of audio
and video sequences into a unified phoneme space 𝑓 𝑝 ∈ R𝑇×𝐷

where 𝑇 is the length of the sequence and 𝐷 is the dimension of
the embedding.

Upon acquiring audio-visual representations through self super-
vised methods, the seq2seq loss is utilized to train the entire model,
including the decoder, and also serves as part of the objective for
prompt training:

L𝑠2𝑠 = −
𝑠∑︁

𝑡=1
log 𝑝 (𝑤𝑡 | {𝑤𝑖 }𝑡−1𝑖=1 , 𝑓

𝑝 ) (1)

where {𝑤𝑖 }𝑠𝑖=1 is the ground-truth transcription.
Due to its superior performance on both multi-modal and uni-

modal tasks, we choose the AV-Hubert as our backbone model,
pre-trained on large-scale vision and audio datasets. Amidst en-
countering data distortion in one modality, the exceptional perfor-
mance of AV-Hubert in uni-modality speech recognition facilitates
a more effective guidance to prioritize the clean modality. However,
the cost of training a full AV-Hubert model to a specific distorted
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condition is prohibitive, and practical tasks often involve diverse
types of modality-distortion that cannot be addressed by a single
model. So we design prompts tailored to different combinations of
data distorted on a pre-trained AV-Hubert model to transfer knowl-
edge from a high-resource domain to a low-resource domain with
minimal training cost.

3.3 Cluster-Prompt for Modality-Distortion
Following pre-training, the subsequent step involves guiding the
model to acclimate to distorted data, which often exhibits vari-
ous types of distortion and is characterized by limited quantity in
real-world scenarios. To guide the model pay more attention to
the clean part in distortion contaminated audio-visual pairs, we
design bespoke prompts for each conditions which are collections
of trainable vectors, interacting with the model. Typically, for the
tasks set 𝑁 , we assign |𝑁 | kinds of prompts where the number is
three for training setting simulating real-world modality-distortion
scenarios, as formulated in Section 3.1. The corresponding prompts
are concatenated to designated positions of the multi-head self-
attention (MSA) module.

In the preceding step, we adopt AV-Fusion to map audio and
visual representations into the same phoneme space to enable the
model to attain recognition capabilities across uni-modality, mak-
ing it more adept at handling modality-distortion. Initially, the con-
catenation of audio and visual utterances 𝑢𝑎𝑣 = concat(𝑢𝑎, 𝑢𝑣) ∈
R𝑇×2𝐷 is fed into AV-Fusion to obtain the fused features 𝑓𝑚 ∈
R𝑇×𝐷 . Using 𝑓𝑚 as the input to the first layer of the transformer
encoder, we denote the input fused features of the 𝑖-th MSA layer
as 𝑥𝑖 ∈ R𝑇×𝐷 , 𝑖 = 1, 2, . . . , 𝑀 with number of layers 𝑀 . Based
on the input distortion type, we choose the respective prompts
𝑝𝑛
𝑖
∈ R𝐿𝑝×𝐷 with prompt length 𝐿𝑝 and representations for differ-

ent modality-distortion cases 𝑛 ∈ 𝑁 ≡ {𝑐, 𝑎𝑑, 𝑣𝑑}, which are then
interacted with 𝑥𝑖 to generate extended features 𝑥𝑝

𝑖
:

𝑥
𝑝

𝑖
= 𝐹prompt (𝑝𝑛𝑖 , 𝑥𝑖 ) (2)

where 𝐹prompt defines the attach approaches for prompts to interact
with the designated structures in MSA layers.

