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Abstract

Predominant Instrument Recognition (PIR) remains a challenge in MIR primarily
due to data limitations. Recent work suggests that generative diffusion models
learn rich timbre representations from these limited sets, yet their utility for recog-
nition tasks has not been explored. We present the first study probing intermediate
diffusion features for PIR. Starting from a pretrained diffusion model, we fine-tune
variants on IRMAS (the premier PIR dataset) and OpenPIR, a new metadataset of
multi-predominant annotations for OpenMic that we introduce. We sample activa-
tions across noise levels and layers and evaluate them with lightweight classifier
heads. Results show that low-noise bottleneck features are the most informa-
tive, and even simple Multi-Layer Perceptron (MLP) probes achieve promising
results. Incorporating OpenPIR improves performance across models, with dif-
fusion features rivaling baselines for certain instruments. These findings provide
early evidence that audio diffusion models encode discriminative features, pointing
toward the need for further research into unified diffusion-recognition frameworks.

1 Introduction

In Music Information Retrieval (MIR), tasks such as source separation, transcription, and recom-
mendation benefit instrument labels. While models achieve good results for isolated instruments, it
remains challenging for polyphonic mixtures. Predominant Instrument Recognition (PIR) addresses
identifying the most salient instruments in a recording. Modeling predominant instrumentation is
difficult because timbre is highly contextual and overlaps in time and frequency. Prior systems
achieve moderate success but suffer from large disparities in class performance [5] and fragile feature
representations [2]. Augmenting with synthetic data, either isolated notes [16] or generated mixtures
[12], yields some gains but does not resolve class imbalance or performance plateaus.

Meanwhile, generative models have shown strong ability to represent and synthesize timbre. Diffusion
and autoencoder approaches can generate realistic instrument tones and transfer timbre between
sources, and recent advances suggest they can also be guided to emphasize specific instruments
using attention or disentanglement methods [9]. In vision, unifying recognition and generation
has improved both domains [6], and diffusion features have been shown to transfer effectively into
discriminative models [[10].

In this paper, we probe diffusion models trained under constrained conditions and show that their
intermediate features contain salient information for PIR. Even simple classifier probes on these
features produce competitive results. To better match real-world evaluation, we also extend IRMAS
with a small meta-dataset of multi-predominant annotations. Together, these experiments explore
whether diffusion models learn features that are useful for discriminative tasks.
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Figure 1: Overview of proposed method: Intermediate feature extraction from a diffusion model.

Model | Pre-Training Epochs Batch Size Training Set Input Length
Model 0 None 400 64 IRMAS & Solos [3] 1 sec
Model A Model 0 100 64 IRMAS 2 sec
Model B Model 0 100 64 IRMAS & OpenPIR 2 sec
Model C Model A 100 64 IRMAS & OpenPIR 2 sec

Table 1: Diffusion Model Training Parameters: Outlined are the baseline model, Model 0, from [3]
as well as three models trained in this study along with their specific training parameters. All models
are trained on a single V100 GPU. The T5 text embedding model used as input to these models is
frozen. Model 0 is only used in training diffusion models and not classifier heads. All models are
240M parameters.

2 Background and Related Work

Within the last decade, progress in Predominant Instrument Recognition (PIR) has moved from
handcrafted features and SVMs [1]] to deep learning methods such as CNNs and transfer/multi-
task learning [5]. Despite improvements, state-of-the-art models still struggle from disparities in
class performance. Later work explored synthetic pretraining data [[16]], feature learning [11]], data
augmentation [8], and ensemble or transformer-based systems [[12]. These strategies yield modest
gains but remain heavily reliant on synthetic data and still mirror class imbalance problems of
previous models.

In parallel, diffusion models have demonstrated strong capabilities for modeling complex, high-
dimensional data such as images, audio, and music [4]. They capture rich internal representations of
timbre, generalize across playing styles, and enable controllable transformations. Recent work in
computer vision has shown that diffusion models can support discriminative tasks either as frozen
feature learners or through joint generative—discriminative training. RepFusion [14] dynamically
selects layers and timesteps to distill features, while Mukhopadhyay et al. [[10]] pool and combine
features across the denoising trajectory. These studies highlight the potential of intermediate feature
extraction from diffusion models, but these applications remain underexplored in audio and MIR.

3 Dataset

We base our experiments on the IRMAS dataset [[1], which contains audio clips labeled with one
predominant instrument from 11 classes. Training samples are additionally annotated with one
of five genres and about ten percent include drum presence/absence labels. IRMAS suffers from
two major limitations: strong class imbalance and a mismatch between the training and test sets.
While the training data contains only single-label annotations, more than three-quarters of the test
samples include multiple predominant instruments. To mitigate this gap, we introduce OpenPIR, a
complementary dataset of 1,234 multi-predominant annotations derived from OpenMIC [7], aligned
with tlﬁle IRMAS instrument taxonomy and containing predominant instrument, genre, and drum
labels

"Dataset, code, and sound examples avaibale at httpzs://github.com/charisrenee/DiffPIR/
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Figure 2: Overview of Feature Selection Experiments: Classifiers trained on IRMAS (top) and
Classifiers trained on IRMAS & OpenPIR (bottom).
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Figure 3: Class-wise and overall Micro F1: Results for the optimal Noise, Layer and Classifier
parameters for each training data and diffusion model combination as well as the Han et.al. baseline.

