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ABSTRACT

The computational cost of Multimodal Large Language Models (MLLMs), driven
by the quadratic complexity of processing vision tokens, remains a significant
barrier to their widespread adoption. While progressive vision token pruning is
a promising solution, we find that its full potential has been unrealized due to
two key limitations: it misinterprets the role of shallow layers as being crucial
for fusion and employs overly rigid, non-adaptive pruning schedules. To address
these flaws, we introduce HiDivDrop, a framework that tailors token pruning to
the true hierarchical function of MLLM layers. HiDivDrop incorporates two key
innovations: (1) a Late Injection strategy that bypasses passive shallow layers,
introducing visual tokens directly where active fusion begins; and (2) a Concave
Pyramid Pruning scheme with an Early Exit mechanism that dynamically adjusts
the pruning rate throughout the middle and deep layers. This process is optimized
via an inter-layer similarity measure and a differentiable top-k operator. Extensive
experiments show that HiDivDrop compresses ~90% visual tokens while match-
ing the original performance and accelerating training by 1.72x. Our work not
only sets a new state-of-the-art for efficient MLLM training and inference but also
provides valuable insights into the hierarchical nature of multimodal fusion.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have attracted growing attention for their ability
to integrate vision and language, enabling progress in tasks such as visual question answering and
embodied Al (OpenAll 2023; 2024} |Bai et al., 2025). The dominant paradigm adopts a connector-
based architecture that leverages powerful pre-trained Large Language Models (LLMs) (Liu et al.,
2023bja; [2024a}; Bai et al., [2023; Wang et al.| [2024; Bai et al., 2025)). In this design, a lightweight
connector projects visual features into the LLM’s embedding space, allowing a purely text-trained
backbone to process multimodal inputs without retraining from scratch. However, visual encoders
typically generate substantially more tokens than text due to their higher information density. As the
number of tokens scales quadratically with image resolution, and self-attention complexity is also
quadratic, the overall computational cost quickly becomes prohibitive.

To alleviate this issue, researchers have proposed progressive vision token pruning, a technique that
gradually removes less informative vision tokens as they flow through the model. Early layers retain
more tokens to preserve fine-grained details, while deeper layers operate on a reduced set of tokens
that concentrate on semantically important content. This strategy effectively reduces the number of
tokens involved in later computations without sacrificing much accuracy, and has become a widely
adopted and popular approach for lowering the inference cost of MLLMs. Yet, through a deeper
analysis of these models’ internal dynamics, we find that current pruning methods are hindered by
two fundamental misconceptions about how MLLMs process visual information across layers.

First, shallow layers are misinterpreted. Prior work observes that removing early layers degrades
performance and thus concludes that these layers are critical for multimodal integration (Xing et al.,
2024} Zhang et al., [2025; Wu et al.l 2025). Our analysis shows otherwise: vision tokens, already
deeply processed by the vision encoder, undergo almost no transformation in the initial LLM layers.
Both intra-modal evolution and cross-modal influence are negligible. These layers primarily act as
propagators and attention sinks, not true integrators.
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Figure 1: Comparison of progressive vision token pruning methods. (a) FastV conducts single-stage pruning
at an early layer. (b) TwigVLM performs early pruning and removes remaining vision tokens at deeper layers.
(c) PDrop applies progressive pruning with uniform ratios and intervals. (d) HiDivDrop introduces vision
tokens only at the end of shallow layers, prunes them in a non-uniform progressive manner in middle layers,
and removes remaining vision tokens before deep layers. (e) HiDivDrop prunes vision tokens by about 4.8 X
more aggressively than state-of-the-art progressive pruning method with negligible performance drop.

Second, pruning schedules are overly rigid. Existing approaches often adopt fixed-ratio, pyramid-
like schemes such as FastV (Chen et al.| [2024b), TwigVLM (Shao et al., 2025), and PDrop (Xing
et al.| 2024)). However, we find that visual information flow is highly non-uniform: redundancy can
be removed more aggressively in middle layers where fusion dominates, while visual tokens can be
safely discarded altogether in the deep layers once integration is complete. Uniform schedules miss
this structure and thus lead to suboptimal efficiency—accuracy trade-offs.

Motivated by these findings, we propose HiDivDrop (Hierarchical Division-based Vision Token
Dropping), a framework that adapts pruning to the actual hierarchical dynamics of MLLMs.