3.3.1 Cluster-Based Prompts. In order to extract valuable fea-
tures from distorted data, we adopt a cluster strategy for prompt
generation. In the pre-training process, a k-means approach is em-
ployed to extract cluster labels on audio-visual features. Building
upon this concept, we employ an tunable cluster module 𝐶𝑀𝑛 to
cluster the inputs with modality-distortion condition 𝑛, thereby
generating corresponding prompts. For audio-visual features that
exhibits greater similarity, cluster module facilitates prompts in
offering more proximate guidance to the pre-trained model. Specif-
ically, the input 𝑥𝑖 is first fed into a extraction network, which is
consisted of a linear projection layer, a summation operation and a
cluster-wise softmax layer to extract the cluster weights for each
phoneme features. We define cluster centers 𝑐𝑖 ∈ R𝑁𝑐×𝐿𝑝×𝐷 in
each layer 𝑖 of the encoder, where 𝑁𝑐 is the number of the clus-
ters and compute prompts by combining them with the clustering
results of the input:

𝑝𝑖 = Extract(𝑥𝑖 ) × 𝑐𝑖 (3)

Fused feature
 𝒙𝒊

𝒙
Multi-Head

Self-Attention

Add & Norm

Add & Norm

Feed
Forward

Fused feature 
𝒙𝒊+𝟏

Cluster module

𝒑𝒓𝒆-approach

𝒙

𝒒𝒌𝒗

MatMul

SoftMax 

MatMul

𝒑𝒓𝒐-approach

Figure 3: The illustration of two prompts attach strategies.
After being generated by the cluster module, prompts can be
concatenated with the input (pro-approach) within the multi-
head self-attention (MSA) block, or alternatively, they can be
concatenated with the key&value pairs (pre-approach).

In the situation of modality-distortion, cluster module strength-
ens the connections between similar clusters of phoneme features,
learning features about the distorted segment.

3.3.2 Prompt Attach Strategies. The design of the 𝐹prompt func-
tion, as outlined in Equation 2, is crucial for integrating prompts
with pre-trained models to transfer knowledge from a high-quality
domain to a target low-quality domain. We adopt two interaction
mechanisms with the MSA module, as shown in Fig. 3.

We denote the query, key and value in the 𝑖-th MSA layer as
𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 , which are obtained by applying a projection matrix to 𝑥𝑖 .
The first strategy which is inspired by the concept of soft prompt
tuning (𝑃𝑟𝑜) is to prepend prompts with input sequences for each
layer, which is equivalent to concatenate the same prompt parame-
ters to 𝑄𝑖 , 𝐾𝑖 and 𝑉𝑖 . The prompt function can be written as:

𝐹Proprompt (𝑝𝑛𝑖 , 𝑥𝑖 ) = ATTENi ( [𝑝𝑛𝑖 ;𝑄𝑖 ],
[
𝑝𝑛𝑖 ;𝐾𝑖 ], [𝑝

𝑛
𝑖 ;𝑉𝑖

]
) (4)

where [...; ...] represents the concatenation operation. With the
implementation of 𝑃𝑟𝑜-approach prompts, attention mechanisms
are more targeted towards feature processing, and each layer’s
input token 𝑥𝑖 contains inherited prompt information from the
previous layers, leading to more effective instructions for the model
prediction.

Another prompting approach, inspired by prefix tuning (𝑃𝑟𝑒),
focuses on the key and value at the MSA layer. We split the prompt
𝑝𝑛
𝑖
into two sub-prompts 𝑝𝑘

𝑖
, 𝑝𝑣

𝑖
and prepend them to the key and

value vectors respectively. We can define the prompt function for
𝑃𝑟𝑒-approach prompts as:

𝐹Preprompt (𝑝𝑛𝑖 , 𝑥𝑖 ) = ATTENi (𝑄𝑖 , [𝑝𝑘𝑖 ;𝐾𝑖 ], [𝑝
𝑣
𝑖 ;𝑉𝑖 ]) (5)

The attention-level prompting provides another way to instruct the
pretrained model from the perspective of the attention mechanism
in transformers.
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3.4 Contrastive Decomposition
To supervise prompt learning for specific modal combinations with
distortion, we employ a common-specific decomposition approach.
Specifically, we employ a low-rank decomposition mechanism to
map the information from 𝑝𝑛 into the common represents 𝑝𝑐 ∈
R𝑟×𝑑 and task-specific represents 𝑝𝑛𝑠 ∈ R𝐿𝑝×𝑟 where 𝑟 donates the
rank of the matrix decomposition, which can be formulated as:

