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Abstract
This work studies sparse adversarial perturbations
bounded by l0 norm. We propose a white-box
PGD-like attack method named sparse-PGD to
effectively and efficiently generate such perturba-
tions. Furthermore, we combine sparse-PGD with
a black-box attack to comprehensively and more
reliably evaluate the models’ robustness against
l0 bounded adversarial perturbations. Moreover,
the efficiency of sparse-PGD enables us to con-
duct adversarial training to build robust models
against sparse perturbations. Extensive experi-
ments demonstrate that our proposed attack algo-
rithm exhibits strong performance in different sce-
narios. More importantly, compared with other
robust models, our adversarially trained model
demonstrates state-of-the-art robustness against
various sparse attacks. Codes are available at
https://github.com/CityU-MLO/sPGD.

1. Introduction
Deep learning has been developing tremendously fast in the
last decade. However, it is shown vulnerable to adversarial
attacks: imperceivable adversarial perturbations (Szegedy
et al., 2013; Kurakin et al., 2016) could change the predic-
tion of a model without altering the input’s semantic con-
tent, which poses great challenges in safety-critical systems.
Among different kinds of adversarial perturbations, the ones
bounded by l∞ or l2 norms are mostly well-studied (Good-
fellow et al., 2014; Madry et al., 2017; Zhang et al., 2019c)
and benchmarked (Croce et al., 2020), because these adver-
sarial budgets, i.e., the sets of all allowable perturbations,
are convex, which facilitates theoretical analyses and algo-
rithm design. By contrast, we study perturbations bounded
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by l0 norm in this work. These perturbations are sparse
and quite common in physical scenarios, including broken
pixels in LED screens to fool object detection models and
adversarial stickers on road signs to make an auto-driving
system fail (Papernot et al., 2017; Akhtar & Mian, 2018; Xu
et al., 2019; Feng et al., 2022; Wei et al., 2023).

However, constructing l0 bounded adversarial perturbations
is challenging as the corresponding adversarial budget is
non-convex. Therefore, gradient-based methods, such as
projected gradient descent (PGD) (Madry et al., 2017), usu-
ally cannot efficiently obtain a strong adversarial perturba-
tion. In this regard, existing methods to generate sparse
perturbations (Modas et al., 2018; Croce & Hein, 2019b; Su
et al., 2019; Dong et al., 2020; Croce et al., 2022) either can-
not control the l0 norm of perturbations or have prohibitively
high computational complexity, which makes them inappli-
cable for adversarial training to obtain robust models against
sparse perturbations. The perturbations bounded by l1 norm
are the closest scenario to sparse perturbations among con-
vex adversarial budgets defined by an lp norm. Nevertheless,
adversarial training in this case (Tramer & Boneh, 2019;
Croce & Hein, 2021) still suffers from issues such as slow
convergence and instability. Jiang et al. (2023) demon-
strates that these issues arise from non-sparse perturbations
bounded by l1 norm. In other words, l1 adversarial budget
still cannot guarantee the sparsity of the perturbations. Thus,
it is necessary to study the case of l0 bounded perturbations.

In this work, we propose a white-box attack named sparse-
PGD (sPGD) to effectively and efficiently generate sparse
perturbations bounded by l0 norm. Specifically, we decom-
pose the sparse perturbation δ as the product of a magnitude
tensor p and a binary sparse mask m: δ = p⊙m , where
p and m determine the magnitudes and the locations of per-
turbed features, respectively. We adopt PGD-like algorithms
to update p and m. However, it is challenging to directly
optimize the binary mask m in the discrete space. We
thereby introduce an alternative continuous variable m̃ to
approximate m and update m̃ by gradient-based methods,
m̃ is then transformed to m by projection to the discrete
space. Due to the sparsity of m by the projection operator,
the gradient of p is sparse, which may lead to slow con-
vergence by coordinate descent. Therefore, we can remove
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the projection operator in the backpropagation to obtain the
unprojected gradient of p. We use both the original sparse
gradient and the unprojected gradient of p to boost the attack
performance. Moreover, we design a random reinitializa-
tion mechanism to enhance the exploration capability for the
mask m. On top of sPGD, we propose sparse-AutoAttack
(sAA), which is the ensemble of the white-box sPGD and
another black-box sparse attack, for a more comprehensive
and reliable evaluation against l0 bounded perturbations.
Through extensive experiments, we show that our method
exhibits better performance than other attacks.

More importantly, we explore adversarial training to obtain
robust models against sparse attacks. In this context, the
attack method will be called in each mini-batch update, so
it should be both effective and efficient. Compared with
existing methods, our proposed sPGD performs much better
when using a small number of iterations, making it feasi-
ble for adversarial training and its variants (Zhang et al.,
2019b). Empirically, models adversarially trained by sPGD
demonstrate the strongest robustness against various sparse
attacks.

We summarize the contributions of this paper as follows:

1. We propose an effective and efficient white-box attack
algorithm named sparse-PGD (sPGD) to generate l0
bounded adversarial perturbations.

2. sPGD achieves the best performance among white-box
sparse attacks. We then combine it with a black-box
sparse attack to construct sparse-AutoAttack (sAA) for
more comprehensive robustness evaluation against l0
bounded adversarial perturbations.

3. sPGD achieves much better performance in the regime
of limited iterations, it is then adopted for adversarial
training. Extensive experiments demonstrate that mod-
els adversarially trained by sPGD have significantly
stronger robustness against various sparse attacks.

2. Preliminaries
We use image classification as an example, although the
proposed methods are applicable to any classification model.
Under lp bounded perturbations, the robust learning aims to
solve the following min-max optimization problem.

min
θ

1

N

N∑
i=1

max
δi

L(θ,xi + δi),

s.t. ||δi||p ≤ ϵ, 0 ≤ xi + δi ≤ 1.

(1)

where θ denotes the parameters of the model and L is the
loss objective function. xi ∈ Rh×w×c is the input image
where h, w and c represent the height, width, and number of

channels, respectively. δi has the same shape as xi and rep-
resents the perturbation. The perturbations are constrained
by its lp norm and the bounding box. In this regard, we
use the term adversarial budget to represent the set of all
allowable perturbations. Adversarial attacks focus on the
inner maximization problem of (1) and aim to find the op-
timal adversarial perturbation, while adversarial training
focuses on the outer minimization problem of (1) and aims
to find a robust model parameterized by θ. Due to the high
dimensionality and non-convexity of the loss function when
training a deep neural network, (Weng et al., 2018) has
proven that solving the problem (1) is at least NP-complete.

We consider the pixel sparsity for image inputs in this work,
which is more meaningful than feature sparsity and consis-
tent with existing works (Croce & Hein, 2019b; Croce et al.,
2022). That is, a pixel is considered perturbed if any of
its channel is perturbed, and sparse perturbation means few
pixels are perturbed.

3. Related Works
Non-Sparse Attacks: The pioneering work (Szegedy et al.,
2013) finds the adversarial perturbations to fool image clas-
sifiers and proposes a method to minimize the l2 norm of
such perturbations. To more efficiently generate adversar-
ial perturbations, the fast gradient sign method (FGSM)
(Goodfellow et al., 2014) generates l∞ perturbation in one
step, but its performance is significantly surpassed by the
multi-step variants (Kurakin et al., 2017). Projected Gradi-
ent Descent (PGD) (Madry et al., 2017) further boosts the
attack performance by using iterative updating and random
initialization. Specifically, each iteration of PGD updates
the adversarial perturbation δ by:

δ ←− ΠS(δ + α · s(∇δL(θ,x+ δ))) (2)

where S is the adversarial budget, α is the step size,
s : Rh×w×c → Rh×w×c selects the steepest ascent di-
rection based on the gradient of the loss L with respect
to the perturbation. Inspired by the first-order Taylor ex-
pansion, Madry et al. (2017) derives the steepest ascent
direction for l2 bounded and l∞ bounded perturbations to
efficiently find strong adversarial examples; SLIDE (Tramer
& Boneh, 2019) and l1-APGD (Croce & Hein, 2021) use
k-coordinate ascent to construct l1 bounded perturbations,
which is shown to suffer from the slow convergence (Jiang
et al., 2023).