To address the shallow-layer misconception, a straightforward solution might be to aggressively
prune visual tokens within these early layers. However, this is problematic: any token discarded
early is permanently lost and cannot participate in the crucial fusion that occurs in deeper, more
meaningful layers. Instead, we adopt a Late Injection strategy: rather than pruning in shallow
layers, we bypass them altogether and inject the full set of vision tokens only at the onset of the true
fusion stage. This approach perfectly reflects the functional redundancy of the early layers without
prematurely discarding potentially valuable information, marking the first attempt to deliberately
delay, rather than simply prune, visual input for greater efficiency in MLLMs.

To address the limitations of rigid schedules, we propose a Concave Pyramid Pruning scheme,
which accelerates token reduction early in the fusion stage and slows it later, together with an Early
Exit mechanism that fully discards vision tokens before the language-dominant layers. When apply-
ing this schedule, we identify reliable pruning layers using an Inter-Layer Visual Attention Similarity
(ILVAS) measure, and select the most informative tokens with a learnable differentiable top-k oper-
ator. These mechanisms jointly enable precise and end-to-end optimized pruning decisions.

Finally, we develop practical strategies to ensure compatibility with efficient implementations such
as FlashAttention and to resolve issues like position ID mismatches from dynamic token manage-
ment, ensuring that theoretical pruning gains translate into real-world acceleration.

Extensive experiments on LLaVA-1.5-7B show that HiDivDrop compresses ~90% of visual tokens
while matching the original performance, accelerating training by up to 1.72x and substantially
improving inference throughput. Our contributions are threefold: (1) we diagnose two fundamental
weaknesses of existing pruning methods related to shallow-layer interpretation and pruning sched-
ules; (2) we introduce HiDivDrop, featuring the novel Late Injection strategy, Concave Pyramid
Pruning with Early Exit, and optimized layer- and token-selection mechanisms; and (3) we empiri-
cally demonstrate that HiDivDrop achieves state-of-the-art efficiency—accuracy trade-offs.

2 UNMASKING THE PROCESSING DYNAMICS IN MLLMS

A Multimodal Large Language Model (MLLM) processes a unified sequence of text and vision
embeddings, hg = [E, : E;], through its Transformer layers. The text embeddings E; € RNt*4
come from a standard tokenizer, while the vision embeddings E, € R™>*4 originate from a vision
encoder that partitions an image into /V,, patches and projects their features into the LLM’s hidden
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Figure 2: Layer-wise representational dynamics, with the left panel showing intra-modal refinement, and
the right panel highlighting cross-modal interaction intensity.

dimension d. The primary computational bottleneck in this architecture is self-attention, whose cost
scales quadratically with the number of vision tokens, O(N2d), as typically N, > N;.

To mitigate this computational burden, a common solution is progressive token pruning, which
iteratively reduces the number of vision tokens across the model’s layers. Most existing strategies,
however, employ predetermined and static pruning schedules (e.g., linear or convex decay). These
fixed approaches are applied uniformly, without considering the specific processing that occurs at
different stages within the model.

This raises a critical question: what is an effective way to prune visual tokens? We contend that
any sound strategy must be grounded in the model’s actual behavior, rather than relying on a naive,
hand-crafted heuristic. To move toward such a strategy, it is first crucial to understand how MLLMs
process and integrate visual information internally. Therefore, this section presents an in-depth
analysis of these internal dynamics. Our goal is to reveal that the different layers play fundamentally
distinct roles in multimodal fusion, thereby informing a more principled approach to token pruning.

Shallow Layers: Propagators A prevalent assumption in progressive pruning is that shallow
layers are essential for early cross-modal fusion and must be preserved (Xing et al., 2024; [Zhang
et al., |2025). To scrutinize this belief, we perform a training-free layer-wise probe on LLaVA-
v1.5-7B, feeding GQA image—question pairs through the network and recording hidden states at
all layers. Our analysis, however, reveals that these layers function not as active integrators but as
simple propagators. We demonstrate this by examining their contributions from two perspectives.

First, we analyze intra-modal refinement by measuring how token representations evolve across
layers for each modality M € {System, Visual, Textual}. Concretely, we compute the modality-

specific cosine similarity (S, ) between the outputs of consecutive layers:

N
S Y (e X e
intra Nsample pat N teTrm ||1’£,t||2||1‘il;_1”2

where [ denotes the layer index, Ngamplc is the number of samples, 7,4 is the set of tokens belonging
to modality M with N = | T, and Tit is the representation of token ¢ in sample ¢ at layer /.

As shown in the left panel of Fig.[2] visual token representations in the shallow layers exhibit remark-
ably high self-similarity, undergoing only very minor changes across consecutive layers, indicating
that the LLM backbone performs negligible processing on them in this stage.