𝑝𝑛 = 𝑝𝑛𝑠 · 𝑝𝑐 (6)

where · denotes matrix multiplication. This was done to distin-
guish between the common features of the AVSR task and the
specific characteristics of a particular modality-distortion condi-
tion. Rethinking the cluster process, the low-rank decomposition of
prompts 𝑝𝑛

𝑖
is equivalent to the same operation applied to cluster

centers 𝑐𝑛
𝑖
when implementing.

To constrain the implicit interaction between prompts, we focus
on the explicit connections between tasks. We anticipate similar
tasks to entail prompts that provide more analogous guidance to the
model. In the context of modality-distortion in AVSR, our objective
is to attain model performance comparable to clean data even in
the presence of audio and video distortion, which means narrowing
the gap between prompts in the clean domain 𝑝𝑐𝑠 and those in the
distorted domains 𝑝𝑎𝑑𝑠 , 𝑝𝑣𝑑𝑠 while widening the separation between
the latter two. Specifically, we propose a contrastive loss following
InfoNCE Loss[30] with specific prompt 𝑝𝑛𝑠 to supervise common-
specific decomposition contrastive learning:

Lcl =
∑︁
𝑛∈𝑁

− 1
|𝐶 (𝑛) |

∑︁
𝑚∈𝐶 (𝑛)

log
exp sim

(
𝑝𝑛𝑠 , 𝑝

𝑚
𝑠

)
/𝜏∑

𝑘∈𝑁 \{𝑛} exp sim
(
𝑝𝑛𝑠 , 𝑝

𝑘
𝑠

)
/𝜏
(7)

where𝐶 (𝑛) represents the set of tasks that have a closer relationship
to task 𝑛 (e.g. when 𝑛 refers to the task dealing with data with audio
distortion, 𝐶 (𝑛) contains the task with clean data), |𝐶 (𝑛) | is its
cardinality, 𝜏 is the temperature parameter, and 𝑠𝑖𝑚(𝑎, 𝑏) denotes
the similarity between vectors 𝑎 and 𝑏. Drawing from an analysis
of explicit task relationships, positive and negative sample sets are
derived. Contrastive learning is then applied to encourage similar
tasks to learn more similar prompts, facilitating the extraction of
task-related information and enhancing the effectiveness of guiding
the model.

For the overall objective of the prompt training, we apply the
Lcl and cross-entropy loss L𝑠2𝑠 in Eqn. 1 with the scale factor 𝛼 :

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = (1 − 𝛼)L𝑠2𝑠 + 𝛼Lcl (8)

4 EXPERIMENT
4.1 Dataset

LRS2. [1] stands out as one of the most widely utilized publicly
accessible English lip-reading datasets, including 224 hours of video
content sourced from BBC television programs. This dataset orig-
inally comprises two partitions for training: Pretrain (195h) and
Train (29h), both transcribed at the sentence level from video to text.
The key disparity lies in the fact that video clips in the Pretrain parti-
tion are not rigorously trimmed and may exceed the corresponding
text length. Our experiments on LRS2 involving varying training

data amounts, specifically comparing Pretrain+Train (224h) against
Train (29h).

LRS2-DISTORTED. Based on the LRS2 dataset, we further pro-
pose the LRS2-DISTORTED to verify the robustness to the modality-
distortion speech recognition with low-resource training data. We
introduce various types of modality-distortion into the LRS2 dataset,
aiming to simulate realistic scenarios where audio and visual distor-
tion randomly occurs across both training and testing phases. Note
that to ensure fair training, the specific distortion data replaced
or added for each sample is predetermined. Meanwhile, both the
distortion rate and the distortion types can be varied to compare
the robustness of the models.