Besides the attacks that have access to the gradient of the
input (i.e., white-box attacks), there are black-box attacks
that do not have access to model parameters, including the
ones based on gradient estimation through finite differences
(Bhagoji et al., 2018; Ilyas et al., 2018a;b; Tu et al., 2018;
Uesato et al., 2018) and the ones based on evolutionary
strategies or random search (Alzantot et al., 2018; Guo et al.,
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2019). To improve the query efficiency of these attacks, (Al-
Dujaili & O’Reilly, 2019; Moon et al., 2019; Meunier et al.,
2019; Andriushchenko et al., 2019) generate adversarial
perturbation at the corners of the adversarial budget.

To more reliably evaluate the robustness, Croce & Hein
(2020) proposes AutoAttack (AA) which consists of an
ensemble of several attack methods, including both black-
box and white-box attacks. Croce & Hein (2021) extends
AA to the case of l1 bounded perturbations and proposes
AutoAttack-l1 (AA-l1). Although the l1 bounded perturba-
tions are usually sparse, Jiang et al. (2023) demonstrates that
AA-l1 is able to find non-sparse perturbations that cannot
be found by SLIDE to fool the models. That is to say, l1
bounded adversarial perturbations are not guaranteed to be
sparse. We should study perturbations bounded by l0 norm.

Sparse Attacks: For perturbations bounded by l0 norm,
directly adopting vanilla PGD as in Eq. (2) leads to subop-
timal performance due to the non-convexity nature of the
adversarial budget: PGD0 (Croce & Hein, 2019b), which
updates the perturbation by gradient ascent and project it
back to the adversarial budget, turns out very likely to trap
in the local maxima. Different from PGD0, CW L0 (Carlini
& Wagner, 2017) projects the perturbation onto the feasible
set based on the absolute product of gradient and pertur-
bation and adopts a mechanism similar to CW L2 (Carlini
& Wagner, 2017) to update the perturbation. SparseFool
(Modas et al., 2018) and GreedyFool (Dong et al., 2020)
also generate sparse perturbations, but they do not strictly
restrict the l0 norm of perturbations. If we project their gen-
erated perturbations to the desired l0 ball, their performance
will drastically drop. Sparse Adversarial and Interpretable
Attack Framework (SAIF) (Imtiaz et al., 2022) is similar to
our method in that SAIF also decomposes the l0 perturba-
tion into a magnitude tensor and sparsity mask, but it uses
the Frank-Wolfe algorithm (Frank et al., 1956) to separately
update them. SAIF turns out to get trapped in local minima
and shows poor performance on adversarially trained mod-
els. Besides white-box attacks, there are black-box attacks
to generate sparse adversarial perturbations, including Cor-
nerSearch (Croce & Hein, 2019b) and Sparse-RS (Croce
et al., 2022). However, these black-box attacks usually re-
quire thousands of queries to find an adversarial example,
making it difficult to scale up to large datasets.

Adversarial Training: Despite the difficulty in obtaining ro-
bust deep neural network, adversarial training (Madry et al.,
2017; Croce & Hein, 2019a; Sehwag et al., 2021; Rebuffi
et al., 2021; Gowal et al., 2021; Rade & Moosavi-Dezfooli,
2021; Cui et al., 2023; Wang et al., 2023) stands out as a
reliable and popular approach to do so (Athalye et al., 2018;
Croce & Hein, 2020). It generates adversarial examples
first and then uses them to optimize model parameters. De-
spite effective, adversarial training is time-consuming due

to multi-step attacks. Shafahi et al. (2019); Zhang et al.
(2019a); Wong et al. (2020); Sriramanan et al. (2021) use
weaker but faster one-step attacks to reduce the overhead,
but they may suffer from catastrophic overfitting (Kang &
Moosavi-Dezfooli, 2021): the model overfits to these weak
attacks during training instead of achieving true robustness
to various attacks. Kim et al. (2020); Andriushchenko &
Flammarion (2020); Golgooni et al. (2021); de Jorge et al.
(2022) try to overcome catastrophic overfitting while main-
taining efficiency.

Compared with l∞ and l2 bounded perturbations, adversar-
ial training against l1 bounded perturbations is shown to be
even more time-consuming to achieve the optimal perfor-
mance (Croce & Hein, 2021). In the case of l0 bounded
perturbations, PGD0 (Croce & Hein, 2019b) is adopted for
adversarial training. However, models trained by PGD0

exhibit poor robustness against strong sparse attacks. In this
work, we propose an effective and efficient sparse attack
that enables us to train a model that is more robust against
various sparse attacks than existing methods.

4. Methods
In this section, we introduce sparse-PGD (sPGD): a white-
box attack that generates sparse perturbations. Similar to
AutoAttack (Croce & Hein, 2020; 2021), we further com-
bine sPGD with a black-box attack to construct sparse-
AutoAttack (sAA) for more comprehensive and reliable
robustness evaluation.

In the end, we incorporate sPGD into the framework of
adversarial training to boost the model’s robustness against
sparse perturbations.

4.1. Sparse-PGD (sPGD)

Inspired by SAIF (Imtiaz et al., 2022), we decompose the
sparse perturbation δ into a magnitude tensor p ∈ Rh×w×c

and a sparsity mask m ∈ {0, 1}h×w×1, i.e., δ = p ⊙m.
Therefore, the attacker aims to maximize the following loss
objective function:

max
∥δ∥0≤k,0≤x+δ≤1

L(θ,x+δ) = max
p∈Sp,m∈Sm

L(θ,x+p⊙m).

(3)
The feasible sets for p and m are Sp = {p ∈ Rh×w×c|0 ≤
x + p ≤ 1} and Sm = {m ∈ {0, 1}h×w×1|∥m∥0 ≤ k},
respectively. Similar to PGD, sPGD iteratively updates p
and m until finding a successful adversarial example or
reaching the maximum iteration number.

Update Magnitude Tensor p: The magnitude tensor p
is only constrained by the input domain. In the case of
images, the input is bounded between 0 and 1. Note that
the constraints on p are elementwise and similar to those of
l∞ bounded perturbations. Therefore, instead of greedy or

3



Towards Efficient Training and Evaluation of Robust Models against l0 Bounded Adversarial Perturbations

random search (Croce & Hein, 2019b; Croce et al., 2022),
we utilize PGD in the l∞ case, i.e., use the sign of the
gradients, to optimize p as demonstrated by Eq. (4) below,
with α being the step size.

p←− ΠSp (p+ α · sign(∇pL(θ,x+ p⊙m))) , (4)

Update Sparsity Mask m: The sparsity mask m is binary
and constrained by its l0 norm. Directly optimizing the dis-
crete variable m is challenging, so we update its continuous
alternative m̃ ∈ Rh×w×1 and project m̃ to the feasible set
Sm to obtain m before multiplying it with the magnitude
tensor p to obtain the sparse perturbation δ. Specifically, m̃
is updated by gradient ascent. Projecting m̃ to the feasible
set Sm is to set the k-largest elements in m̃ to 1 and the
rest to 0. In addition, we adopt the sigmoid function to
normalize the elements of m̃ before projection.

