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ABSTRACT
�e General Data Protection Regulation (GDPR) provides new

rights and protections to European people concerning their per-

sonal data. We analyze GDPR from a systems perspective, trans-

lating its legal articles into a set of capabilities and characteristics

that compliant systems must support. Our analysis reveals the

phenomenon of metadata explosion, wherein large quantities of

metadata needs to be stored along with the personal data to sat-

isfy the GDPR requirements. Our analysis also helps us identify

new workloads that must be supported under GDPR. We design

and implement an open-source benchmark called GDPRbench that
consists of workloads and metrics needed to understand and as-

sess personal-data processing database systems. To gauge the

readiness of modern database systems for GDPR, we follow best

practices and developer recommendations to modify Redis, Post-

greSQL, and a commercial database system to be GDPR compliant.

Our experiments demonstrate that the resulting GDPR-compliant

systems achieve poor performance on GPDR workloads, and that

performance scales poorly as the volume of personal data in-

creases. We discuss the real-world implications of these �nd-

ings, and identify research challenges towards making GDPR-

compliance e�cient in production environments. We release all of

our so�ware artifacts and datasets at h�p://www.gdprbench.org
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1. INTRODUCTION
�e European Union enacted the General Data Protection Reg-

ulation (GDPR) [3] on May 25th 2018 to counter widespread abuse

of personal data. While at-scale monetization of personal data has

existed since the early dot-com days, the unprecedented rate at
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which such data is ge�ing compromised is a recent phenomenon.

To counter this trend, GDPR declares the privacy and protection

of personal data as a fundamental right of all European people. It

grants several new rights to the EU consumers including the right to
access, right to recti�cation, right to be forgo�en, right to object,

and right to data portability. GDPR also assigns responsibilities
to companies that collect and process personal data. �ese include

seeking explicit consent before using personal data, notifying data

breaches within 72 hours of discovery, maintaining records of pro-

cessing activities, etc. Failing to comply with GDPR could result in

he�y penalties: up to €20M or 4% of global revenue, whichever is

higher. For instance, in January 2019, Google was �ned €50M for

not obtaining customer consent in their ads personalization [38];

in July 2019, British Airways was �ned £184M for failing to safe-

guard personal data of their customers [34].

Compliance with GDPR is challenging for several reasons. First,

GDPR’s interpretation of personal data is broad as it includes any

information that relates to a natural person, even if it did not

uniquely identify that person. For example, search terms sent to

Google are covered under GDPR. �is vastly increases the scope

of data that comes under GDPR purview. Second, several GDPR

regulations are intentionally vague in their technical speci�cation

to accommodate future advancements in technologies. �is causes

confusion among developers of GDPR-compliant systems. Finally,

several GDPR requirements are fundamentally at odds with the

design principles and operating practices of modern computing

systems [41]. It is no surprise that recent estimates [11, 26] peg

the compliance rate to be less than 50%.

Analyzing GDPR. In this work, we aim to understand and evalu-

ate GDPR compliance of existing database systems. Our goal is not

to optimize these systems or to build new systems from scratch;

instead, we follow public best practices and developer recommen-

dations to ensure existing systems are GDPR-compliant [20, 12].

We analyze GDPR and distill its articles into capabilities and char-

acteristics that database systems must support. By design, the

law allows multiple interpretations: we pick a strict interpreta-

tion to reason about the worst-case performance costs of GDPR

compliance. For example, GDPR does not specify how soon af-

ter a Right To Be Forgo�en request should the data be erased. We

resolve this ambiguity by requiring the deletion request to be ini-

tiated (and possibly completed) within a few seconds. In contrast,

Google cloud, which claims GDPR compliance, informs that all

deletions will complete within 180 days of request [6]. We believe

that analyzing the impact of and benchmarking the overheads of
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the worst-case performance (resulting from strict interpretation)

is a useful reference point for designers and administrators. How-

ever, in practice, a company may adapt a relaxed interpretation

that reduces the cost and overhead of compliance. We make three

key observations in our analysis.

1. We identify and characterize the phenomenon of metadata ex-
plosion, whereby every personal data item is associated with

up to seven metadata properties (such as purpose, time-to-live,

objections etc) that govern its behavior. By elevating each per-

sonal data item into an active entity that has its own set of rules,

GDPR mandates that it could no longer be used as a fungible

commodity. �is is signi�cant from a database standpoint as it

severely impacts both the control- and data-path operations.

2. We observe that GDPR’s goal of data protection by design and
by default con�icts with the traditional system design goals of

optimizing for performance, cost, and reliability. For example,

in order to notify people a�ected by data breaches, a company

may want to keep an audit trail of all accesses to their personal

data. From a datastore perspective, this turns every read oper-

ation into a read followed by a write.

3. Lastly, we identify that GDPR allows new forms of interactions

with datastores. We discuss the characteristics of these novel

GDPR queries (which we organize into a new benchmark called

GDPRBench), and their implications for database systems.

GDPRbench. As our analysis reveals, GDPR signi�cantly a�ects

the design and operation of datastores that hold personal data.

However, none of the existing benchmarks recognize the abstrac-

tion of personal data: its characteristics, storage restrictions, or

interfacing requirements. We design and implement GDPRbench,
a new open-source benchmark that represents the functionalities

of a datastore deployed by a company that collects and processes

personal data. �e design of GDPRbench is informed by painstak-

ing analysis of the legal cases arising from GDPR from its �rst

year of roll-out. GDPRbench is composed of four core workloads:

Controller, Customer, Processor, and Regulator ; these core work-

loads are not captured by any database benchmark available to-

day. GDPRbench captures three benchmarking metrics for each

workload: correctness, completion time, and storage overhead.

Evaluating GDPR-Compliant DBMS. Finally, we aim to gauge

the GDPR compliance of modern database systems. We take three

widely-used database systems, Redis [13] (an in-memory NoSQL

store), PostgreSQL [12] (an open-source RDBMS), and a com-

mercial enterprise-grade RDBMS, and modify them to be GDPR

compliant. We followed recommendations from the developers

of these tools [20, 12] in making them GDPR-compliant; the goal

was to make minimal changes, not to redesign the system inter-

nals for e�cient compliance. While all three were able to achieve

GDPR compliance with a small amount of e�ort, the resulting

systems experienced a performance slow down of 2-5× for tra-

ditional workloads like YCSB, primarily due to monitoring and

logging mandated by GDPR. We evaluated the performance of

these databases against GDPR workloads using GDPRbench. We

observe that GDPR queries may result in large amounts of data

records and metadata being returned, resulting in signi�cantly

low throughput. Our analyses and experiments identify several

implications for administering GDPR-compliant database systems

in the real world.

Limitations. In this work, we have not tried to optimize the per-

formance of the GDPR-compliant systemswe evaluate. Wemerely

followed developer recommendations to achieve GDPR compli-

ance. We realize that the resulting performance degradation could

be further reduced with GDPR-speci�c optimizations or by re-

designing security mechanisms. �us, our work focuses on un-

derstanding GDPR compliance resulting from retro��ing existing

systems. Next, the design of GDPRbench is guided by several fac-

tors including (i) our interpretation of GDPR, (ii) court rulings and

GDPR use-cases in the real-world, and (iii) the three database sys-

tems that we investigated. As such, we recognize that the current

iteration of GDPRbench is a snapshot in time, and may need to

evolve as more technical and legal use cases emerge.

Summary of contributions. Our work lays the foundation for

understanding and benchmarking the impact of GDPR on database

systems. In particular, we make the following contributions:

• GDPR Analysis: Our work is one of the �rst to explore GDPR

from a database systems perspective. We analyze GDPR articles,

both individually and collectively, to distill them into a�ributes

and actions for database systems. In doing so, we (i) observe

the phenomenon of metadata explosion, and (ii) identify new

queries and workloads that personal data systemsmust support.

• Design and Implementation of GDPRbench: To enable cus-
tomers, companies and regulators interpret GDPR compliance

in a rigorous and systematic way, we design an open-source

benchmark named GDPRBench. In GDPRbench, we model the

queries and workloads that datastores encounter in the real-

world, and develop metrics to succinctly represent their behav-

ior. We publicly release all of our so�ware artifacts at h�p:

//www.gdprbench.org.

• Experimental Evaluation: We discuss our e�ort into mod-

ifying Redis, PostgreSQL, and a commercial RDBMS to be

GDPR-compliant. Our evaluation shows that GDPR compliance

achieved by minimal changes via straightforward mechanisms

results in signi�cant performance degradation for traditional

workloads. Using GDPRbench, we show the completion time

and storage space overhead of these compliant systems against

real-world GDPR workloads. Finally, we share our insights

on deploying compliant systems in production environments,

implications of scaling personal data, as well as the research

challenges of e�cient GDPR compliance.

2. BACKGROUND
Webeginwith a primer onGDPR including its internal structure

and its adoption challenges in the real world.

2.1 GDPR Overview
�e European parliament adopted GDPR on April 14th 2016,

and made it an enforceable law in all its member states starting

May 25th 2018. GDPR is wri�en
1

as 99 articles that describe its

legal requirements, and 173 recitals that provide additional con-

text and clari�cations to these articles. �e articles (henceforth

pre�xed with G ) could be grouped into �ve broad categories. G 1-

11 articles layout the de�nitions and principles of personal data

processing; G 12-23 establish the rights of the people; then G 24-50

mandate the responsibilities of the data controllers and processors;

the next 26 describe the role and tasks of supervisory authorities;

and the remainder of them cover liabilities, penalties and speci�c

situations. We expand on the three categories that concern sys-

tems storing personal data.