4.2 Metric
For all experiments we use the word error rate (WER) as the evalu-
ation index of speech recognition. WER can be defined a𝑊𝐸𝑅 =

(𝑆 + 𝐷 + 𝐼 )/𝑀 , where 𝑆, 𝐷, 𝐼, 𝑀 represent the number of words
replaced, deleted, inserted and referenced respectively.

4.3 Implementation Details
4.3.1 Modality-Distortion Setting. We focus on a more prac-
tical scenario where distortion is prevalent both in training and
testing phases. We define distortion rate 𝜂 as the proportion of
modality-distortion data to the entire dataset, and 𝜇 as the propor-
tion of distortion present in each individual sample. Scenario with
distortion rate 𝜂 and 𝜇 indicates that there are 𝜂/2 data with audio
distortion, 𝜂/2 data with video distortion, and (1−𝜂) complete data,
where 𝜇 of each sample is replaced by data with distortion. To vali-
date the robustness of the method, we employ three approaches to
simulate distortion. Approach a simulates a severe scenario entail-
ing replacing segments of either the audio or video with segments
from another sample, and Approach b involved adding MUSAN
[29] noise to the audio and introducing screen flickering to the
video. Approach c represents temporal asynchrony between audio
and video, a prevalent type of distortion in real-world scenarios.
Specifically, it entails delaying the data of the distortion modality by
a specified number of frames. In ablation experiments, we default
to setting 𝜂 = 70%, 𝜇 = 80% for inference with condition 𝑎.

4.3.2 Experimental Details . The model is trained on NVIDIA
GeForce RTX 3080Ti GPU, equipped with 10GB of VRAM. Con-
strained by computational resources and the simulation of low-
resource data, we conduct ablation experiments mainly on the base
transformer model on the LRS2-29h dataset.

4.4 Main Result
In this section, we compare the performance of our approach with
the backbone and other AVSR methods under modality-distortion
setting on LRS2, as presented in Table 1. Limited by data distortion,
the performance of these baselines deviates significantly from the
result training with clean data, indicating the lack of robustness
to modality-distortion. Comparatively, our proposed PCD outper-
forms the state-of-the-art AVSR across various distortion settings,
achieving significant reductions in the metric (up to 3% on WER)
compared to the backbone, AV-Hubert. It is noteworthy that all im-
provements are derived from approximately 2% of the parameters
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Table 1: TheWER (%) performance on LRS2-DISTORTED under the modality-distortion AVSR setting under different evaluating
distortion rates with distortion approach 𝑎. Models are trained under 𝜂 = 70%, 𝜇 = 60%.

model training set clean 𝜂=50% 𝜂=70% 𝜂=90%
𝜇=60% 𝜇=80% 𝜇=60% 𝜇=80% 𝜇=60% 𝜇=80%

TM-Seq2seq [1]

224h-distorted

12.20 25.26 28.63 32.85 37.44 39.71 46.51
End2end Conformer [20] 6.13 13.12 15.97 14.92 19.89 19.78 24.32

LUSSL-AVSR [22] 4.95 10.73 12.76 13.98 16.53 17.01 21.29
Auto-AVSR [19] 4.01 10.41 11.98 12.63 15.20 16.31 19.23

transformer-base

AV-HuBERT
29h-distorted

6.81 14.22 16.71 16.92 20.20 20.18 24.47
PCD𝑝𝑟𝑒 5.56 11.79 14.70 14.65 18.90 17.28 22.91
PCD𝑝𝑟𝑜 5.73 11.82 14.51 14.79 18.25 17.12 22.12

AV-HuBERT
224h-distorted

4.36 10.56 12.60 12.83 15.83 17.04 19.43
PCD𝑝𝑟𝑒 3.89 9.32 11.43 11.52 14.79 15.89 18.11
PCD𝑝𝑟𝑜 3.95 9.61 11.38 11.47 14.41 15.65 17.93

transformer-large

AV-HuBERT
29h-distorted

5.69 11.29 14.45 13.71 18.40 16.13 22.18
PCD𝑝𝑟𝑒 4.78 9.51 13.12 12.31 16.80 14.21 20.48
PCD𝑝𝑟𝑜 4.80 9.81 12.54 12.19 16.44 13.89 19.56