Mathematically, the update rules for m̃ and m are demon-
strated as follows:

m̃←− m̃+ β · ∇m̃L/||∇m̃L||2, (5)
m←− ΠSm(σ(m̃)) (6)

where β is the step size for updating the sparsity mask’s
continuous alternative m̃, σ(·) denotes the sigmoid function.
Furthermore, to prevent the magnitude of m̃ from becoming
explosively large, we do not update m̃ when ||∇m̃L||2 < γ,
which indicates that m̃ is located in the saturation zone of
sigmoid function. The gradient ∇m̃L is calculated at the
point δ = p⊙ΠSm(σ(m̃)), where the loss function is not
always differentiable. We demonstrate how to estimate the
update direction in the next part.

Backward Function: Based on Eq. (3), we can calcu-
late the gradient of the magnitude tensor p by ∇pL =
∇δL(θ,x+ δ)⊙m and use gp to represent this gradient
for notation simplicity. At most, k non-zero elements are
in the mask m, so gp is sparse and has at most k non-zero
elements. That is to say, we update at most k elements
of the magnitude tensor p based on the gradient gp. Like
coordinate descent, this may result in suboptimal perfor-
mance since most elements of p are unchanged in each
iterative update. To tackle this problem, we discard the pro-
jection to the binary set Sm when calculating the gradient
and use the unprojected gradient g̃p to update p. Based on
Eq. (6), we have g̃p = ∇δL(θ,x+ δ)⊙ σ(m̃). The idea
of the unprojected gradient is inspired by training pruned
neural networks and lottery ticket hypothesis (Frankle &
Carbin, 2019; Ramanujan et al., 2020; Fu et al., 2021; Liu
et al., 2022). All these methods train importance scores
to prune the model parameters but update the importance
scores based on the whole network instead of the pruned
sub-network to prevent the sparse update, which leads to
suboptimal performance.

Algorithm 1 Sparse-PGD
1: Input: Clean image: x ∈ [0, 1]h×w×c; Model parame-

ters: θ; Max iteration number: T ; Tolerance: t; l0 bud-
get: k; Step size: α, β; Small constant: γ = 2× 10−8

2: Random initialize p and m̃
3: for i = 0, 1, ..., T − 1 do
4: m = ΠSm(σ(m̃))
5: Calculate the loss L(θ,x+ p⊙m)
6: if unprojected then
7: gp = ∇δL⊙ σ(m̃) {δ = p⊙m}
8: else
9: gp = ∇δL ⊙m

10: end if
11: gm̃ = ∇δL ⊙ p⊙ σ′(m̃)
12: p = ΠSp(p+ α · sign(gp))
13: d = gm̃/(||gm̃||2) if ||gm̃||2 ≥ γ else 0
14: mold, m̃ = m, m̃+ β · d
15: if attack succeeds then
16: break
17: end if
18: if ||ΠSm(σ(m̃)) −mold||0 ≤ 0 for t consecutive

iters then
19: Random initialize m̃
20: end if
21: end for
22: Output: Perturbation: δ = p⊙m

In practice, the performance of using gp and g̃p to optimize
p is complementary. The sparse gradient gp is consistent
with the forward propagation and is thus better at exploita-
tion. By contrast, the unprojected gradient g̃p updates the p
by a dense tensor and is thus better at exploration. In view
of this, we set up an ensemble of attacks with both gradients
to balance exploration and exploitation.

When calculating the gradient of the continuous alternative
m̃, we have ∂L

∂m̃ = ∂L(θ,x+δ)
∂δ ⊙ p ⊙ ∂ΠSm (σ(m̃))

∂m̃ . Since
the projection to the set Sm is not always differentiable, we
discard the projection operator and use the approximation
∂ΠSm (σ(m̃))

∂m̃ ≃ σ′(m̃) to calculate the gradient.

Random Reinitialization: Due to the projection to the set
Sm in Eq. (6), the sparsity mask m changes only when the
relative magnitude ordering of the continuous alternative
m̃ changes. In other words, slight changes in m̃ usually
mean no change in m. As a result, m usually gets trapped
in a local maximum. To solve this problem, we propose a
random reinitialization mechanism. Specifically, when the
attack fails, i.e., the model still gives the correct prediction,
and the current sparsity mask m remains unchanged for
three consecutive iterations, the continuous alternative m̃
will be randomly reinitialized for better exploration.

To summarize, we provide the pseudo-code of sparse PGD
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(sPGD) in Algorithm 1. SAIF (Imtiaz et al., 2022) also
decomposes the perturbation δ into a magnitude tensor p
and a mask m, but uses a different update rule: it uses Frank-
Wolfe to update both p and m. By contrast, we introduce the
continuous alternative m̃ of m and use gradient ascent to
update p and m̃. Moreover, we include unprojected gradient
and random reinitialization techniques in Algorithm 1 to
further enhance the performance.

4.2. Sparse-AutoAttack (sAA)

AutoAttack (AA) (Croce & Hein, 2020) is an ensemble of
four diverse attacks for a standardized parameters-free and
reliable evaluation of robustness against l∞ and l2 attacks.
Croce & Hein (2021) extends AutoAttack to l1 bounded
perturbations. In this work, we propose sparse-AutoAttack
(sAA), which is also a parameter-free ensemble of both
black-box and white-box attacks for comprehensive robust-
ness evaluation against l0 bounded perturbations. It can be
used in a plug-and-play manner. However, different from
the l∞, l2 and l1 cases, the adaptive step size, momentum
and difference of logits ratio (DLR) loss function do not
improve the performance in the l0 case, so they are not
adopted in sAA. In addition, compared with targeted at-
tacks, sPGD turns out stronger when using a larger query
budget in the untargeted settings given the same total num-
ber of back-propagations. As a result, we only include the
untargeted sPGD with cross-entropy loss and constant step
sizes in sAA. Specifically, we run sPGD twice for two dif-
ferent backward functions: one denoted as sPGDproj uses
the sparse gradient gp, and the other denoted as sPGDunproj

uses the unprojected gradient g̃p as described in Section 4.1.
As for the black-box attack, we adopt the strong black-box
attack Sparse-RS (Croce et al., 2022), which can generate
l0 bounded perturbations. We run each version of sPGD
and Sparse-RS for 10000 iterations, respectively. We use
cascade evaluation to improve the efficiency. Concretely,
suppose we find a successful adversarial perturbation by one
attack for one instance. Then, we will consider the model
non-robust in this instance and the same instance will not be
further evaluated by other attacks. Based on the efficiency
and the attack success rate, the attacks in sAA are sorted in
the order of sPGDunproj, sPGDproj and Sparse-RS.

4.3. Adversarial Training

In addition to robustness evaluation, we also explore ad-
versarial training to build robust models against sparse per-
turbations. In the framework of adversarial training, the
attack is used to generate adversarial perturbation in each
training iteration, so the attack algorithm should not be too
computationally expensive. In this regard, we run the un-
targeted sPGD (Algorithm 1) for 20 iterations to generate
sparse adversarial perturbations during training. We incor-
porate sPGD in the framework of vanilla adversarial train-

ing (Madry et al., 2017) and TRADES (Zhang et al., 2019b)
and name corresponding methods sAT and sTRADES, re-
spectively. Note that we use sAT and sTRADES as two
examples of applying sPGD to adversarial training, since
sPGD can be incorporated into any other adversarial training
variant as well. To accommodate the scenario of adversarial
training, we make the following modifications to sPGD.

Random Backward Function: Since the sparse gradient
and the unprojected gradient as described in Section 4.1
induce different exploration-exploitation trade-offs, we ran-
domly select one of them to generate adversarial pertur-
bations for each mini-batch when using sPGD to generate
adversarial perturbations. Compared with mixing these two
backward functions together, as in sAA, random backward
function does not introduce computational overhead.

Multi-k Strategy: Inspired by l1-APGD (Croce & Hein,
2021) and Fast-EG-l1 (Jiang et al., 2023), multi-k strategy
is adopted to strengthen the robustness of model. That is,
we use a larger sparsity threshold, i.e., k in Algorithm 1, in
the training phase than in the test phase.