Principles of data processing. GDPR establishes several core

principles governing personal data. For example, G 5 requires that

data collection be for a speci�c purpose, be limited to what is

1

even the CS people in our team found it quite readable!

1065

http://www.gdprbench.org
http://www.gdprbench.org


necessary, stored only for a well de�ned duration, and protected

against loss and destruction. G 6 de�nes the lawful basis for pro-

cessing, while G 7 describes the role of consent.

Rights of data subjects. GDPR grants 12 explicit and excercis-

able rights to every data subject (a natural person whose personal

data is collected). �ese rights are designed to keep people in loop

throughout the lifecycle of their personal data. At the time of col-

lection, people have the right to know the speci�c purpose and

exact duration for which their data would be used (G 13, 14). At

any point, people can access their data (G 15), rectify errors (G 16),

request erasure (G 17), download or port their data to a third-party

(G 20), object to it being used for certain purposes (G 21), or with-

draw from automated decision-making (G 22). In the rest of the pa-

per, we use the terms, data subjects and customers, synonymously.

Responsibilities of data controllers. �e third group of articles

outline the responsibilities of data controllers (entities that collect

and utilize personal data) and data processors (entities that process

personal data on behalf of a controller). To clarify, when Net�ix

runs their recommendation algorithm on Amazon’s MapReduce

platform, Net�ix is the controller and Amazon, the processor. Key

responsibilities include designing secure infrastructure (G 24, 25),

maintaining records of processing (G 30), notifying data breaches

within 72 hours (G 33, 34), analyzing risks prior to processing large

amounts of personal data (G 35, 36) and controlling the location of

data (G 44). Additionally, the controllers should create interfaces

for people to exercise their GDPR rights.

2.2 GDPR from a Database Perspective
GDPR de�nes four entities—controller, customer, processor, and

regulator—that interact with the data store. Figure–1 shows how

three distinct types of data �ows between the GDPR entities and

data stores. �e database that hosts personal data and its associ-

ated metadata (purpose, objections etc.,) is the focus of our work.

We distinguish it from the other store that contains non-GDPR

and derived data as the rules of GDPR do not apply to them.

�e controller is responsible for collection and timely deletion

of personal data as well as managing its GDPR metadata through-

out the lifecycle. �e customers interact with the data store to

exercise their GDPR rights. �e processor uses the stored per-

sonal data to generate derived data and intelligence, which in turn

powers the controller’s businesses and services. Finally, the reg-

ulators interact with the datastores to investigate complaints and

to ensure that rights and responsibilities are complied with.

Our focus on datastores is motivated by the high proportion of

GDPR articles that concern them. From out of the 99 GDPR arti-

cles, 31 govern the behavior of data storage systems. In contrast,

only 11 describe requirements from compute and network infras-

tructure. �is should not be surprising given that GDPR is more

focused on the control-plane aspects of personal data (like col-

lecting, securing, storing, moving, sharing, deleting etc.,) than the

actual processing of it.

2.3 GDPR in the Wild
�e �rst year of GDPR has demonstrated both the need for and

challenges of a comprehensive privacy law. On one hand, peo-

ple have been exercising their newfound rights like the ability to

download all the personal data that companies have amassed on

them [21], and not been shy to report any shortcomings. In fact,

the EU data protection board reports [18] 144,376 complaints from

individuals and organizations in the �rst 12 months of GDPR.

However, any a�empt to regulate decade-long practices of com-

moditizing personal data is not without consequences. A number

Customer

Regulator

Controller
(e.g., Netflix)

Processor 
(e.g., Amazon 
map-reduce)

Non-GDPR and 
derived data

Personal- and 
meta-data store

Personal data
GDPR metadata
Derived data

inser
t

create, delete,
update

read,
update,
delete

rea
d

rea
d

any operation

Figure 1: GDPR de�nes four roles and distinguishes be-
tween three types of data. �e arrows out of a datastore
indicate read-only access, while the arrows into it modify
it. (1)�e controller can collect, store, delete and update any
personal- and GDPR-metadata, (2) A customer can read, up-
date, or delete any personal data and GDPR-metadata that
concerns them, (3) A processor reads personal data and pro-
duces derived data, and (4) Regulators access GDPR meta-
data to investigate customer complaints.

of companies like Instapaper, Klout, and Unroll.me voluntarily ter-

minated their services in Europe to avoid the hassles of compli-

ance. Like wise, most of the programmatic ad exchanges [23] of

Europe were forced to shut down. �is was triggered by Google

and Facebook restricting access to their platforms to those ad ex-

changes that could not verify the legality of the personal data they

possessed. But, several organizations could comply by making mi-

nor modi�cations to their business models. For example, media

siteUSA Today turned o� all advertisements [42], whereas the New
York Times stopped serving personalized ads [24].

As G 28 precludes employing any data processor that does not

comply with GDPR, the cloud providers have been swi� in show-

casing [48, 7, 37] their compliance. However, given the mone-

tary and technical challenges in redesigning the existing systems,

the focus has unfortunately shi�ed to reactive security. It is still
an open question if services like Amazon Macie [8], which em-

ploys machine learning to automatically discover, monitor, and

alert misuse of personal data on behalf of legacy cloud applica-

tions would survive the GDPR scrutiny.

Regulators have been active and vigilant as well: the number

of ongoing and completed investigations in the �rst 9 months of

GDPR is reported to be 206326. Regulators have already levied

penalties on several companies including €50M on Google [38] for

lacking a legal basis for their ads personalization, and £184M on

British Airways [34] for lacking security of processing. However,

the clearest sign of GDPR’s e�ectiveness is in the fact that reg-

ulators have received 89,271 voluntary data breach noti�cations

from companies in the �rst 12 months of GDPR. In contrast, that

number was 945 for the six months prior to GDPR [43].
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3. DESIGNING FOR COMPLIANCE
We analyze GDPR articles, both individually and collectively,

from a database perspective. �e goal of this section is to distill our

analysis into a�ributes and actions that correspond to database

systems. We identify three overarching themes: how personal

data is to be represented, how personal data is to be protected,

and what interfaces need to be designed for personal data. �ese

three collectively determine howGDPR impacts database systems.

3.1 Characterizing Personal Data
GDPR de�nes personal data to be any information concerning

a natural person. As such, it includes both personally identi�able

information like credit card numbers as well as information that

may not be unique to a person, say search terms sent to Google.

Such interpretation vastly increases the proportion of data that

comes under GDPR purview. Also, by not restricting the applica-

bility of GDPR to any particular domain like health and education

as in the case of HIPAA [2] and FERPA [1] respectively, GDPR

brings in virtually all industries under its foray.

Next, to govern the lifecycle of personal data, GDPR introduces

several behavioral characteristics associated with it; we call these

GDPR metadata. �is constitutes a big departure from the evo-

lution of data processing systems, which have typically viewed

data as a helper resource that could be fungibly used by so�ware

programs to achieve their goals. We discover that, when taken

collectively, these metadata a�ributes convert personal data from

an inert entity to a dynamic entity that possesses its own purpose,

objections, time-to-live etc., such that it can no longer be used as a

fungible commodity. Below, we list the seven metadata a�ributes

that must be stored along with every piece of personal data
2

.

1. Purpose. G 5(1b) states that personal data should only be col-

lected for speci�c and explicit purposes, and not further pro-

cessed in a manner incompatible with those purposes. Also,

the recent Google case [38] has established that GDPR explic-

itly prohibits any purpose bundling.

2. Time to live. Given the value of personal data, the longstand-

ing practice in computing has been to preserve them inde�-

nitely (or at least till they are economically viable). However,

G 5(1e) mandates that personal data shall be kept for no longer

than necessary for the purposes for which it was collected. In

addition, G 13(2a) requires the controller to provide this TTL

value to the customer at the time of data collection.

3. Objections. G 21 grants users a right to object, at any time,

to any personal data being used for any purposes. �is right

is broadly construed, and a controller has to demonstrate com-

pelling legitimate grounds to override it. �is property, essen-

tially sets up a blacklist for every personal data item.

4. Audit trail. G 30 requires controllers and processors to main-

tain records of their processing activities. �en, G 33(3a) re-

quires that in the event of a data breach, the controller shall re-

port the number of customers a�ected as well as details about

their records exposed. In light of these requirements, cloud

providers including Amazon [9] have started supporting �ne-

grained per-item access monitoring. �is would create an audit

trail for every personal data item.

2

�ough it may be possible for controllers to reduce this overhead by

reusing the same metadata across groups of related items like GPS traces

of a given person, the metadata granularity cannot be increased to per-

person or per-service level.

5. Origin and sharing. Every personal data item should have

an origin i.e., how it was originally procured, and sharing in-

formation i.e., external entities with which it has been shared

(G 13, 14). �e data trail set up by these articles should enable

customers to track their personal data in secondary markets.

6. Automated decision-making. �is concerns the emerging

use of algorithmic decision-making. G 15(1) grants customers a

right to seek information on which of their personal data was

used in automated decision-making. Conversely, G 22 allows

them to request that their personal data be not used for auto-

mated decision-making.

7. Associated person. G 15 enables users to ask for all the per-

sonal data that concern them along with all the associated

GDPR metadata. As such, it is imperative to store the identi�-

cation of the person to whom it concerns.