AV-HuBERT
224h-distorted

3.54 8.13 10.71 10.23 14.20 11.77 16.44
PCD𝑝𝑟𝑒 3.28 7.04 9.82 9.13 13.51 9.95 14.78
PCD𝑝𝑟𝑜 3.32 7.23 9.53 8.99 13.12 9.83 14.21

Distortion-rate 𝝁%

(c) Training and testing with distortion type c 

Distortion-rate 𝝁%

(b) Training and testing with distortion type b 

W
ER

(%
)

W
ER

(%
)

W
ER

(%
)

Distortion-rate 𝝁%

(a) Training and testing with distortion type a 
and different training distortion-rate 𝝁%

AV-HuBERT training with 𝜇 = 60% distorted data

PCD𝑝𝑟o training with 𝜇 = 40% distorted data

PCD𝑝𝑟o training with 𝜇 = 60% distorted data

PCD𝑝𝑟o training with 𝜇 = 80% distorted data

AV-HuBERT

PCD𝑝𝑟𝑒

PCD𝑝𝑟o

AV-HuBERT

PCD𝑝𝑟𝑒

PCD𝑝𝑟o

Figure 4: Performance of PCD under different training distortion rates and its behavior under various distortion conditions.

of AV-Hubert. The poor performance of the baselines is attributed
to their focus on utilizing complete modalities, leading inadequate
adaptation to modality-distortion scenarios. In contrast, benefiting
from the prompts designed for various distortion conditions, PCD
learns how to leverage pre-trained comprehensive knowledge to
tackle different situation. The cluster-prompt module offers a robust
instructional framework for guiding model predictions. Moreover,
the contrastive decomposition constraint enhances the interaction
between prompts, while learning task-specific features strengthens
the robustness to distortion settings. The main results convincingly
illustrate the effectiveness of our proposed method.

From the perspective of distortion settings, as the distortion rate
𝜂 increases, the magnitude of improvement consistently rises, indi-
cating that PCD’s guidance on distorted samples is stronger than
on clean data. PCD also demonstrates greater robustness to varying
distortion rates 𝜇, with a corresponding increase in improvement.

From the perspective of model strategy analysis, the 𝑝𝑟𝑒-approach
demonstrates superior performance under low-distortion settings,
whereas the ability of 𝑝𝑟𝑜-approach to convey information across
different layers renders it more suitable for high-distortion data.
From a data quantity perspective, it is observed that PCD exhibits
a more significant enhancement on the 29h dataset than 224h since
sufficient data has enabled the backbone to acquire more knowledge
and adapt to the distortion settings. In other words, PCD not only
ensures stable improvements over 224h dataset but also demon-
strates greater suitability for low-quality target domains, which
aligns with the primary application scenario proposed.

4.5 Ablation study
4.5.1 Robustness to different distortion setting. In the main
result, we validate the robustness of the PCD method to varying
distortion rates during the testing phase with distortion type 𝑎.
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In this section, we conduct additional experiments to explore the
performance of PCD under different training distortion rates and
its behavior under various distortion conditions. In Figure 4 (a), we
test the performance of models trained under different distortion
rates 𝜇. Typically, using data with lower distortion rates allows the
model to acquire more knowledge, as evident from the test results
under a 40% distortion rate. However, models trained with too little
distortion are not adept at tasks with excessively high distortion
rates. Moderate levels of distortion can aid in improving the model’s
generalization ability. Based on this, we select the model trained
under the 60% distortion condition, which exhibit the optimal trade-
off metric. In Figure 4 (b, c), while keeping other settings constant,
we conduct a comparison between PCD and the baseline under
the additional distortion settings 𝑏, 𝑐 mentioned in section 4.3.1.
It can be observed that the PCD method exhibits improvements
when confronted with different real-world distortion scenarios and
robustness across varying distortion rates.