Second, we measure cross-modal influence by how much text embeddings for a fixed instruction
change when paired with different images, and define the resulting cross-modal similarity as SIS :
Nsample (l,miS) (l,ref)
SIns _ 1 : <hi,ins » HH,ins >
cross — 1,mis I,ref .
Noample £ [0 12 055071

i,ins i,ins

Eli’;?is) is the layer-{ instruction embedding for sample ¢ paired with a mismatched image,

and hgl"f " is the counterpart paired with a fixed reference image.

where h

Contrary to common belief, the right panel of Fig. 2]shows that, in shallow layers, text embeddings
for a fixed instruction are nearly invariant to the accompanying image, indicating that cross-modal
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influence is still negligible and meaningful fusion has not yet occurred. Combined with the intra-
modal analysis above, these results suggest that shallow layers primarily act as passive conduits,
simply passing visual information to deeper layers where substantive processing begins.

Middle Layers: Sparse Fusion Hubs In stark contrast to the passive shallow layers, the mid-
dle layers emerge as the primary hubs for cross-modal fusion. At this stage, the model ac-
tively integrates visual information, causing textual representations to vary significantly in re-
sponse to visual input (Fig. [2). This fusion, however, is highly sparse: a small subset of
key visual tokens grounds the textual embeddings, rendering the vast majority of other vi-
sual tokens redundant. This dual characteristic, being both the center of fusion and the
peak of redundancy, makes the middle layers the natural bottleneck for multimodal processing.
We further substantiate this redun-
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to just 1 'across’the middle layers, _th? demonstrating robustness of our pruning strategy.
model still retains 99.6% of its origi-

nal GQA performance. Moreover, this robustness is not an artifact of a single schedule. As shown
in Fig. 3] various alternative pruning strategies also maintain near-perfect accuracy. Such invariance
demonstrates that high visual redundancy is a stable, inherent property of the middle layers, making
them the ideal location for aggressive token compression.

Deep Layers: Language-Dominant Reasoning Once
cross-modal fusion is completed in the middle layers, the net- 60]
work transitions into its final stage, which is dominated by 551
abstract, language-centric reasoning. The direct influence of
visual tokens steadily diminishes until their role becomes neg- 345!
ligible, as seen in Fig. 2] We validate this with behavior on
LLaVA-v1.5-7B with a training-free “early exit” experiment,
where we discard all visual tokens at a specific layer and ob- deep-to-shallow:90% masked
serve the impact on performance. As shown in Fig. [ remov- 0 10 20 30
ing visual tokens in the shallow or middle layers causes a catas- Layer

trophic performance drop. However, removing them after the
main fusion stage (e.g., beyond layer 24) results in almost no
degradation. This finding provides strong evidence that the
deep layers can operate effectively without direct access to visual information, relying instead on
the fused multimodal representations formed in the middle layers. At this point, the network transi-
tions fully into a language-dominant regime to refine semantics and generate the final output.

40+ Baseline
deep-to-shallow:100% masked

deep-to-shallow:95% masked

Figure 4: Early vision exit analysis
under different masking ratios.

3 HiDivDror

Building on the insights above, we propose HiDivDrop (Hierarchical Division-based Vision Token
Dropping), a framework that adapts pruning to the hierarchical dynamics of MLLMs. As illustrated
in Fig.[5] we exploit hierarchical redundancy by partitioning the LLM’s layers into shallow, middle,
and deep stages: we handle the shallow and deep stages with Late Injection and Early Exit, and
apply Concave Pyramid Dropping in the middle stage to progressively reduce vision tokens.
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Figure 5: Overview of HiDivDrop. (a) Framework illustration, shallow layers focus on vision-independent
reasoning, middle layers progressively prune redundant tokens through differentiable top-£ selection, and deep
layers enable early vision exit. (b) Comparison between hard top-k and our differentiable top-k, which achieves
differentiable selection and better information preservation.

3.1 SHALLOW AND DEEP: JOINT VISUAL LAYER REDUCTION

As shown in Sec. [2] visual tokens are redundant in both shallow and deep stages. We therefore
combine Late Vision Injection, which delays their introduction until fusion begins, with Early Vision
Exit, which discards them once language-dominant reasoning takes over.

Late Vision Injection Knowing that shallow layers act as passive conduits (Sec.[2)), our approach
avoids wasteful computation by employing a Late Vision Injection strategy. Instead of processing
visual tokens from the first layer, HiDivDrop bypasses the initial Liy; — 1 layers for the visual stream
entirely. The text-only forward pass proceeds until the injection layer L;,j, where the vision tokens
are first introduced and concatenated with the text representations: hp, . = [hzmj : htLinJ ]. This
injection point is strategically chosen at the onset of the active fusion stage, which we identify by a
local minimum in the visual layer-wise similarity curve (layer 9 in our experiments, Fig. [2).