Higher Tolerance for Reinitialization: The default tol-
erance for reinitialization in sPGD is 3 iterations, which
introduces strong stochasticity. However, in the realm of ad-
versarial training, we have a limited number of iterations. As
a result, the attacker should focus more on the exploitation
ability to ensure the strength of the generated adversarial
perturbations. While stochasticity introduced by frequent
reinitialization hurts exploitation, we find a higher tolerance
for reinitialization improves the performance. In practice,
we set the tolerance to 10 iterations in adversarial training.

5. Experiments
In this section, we conduct extensive experiments to com-
pare our attack methods with baselines in evaluating the ro-
bustness of various models against l0 bounded perturbations.
Besides the effectiveness with an abundant query budget, we
also study the efficiency of our methods when using limited
iterations to generate adversarial perturbations. Our results
demonstrate that our sPGD performs best among white-box
attacks. With limited iterations, sPGD achieves significantly
better performance than existing methods. Therefore, sAA,
consisting of the best white-box and black-box attacks, has
the best attack success rate. sPGD, due to its efficiency,
is utilized for adversarial training to obtain the best robust
models against l0 bounded adversarial perturbations. To fur-
ther demonstrate the efficiency and efficacy of our method,
we compare the runtime of different attacks and evaluate
the transferability of sPGD. The results show that sPGD
has a high transfer success rate, making it applicable in
more practical scenarios. In addition, we conduct ablation
studies for analysis. The adversarial examples generated by
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our methods are presented in Appendix C. Implementation
details are deferred to Appendix B.

5.1. Evaluation of Different Attack Methods

First, we compare our proposed sPGD, including sPGDproj

and sPGDunproj as defined in Section 4.2, and sAA with ex-
isting white-box and black-box attacks that generate sparse
perturbations. We evaluate different attack methods based
on the models trained on CIFAR-10 (Krizhevsky et al., 2009)
and report the robust accuracy with k = 20 on the whole
test set in Table 1. Additionally, the results on ImageNet100
(Deng et al., 2009) and a real-world traffic sign dataset
GTSRB (Stallkamp et al., 2012) are reported in Table 2.
Note that the image sizes in GTSRB vary from 15× 15 to
250× 250. For convenience, we resize them to 224× 224
and use the same model architecture as in ImageNet-100.
Furthermore, only the training set of GTSRB has annota-
tions, we manually split the original training set into a test
set containing 1000 instances and a new training set contain-
ing the rest data. In Appendix A.1, we report more results
on CIFAR-10 with k = 10, k = 15, and the results of mod-
els trained on CIFAR-100 (Krizhevsky et al., 2009) in Table
8, 9, 10, respectively to comprehensively demonstrate the
effectiveness of our methods.

Models: We select various models to comprehensively eval-
uate their robustness against l0 bounded perturbations. As a
baseline, we train a ResNet-18 (RN-18) (He et al., 2016a)
model on clean inputs. For adversarially trained models,
we select competitive models that are publicly available,
including those trained against l∞, l2 and l1 bounded per-
turbations. For the l∞ case, we include adversarial train-
ing with the generated data (GD) (Gowal et al., 2021), the
proxy distributions (PORT) (Sehwag et al., 2021), the de-
coupled KL divergence loss (DKL) (Cui et al., 2023) and
strong diffusion models (DM) (Wang et al., 2023). For
the l2 case, we include adversarial training with the proxy
distributions (PORT) (Sehwag et al., 2021), strong diffu-
sion models (DM) (Wang et al., 2023), helper examples
(HAT) (Rade & Moosavi-Dezfooli, 2021) and strong data
augmentations (FDA) (Rebuffi et al., 2021). The l1 case
is less explored in the literature, so we only include l1-
APGD adversarial training (Croce & Hein, 2021) and the
efficient Fast-EG-l1 (Jiang et al., 2023) for comparison.
The network architecture used in these baselines is either
ResNet-18 (RN-18), PreActResNet-18 (PRN-18) (He et al.,
2016b) or WideResNet-28-10 (WRN-28) (Zagoruyko & Ko-
modakis, 2016). For the l0 case, we evaluate PGD0 (Croce
& Hein, 2019b) in vanilla adversarial training (PGD0-A)
and TRADES (PGD0-T) using the same hyper-parameter
settings as in Croce & Hein (2019b). Since other white-
box sparse attacks present trivial performance in adversarial
training, we do not include their results. Finally, we use
our proposed sPGD in vanilla adversarial training (sAT) and

TRADES (sTRADES) to obtain PRN-18 models to compare
with these baselines.

Attacks: We compare our methods with various existing
black-box and white-box attacks that generate l0 bounded
perturbations. The black-box attacks include CornerSearch
(CS) (Croce & Hein, 2019b) and Sparse-RS (RS) (Croce
et al., 2022). The white-box attacks include SparseFool
(SF) (Modas et al., 2018), PGD0 (Croce & Hein, 2019b)
and Sparse Adversarial and Interpretable Attack Framework
(SAIF) (Imtiaz et al., 2022). The implementation details
of each attack are deferred to Appendix B. Specifically, to
exploit the strength of these attacks in reasonable running
time, we run all these attacks for either 10000 iterations or
the number of iterations where their performances converge.
Note that, the number of iterations for all these attacks
are no smaller than their default settings. In addition, we
report the results of RS with fine-tuned hyperparameters,
which outperforms its default settings in (Croce et al., 2022).
Finally, we report the robust accuracy under CS attack based
on only 1000 random test instances due to its prohibitively
high computational complexity.

Based on the results in Table 1 and Table 2, we can find
that SF attack, PGD0 attack and SAIF attack perform signif-
icantly worse than our methods for all the models studied.
That is, our proposed sPGD always performs the best among
white-box attacks. Among black-box attacks, CS attack can
achieve competitive performance, but it runs dozens of times
longer than our method does. Therefore, we focus on com-
paring our method with RS attack. For l1 and l2 models,
our proposed sPGD significantly outperforms RS attack. By
contrast, RS attack outperforms sPGD for l∞ and l0 models.
This gradient masking phenomenon is, in fact, prevalent
across sparse attacks. Given sufficient iterations, RS out-
performs all other existing white-box attacks for l∞ and
l0 models. Nevertheless, among white-box attacks, sPGD
exhibits the least susceptibility to gradient masking and has
the best performance. The occurrence of gradient masking
in the context of l0 bounded perturbations can be attributed
to the non-convex nature of adversarial budgets. In practice,
the perturbation updates often significantly deviate from the
direction of the gradients because of the projection to the
non-convex set. Similar to AA in the l1, l2 and l∞ cases,
sAA consists of both white-box and black-box attacks for
comprehensive robustness evaluation. It achieves the best
performance in all cases in Table 1 and Table 2 by a consid-
erable margin.