4.5.2 The Impact of cluster center. The Cluster Prompt mod-
ule implicitly learns distinct features of the modality-distortion
by distinguishing between different phoneme features, enabling
the model to provide targeted prompts. In Figure 5, we show the
influence of the number of clusters on the performance of accuracy.
In contrast to abstaining from the cluster strategy (i.e., with zero
cluster centers), the cluster module affords the model a degree of
flexibility in addressing the modality-distortion, consequently en-
hancing recognition accuracy. The optimal performance under the
29h dataset is achieved with 30 cluster centers, whereas the number
is 80 for the 224h dataset. This indicates that a higher number of
cluster centers represent a finer handling of distorted data. But ex-
cessive cluster centers result in insufficient data to adequately train
these parameters, leading to a decline in recognition performance.

The number of cluster 𝑵

200

W
ER

(%
)

Training on 29h

Training on 224h

Figure 5: Comparison of PCD𝑝𝑟𝑜 performance with different
number of clusters (𝑁 ).

4.5.3 The Impact of prompt length. We conduct experiments
to investigate the impact of prompt length on accuracy in Figure
5. Similar to the results with cluster center numbers, initially, as

the prompt length increases, it provides more information for the
model, resulting in improved accuracy. However, beyond a cer-
tain point, the data becomes insufficient to train the corresponding
parameters, leading to a decline in recognition capability. It is note-
worthy that the inflection points obtained from the prompt method
and the prefix method are different. This discrepancy arises because
the prompt tuning method directly concatenates the prompt with
the input, resulting in an increasing length of input at each layer.
Consequently, excessively long prompts adversely affect the input.

W
ER

(%
)

Prompt length 𝑳𝒑

PCD𝑝𝑟𝑒

AV-HuBERT

PCD𝑝𝑟o

Figure 6: Comparison of PCD performance with different
prompt length (𝐿𝑝 ).

4.5.4 The Impact of Contrastive Decomposition. In our pro-
posed method, a contrastive decomposition framework is designed
to constrain the generation of prompts. We investigate the impact
of the framework as shown in Table 2. Compared to the scenario
without using the framework (i.e., 𝛼 = 0), employing contrastive
decomposition loss as a regularization term can effectively enhance
the model’s recognition accuracy. It enables the prompts to learn
task-specific features and makes the model performance under
modality-distortion closer to clean data. However, an excessive
weighting of the contrastive loss may impede the model’s learning
of recognition capabilities. When the prompts themselves have
not acquired sufficient knowledge, increasing constraints would be
meaningless.

Table 2: Parameter sensitivity of PCD𝑝𝑟𝑜 to different setting
of contrastive decomposition framework.

Models 𝛼 Wer (%)
AV-Hubert - 20.20

PCD𝑝𝑟𝑜

0 18.83
0.001 18.78
0.01 18.25
0.1 20.01
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4.5.5 Testing under extremely harsh conditions. In handling
the data with distortion, given the challenges in recognition and
high distortion rates, we choose to discard scenarios where both
modalities are distorted. However, this data may also be useful in
practice. In this section, we investigate the performance of PCD in
extremely harsh environments, where distortion can randomly oc-
cur in both modalities, as shown in Table 3. Apart from setting both
modalities to have distortion to replace clean data, all other settings
remain consistent, including adjusting the contrastive decomposi-
tion module to bring the specific-prompt for scenarios with both
distortedmodalities closer to those under single-modality distortion.
As a result, PCD still brings improvements to model recognition
accuracy. These improvements stem from the guidance on recog-
nizing single-modal distorted data and the enhanced contextual
understanding of recognizing multi-modal distorted data.