Impact on Database System Design. We call our observation

that every personal data item should be associated with a set of

GDPR metadata properties as metadata explosion. �is has sig-

ni�cant consequences in both control- and data-path operations

of database systems. First, having to store metadata along with

the data increases the overall storage space. Second, having to

validate each access (for purpose etc.,) and having to update a�er

each access (for audit etc.,), increases the access latency for per-

sonal data. While optimizations like metadata normalization or

metadata-aware caching could help minimize this overhead, the

resulting overhead would still be signi�cant.

3.2 Protecting Personal Data
GDPR declares (in G 24) that those who collect and process per-

sonal data are solely responsible for its privacy and protection.

�us, it not onlymandates the controllers and processors to proac-

tively implement security measures, but also imposes the burden

of proving compliance (in G 5(2)) on them. Based on our analysis

of GDPR, we identify �ve security-centric features that must be

supported in the database system.

1. Timely Deletion. In addition to G 5(1e) that requires every

personal data item to have an expiry date, G 17 grants cus-

tomers the right to request erasure of their personal data at any

time. �us, datastores must have mechanisms to allow timely

deletion of possibly large amounts of data.

2. Monitoring and Logging. As per G 30 and G 33(3a), the

database system needs to monitor its operations in both data

path (i.e., read or write) and control path (say, changes to access

control), so that compliance can be established upon request by

a regulator, or relevant information be shared with regulators

and customers in the event of data breaches.

3. Indexing via Metadata. Ability to access groups of data

based on one or more metadata �elds is essential. For example,

controllers needing to modify access control (G 25(2)) against

a given customer’s data; G 28(3c) allowing processors to access

only those personal data for which they have requisite access

and valid purpose; G 15-18, 20-22 granting customers the right

to act on their personal data in a collective manner (deleting,

porting, downloading etc.,); �nally, G 31 allowing regulators to

seek access to metadata belonging to a�ected customers.

4. Encryption. G 32 requires controllers to implement encryp-

tion on personal data, both at rest and in transit. While pseudo-

nymization may help reduce the scope and size of data needing

encryption, it is still required of the datastore.
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Table 1: �e table maps the requirements of key GDPR articles into database system attributes and actions. �is provides a
blueprint for designing new database systems as well as retro�tting the current systems into GDPR compliance.

No GDPR article/clause What they regulate Impact on database systems
A�ributes Actions

5 Purpose limitation Collect data for explicit purposes Purpose Metadata indexing

5 Storage limitation Do not store data inde�nitely TTL Timely deletion

13

14
Information to be provided […]

Inform customers about all the GDPR

metadata associated with their data

Purpose, TTL,

Origin, Sharing
Metadata indexing

15 Right of access by users Allow customers to access all their data Person id Metadata indexing

17 Right to be forgotten Allow customers to erasure their data TTL Timely deletion

21 Right to object Do not use data for any objected reasons Objections Metadata indexing

22 Automated individual decision-making
Allow customers to withdraw from

fully algorithmic decision-making

Automated

decisions
Metadata indexing

25 Data protection by design and default Safeguard and restrict access to data — Access control

28 Processor Do not grant unlimited access to data — Access control

30 Records of processing activity Audit all operations on personal data Audit trail Monitor and log

32 Security of processing Implement appropriate data security — Encryption

33 Notification of personal data breach Share audit trails from a�ected systems Audit trail Monitor and log

5. Access Control. G 25(2) calls on the controller to ensure that

by default, personal data are not made accessible to an indef-

inite number of entities. So, to limit access to personal data

based on established purposes, for permi�ed entities, and for

a prede�ned duration of time, the datastore needs an access

control that is �ne-grained and dynamic.

Impact on Database System Design. GDPR’s goal of data pro-
tection by design and by default sits at odd with the traditional

system design goals of optimizing for cost, performance, and re-

liability. While our analysis identi�ed a set of just �ve security

features, we note that modern database systems have not evolved

to support these features e�ciently. �us, a fully-compliant sys-

tem would likely experience signi�cant performance degradation.

3.3 Interfacing with Personal Data
GDPR de�nes four distinct entities—controller, customer, pro-

cessor, and regulator—that interface with the database systems

(shown in Figure 1). �en, its articles collectively describe the

control- and data-path operations that each of these entities are

allowed to perform on the database system. We refer to this set of

operations asGDPR queries, and group them into seven categories:

• CREATE-RECORD to allow controllers to insert a record con-

taining personal data with its associated metadata (G 24).

• DELETE-RECORD-BY-{KEY|PUR|TTL|USR} to allow

customers to request erasure of a particular record (G 17);

to allow controllers to delete records corresponding to a com-

pleted purpose (G 5.1b), to purge expired records (G 5.1e), and

to clean up all records of a particular customer.

• READ-DATA-BY-{KEY|PUR|USR|OBJ|DEC} to allow pro-

cessors to access individual data items or those matching a

given purpose (G 28); to let customers extract all their data

(G 20); to allow processors to get data that do not object to

speci�c usage (G 21.3) or to automated decision-making (G 22).

• READ-METADATA-BY-{KEY|USR|SHR} to allow cus-

tomers to �nd out metadata associated with their data (G 15);

to assist regulators to perform user-speci�c investigations, and

investigations into third-party sharing (G 13.1).

• UPDATE-DATA-BY-KEY to allow customers to rectify in-

accuracies in personal data (G 16).

• UPDATE-METADATA-BY-{KEY|PUR|USR} to allow cus-

tomers to change their objections (G 18.1) or alter previous con-

sents (G 7.3); to allow processors to register the use of given

personal data for automated decision making (G 22.3); to en-

able controllers to update access lists and third-party sharing

information for groups of data (G 13.3).

• GET-SYSTEM-{LOGS|FEATURES} to enable regulators to
investigate system logs based on time ranges (G 33, 34), and to

identify supported security capabilities (G 24,25).

Impact on Database System Design. When taken in totality,

GDPR queries may resemble traditional workload, but it would be

remiss to ignore two signi�cant di�erences: (i) there is a heavy

skew of metadata-based operations, and (ii) there is a need to en-

force restrictions on who could perform which operations under

what conditions. �ese observations make it impractical to store

GDPRmetadata away from the personal data (say, on backup stor-

age to savemoney), which in turnmay a�ect system optimizations

like caching and prefetching (since the results, and even the ability

to execute a query are conditional on several metadata factors).

3.4 Summary
Table–1 summarizes our analysis of GDPR. We identify three

signi�cant changes needed to achieve GDPR compliance: ability to

handle metadata explosion, ability to protect data by design and by
default, and ability to support GDPR queries. While it is clear that

these changes will a�ect the design and operation of all contem-

porary database systems, we lack systematic approaches to gauge

the magnitude of changes required and its associated performance

impact. Towards solving these challenges, we design GDPRbench,
a functional benchmark for GDPR-compliant database systems (in

Section-4), and present a case study of retro��ing two popular

databases into GDPR compliance (in Section-6).
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4. GDPRBENCH
GDPRbench is an open-source benchmark to assess the GDPR

compliance of database systems. It aims to provide quanti�-

able ground truth concerning correctness and performance un-

der GDPR. In the rest of this section, we motivate the need for

GDPRbench, and then present its design and implementation.

4.1 Why (a New) Benchmark?
As our analysis in Section-3 reveals, GDPR signi�cantly a�ects

the design and operation of datastores that hold personal data.

However, existing benchmarks like TPC and YCSB do not rec-

ognize the abstraction of personal data: its characteristics, stor-

age restrictions, or interfacing requirements. �is is particularly

troublesome given the diversity of stakeholders and their con�ict-

ing interests. For example, companies may prefer a minimal com-
pliance that avoids legal troubles without incurring much perfor-

mance overhead or modi�cations to their systems. On the other

hand, customers may want to see a strict compliance that priori-
tizes their privacy rights over technological and business concerns

of controllers. Finally, regulators need to arbitrate this customer-

controller tussle in a fast-evolving technologyworld. �us, having

objective means of quantifying GDPR compliance is essential.

A rigorous framework would allow system designers to com-

pare and contrast the GDPR implications of their design choices, as

well as enable service providers to be�er calibrate their o�erings.

For example, many cloud providers currently report the GDPR

compliance of their services in a coarse yes-no format [9], mak-

ing it di�cult for regulators and customers to assess either the

compliance levels or performance impact. Finally, many govern-

ments around the world are actively dra�ing privacy regulations.

For instance, India’s ongoing Personal Data Protection bill [16],

and California’a Consumer Privacy Act (CCPA) [5]. �is bench-

mark provides a methodical way to study the e�cacy of GDPR

regulations, and then adopt suitable parts of this law.

4.2 Benchmark Design
Our approach to benchmark design is guided by two factors:

insights from our GDPR analysis, and real-world data from the

�rst year of GDPR roll out. At a high level, GDPRbenchmodels the

working of a database deployed by an organization that collects

and processes personal data. Below, we describe the key elements

of the benchmark design.