Early Vision Exit Our analysis in Sec.[2|shows that deep layers transition to a language-dominant
regime where direct visual input is no longer required for reasoning. Therefore, HiDivDrop incor-
porates an Early Vision Exit strategy after a specific exit layer Ley;, all remaining vision tokens are
discarded, and the forward pass continues with only the text stream. We determine this exit point by
identifying where model performance plateaus in our deep-to-shallow masking analysis, indicating
that visual tokens are no longer contributing (layer 25, Fig. ).

Together, Late Injection and Early Exit create a focused “vision processing window,” restricting all
vision tokens to only middle layers. This targeted approach significantly accelerates both training
and inference, all while preserving the model’s predictive accuracy.

3.2 MIDDLE: AGGRESSIVE CONCAVE PYRAMID PRUNING

Within the core vision processing window, we propose Concave Pyramid Pruning, an aggressive
yet adaptive strategy to manage the high redundancy found in the middle layers (Sec. [2). This ap-
proach is designed to prune tokens rapidly at the start of the fusion stage and then more gradually,
preserving essential information while maximizing computational savings. Implementing this strat-
egy requires answering two key questions: (1) Where in the middle layers should pruning occur?
and (2) Which specific tokens should be pruned at these locations?

Where to Prune: Identifying Filtering Layers with ILVAS  ——
To determine the optimal layers for pruning, we introduce the
Inter-Layer Visual Attention Similarity (ILVAS) metric. The
core idea is to identify layers where the model has formed
a stable assessment of token importance, making them ideal

“filtering” points. ILVAS measures how consistently the most ot
attended to visual tokens at one layer remain important in sub- Figure 6: ILVAS curves for different
sequent layers. Specifically, we compare the top-K attention Wwindow sizes, extended results in Ap-

distributions for vision tokens between a layer [ and a future pendix.[G.5]

Inter-Layer Attn Similarity
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layer I + n:
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where Al is the head-wise attention vector for vision token i. A high ILVAS score indicates a stable
filtering capacity. We compute its curve across the middle layers and select the local maxima to
form our set of filtering layers F (e.g., layers {10, 14,16, 18} in Fig. E])

Which Tokens to Prune: Learnable Selection with Differentiable Top-K Once the filtering
layers are identified, the next challenge is to select which specific tokens to prune. Previous meth-
ods often rely on non-differentiable Hard Top-K selection, which prevents the model from learning
token importance directly. To overcome this, we employ a Differentiable Top-K (DTop-K ) opera-
tor (Liu et al.,2024b), which provides a continuous relaxation of the selection process.

Given a vector of importance scores ¢ € RY for N tokens, the DTop-K operator first computes a
normalized rank score ¢’ for each token: ¢ = 1 >j—1¥(ci > c¢;). This maps the scores to a [0, 1]
range. Next, a soft mask is generated using a sigmoid function with a learnable pruning ratio a:

. . 1
Mask(e,a) = Sigmoid((c — a) - \) = Tre @
This soft mask allows gradients to flow during backpropagation, enabling the model to learn which
tokens are important. For the forward pass, a hard threshold is applied to the mask to make a
discrete token selection. By combining ILVAS to determine where to prune and DTop-K to learn
which tokens to prune, our method dynamically and efficiently compresses visual information. A
detailed comparison with Hard Top-K is provided in Sec. #.3]

3.3 SOLUTIONS TO IMPLEMENTATION CHALLENGES

Persistent Position Encoding HiDivDrop dynamically changes which visual tokens are active
across layers because of late injection, progressive dropping, and early exit. Naively reindexing
tokens under this dynamic behavior can misalign positional encodings. To avoid this, each visual
token is assigned a persistent positional identifier at input: although the shallow layers contain no
visual tokens, their indices are reserved, activated upon injection, and preserved through subsequent
dropping or exit. For RoPE, queries and keys are always rotated using these fixed identifiers, ensur-
ing consistent relative geometry across the model.

Efficient Attention Compatibility To remain compatible with efficient attention kernels such as
FlashAttention, the original attention computation is left intact over the full sequence. Token selec-
tion is handled separately by a lightweight auxiliary attention pass, restricted to interactions between
the final text token and visual tokens. Since this auxiliary step involves only a single query, its over-
head is negligible, and the efficiency benefits of HiDivDrop are fully preserved.