4 Diffusion Model Architecture and Training

Our diffusion backbone adapts components from a-unet and audio-diffusion-pytorch [13]. The DDIM
network contains three up/downsampling stages and a bottleneck with [128, 256, 512, 1024] filters.
Instrument conditioning is injected via pre-trained TS embeddings. Models operate on 16 kHz Mel
spectrograms (window size 640, hop 320, 128 bins) and are decoded into audio using a frozen
SoundStream vocoder [15]. We initialize from a pretrained baseline (Model 0) trained on IRMAS
combined with solo instrument data, as presented by Cochran et al. [3]]. From this baseline, we
train three variants: Model A, fine-tuned on IRMAS only; Model B, fine-tuned on IRMAS plus
OpenPIR; and Model C, trained sequentially by continuing Model A training with IRMAS and
OpenPIR together. Each model is trained for 100 epochs. Model details can be seen in Table 1.

5 Experiments

We aim to answer whether learned diffusion representations are informative for PIR, by investigating
whether intermediate features extracted from a pretrained diffusion model are suitable representations
for this downstream task as it has been in vision tasks [10]. This technique exploits the class
information preserved in denoising trajectories, and utilizes this as the input to small classifier head.
The overview of this setup can be seen in Figure 1. To extract features, we first corrupt an input with
noise at a chosen timestep ¢ using the diffusion scheduler. A single denoising step is then performed



without text conditioning, after which intermediate activations are collected from the target layer L.
These activations are either globally pooled or passed directly into classifier heads.

We evaluate four lightweight classifiers. The multilayer perceptron (MLP) has a single hidden layer
of 128 units with approximately 130K parameters. The CNN contains a single 2D convolutional
layer with 128 filters and about 160K parameters. The CRNN uses a GRU with hidden size 128 for a
total of 200K parameters. The attention-based classifier employs four attention heads with hidden
size 128, totaling 330K parameters. The MLP is training on the Global Average Pool of the feature
outputs (1024 maps for the bottleneck and 512 for the up/downsample), and all other models are
trained on the unpooled 2D feature maps.

We run a systematic parameter search to investigate how noise level, layer choice, and classifier
architecture affect PIR performance. First, we vary the noise level ¢ using the MLP head and a
bottleneck ResNet block. Once the best noise level is identified, we probe features across the final
downsampling block, the bottleneck, and the first upsampling block. With noise and layer fixed, we
then evaluate each classifier head. This procedure is repeated for models Model A, Model B, and
Model C, trained on both IRMAS alone and IRMAS with OpenPIR. Results are compared against a
re-implementation of the Han et al. CNN baseline [5] which has approximately 1.2M parameters.

6 Results

The overall results of the feature selection experiments are shown in Figure 2, while Figure 3
presents class-wise performance for the best parameters of each model and training configuration
and comparison to the baseline. The trends align with findings in computer vision: low-noise
conditions and bottleneck layers yield the most informative features. This follows the intuition that
excessive noise erases class information, while insufficient noise leads the model to focus primarily
on denoising rather than reconstructing timbre. Notably, the second and third bottleneck layers
consistently provide the strongest features across models. Classifier comparisons reveal that more
sophisticated architectures achieve higher accuracy, yet it is striking that even a simple global average
pooling followed by a small MLP can produce a capable PIR model. The benefits of incorporating
OpenPIR are also clear. Diffusion model features trained on OpenPIR (Model B, Model C) outperform
the IRMAS-only baseline (Model A), and adding OpenPIR at the classifier training stage further
boosts performance across all three models.

The class-wise breakdown highlights remaining challenges and promise: these models remain
below both the Han CNN benchmark and the state-of-the-art (£} = 0.65 [16]]), though in certain
cases, such as electric guitar, the diffusion-derived features surpass the Han baseline. Overall, the
results demonstrate that even constrained generative diffusion models learn features with meaningful
discriminative power, though they have yet to close the gap with the best specialized recognition
models.

7 Conclusion & Future Work

This work provides initial evidence that diffusion models, even under constrained conditions, learn
features relevant for PIR. With the introduction of OpenPIR we have shown that this additional multi-
predominant instrument training data helps in all classifier head cases, but interestingly the largest
improvements in the parameter search are seen when adding this data to the diffusion models and
improving the learned features. This additionally points to the possibility of leveraging foundational
models with more advances representation spaces as a starting point for this sort of feature extraction
and downstream classification task. Overall, these preliminary results point to the utility of looking
into ways to leverage the gains in music generation in recent years to inform discriminative systems.
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