4.2.1 Data Records
Given the stringent requirements of GDPR, it is prudent to as-

sume that personal data would be stored separately from other

types of data. �us, our benchmark exclusively focuses on per-

sonal data records. Each record takes the form <Key><Data>
<Metadata>, where <Key> is a variable length unique iden-

ti�er, <Data> is a variable length personal data, and <Meta-
data> is a sequence of seven a�ributes, each of which has a three

le�er a�ribute name followed by a variable length list of a�ribute

values. We enforce all the �elds of the record to have ASCII char-

acters (except for semicolon and comma, which we use as separa-

tors). We illustrate this with an example record:

ph-1x4b;123-456-7890;PUR=ads,2fa;TTL=7776000;
USR=neo;OBJ=∅;DEC=∅;SHR=∅;SRC=first-party;

Here, ph-1x4b is the unique key and 123-456-7890 is

the personal data. Following these two, we have seven a�ributes

namely purpose (PUR), time-to-live (TTL), user (USR), objections

(OBJ), automated decisions (DEC), third-party sharing (SHR), and

originating source (SRC). A�ributes could have a single value, a

list of values, or ∅. While the benchmark de�nes default lengths

and values for all these �elds, they could be modi�ed in the con-

�guration �le to accurately represent the testing environment. Fi-

nally, we neither require nor prescribe any speci�c internal data

layout for the personal records, and leave it up to the individual

databases to organize them in the most performant way.

4.2.2 Workloads
We de�ne four workloads that correspond to the core entities

of GDPR: controller, customer, processor and regulator. We com-

pose the workloads using the queries outlined in Section-3.3, and

concerning only the �ow of personal data and its associated meta-

data (denoted in Figure–1 by thick and do�ed lines respectively).

�en, we glean over usage pa�erns and traces from the real-world

to accurately calibrate the proportion of these queries and the dis-

tribution of the data records they act on. However, since GDPR is

only a year old, the availability of said data in the public domain is

somewhat limited. In situations where no real data is available, we

make reasonable assumptions in composing the workloads. �e

resulting GDPRbench workloads are summarized in Table–2, and

described in detail below. While GDPRbench runs these work-

loads in its default con�guration, we make it possible to update or

replace them with custom workloads, when necessary.

Controller. �e controller workload consists of three categories

of operations: (i) creation of records, (ii) timely deletion of records,

and (iii) updates to GDPR metadata towards managing access

control, categorization, third-party sharing, and location manage-

ment. While the controller is also responsible for the security and

reliability of the underlying storage system, we expect these to

be infrequent, non real-time operations and thus, do not include

them in our queries.

To determine the frequency and distribution of operations, we

rely on three GDPR properties: �rst, in a steady state, the number

of records createdmustmatch the number of records deleted (since

G 5.1 mandates that all personal data must have an expiry date);

next, a valid sequence of operation for each record should always

be create, updates, and delete in that order; lastly, the controller

queries should follow a uniform distribution (since G 5.1c prevents

the controller from collecting any data that are not necessary or

useful). We set the update queries to occur twice as frequently as

creates and deletes.

Customer. �is represents the key rights that customers exercise

while interfacing with the datastore: (i) the right to delete any of

their data, (ii) the right to extract and port all their data, (iii) the

right to rectify personal data, and �nally (iv) the right to access

and update the metadata associated with a given personal data.

To determine the frequency and distribution of customer queries,

we study operational traces from Google’s implementation of

Right-to-be-Forgo�en (RTBF) [17]. �ough GDPR has a namesake

article (G 17), RTBF is a distinct 2014 EU ruling that allowed indi-

viduals to request the search engines to delist URLs that contain

inaccurate, irrelevant and excessively personal information from

their search results. We gather three high-level takeaways from

the Google report: �rst, they received 2.4 million requests over a

span of three years at a relatively stable average of 45k monthly

requests. Second, 84.5% of all delisting requests came from indi-

vidual users. Finally, the requests showed a heavy skew towards a

small number of users (top 0.25% users generated 20.8% delisting).

Based on these insights, we compose our customer workload by

assigning equal weights to all query types and con�guring their

record selections to follow a Zipf distribution.
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Workload Purpose Operations Default Default
Weights Distrib.

Controller

Management and

administration of

personal data

create-record 25%

Uniformdelete-record-by-{pur|ttl|usr} 25%

update-metadata-by-{pur|usr|shr} 50%

Customer
Exercising

GDPR rights

read-data-by-usr 20%

Zipf

read-metadata-by-key 20%

update-data-by-key 20%

update-metadata-by-key 20%

delete-record-by-key 20%

Processor
Processing of

personal data

read-data-by-key 80% Zipf

read-data-by-{pur|obj|dec} 20% Uniform

Regulator

Investigation and

enforcement of

GDPR laws

read-metadata-by-usr 46%

Zipfget-system-logs 31%

verify-deletion 23%

(a) Core Workloads

GDPR
Workloads

Controller, Customer
Processor, Regulator

Core Infrastructure

DBMS Systems

DB Interface Layer
PostgreSQL, Redis, 30 Others

Workload 
Executor
Core, GDPR

Runtime Engine
Threads, Stats

Core
Workloads

A  B  C  
D  E  F

. . .

. . .

(b) Architecture

Figure 2: GDPRbench core workloads (a), and its architecture (b). �e table describes the high-level purpose of each workload
along with its composite queries and their default parameters. We select these defaults based on GDPR properties, data from
EU regulators, and usage patterns from industry. �e architecture diagram shows the components of YCSB that we reused in
gray and our GDPR-speci�c extensions in blue.

Regulator. �e role of the regulator is to investigate and enforce

the GDPR laws. In case of data breaches or systematic compliance

violations, the regulator would summon access to detailed system

logs for the period of interest. In case of privacy rights violation of

individual customers, they would seek access to the GDPR meta-

data associatedwith that particular customer. However, regulators

do not need access to any personal data.

To calibrate the regulator workload, we inspect the European

Data Protection Board’s summary [18] of the �rst 9 months of

GDPR roll out. It reports that the supervisory authorities received

206326 complaints EU-wide. Out of these, 94622 (46%) were di-

rect customer complaints concerning their privacy rights, 64684

(31%) were voluntary data breach noti�cations from controllers,

and the rest (23%) were statutory inquiries against multinational

companies, and complaints by non-government and civil rights

organizations. We set the weights of regulator queries to match

the percentages from this report. Next, in line with the Google

RTBF experience, we expect the rights violations and compliance

complaints to follow a Zipf distribution.

Processor. �e processor, working on behalf of a controller, per-

forms a well-de�ned set of operations on personal data belong-

ing to that controller. While this role is commonly external, say a

cloud provider, the law also allows controllers to be processors for

themselves. In either case, the processor workload is restricted to

read operations on personal data.

We compose the processor workload to re�ect both existing and

emerging access pa�erns. For the former, we refer to the �ve

representative cloud application workloads identi�ed by YCSB, as

shown in Table–3. While some operations (like updates and in-

serts) are not permi�ed for processors, their access pa�erns and

record distributions are still relevant. For the emerging category,

we rely on our GDPR analysis, which identi�es access pa�erns

conditioned on metadata a�ributes like purpose and objection.

Since this is still an emerging category, we limit its weight to 20%.

4.2.3 Benchmark Metrics
We identify three metrics that provide a foundational charac-

terization of a database’s GDPR compliance: correctness against

GDPR workloads, time taken to respond to GDPR queries, and the

storage space overhead.

Correctness. We de�ne correctness as the percentage of query

responses that match the results expected by the benchmark. �is

number is computed cumulatively across all the four workloads. It

is important to note that correctness as de�ned by GDPRbench is a

necessary but not su�cient condition for the database to be GDPR

compliant. �is is because GDPR compliance includes multitude

of issues including data security, breach noti�cation, prior consul-

tation and others that cover the whole lifecycle of personal data.

However, the goal of this metric is to provide a basic validation for

a database’s ability to implement metadata-based access control.

Completion time. �is metric measures the time taken to com-

plete all the GDPR queries, and we report it separately for each

workload. For majority of GDPR workloads, completion time is

more relevant than the traditional metrics like latency. �is is be-

cause GDPR operations embody the rights and responsibilities of

the involved actors, and thus, their utility is reliant upon com-

pleting the operation (and not merely starting them). �is is also

re�ective of the real world, where completion time gets reported

more prominently than any other metric. For e.g., Google cloud

guarantees that any request to delete a customer’s personal data

would be completed within 180 days.

Space overhead. It is impossible for a database to comply with

the regulations of GDPR without storing large volumes of meta-

data associated with personal data (a phenomenon described in

Section-3.1 as metadata explosion). Since the quantity of meta-

data overshadows that of personal data, it is an important metric

to track. GDPRbench reports this metric as the ratio of total size of

the database to the total size of personal data in it. �us, by de�ni-
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tion, it will always be a rational number >1. As a metric, storage

space overhead is complementary to completion time since opti-

mizing for one will likely worsen the other. For example, database

applications can reduce the storage space overhead by normaliz-

ing the metadata. However, this will increase the completion time

of GDPR queries by requiring access to multiple tables.

4.3 Architecture and Implementation
We build GDPRbench by adapting and extending YCSB. �is

choice was driven by two factors. First, YCSB is an open-source

benchmarkwith amodular design, making it easy to reuse its com-

ponents and to build new ones on top of it. Second, it is a modern

benchmark (released in 2010) and has a widespread community

adoption with support for 30+ database and storage systems.