Table 3: WER (%) performance of PCD in extreme harsh con-
ditions. dis. represents distorted

Models training set 𝜂=90% 𝜂=70%
𝜇=20% 𝜇=40% 𝜇=20% 𝜇=40%

AV-Hubert 29h-clean 21.13 35.24 25.04 39.43
AV-Hubert 29h-dis. 14.20 21.76 16.73 25.49
PCD𝑝𝑟𝑒 29h-dis. 13.40 20.12 15.14 24.54
PCD𝑝𝑟𝑜 29h-dis. 13.23 19.13 15.01 23.07

4.5.6 Comparison with the missing modality. Since distor-
tion can impact model recognition, an obvious question arises: can
we simply discard the modality-distortion to address the missing
modality problem? Missing modality is another research hotspot in
the multi-modal field, but similarly, there is no method that simulta-
neously addresses the presence of multiple missing conditions in the
context of AVSR. We also evaluate PCD’s performance with missing
modality and compare it with distorted modality, presenting the
results in Figure 7. When focusing on the missing scenarios in the
left half of the image, we observe that PCD exhibits improvements
across all levels of missing, particularly enhancing performance
by 2.8% when the missing rate is at 100%. When considering the
comparison between missing and distorted data across the entire
figure, we observe that when samples are completely covered by
distorted data, discarding the distorted modality entirely is a viable
option. However, when the distortion covers only 80% or less of
the samples, employing PCD leads to better results. The results
demonstrate that the PCD method effectively guides the model not
only in distortion settings but also in missing scenarios.

4.5.7 Enhancement for existing models. Some outstanding
AVSR approaches achieve high-precision recognition on clean data,
yet this very attribute renders them highly susceptible to interfer-
ence from fake segments. Since PCD involves adding an additional
prompt module to a frozen model, we fine-tune the pre-trained
AVHubert on the LRS3-distorted to improve the model’s robust-
ness to distortion while retaining its original performance, and
the results are displayed in Table 4. Models trained on clean data
exhibit poor performance when confronting modality-distortion.

Missing-rate 𝜇𝑚% Distortion-rate 𝜇d%

Problem setting

W
ER

(%
)

AV-HuBERT with missing modalities

PCD𝑝𝑟o with missing modalities

PCD𝑝𝑟o with modality-distortion
AV-HuBERT with modality-distortion

Figure 7: The experimental results on missing modality and
comparison with modality-distortion.

Moreover, fine-tuning on distorted data notably impacts the orig-
inal performance of the model on clean data. In contrast, models
optimized with PCD, which only train a few parameters, greatly
enhance the model’s robustness to modality-distortion. Due to the
considerable reduction in training data, there is a slight decrease in
performance on clean data.

Table 4: Comparison between existing models and PCD-
optimized models on LRS3 dataset. dis. represents distorted

Models training set Param 𝜂 = 70%Wer(%)
(MB) 𝜇=0% 𝜇=60% 𝜇=80%

AV-Hubert 30h-clean 161.5 4.08 29.32 39.04
AV-Hubert 30h-dis. 161.5 6.58 18.23 20.89
PCD𝑝𝑟𝑒 30h-dis. 3.84 4.10 17.13 19.22
PCD𝑝𝑟𝑜 30h-dis. 3.84 4.13 16.74 18.83

AV-Hubert 433h-clean 161.5 1.83 30.88 38.90
AV-Hubert 433h-dis. 161.5 5.10 15.96 19.65
PCD𝑝𝑟𝑒 433h-dis. 3.84 1.94 14.00 16.92
PCD𝑝𝑟𝑜 433h-dis. 3.84 1.99 13.92 16.78

5 CONCLUSION
In this paper, we have proposed a novel method called PCD aiming
to enhance robustness to modality-distortion in AVSR task. Con-
cretely, we introduce prompt learning and design specific prompts
for each type of modality-distortion to guide the model in adapt-
ing to the distortion. In order to effectively transfer knowledge
from the high-quality domain obtained through pre-training to
the low-quality domain with distortion, we employ two cluster-
prompt strategies. In addition, to better fit task-specific features into
prompts, we design a contrastive learning mechanism to constrain
the generation of prompts. Extensive results on the newly-created
benchmarks of modality-distortion speech recognition illustrates
the superiority of our proposed method.
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