In the case of l0 adversarial training, the models are ad-
versarially trained against sparse attacks. However, Figure
1 illustrates that the performance of RS attack drastically
deteriorates with limited iterations (e.g., smaller than 100),
so RS is not suitable for adversarial training where we need
to generate strong adversarial perturbations in limited num-
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Table 1. Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where the sparsity level k = 20.
The models are trained on CIFAR-10. Note that we report results of Sparse-RS (RS) with fine-tuned hyperparameters, which outperforms
its original version in Croce et al. (2022). CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Network Clean Black-Box White-Box sAACS RS SF PGD0 SAIF sPGDproj sPGDunproj

Vanilla RN-18 93.9 1.2 0.0 17.5 0.4 3.2 0.0 0.0 0.0

l∞-adv. trained, ϵ = 8/255

GD PRN-18 87.4 26.7 6.1 52.6 25.2 40.4 9.0 15.6 5.3
PORT RN-18 84.6 27.8 8.5 54.5 21.4 42.7 9.1 14.6 6.7
DKL WRN-28 92.2 33.1 7.0 54.0 29.3 41.1 9.9 15.8 6.1
DM WRN-28 92.4 32.6 6.7 49.4 26.9 38.5 9.9 15.1 5.9

l2-adv. trained, ϵ = 0.5

HAT PRN-18 90.6 34.5 12.7 56.3 22.5 49.5 9.1 8.5 7.2
PORT RN-18 89.8 30.4 10.5 55.0 17.2 48.0 6.3 5.8 4.9
DM WRN-28 95.2 43.3 14.9 59.2 31.8 59.6 13.5 12.0 10.2
FDA WRN-28 91.8 43.8 18.8 64.2 25.5 57.3 15.8 19.2 14.1

l1-adv. trained, ϵ = 12

l1-APGD PRN-18 80.7 32.3 25.0 65.4 39.8 55.6 17.9 18.8 16.9
Fast-EG-l1 PRN-18 76.2 35.0 24.6 60.8 37.1 50.0 18.1 18.6 16.8

l0-adv. trained, k = 20

PGD0-A PRN-18 77.5 16.5 2.9 62.8 56.0 47.9 9.9 21.6 2.4
PGD0-T PRN-18 90.0 24.1 4.9 85.1 61.1 67.9 27.3 37.9 4.5
sAT PRN-18 84.5 52.1 36.2 81.2 78.0 76.6 75.9 75.3 36.2
sTRADES PRN-18 89.8 69.9 61.8 88.3 86.1 84.9 84.6 81.7 61.7

Table 2. Robust accuracy of various models on different attacks that generate l0 bounded perturbations. ResNet34 (RN-34) (He et al.,
2016a) is used as the network architecture. Our sAT model is trained with the sparsity level k = 1200 and the iteration number of the
attack t = 20. (a) The models are trained on ImageNet-100 (Deng et al., 2009), and the k for attacks is set to 200. (b) The models
are trained on GTSRB (Stallkamp et al., 2012), and the k for attacks is set to 600. Note that we report results of Sparse-RS (RS) with
tuned hyperparameters, which outperforms its original version in Croce et al. (2022). All methods are evaluated on 500 samples, and
CornerSearch (CS) is not evaluated here due to its high computational complexity, i.e. nearly 1 week on one GPU for each run.

(a) ImageNet, k = 200

Model Network Clean Black-Box White-Box sAACS RS SF PGD0 SAIF sPGDproj sPGDunproj

Vanilla RN-34 83.0 - 0.2 5.8 9.8 0.6 0.2 0.4 0.0

l1-adv. trained, ϵ = 72

Fast-EG-l1 RN-34 69.2 - 50.2 43.4 50.2 43.0 18.6 19.0 16.6

l0-adv. trained, k = 200

PGD0-A RN-34 76.0 - 6.8 57.2 37.4 11.0 1.8 18.8 1.8
sAT RN-34 86.2 - 61.4 84.2 83.0 69.0 78.0 77.8 61.2

(b) GTSRB, k = 600

Model Network Clean Black-Box White-Box sAACS RS SF PGD0 SAIF sPGDproj sPGDunproj

Vanilla RN-34 99.9 - 18.0 18.9 63.7 9.5 0.3 0.3 0.3

l0-adv. trained, k = 600

PGD0-A RN-34 99.8 - 37.6 23.6 59.8 13.8 0.0 0.0 0.0
sAT RN-34 99.8 - 88.4 96.8 99.8 96.2 88.6 96.2 85.4

ber iterations. Empirical evidence suggests that employing
RS with 20 iterations for adversarial training, i.e., the same
number of iterations as in other methods, yields trivial per-

formance, so it is not included in Table 1 or Table 2 for
comparison. In addition, models trained by PGD0-A and
PGD0-T, which generate l0 bounded perturbations, exhibit
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Table 3. Runtime of different attacks on 1000 test instances with batch size 500. The sparsity level k = 20. The evaluated model is
sTRADES. The model is trained on CIFAR-10. The experiments are implemented on NVIDIA Tesla V100.

Attack CS RS SF PGD0 SAIF sPGDproj sPGDunproj sAA

Runtime 604 min 59 min 92 min 750 min 122 min 42 min 45 min 148 min

poor robustness to various attack methods, especially sAA.
By contrast, the models trained by sAT and sTRADES show
the strongest robustness, indicated by the comprehensive
sAA method and all other attack methods. Compared with
sAT, sTRADES achieves better performance in both robust-
ness and accuracy. Finally, models trained with l1 bounded
perturbations are the most robust ones among existing non-
l0 training methods. It could be attributed to the fact that
l1 norm is the tightest convex relaxation of l0 norm (Bittar
et al., 2021). From a qualitative perspective, l1 attacks also
generate relatively sparse perturbations (Jiang et al., 2023),
which makes the corresponding model robust to sparse per-
turbations to some degree.

Our results indicate sPGD and RS can complement each
other. Therefore, sAA, an AutoAttack-style attack that en-
sembles both attacks achieves the state-of-the-art perfor-
mance on all models. It is designed to have a similar com-
putational complexity to AutoAttack in l∞, l2 and l1 cases.

5.2. Comparison under Different Iteration Numbers

In this subsection, we further compare our method sPGD,
which is a white-box attack, with RS attack, the strongest
black-box attack in the previous section. Specifically, we
compare them under various iteration numbers on CIFAR-
10 and ImageNet-100, which have different resolutions.
Since CIFAR-100 has the same resolution as CIFAR-10,
the results on CIFAR-100 are deferred to Appendix A.2. In
addition, we also compare sPGD and RS under different
sparsity levels in Appendix A.3.

As illustrated in Figure 1, sTRADES has better performance
than other robust models by a large margin in all iterations
of both sPGD and RS attacks, which is consistent with the
results in Table 1, 2 and 10. For vanilla and other robust
models, although the performances of both sPGD and RS
attack get improved with more iterations, sPGD outperforms
RS attack by a large margin when the iteration number is
small (e.g. < 1000 iterations), which makes it feasible for
adversarial training. Similar to other black-box attacks, the
performance of RS attack drastically deteriorates when the
query budget is limited. In addition, our proposed gradient-
based sPGD significantly outperforms RS on ImageNet-100,
where the search space is much larger than that on CIFAR-
10, i.e., higher image resolution and higher sparsity level k.
This suggests that our approach is scalable and shows higher
efficiency on high-resolution images. Furthermore, although
the performance of RS does not converge even when the
iteration number reaches 10000, a larger query budget will

make it computationally impractical. Following the setting
in Croce et al. (2022), we do not consider a larger query
budget in our experiments, either. To further showcase the
efficiency of our approach, we compare the distributions
of the number of iterations needed by sPGD and RS to
successfully generate adversarial samples Appendix A.4.

5.3. Runtime of Different Attacks

As shown in Table 3, the proposed sPGD shows the highest
efficiency among various attacks. Although sAA consumes
more time (approximately 2× sPGD + RS), it can provide a
reliable evaluation against l0 bounded perturbation.

5.4. Transferability of Adversarial Perturbations

Table 4. Transferability of RS and sPGD between VGG11 (V) and
ResNet18 (R). The results are reported in attack success rate (ASR).
The perturbation is generated based on the source model (left), and
the ASR is obtained on the target model (right). The evaluated
dataset is CIFAR-10 (Krizhevsky et al., 2009), and the sparsity
level k = 20. Note that the models are trained on clean instances,
and the step-size of sPGD α and β are set to 0.75.