Benchmark architecture. Figure–2b shows the core infrastruc-

ture components of YCSB (in gray), and our modi�cations and ex-

tensions (in blue). Like the core workloads of YCSB, we create new

GDPR workloads that describe the GDPR queries and proportions

for GDPR roles (in Table–2). Inside YCSB core infrastructure, we

modify the workload engine to parse the GDPR queries and trans-

late them to generic database operations. Note that we reuse the

YCSB runtime engine that manages threads and statistics. All of

our core infrastructure changes were done in ∼1300 LoC.
Database Clients. �ese modules translate the generic storage

queries into native APIs that could be understood by the given

database. �ey are also useful for implementing any missing fea-

tures or abstractions as well as converting input data into for-

mats suitable for database ingestion. �ough YCSB already has

client stubs for 30+ database systems, the new requirements of

GDPRbenchmeant that we had to re-implement parts of Redis and

JDBC stubs. In our client stubs, we retained the native data repre-

sentation of the target databases: key-value format for Redis, and

table format for the other two RDBMS. Our Redis client includes

support for new GDPR queries, and a metadata-based access con-

trol. We implemented these changes in ∼400 lines of Java code.
Extensions and Con�gurability. GDPRbench retains the same

level of extensibility and con�gurability as YCSB. For example,

adding support for a new database simply requires adding a new

client stub. Similarly, its con�guration �le allows modifying the

workload characteristics, runtime parameters, and scale of data to

be�er suit the testing environment.

5. GDPR-COMPLIANT DBMS
Our goal is to present a case study of retro��ing current gen-

eration systems to operate in a GDPR world. Accordingly, we se-

lect three widely used database systems: Redis [13], an in-memory

NoSQL store, PostgreSQL [12], a fully featured RDBMS, and an

commercial enterprise-grade RDBMS that we call System-C
3

. �is

choice is representative of database organization (SQL vs. NoSQL),

design philosophies (fully featured vs. minimalist), development

methodology (open-source vs. commercial), and deployment en-

vironments. In turn, this diversity helps us generalize our �nd-

ings with greater con�dence. Our e�ort to transform Redis, Post-

greSQL, and System-C into GDPR compliance is largely guided by

the recommendations in their o�cial blogs [20, 12], and other ex-

periences from real-world deployments. While Table-2 succinctly

represents the native support levels for GDPR security features in

these three systems, we describe these and our modi�cations in

detail below.

3

since we do not have the necessary licence to publicly share the bench-

mark results of this system, we anonymize its name.

Table 2: Native support for GDPR security features. Par-
tial support is when the native feature had to be aug-
mented with third-party libraries and/or code changes to
meet GDPR requirements.

Redis PostgreSQL System-C

TTL Partial No No

Encryption No Partial Full

Auditing Full Full Full

Metadata indexing No Full Full

Access control No Full Full
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Figure 3: Microbenchmark: (a) Redis’ delay in erasing the
expired keys beyond their TTL as DB size is increased, and
(b) PostgreSQL’s performance worsens signi�cantly as sec-
ondary indices are introduced.

Redis. From amongst the features outlined in Section-3, Redis

fully supports monitoring; partially supports timely deletion; but

o�ers no native support for encryption, access control, and meta-

data indexing. In lieu of natively extending Redis’ limited security

model, we incorporate third-party modules for encryption. For

data at rest, we use the Linux Uni�ed Key Setup (LUKS) [10], and

for data in transit, we set up transport layer security (TLS) us-

ing Stunnel [14]. We defer access control to DBMS applications,

and in our case, we extend the Redis client in GDPRbench to en-

force metadata-based access rights. Next, while Redis o�ers sev-

eral mechanisms to generate audit logs, we determine that piggy-

backing on append-only-�le (AOF) results in the least overhead.

However, since AOF only records the operations that modify Re-

dis’ state, we update its internal logic to log all interactions includ-

ing reads and scans.

Finally, though Redis o�ers TTL natively, it su�ers from inde-

terminism as it is implemented via a lazy probabilistic algorithm:

once every 100ms, it samples 20 random keys from the set of keys

with expire �ag set; if any of these twenty have expired, they are

actively deleted; if less than 5 keys got deleted, then wait till the

next iteration, else repeat the loop immediately. �us, as percent-

age of keys with associated expire increases, the probability of

their timely deletion decreases. To quantify this delay in erasure,

we populate Redis with keys having expiry times. �e time-to-live

values are set up such that 20% of the keys will expire in short-

term (5 minutes) and 80% in the long-term (5 days). Figure– 3a

then shows the time Redis took to completely erase the short-term

keys a�er 5 minutes have elapsed. As expected, the time to era-

sure increases with the database size. For example, when there are

128k keys, clean up of expired keys (∼25k of them) took nearly 3
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Table 3: YCSB workload patterns

Workload Operation Application

Load 100% Insert Bulk DB insert

A 50/50% Read/Update Session store

B 95/5% Read/Update Photo tagging

C 100% Read User pro�le cache

D 95/5% Read/Insert User status update

E 95/5% Scan/Insert �readed conversation

F 100% Read-Modify-Write User activity record

hours. To support a stricter compliance, we modify Redis to iter-

ate through the entire list of keys with associated EXPIRE. �en,

we re-run the same experiment to verify that all the expired keys

are erased within sub-second latency for sizes of up to 1M keys.

PostgreSQL. As a feature-rich RDBMS, PostgreSQL o�ers full na-

tive support to three of the �ve GDPR features. For encryption

of data at rest, PostgreSQL does not natively support column/�le-

level encryption, so we set up LUKS externally. For encryption

of data in transit, we setup SSL in verify-CA mode. Logging is

enabled by using the built-in csvlog in conjunction with row-

level security policies that record query responses. Next, we cre-

ate metadata indexing via the built-in secondary indices. As with

Redis, we enforce metadata-based access control in the external

client of GDPRbench. Finally, since PostgreSQL does not o�er na-

tive support for time-based expiry of rows, wemodify theINSERT
queries to include an expiry timestamp and then implement a dae-

mon that checks for expired rows periodically (currently set to 1s).

To e�ciently support GDPR queries, an administrator would

likely con�gure secondary indices for GDPR metadata. Interest-

ingly, while PostgreSQL natively supports secondary indices, we

observe that its performance begins to drop signi�cantly when the

number of such indices increases as shown in Figure–3b. Using the

built-in pgbench tool, we measure throughput on the Y-axis, and

the number of secondary indices created on the X-axis. We run

this pgbench experiment with a DB size of 15GB, a scale factor

of 1000, and with 32 clients. Just introducing two secondary in-

dices, for the widely used metadata criteria of purpose and user-id,
reduces PostgreSQL’s throughput to 33% of the original.

System-C. Amongst the three, this o�ers the best level of sup-

port for GDPR. We implement TTL, the only missing feature, us-

ing the same mechanism as in PostgreSQL. For encryption, it sup-

ports Transparent Data Encryption, which encrypts the database

tablespaces internally without relying on the OS/�le system level

encryption like LUKS. �is is more secure since LUKS based en-

cryption could allow not just the DB engine but all other applica-

tions running on the same server, an unencrypted access to the DB

�les. Next, we set up real-time monitoring and logging by con�g-

uring the built-in audit trail feature. Speci�cally, our microbench-

marks indicate that continuously streaming the generated logs to a

pre-designated directory works up to 3× faster than saving them

in the database. Finally, we con�gure secondary indices to im-

prove performance for metadata-based queries of GDPRbench.

Key Takeaways. Introducing GDPR compliance in Redis, Post-
greSQL, and System-C was not an arduous task: Redis needed 120
lines of code changes; PostgreSQL, about 30 lines of scripting; and
System-C, mostly con�guration changes. We accomplished all of
our modi�cations, con�guration changes, and microbenchmarking
in about two person-months. However, as our compliance e�ort
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Figure 4: Performance degradation a�er introducing GDPR
features, with bars indicating performance relative to the
baseline, and absolute numbers reported for the combined
con�guration. Our evaluation shows that when all features
are enabled (solid bar), Redis experiences an overhead of 5×,
PostgreSQL 2×, and System-C 2-3×.

shows, the administrators should look beyond the binary choice of
whether or not a GDPR feature is supported, and analyze if a given
implementation meets the expected GDPR standards.

6. EVALUATION
We evaluate the impact of GDPR on database systems by an-

swering the following questions:

• What is the overhead of GDPR features on traditional work-

loads? (in Section-6.1)

• How do compliant database systems perform against GDPR

workloads? (in Section-6.2)

• How does the scale of personal data impact performance? (in

Section-6.3)

Approach. To answer these questions, we use the GDPR compli-

ant Redis, PostgreSQL, and System-C described in Section-5. For

benchmarking against traditional workloads, we use the industry

standard Yahoo Cloud Serving Benchmark [22], and for bench-

marking against realistic GDPR workloads, we use GDPRbench.
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Figure 5: Running GDPRbench workloads on compliant versions of Redis, PostgreSQL and System-C.We see that PostgreSQL
and System-C are an order of magnitude faster than Redis against GDPR workloads.

Experimental setup. We perform all our experiments on the

Chameleon Cloud [30]. �e database systems are run on a dedi-

cated Dell PowerEdge FC430 with 40-core Intel Xeon 2.3GHz pro-

cessor, 64 GB RAM, and 400GB Intel DC-series SSD. We choose

Redis v5.0 (released March 18, 2019), PostgreSQL v9.5.16 (released

Feb 14, 2019), System-C (released in 2017), and YCSB 0.15.0 (re-

leased Aug 14, 2018) as our reference versions.

6.1 Overheads of Compliance
Our goal is to quantify the performance overhead of GDPR com-

pliance by using the industry standard YCSB [22]. As shown in

Table–3, YCSB comprises of 6 workloads, named A through F, that

represent di�erent application pa�erns. For this experiment, we

run YCSB with 16 threads; con�gure it to load 2M records and

perform 2M operations in each workload category.

Redis. Figure–4a shows the YCSB workloads on the X-axis and

Redis’ throughput on the Y-axis for each of the newly introduced

GDPR security features. We normalize all the values to a base-

line version of Redis that has no security or persistence. We see

that encryption reduces the throughput by ∼10%, TTL modi�ca-

tion brings it down by∼20%, and AoF-based logging (persisted to
disk once every second) slows the performance by ∼70%. Since
Redis is an in-memory datastore, requiring it to persist AoF to the

disk synchronously results in a signi�cant slowdown. Given that

these GDPR features a�ect all types of queries: read, update, and

insert, the performance drops are fairly consistent across all types

of YCSB workloads. Finally, when all the features are enabled in

tandem, Redis experiences a slowdown of 5×.
PostgreSQL. Next, Figure–4b shows PostgreSQL performance.

PostgreSQL experiences 10-20% degradation due to encryption

and TTL checks, while logging incurs a 30-40% overhead. When

all features are enabled in conjunction, PostgreSQL slows down

by a factor of 2× of its baseline performance. �e graph also

demonstrates that the e�ect of GDPR on PostgreSQL is not as

pronounced as in the case of Redis. However, in terms of raw

throughput, Redis still outperforms PostgreSQL since the former

is in-memory datastore compared to the disk-based PostgreSQL.

System-C. Lastly, we show System-C’s performance in Figure–4c.

We observe that System-C’s baseline throughput is ∼2× be�er

than PostgreSQL, and internally, its write throughput is slightly

be�er than its read throughput. In terms of overheads, encryption

and TTL induce 10-20% slowdown, but auditing causes a much

steeper drop of 30-50%. �is is surprising since System-C’s audit

Table 4: Storage space overhead corresponding to Figure–
5. In the default con�guration, GDPRbench has 25 bytes of
metadata attributes for a 10 byte personal data record.

Personal data

size (MB)

Total DB

size (MB)

Space

factor

Redis 10 35 3.5×
PostgreSQL 10 59.5 5.95×

trail natively supports the type of extensive logging required by

GDPR. Cumulatively, these features result in a performance degra-

dation of 2-3× compared to its baseline.

Workload E. All three systems experienced drastic overhead in

supporting range queries. In contrast to other workloads that �n-

ished in the order of seconds to minutes, Workload E took tens

of hours, underscoring the challenges of implementing complex

queries under GDPR se�ings. We omit the Workload E results as

they would require weeks to obtain; at this point, we note that

implementing range queries in an e�cient manner under GDPR

constraints is a signi�cant challenge. Note that YCSB workloads

do not exercise access control or metadata indexing, but the GDPR

workloads in the next section will incorporate these two.

Summary. �e security features introduced a�ect all read and
write operations, resulting in reduced performance. Features such as
logging can result in signi�cant performance degradation, making
GDPR compliance challenging for production environments.

6.2 GDPR Workloads
In this section, our goal is to quantify how compliant Redis,

PostgreSQL, and System-C perform against real-world GDPR

workloads. A major di�erence between YCSB and GDPRbench

workloads is that GDPRbench mostly consists of metadata-based

queries as opposed to primary-key based queries of YCSB. Most

YCSB queries return single record associated with one primary

key. In contrast, GDPR queries such as “get all metadata associated

with a user’s records” can return a large number of records. As a

result, GDPR queries obtain lower throughput than YCSB queries.

Cognizant of this characteristic, we con�gure GDPRbench to load

100K personal records, and perform 10K operations for each of its

four workloads. Note how these numbers are one to two orders

of magnitude lower than the YCSB con�guration in Section–6.1.
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Figure 6: Time taken by Redis to complete 10K operations
as the volume of data stored in the DB increases. For the
traditional workload in (a), Redis’ performance is only gov-
erned by the number of operations, and thus remains virtu-
ally constant across four orders of magnitude change in DB
size. However, for GDPR workload in (b), the completion
time linearly increases with the DB size.

We use the default proportion of workload queries and record

distributions as speci�ed in Table–2, and run it with 8 threads.

Redis. Figure–5a shows Redis’ completion time along Y-axis, and

the GDPRbench workloads along the X-axis. As expected, the pro-

cessor workload runs the fastest given its heavy skew towards

non-metadata based operations. In comparison, all other work-

loads are 2-4× slower, with the controller and regulator workloads

taking the longest. �is is because, the customer workload simply

deals with the records of a given customer, whereas the controller

and regulator queries touch records across all customers. Table–

4 benchmarks the storage overhead. In the default con�guration,

we see a space overhead ratio of 3.5 i.e., on average every byte of

personal data inserted causes the storage size to grow by 3.5 bytes.

PostgreSQL. Next, Figure–5b shows the corresponding baseline

compliance graph for PostgreSQL. Right away, we see that the

completion times are an order of magnitude faster than Redis for

all the workloads, while holding similar trends across the four

workloads. Our pro�ling indicates that PostgreSQL, being an

RDBMS, is be�er at supporting complex queries e�ciently. Post-

greSQL’s performance is also bolstered (by ∼30%) by the use of

secondary indices for the metadata. However, adding these extra

indices increase the storage space overhead from 3.5× to 5.95× as

outlined in Table–4.

System-C. Figure–5c shows System-C’s performance against

GDPR workloads. Since GDPR-compliant System-C came out

slightly worse than PostgreSQL in our setup (as discussed in

Section–6.1), many GDPR workloads have taken longer to com-

plete in System-C than PostgreSQL. However, interestingly, since

the GDPR workload sizes are smaller (10MB) compared to the

YCSB workloads (2GB), System-C’s built-in query result cache

was able to signi�cantly improve the performance of read-only

workloads such as the processor.

Summary. GDPRbench re�ects the challenges of supporting GDPR
workloads on retro��ed compliant systems. While all systems expe-
rience signi�cant degradation in their performance compared to tra-
ditional workloads, our evaluation shows that feature-rich RDBMS
like PostgreSQL performs be�er than NoSQL stores like Redis.

6.3 Effect of Scale
Finally, we explore how an increase in the scale of data a�ects

the systems. In particular, we structure this experiment to re�ect a

 0

 1

 2

 3

 4

 5

1 M
B

10 M
B

100 M
B

1 G
B

10 G
B

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Database size

(a) YCSB Workload-C

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 M
B

200 M
B

300 M
B

400 M
B

500 M
B

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
in

s
)

Database size

(b) GDPRbench Customer

Figure 7: Time taken by PostgreSQL to complete 10K oper-
ations as the DB size scales. Expectedly, PostgreSQL’s per-
formance remains constant for traditional workloads in (a).
However, unlike in Redis (Figure-6a), PostgreSQL’s GDPR
performance worsens only moderately thanks to its use of
metadata indices.

scenario where a company acquires new customers, thus increas-

ing the volume of data in the DB. However, the data of the ex-

isting customers remain unchanged. �is experiment then mea-

sures how Redis and PostgreSQL perform for queries concerning

the original set of customers. We lay out experiments in two di�er-

ent contexts: �rst, when the database contains non-personal data,

we run YCSB workloads; second, when the database contains per-

sonal data, we use GDPRbench customer workload. In both cases,

we scale the volume of data within the database but perform the

same number of operations at every scale. For both GDPR and tra-

ditional workloads, we use identical underlying hardware, same

version of GDPR-compliant Redis and PostgreSQL so�ware, and

retain the same con�guration as in Section–6.1.

Redis. We seed Redis store with 1MB worth of data and perform

10K operations using YCSB workload-C. Figure-6a shows that Re-

dis takes almost identical time to complete 10K operations, despite

increasing the database volume by four orders of magnitude. �is

is not unexpected as Redis supports e�cient, constant-time CRUD

operations. However, when we switch from this traditional work-

load to a GDPR workload, Figure-6b paints a di�erent picture. In

this graph, we linearly increase the volume of personal data from

100 to 500MB, and we see a corresponding linear increase in the

completion time. �is indicates that the completion time is not

only a function of the number of operations but also the size of

the database. In hindsight, this is not completely unexpected as

metadata based queries require O(n) access, especially in absence

of secondary indices.

PostgreSQL. Next, we conduct the same scale experiment on

PostgreSQL, which has support for secondary indices. While

PostgreSQL’s performance for YCSB (shown in Figure-7a) is ex-

pectedly similar to that of Redis, its response to GDPR workload

(shown in Figure-7b) is much be�er than that of Redis. While

PostgreSQL is still a�ected by the increase in DB size, the impact

on its performance is muted. Our pro�ling indicates that this

is largely due to secondary indices speeding up metadata based

queries. But as the DB size increases, the overhead of maintain-

ing multiple secondary indices does introduce some performance

degradation.

Summary. Current generation database systems do not scale well
for GDPR workloads. PostgreSQL with metadata indexing fares bet-
ter than Redis, but still experiences some performance degradation
as the amount of personal data increases.
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7. DISCUSSION
Our experiments and analyses identify several implications for

administering GDPR-compliant database systems in the real world

and research challenges emerging from it. We discuss them below.