Attack V→V V→R R→R R→V

RS 53.9 28.4 33.0 37.4
sPGDproj 58.0 43.9 50.8 48.0

sPGDunproj 64.9 40.0 52.7 56.7

To evaluate the transferability of our attack across differ-
ent models and architectures, we generate adversarial per-
turbations based on one model and report the attack suc-
cess rate (ASR) on another model. As shown in Table 4,
sPGD exhibits better transferability than the most compet-
itive baseline, Sparse-RS (RS) (Croce et al., 2022). This
further demonstrates the effectiveness of our method and its
potential application in more practical scenarios.

5.5. Ablation Studies

We conduct ablation studies in this section. We focus on
CIFAR10 and the sparsity level k = 20. Unless specified,
we use the same configurations as in Table 1.

Components of sPGD: We first validate the effectiveness
of each component in sPGD. The result is reported in Table
5. We observe that naively decomposing the perturbation δ
by δ = p⊙m and updating them separately can deteriorate
the performance. By contrast, the performance significantly
improves when we update the mask m by its continuous
alternative m̃ and l0 ball projection. This indicates that in-
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(a) CIFAR-10, k = 20
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(b) ImageNet-100, k = 200

Figure 1. Comparison between sPGD and RS attack under different iterations. (a) CIFAR-10, k = 20. ResNet18 (std), PORT (l∞ and l2)
(Sehwag et al., 2021), l1-APGD (l1) (Croce & Hein, 2021) and sTRADES (l0) are evaluated. (b) ImageNet-100, k = 200. ResNet34
(std), Fast-EG-l1 (l1) (Jiang et al., 2023) and sAT (l0) are evaluated. The total iteration number ranges from 20 and 10000. The results of
sPGD and RS attack are shown in solid lines and dotted lines, respectively. For better visualization, the x-axis is in the log scale.

troducing m̃ greatly mitigates the challenges in optimizing
discrete variables. Moreover, the results in Table 5 indicate
the performance can be further improved by the random
reinitialization mechanism, which encourages exploration
and avoids trapping in a local optimum. In Appendix A.5,
we compare the performance when we use different step
sizes for the magnitude tensor p and the sparsity mask m.
The results in Table 11 and 12 of Appendix A.5 indicate
that the performance of our proposed method is quite con-
sistent under different choices of step sizes, which facilities
hyper-parameter selection for practitioners.

Table 5. Ablation study of each component in sPGDproj in terms
of robust accuracy. The model is trained by Fast-EG-l1.

Ablations Robust Acc.

Baseline (PGD0 w/o restart) 49.4
+ Decomposition: δ = p⊙m 58.0 (+8.6)
+ Continuous mask m̃ 33.9 (-15.5)
+ Random reinitialization 18.1 (-31.3)

Adversarial training: We conduct preliminary exploration
on adversarial training against sparse perturbations, since
sPGD can be incorporated into any adversarial training vari-
ant. Table 1, 2, 8, 9 and 10 study sAT and sTRADES, while
sTRADES outperforms sAT in all cases. In addition, the
training of sAT is relatively unstable in practice, so we focus
on sTRADES for ablation studies in this section. We leave
the design of sPGD-adapted adversarial training variants to
further improve model robustness as a future work.

Table 6 demonstrates the performance when we use differ-
ent backward functions. The policies include always using
the sparse gradient (Proj.), always using the unprojected gra-
dient (Unproj.), alternatively using both backward functions
every 5 epochs (Alter.) and randomly selecting backward
functions (Rand.). The results indicate that randomly se-

lecting backward functions has the best performance. In
addition, Table 7 demonstrates the robust accuracy of mod-
els trained by sTRADES with different multi-k strategies.
The results indicate that multi-k strategy helps boost the
performance. The best robust accuracy is obtained when
the adversarial budget for training is 6 times larger than that
for test. Furthermore, we also study the impact of different
tolerances during adversarial training in Table 14 of Ap-
pendix A.6. The results show that higher tolerance during
adversarial training benefits the robustness of the model.

Table 6. Ablation study on different policies during adversarial
training. The model is PRN18 trained by sTRADES with 6× k.
The robust accuracy is obtained through sAA.

Policy Proj. Unproj. Alter. Rand.

Acc. 41.5 39.4 51.5 61.7

Table 7. Ablation study on multi-k stretegy during adversarial
training. The model is PRN18 trained by sTRADES with ran-
dom policy. The robust accuracy is obtained through sAA.

k 1× 2× 4× 6× 8× 10×

Acc. 34.0 39.7 54.5 61.7 60.2 55.5

6. Conclusion
In this paper, we propose an effective and efficient white-
box attack named sPGD to generate perturbations bounded
by l0 norm. sPGD obtains the state-of-the-art performance
among white-box attacks. Based on this, we combine it with
black-box attacks for more comprehensive and reliable l0
robustness evaluation. Our proposed sPGD is particularly
effective in the realm of limited iteration numbers. Due to
its efficiency, we incorporate sPGD into the framework of
adversarial training to obtain robust models against sparse
perturbations. The models trained with our method demon-
strate the best robust accuracy.
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Impact Statement
We adopt 20-iter sPGD in adversarial training, so the com-
putational overhead is still high, making it difficult to scale
up to super-large datasets. Our subsequent work will focus
on developing a faster adversarial training method against
l0 bounded perturbations without sacrificing its robustness.
Furthermore, since our method is evaluated on benchmarks,
we do not see it has an obvious negative societal impact.
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A. Additional Experiments
A.1. Results of Different Sparsity Levels and Different Datasets

In this subsection, we present the robust accuracy on CIFAR-10 with the sparsity level k = 10 and k = 15, as well as
those on CIFAR-100 with k = 10 in Table 8, 9 and 10, respectively. The observations with different sparsity levels and on
different datasets are consistent with those in Table 1 and 2, which indicates the effectiveness of our method.

Table 8. Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where the sparsity level k = 10.
The models are trained on CIFAR-10 (Krizhevsky et al., 2009). Note that we report results of Sparse-RS (RS) with tuned hyperparameters,
which outperforms its original version in (Croce et al., 2022). CornerSearch (CS) is evaluated on 1000 samples due to its high
computational complexity.

Model Network Clean Black-Box White-Box sAACS RS SF PGD0 SAIF sPGDproj sPGDunproj

Vanilla RN-18 93.9 3.2 0.5 40.6 11.5 31.8 0.5 7.7 0.5

l∞-adv. trained, ϵ = 8/255

GD PRN-18 87.4 36.8 24.5 69.9 50.3 63.0 31.0 37.3 23.2
PORT RN-18 84.6 36.7 27.5 70.7 46.1 62.6 31.0 36.2 25.0
DKL WRN-28 92.2 40.9 25.0 71.9 54.2 64.6 32.6 38.8 23.7
DM WRN-28 92.4 38.7 23.7 68.7 52.7 62.5 31.2 37.4 22.6

l2-adv. trained, ϵ = 0.5

HAT PRN-18 90.6 47.3 40.4 74.6 53.5 71.4 37.3 36.7 34.5
PORT RN-18 89.8 46.8 37.7 74.2 50.4 70.9 33.7 33.0 30.6
DM WRN-28 95.2 57.8 47.9 78.3 65.5 80.9 47.1 48.2 43.1
FDA WRN-28 91.8 55.0 49.4 79.6 58.6 77.5 46.7 49.0 43.8

l1-adv. trained, ϵ = 12

l1-APGD PRN-18 80.7 51.4 51.1 74.3 60.7 68.1 47.2 47.4 45.9
Fast-EG-l1 PRN-18 76.2 49.7 48.0 69.7 56.7 63.2 44.7 45.0 43.2

l0-adv. trained, k = 10

PGD0-A PRN-18 85.8 20.7 16.1 77.1 66.1 68.7 33.5 36.2 15.1
PGD0-T PRN-18 90.6 22.1 14.0 85.2 72.1 76.6 37.9 44.6 13.9
sAT PRN-18 86.4 61.0 57.4 84.1 82.0 81.1 78.2 77.6 57.4
sTRADES PRN-18 89.8 74.7 71.6 88.8 87.7 86.9 85.9 84.5 71.6

A.2. Comparison under Different Iterations on CIFAR-100

Similar to the observation in Section 5.2, Figure 2 also indicates that our method can obtain a higher attack success rate than
the strong black-box attack Sparse-RS (RS) when the query budget is limited. Compared with the observation in Figure 1,
the efficiency of RS, which is based on heuristic random search, improves when the search space becomes smaller, i.e.,
smaller image space and lower sparsity level k.