Compliance may result in high performance overheads.
Our work demonstrates that introducing GDPR compliance into

modern database systems is straight-forward, ranging fromminor

code changes in open-source systems, to simple con�gurations in

enterprise level systems. However, in all these case, the resulting

performance degradation of 2-5× (in Section-6.1) raises funda-

mental questions of compliance-e�ciency tradeo�s. Database

engineers and administrators should carefully analyze the per-

formance implications of any compliance e�orts, especially in

production environments. For instance, recommendations from

cloud providers such as Amazon Web Services [48], Microso�

Azure [37], and Google Cloud [7] primarily focus on checklist

of security features without much a�ention to their performance

implications.

Compliant systems experience challenges at scale. A key

takeaway from our scale experiments (in Section-6.3) is that naive

e�orts at achieving GDPR compliance results in poor scalability.

Increasing the volume of personal data, even by modest amounts,

makes it challenging to respond to customer’s GDPR rights in a

timely manner, or even to comply with GDPR responsibilities in

real-time. �us, consideration for scale ought to be an important

factor in any compliance e�ort.

Additionally, GDPR quells the notion that personal data, once

collected, is largely immutable. In light of GDPR’s right to be for-
go�en and right to recti�cation, customers are allowed to exercise

much greater control over their personal data. Consequently, tra-

ditional solutions to scale problems like replication and sharding

would likely incur extra overheads than before. It might be worth

investigating the bene�ts of a GDPR co-processor.

Compliance is easier in RDBMS than NoSQL. We observe

that achieving compliance is simpler and e�ective with RDBMSs

than NoSQL stores. In our case, Redis needed two changes at the

internal design level as opposed to PostgreSQL and commercial-

RDBMS, which only needed con�guration changes and external

scripting. Even from a performance point of view, the drop is

steeper in high-performant Redis as compared to the RDBMSs.

We hope our �ndings encourage designers and maintainers of all

categories of database systems to reevaluate their design choices,

optimization goals, and deployment scenarios in the light of pri-

vacy regulations like GDPR.

GDPR is strict in principle yet �exible in practice. �ough

GDPR is clear in its high-level goals, it is intentionally vague in its

technical speci�cations. Consider G 17 that requires controllers

to erase personal data upon request by the customer. It does not

specify how soon a�er the request should the data be removed. Let

us consider its implications in the real world: Google cloud, which

claims GDPR-compliance, describes the deletion of customer data

as an iterative process [6] that could take up to 180 days to fully

complete. Such �exibility also exists for the strength of encryption

algorithms, duration for preservation of audit trails, etc.

�is �exibility in GDPR interpretation allows compliance to be

treated more like a spectrum instead of a �xed target. Database

engineers and administrators could use GDPRbench to explore the

tradeo� between strict compliance vs. high performance. We note

that compliance e�orts could go beyond our choices of reusing the

existing features and stickingwith the default data layouts in order

to improve performance. For example, GDPR metadata a�ributes

could be shared between related groups of data, be stored in a sep-

arate table, be normalized across multiple records, or be cached in

the application to reduce the storage overhead and access latency.

Research challenges. Our evaluations show that trivially ex-

tending the existing mechanisms and policies to achieve compli-

ance would result in signi�cant performance overheads. We ob-

serve two common sources of this: (i) retro��ing new features

when they do not align with the core design principles. For ex-

ample, adding to Redis’ minimalist security model, and (ii) using

features in ways that are not intended by their designers. For ex-

ample, enabling continuous auditing in a production environment.

We identify three key challenges that must be addressed to achieve

compliance e�ciently: e�cient auditing, e�cient time-based dele-
tion, and e�cient metadata indexing.

8. RELATED WORK
A preliminary version of this analysis appeared [40] in a work-

shop. To the best of our knowledge, this work is one of the �rst

to analyze the impact of GDPR on database systems. While there

have been a number of recent work analyzing GDPR from pri-

vacy and legal perspectives [35, 28, 47, 15, 44, 19, 45, 25, 29],

the database and systems communities are just beginning to get

involved. DatumDB [32] proposes an architectural vision for a

database that natively supports guaranteed deletion and consent

management. Compliance by construction [39] envisions new

database abstractions to support privacy rights. In contrast, we

focus on the challenges that existing DBMS face in complying

with GDPR, and design a benchmark to quantify its impact.

Orthogonal to our focus, researchers are working on imple-

menting and analyzing individual GDPR articles end-to-end. For

example, Google researchers [17] have chronicled their expe-

riences implementing the Right to be Forgo�en for their search

service. Two groups of researchers from Oxford University an-

alyzed [27, 46] how GDPR’s right to explanation impacts the

design of machine learning and arti�cial intelligence systems. Fi-

nally, there is a wealth of blog posts that describe how to achieve

GDPR compliance for popular database systems including Mon-

goDB [31], CockroachDB [33], Redis [20], Oracle [36], and Mi-

croso� SQL [4].

9. CONCLUSION
�is work analyzes GDPR from a database systems perspective.

We discover the phenomenon of metadata explosion, identify new

workloads of GDPR, and design a new benchmark for quantify-

ing GDPR compliance. We �nd that despite needing to implement

a modest number of changes to storage systems, GDPR compli-

ance results in signi�cant performance overheads. Our analyses

and experiments identify several implications for administering

GDPR-compliant database systems in the real world. We hope that

GDPRbench would be useful for customers, controllers, and regu-

lators in interpreting the compliance level of storage systems, and

helpful for database designers in understanding the compliance-

performance tradeo�.

Acknowledgments. We would like to thank our anonymous

reviewers, and members of the LASR group and the Systems

and Storage Lab at UT Austin for their feedback and guidance.

�is work was supported by generous donations from VMware,

Google, and Facebook. Vinay’s work has been supported by a Re-

portBee Remote Fellowship. Any opinions, �ndings, conclusions,

or recommendations expressed herein are those of the authors;

these should neither be interpreted as legal advice nor as re�ective

of the views of their host institutions.

1075



10. REFERENCES
[1] Family Educational Rights and Privacy Act. Title 20 of the

United States Code, Section 1232g, Aug 21 1974.

[2] �e Health Insurance Portability and Accountability Act.

104th United States Congress Public Law 191, Aug 21 1996.

[3] Regulation (EU) 2016/679 of the European Parliament and of

the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and

on the free movement of such data, and repealing Directive

95/46. O�cial Journal of the European Union, 59(1-88), 2016.
[4] Guide to Enhancing Privacy and Addressing GDPR

Requirements with the Microso� SQL Platform. Technical

report, Microso�, May 1 2017.

[5] California Consumer Privacy Act. California Civil Code,
Section 1798.100, Jun 28 2018.

[6] Data Deletion on Google Cloud Platform.

h�ps://cloud.google.com/security/deletion/, Sep 2018.

[7] Google Cloud and the GDPR. Technical report, Google Inc.,

May 2018.

[8] Amazon Macie. h�ps://aws.amazon.com/macie/, Accessed

Jan 31 2019.

[9] AWS Service Capabilities for Privacy Considerations.

h�ps://aws.amazon.com/compliance/data-privacy/service-

capabilities/, Accessed Mar 31 2019.

[10] Cryptsetup and LUKS - open-source disk encryption.

h�ps://gitlab.com/cryptsetup/cryptsetup, Accessed Jan

2019.

[11] IAPP-EY Annual Privacy Governance Report 2018.

Technical report, International Association of Privacy

Professionals, Accessed Mar 31 2019.

[12] PostgreSQL: �e World’s Most Advanced Open Source

Relational Database. h�ps://www.postgresql.org/, Accessed
Mar 31 2019.

[13] Redis Data Store. h�ps://redis.io, Accessed Jan 2019.

[14] Stunnel. h�ps://www.stunnel.org, Accessed Jan 2019.

[15] D. Basin, S. Debois, and T. Hildebrandt. On Purpose and by

Necessity: Compliance under the GDPR. In Financial
Cryptography and Data Security, 2018.

[16] J. Ben-Avie. India should look to Europe as its model for

data privacy. In Financial Times. h�ps://www.�.com/

content/56ec37c8-39c0-11e9-9988-28303f70fc�, Mar 4 2019.

[17] T. Bertram, E. Bursztein, S. Caro, H. Chao, R. Chin,

P. Fleischer, A. Gustafsson, J. Hemerly, C. Hibbert,

L. Invernizzi, L. Kammourieh, J. Ketover, J. Laefer,

P. Nicholas, Y. Niu, H. Obhi, D. Price, A. Strait, K. �omas,

and A. Verney. Five years of the right to be forgo�en. In

ACM CCS, 2019.
[18] E. D. P. Board. EDPB: First Year GDPR - taking stock. In

EDPB News. h�ps://edpb.europa.eu/news/news/2019/1-
year-gdpr-taking-stock en, May 22 2019.

[19] B. Casey, A. Farhangi, and R. Vogl. Rethinking Explainable

Machines: �e GDPR’s Right to Explanation Debate and the

Rise of Algorithmic Audits in Enterprise. Berkeley
Technology Law Journal, 34:143, 2019.

[20] B. Cihan. Securing Redis with Redis Enterprise for

Compliance Requirements In Redis Labs Blog.
h�ps://redislabs.com/blog/securing-redis-with-redis-

enterprise-for-compliance-requirements/, Jan 10 2018.

[21] K. Conger. How to Download Your Data With All the Fancy

New GDPR Tools. In Gizmodo.
h�ps://gizmodo.com/how-to-download-your-data-with-

all-the-fancy-new-gdpr-t-1826334079, May 25 2018.

[22] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking Cloud Serving Systems with YCSB.

In ACM SoCC, 2010.
[23] J. Davies. GDPR Mayhem: Programmatic Ad Buying

Plummets in Europe. In Digiday.
h�ps://digiday.com/media/gdpr-mayhem-programmatic-

ad-buying-plummets-europe/, May 25 2018.

[24] J. Davies. A�er GDPR, �e New York Times cut o� ad

exchanges in Europe. In Digiday.
h�ps://digiday.com/media/new-york-times-gdpr-cut-o�-

ad-exchanges-europe-ad-revenue/, Jan 16 2019.

[25] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub,

and T. Holz. We Value Your Privacy… Now Take Some

Cookies: Measuring the GDPR’s Impact on Web Privacy. In

NDSS, 2019.
[26] A. A. Forni and R. van der Meulen. Organizations Are

Unprepared for the 2018 European Data Protection

Regulation. In Gartner , May 2017.

[27] B. Goodman and S. Flaxman. European Union Regulations

on Algorithmic Decision-Making and a Right to

Explanation. AAAI AI Magazine, 38(3), 2017.
[28] S. Greengard. Weighing the Impact of GDPR.

Communications of the ACM, 61(11):16–18, 2018.

[29] F. Kammueller. Formal Modeling and Analysis of Data

Protection for GDPR Compliance of IoT Healthcare

Systems. In IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 2018.

[30] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill,

J. Mambre�i, P. Rad, and P. Ruth. Chameleon: a Scalable

Production Testbed for Computer Science Research. In

Contemporary High Performance Computing: From Petascale
toward Exascale, volume 3 of Chapman and Hall/CRC
Computational Science, chapter 5. CRC Press, 1 edition, 2018.

[31] M. Keep. GDPR: Impact to Your Data Management

Landscape In MongoDB Blog.
h�ps://www.mongodb.com/blog/post/gdpr-impact-to-

your-data-management-landscape-part-1, Aug 29 2017.

[32] T. Kraska, M. Stonebraker, M. Brodie, S. Servan-Schreiber,

and D. Weitzner. DATUMDB: A Data Protection Database

Proposal . In Poly’19 co-located at VLDB 2019, 2019.
[33] S. Loiselle. What does GDPR compliance mean for my

database? In Cockroach Labs Blog.
h�ps://www.cockroachlabs.com/blog/gdpr-compliance-

for-my-database/, July 10 2018.

[34] I. Lunden. UK’s ICO �nes British Airways a record 183M

over GDPR breach that leaked data from 500000 users In

TechCrunch. h�ps://techcrunch.com/2019/07/08/uks-ico-

�nes-british-airways-a-record-183m-over-gdpr-breach-

that-leaked-data-from-500000-users/, July 8th 2019.

[35] J. Mohan, M. Wasserman, and V. Chidambaram. Analyzing

GDPR Compliance �rough the Lens of Privacy Policy . In

Poly’19 co-located at VLDB 2019, 2019.
[36] D. Rajasekharan. Accelerate Your Response to GDPR: Using

Oracle Database Security Products. Technical report,

Oracle, Jan 1 2017.

[37] A. Rayani. Safeguard individual privacy rights under GDPR

with the Microso� intelligent cloud. In Microso� 365 Blog,
May 25 2018.

[38] A. Satariano. Google is �ned $57 Million Under Europe’s

Data Privacy Law. In�e New York Times.
h�ps://www.nytimes.com/2019/01/21/technology/google-

1076

https://cloud.google.com/security/deletion/
https://aws.amazon.com/macie/
https://aws.amazon.com/compliance/data-privacy/service-capabilities/
https://aws.amazon.com/compliance/data-privacy/service-capabilities/
https://gitlab.com/cryptsetup/cryptsetup
https://www.postgresql.org/
https://redis.io
https://www.stunnel.org
https://www.ft.com/content/56ec37c8-39c0-11e9-9988-28303f70fcff
https://www.ft.com/content/56ec37c8-39c0-11e9-9988-28303f70fcff
https://edpb.europa.eu/news/news/2019/1-year-gdpr-taking-stock_en
https://edpb.europa.eu/news/news/2019/1-year-gdpr-taking-stock_en
https://redislabs.com/blog/securing-redis-with-redis-enterprise-for-compliance-requirements/
https://redislabs.com/blog/securing-redis-with-redis-enterprise-for-compliance-requirements/
https://gizmodo.com/how-to-download-your-data-with-all-the-fancy-new-gdpr-t-1826334079
https://gizmodo.com/how-to-download-your-data-with-all-the-fancy-new-gdpr-t-1826334079
https://digiday.com/media/gdpr-mayhem-programmatic-ad-buying-plummets-europe/
https://digiday.com/media/gdpr-mayhem-programmatic-ad-buying-plummets-europe/
https://digiday.com/media/new-york-times-gdpr-cut-off-ad-exchanges-europe-ad-revenue/
https://digiday.com/media/new-york-times-gdpr-cut-off-ad-exchanges-europe-ad-revenue/
https://www.mongodb.com/blog/post/gdpr-impact-to-your-data-management-landscape-part-1
https://www.mongodb.com/blog/post/gdpr-impact-to-your-data-management-landscape-part-1
https://www.cockroachlabs.com/blog/gdpr-compliance-for-my-database/
https://www.cockroachlabs.com/blog/gdpr-compliance-for-my-database/
https://techcrunch.com/2019/07/08/uks-ico-fines-british-airways-a-record-183m-over-gdpr-breach-that-leaked-data-from-500000-users/
https://techcrunch.com/2019/07/08/uks-ico-fines-british-airways-a-record-183m-over-gdpr-breach-that-leaked-data-from-500000-users/
https://techcrunch.com/2019/07/08/uks-ico-fines-british-airways-a-record-183m-over-gdpr-breach-that-leaked-data-from-500000-users/
https://www.nytimes.com/2019/01/21/technology/google-europe-gdpr-fine.html


europe-gdpr-�ne.html, January 21st 2019.

[39] M. Schwarzkopf, E. Kohler, F. Kaashoek, and R. Morris.

GDPR Compliance by Construction. In Poly’19 co-located at
VLDB 2019, 2019.

[40] A. Shah, V. Banakar, S. Shastri, M. Wasserman, and

V. Chidambaram. Analyzing the Impact of GDPR on Storage

Systems. In USENIX HotStorage, 2019.
[41] S. Shastri, M. Wasserman, and V. Chidambaram. �e Seven

Sins of Personal-Data Processing Systems under GDPR. In

USENIX HotCloud, 2019.
[42] E. Sweeney. Many publishers’ EU sites are faster and ad-free

under GDPR. In Marketing Dive. h�ps:
//www.marketingdive.com/news/study-many-publishers-

eu-sites-are-faster-and-ad-free-under-gdpr/524844/, Jun 4

2018.

[43] E. Targe�. 6 Months, 945 Data Breaches, 4.5 Billion Records.

In Computer Business Review. h�ps:
//www.cbronline.com/news/global-data-breaches-2018,

Oct 9 2018.

[44] W. Tesfay, P. Hofmann, T. Nakamura, S. Kiyomoto, and

J. Serna. I Read but Don’t Agree: Privacy Policy

Benchmarking using Machine Learning and the EU GDPR.

In Companion Proceedings of the �e Web Conference 2018,
pages 163–166, 2018.

[45] C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz. (Un)

Informed Consent: Studying GDPR Consent Notices in the

Field. In ACM CCS, 2019.
[46] S. Wachter, B. Mi�elstadt, and L. Floridi. Why a Right to

Explanation of Automated Decision-Making Does Not Exist

in the GDPR. International Data Privacy Law, 7(2), 2017.
[47] S. Wachter, B. Mi�elstadt, and C. Russell. Counterfactual

Explanations Without Opening the Black Box: Automated

Decisions and the GDPR. Harvard Journal of Law &
Technology, 31:841, 2017.

[48] C. Woolf. All AWS Services GDPR ready. In AWS Security
Blog. h�ps://aws.amazon.com/blogs/security/all-aws-

services-gdpr-ready/, Mar 26 2018.

1077

https://www.nytimes.com/2019/01/21/technology/google-europe-gdpr-fine.html
https://www.marketingdive.com/news/study-many-publishers-eu-sites-are-faster-and-ad-free-under-gdpr/524844/
https://www.marketingdive.com/news/study-many-publishers-eu-sites-are-faster-and-ad-free-under-gdpr/524844/
https://www.marketingdive.com/news/study-many-publishers-eu-sites-are-faster-and-ad-free-under-gdpr/524844/
https://www.cbronline.com/news/global-data-breaches-2018
https://www.cbronline.com/news/global-data-breaches-2018
https://aws.amazon.com/blogs/security/all-aws-services-gdpr-ready/
https://aws.amazon.com/blogs/security/all-aws-services-gdpr-ready/

	Introduction
	Background
	GDPR Overview
	GDPR from a Database Perspective
	GDPR in the Wild

	Designing for Compliance
	Characterizing Personal Data
	Protecting Personal Data
	Interfacing with Personal Data
	Summary

	GDPRbench
	Why (a New) Benchmark?
	Benchmark Design
	Architecture and Implementation

	GDPR-Compliant DBMS
	Evaluation
	Overheads of Compliance
	GDPR Workloads
	Effect of Scale

	Discussion
	Related Work
	Conclusion
	References