A.3. Comparison under Different Sparsity Levels

In this subsection, we compare our method sPGD with RS attack. Specifically, we compare these two attacks under different
sparsity levels, i.e., the values of k. We can observe from Figure 3 that RS attack shows slightly better performance only on
the l∞ model and when k is small. The search space for the perturbed features is relatively small when k is small, which
facilitates heuristic black-box search methods like RS attack. As k increases, sPGD outperforms RS attack in all cases until
both attacks achieve almost 100% attack success rate.

A.4. Iteration Numbers Needed to Successfully Generate Adversarial Samples

Figure 4 illustrates the distribution of the iteration numbers needed by sPGD and RS to successfully generate adversarial
samples. For l∞, l2 and l1 robust models, our proposed sPGD consumes distinctly fewer iteration numbers to successfully
generate an adversarial sample than RS, the strongest black-box attack in Table 1, while maintaining a high attack success
rate. Similar to the observations in Figure 1, the model trained by sTRADES suffers from gradient masking. However, RS
still requires a large query budget to successfully generate an adversarial sample. This further demonstrates the efficiency of
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Table 9. Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where the sparsity level k = 15.
The models are trained on CIFAR-10 (Krizhevsky et al., 2009). Note that we report results of Sparse-RS (RS) with tuned hyperparameters,
which outperforms its original version in (Croce et al., 2022). CornerSearch (CS) is evaluated on 1000 samples due to its high
computational complexity.

Model Network Clean Black-Box White-Box sAACS RS SF PGD0 SAIF sPGDproj sPGDunproj

Vanilla RN-18 93.9 1.6 0.0 25.3 2.1 12.0 0.0 0.0 0.0

l∞-adv. trained, ϵ = 8/255

GD PRN-18 87.4 30.5 12.2 61.1 36.0 51.3 17.1 24.3 11.3
PORT RN-18 84.6 30.8 15.2 62.1 31.4 52.1 17.4 23.0 13.0
DKL WRN-28 92.2 35.3 13.2 62.5 41.2 52.3 18.4 24.9 12.1
DM WRN-28 92.4 34.8 12.6 57.9 38.5 49.4 17.9 24.0 11.6

l2-adv. trained, ϵ = 0.5

HAT PRN-18 90.6 38.9 23.5 65.3 35.4 60.2 19.0 18.6 16.6
PORT RN-18 89.8 36.8 20.6 64.3 30.6 59.7 16.0 15.5 13.8
DM WRN-28 95.2 48.5 27.7 68.2 47.5 70.9 25.0 26.7 22.1
FDA WRN-28 91.8 47.8 31.1 71.8 40.1 68.2 28.0 31.4 25.5

l1-adv. trained, ϵ = 12

l1-APGD PRN-18 80.7 41.3 36.5 70.3 50.5 62.3 30.4 31.3 29.0
Fast-EG-l1 PRN-18 76.2 40.7 34.8 64.9 46.7 56.9 29.6 30.1 28.0

l0-adv. trained, k = 15

PGD0-A PRN-18 83.7 17.5 6.1 73.7 62.9 60.5 19.4 27.5 5.6
PGD0-T PRN-18 90.5 19.5 7.2 85.5 63.6 69.8 31.4 41.2 7.1
sAT PRN-18 80.9 46.0 37.6 77.1 74.1 72.3 71.2 70.3 37.6
sTRADES PRN-18 90.3 71.7 63.7 89.5 88.1 86.5 85.9 83.8 63.7
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Figure 2. Comparison between sPGD and RS attack under different
iterations on CIFAR-100 with k = 10. ResNet18 (std), FDA (l∞)
(Rebuffi et al., 2021), l1-APGD (l1) (Croce & Hein, 2021) and
sTRADES (l0) are evaluated. The total iteration number ranges
from 20 and 10000. The results of sPGD and RS attack are
shown in solid lines and dotted lines, respectively. For better
visualization, the x-axis is shown in the log scale.
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Figure 3. Comparison between sPGD and RS attack under different
sparsity levels. PORT (l∞ and l2) (Sehwag et al., 2021), l1-APGD
(l1) (Croce & Hein, 2021) and sTRADES (l0) are evaluated. The k
ranges from 0 and 50. The number of total iterations is set to 10000.
The results of sPGD and RS attack are shown in solid lines and
dotted lines, respectively.

sPGD, which makes it feasible for adversarial training.

A.5. More Ablation Study on sPGD

Step Size As shown in Table 11 and 12, the robust accuracy does not vary significantly with different step sizes. It indicates
the satisfying robustness of our method to different hyperparameter choices. In practice, We set α and β to 0.25 and
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Table 10. Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where the sparsity level
k = 10. The models are trained on CIFAR-100 (Krizhevsky et al., 2009). Note that we report results of Sparse-RS (RS) with tuned
hyperparameters, which outperforms its original version in (Croce et al., 2022). CornerSearch (CS) is evaluated on 1000 samples due to
its high computational complexity.

Model Network Clean Black-Box White-Box sAACS RS SF PGD0 SAIF sPGDproj sPGDunproj

Vanilla RN-18 74.3 1.6 0.3 20.1 1.9 9.0 0.1 0.9 0.1

l∞-adv. trained, ϵ = 8/255

HAT PRN-18 61.5 12.6 9.3 39.1 19.1 26.8 11.6 14.2 8.5
FDA PRN-18 56.9 16.3 12.3 42.2 23.0 30.7 14.9 17.8 11.6
DKL WRN-28 73.8 12.4 6.3 44.9 20.9 26.5 10.5 14.0 6.1
DM WRN-28 72.6 14.0 8.2 46.2 23.4 29.8 12.7 15.8 8.0

l1-adv. trained, ϵ = 6

l1-APGD PRN-18 63.2 22.7 22.1 47.7 33.0 43.5 19.7 20.3 18.5
Fast-EG-l1 PRN-18 59.4 21.5 21.0 44.8 30.6 39.5 18.9 18.6 17.3

l0-adv. trained, k = 10

PGD0-A PRN-18 66.1 9.3 7.1 57.9 29.9 39.5 13.9 20.4 6.5
PGD0-T PRN-18 70.7 14.8 10.5 63.5 46.3 51.7 24.5 28.6 10.2
sAT PRN-18 67.0 44.3 41.6 65.9 61.6 60.9 56.8 58.0 41.6
sTRADES PRN-18 70.9 52.8 50.3 69.2 67.2 65.2 64.0 63.7 50.2

0.25×
√
h× w, respectively. Note that h and w denote the height and width of the image, respectively, which are both 32

in CIFAR-10.

Tolerance during Attacking As shown in Table 13, the performance of our method remains virtually unchanged, which
showcases that our approach is robust to different choices of tolerance for reinitialization.

Table 11. Robust accuracy at different step sizes α for magnitude
p. The evaluated attack is sPGDproj. The model is Fast-EG-l1
(Jiang et al., 2023) trained on CIFAR-10 (Krizhevsky et al., 2009).

α 1
16

1
8

1
4

1
2

3
4

1

Acc. 19.6 18.8 18.1 18.4 18.7 19.0

Table 12. Robust accuracy at different step sizes β for mask m.
The evaluated attack is sPGDproj. The model is Fast-EG-l1 (Jiang
et al., 2023) trained on CIFAR-10 (Krizhevsky et al., 2009).

β 2 4 8 16 24 32

Acc. 20.0 19.3 18.1 18.4 19.4 21.0

A.6. Impact of Tolerance during Adversarial Training

We also study the impact of different tolerances for reinitialization during adversarial training. The results reported in Table
14 indicate that higher tolerance during adversarial training significantly improves the model’s robustness against sparse
attacks, and the performance reaches its best when the tolerance is set to 10.

Table 13. Robust accuracy at different tolerance for reinitialization
t during attacking. The evaluated attack is sPGDproj. The model is
Fast-EG-l1 (Jiang et al., 2023) trained on CIFAR-10 (Krizhevsky
et al., 2009).

t 1 3 5 7 10

Acc. 18.1 18.1 18.5 18.5 18.5

Table 14. Ablation study on tolerance for reinitialization t during
adversarial training. The model is PRN18 trained by sTRADES
with 6× k and tolerance t = 3. The robust accuracy is obtained
through sAA.

t 3 10 20

Acc. 51.7 61.7 60.0

B. Implementation Details
In experiments, we mainly focus on the cases of the sparsity of perturbations k = 10, 15 and 20, where k = ||

∑c
i=1 δ

(i)||0
or ||m||0, δ(i) ∈ Rh×w is the i-th channel of perturbation δ ∈ Rh×w×c, and m ∈ Rh×w×1 is the sparsity mask in the
decomposition of δ = p⊙m, p ∈ Rh×w×c denotes the magnitude of perturbations.
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(a) l∞ PORT (Sehwag et al., 2021)
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(b) l2 PORT (Sehwag et al., 2021)
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(c) l1-APGD (Croce & Hein, 2021)
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Figure 4. Distribution of the iteration numbers needed by sPGD (blue) and RS (orange) to successfully generate adversarial samples. The
results are obtained from different models: (a) l∞ PORT (Sehwag et al., 2021), (b) l2 PORT (Sehwag et al., 2021), (c) l1-APGD (Croce &
Hein, 2021) and (d) our sPGD. The average iteration numbers (Avg.) and attack success rate (ASR), i.e., 1−Robust Acc., are reported in
the legend. For better visualization, we clip the minimum iteration number to 10 and show the x- and y-axis in log scale.

To exploit the strength of these attacks in reasonable running time, we run all these attacks for either 10000 iterations or the
number of iterations where their performances converge. More details are elaborated below.

CornerSearch (Croce & Hein, 2019b): For CornerSearch, we set the hyperparameters as following: N = 100, Niter =
3000, where N is the sample size of the one-pixel perturbations, Niter is the number of queries. For bot CIFAR-10 and
CIFAR-100 datasets, we evaluate the robust accuracy on 1000 test instances due to its prohibitively high computational
complexity.

Sparse-RS (Croce et al., 2022): For Sparse-RS, we set αinit = 0.8, which controls the set of pixels changed in each iteration.
Cross-entropy loss is adopted. Following the default setting in (Croce et al., 2022), we report the results of untargeted
attacks with the maximum queries up to 10000.

SparseFool (Modas et al., 2018): We apply SparseFool following the official implementation and use the default value of
the sparsity parameter λ = 3. The maximum iterations per sample is set to 3000. Finally, the perturbation generated by
SparseFool is projected to the l0 ball to satisfy the adversarial budget.

PGD0 (Croce & Hein, 2019b): For PGD0, we include both untargeted attack and targeted attacks on the top-9 incorrect
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classes with the highest confidence scores. We set the step size to η = 120000/255. Contrary to the default setting, the
iteration numbers of each attack increase from 20 to 300. Besides, 5 restarts are adopted to boost the performance further.

SAIF (Imtiaz et al., 2022): Similar to PGD0, we apply both untargeted attack and targeted attacks on the top-9 incorrect
classes with 300 iterations per attack, however, the query budget is only 100 iterations in the original paper (Imtiaz et al.,
2022). We adopt the same l∞ norm constraint for the magnitude tensor p as in sPGD.

sparse-PGD (sPGD): Cross-entropy loss is adopted as the loss function of both untargeted and targeted versions of our
method. The step size for magnitude p is set α = 1/4; the step size for continuous mask m̃ is set β = 1/4 ×

√
h× w,

where h and w are the height and width of the input image x ∈ Rh×w×c, respectively. The small constant γ to avoid
numerical error is set to 1 × 10−10. The number of iterations is 10000 for all datasets to ensure fair comparison among
attacks in Table 1. The tolerance for reinitialization is set to 3.

sparse-AutoAttack (sAA): It is a cascade ensemble of five different attacks, i.e., a) untargeted sPGD with unprojected
gradient (sPGDunproj), b) untargeted sPGD with sparse gradient (sPGDproj), and c) untargeted Sparse-RS. The hyper-
parameters of sPGD are the same as those listed in the last paragraph.

Adversarial Training: sPGD is adopted as the attack during the training phase, the number of iterations is 20, and the
backward function is randomly selected from the two different backward functions for each batch. For sTRADES, we
only compute the TRADES loss when training, and generating adversarial examples is based on cross-entropy loss. We
use PreactResNet18 (He et al., 2016b) with softplus activation (Dugas et al., 2000) for experiments on CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009), and ResNet34 (He et al., 2016a) for experiments on ImageNet100 (Deng et al., 2009)
and GTSRB (Stallkamp et al., 2012). We train the model for 100 epochs on CIFAR-10 and CIFAR-100, for 40 epochs
on ImageNet100, and for 20 epochs on GTSRB. The training batch size is 128 on CIFAR-10 and CIFAR-100, and 32 on
ImageNet100 and GTSRB. The optimizer is SGD with a momentum factor of 0.9 and weight decay factor of 5× 10−4. The
learning rate is initialized to 0.05 and is divided by a factor of 10 at the 1

4 and the 3
4 of the total epochs. The tolerance for

reinitialization is set to 10.

C. Visualization of Some Adversarial Samples
We show some adversarial examples with different sparsity levels of perturbation in Figure 5, 6, 7. The attack is sPGD, and
the model is Fast-EG-l1 (Jiang et al., 2023) trained on CIFAR-10. We can observe that most of the perturbed pixels are
located in the foreground of images. It is consistent with the intuition that the foreground of an image contains most of the
semantic information.

(a) automobile (b) frog (c) horse (d) deer (e) cat

(f) truck (g) deer (h) automobile (i) bird (j) ship

Figure 5. Clean images (first row) from the test set of CFIFAR-10 and their corresponding adversarial samples (second row) by sPGD.
The attack is sPGD with sparsity level k = 10. The model is Fast-EG-l1 trained on CIFAR-10. The predictions given by the model are
listed below the images.
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(a) horse (b) frog (c) truck (d) airplane (e) bird

(f) cat (g) bird (h) horse (i) automobile (j) horse

Figure 6. Clean images (first row) from the test set of CFIFAR-10 and their corresponding adversarial samples (second row) by sPGD.
The attack is sPGD with sparsity level k = 15. The model is Fast-EG-l1 trained on CIFAR-10. The predictions given by the model are
listed below the images.

(a) dog (b) bird (c) cat (d) horse (e) ship

(f) cat (g) automobile (h) bird (i) dog (j) cat

Figure 7. Clean images (first row) from the test set of CFIFAR-10 and their corresponding adversarial samples (second row) by sPGD.
The attack is sPGD with sparsity level k = 20. The model is Fast-EG-l1 trained on CIFAR-10. The predictions given by the model are
listed below the images.
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