Parallel Decoupling of Vision-related Operations Late injection theoretically allows us to
shorten the critical-path prefill time by decoupling vision-related computation from the main at-
tention stack. Before the injection layer, all transformer layers operate purely on text tokens, while
in parallel we run the vision encoder once, apply the projector to obtain visual KV tensors, and
cache them. At the injection layer, these cached visual KV tensors are concatenated with the text
KV tensors, and subsequent layers attend over the combined set. During HiDivDrop’s multi-stage
pruning, we only update indices over the cached visual KV tensors instead of recomputing projec-
tions. This parallel decoupling removes visual KV projection from the prefill bottleneck and remains
compatible with FlashAttention-style kernels.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Models Within the LLaVA-1.5 architecture (Liu et al., [2023a), we verify the effectiveness of the
proposed HiDivDrop with three different LLM backbones: MobileLLaMA-2.7B (Wu et al.| 2024)),
Vicuna-7B-v1.5, and Vicuna-13B-v1.5 (Zheng et al.,2023)). The details are provided in Appendix@

Benchmarks To thoroughly evaluate the HiDivDrop, we conduct experiments on 11 mainstream
benchmarks, including MME? (Fu et al.,[2023), MMB, MMB®N (Liu et al.,[2025), GQA (Hudson &
Manning}, 2019), VQAY? (Goyal et al., 2017), SQA! (Lu et al.| [2022), VizWiz (Gurari et al.| [2018),
TextVQA (Singh et al.,|2019), POPE (Li et al., 2023), SEED! (Li et al.,[2024a), and MMStar (Chen
et al.| [2024c). Notably, MMStar (Chen et al., 2024¢) is a multimodal benchmark characterized by
strong visual dependency and minimal data leakage. See Appendix [D|for details.

Efficiency Evaluation We consider the efficiency in both training and inference following
PDrop (Xing et al.l |2024). For training, we report real GPU hours on the same device; for in-
ference, we report FLOPs for vision token part. Specifically, for a Transformer block, the FLOPs
from MHA and FFN are 4nd? + 2n2d + 3ndm, where n is the number of vision tokens, d is the
hidden size, and m is the FFN intermediate dimension. Aggregating across layers (with ny denoting
the number of vision tokens at layer £), the total FLOPs are:

L

FLOPs = Z (4 ned? + 2 n%d +3 ngdm)
(=1

Implementation Details For DTop-K operation, we set the temperate A = V,,, which means the
number of the visual candidate vision tokens. For LLaVA-1.5-7B, we adopt late injection layer
Linj = 9, early exit layer Leye = 25, and filtering layers 7 = {10, 14, 16, 18}. For LLaVA-1.5-
MobileLLaMA-2.7B, we ues Liyj = 15, Lexic = 28, and F = {16,19,22,25}. All experiments are
conducted on 8 NVIDIA A100 40 GB GPUs. Unless otherwise stated, we follow LLaVA’s default
training (pretrain and instruction finetuning) and evaluation settings for benchmarks included in its
suite. The evalution of the MMStar is done via LMMS-Eval (Zhang et al., [20244a)) toolkit.

4.2 MAIN RESULTS

Comparison with State-of-the-art Methods To ensure a fair comparison, we conduct controlled-
budget experiment under three different compression ratio. As shown in Table [I] using LLaVA-
1.5-7B as the base LMM, we compare HiDivDrop against state-of-the-art in-LLM vision token
compression methods across eleven widely used benchmarks. HiDivDrop consistently and markedly
outperforms all counterparts at all pruning ratios. Notably, it retains 98.3% and 96.5% of the baseline
performance while pruning 88.9% and 91.7% of vision tokens, respectively. Compared with the
most similar progressive token pruning approach, PDrop (Xing et al., 2024)), HiDivDrop achieves
higher performance on nearly all benchmarks under the 88.9% pruning ratio, with a gap of 4.1%
average performance. At even more aggressive compression, HiDivDrop still retains 96.5% of the
baseline at 91.7% pruning, whereas PDrop cannot reach this pruning level under the same protocol.

Efficiency of HiDivDrop in Training & Inference As shown in Table 2] HiDivDrop reduces the
training time (including both pretraining and finetuning stages) of LLaVA-1.5-7B from 159.3 to 94.4
GPU hours, resulting in an impressive 40.7% reduction in overall time. In addition to the training
efficiency improvement, HiDivDrop also reduces the inference FLOPs from 3.82T to 0.42T, achiev-
ing an 88.9% reduction. Moreover, HiDivDrop lowers the prefill latency from 63.6 ms to 32.6 ms,
and can be further reduced to 31.8 ms and 28.8 ms through parallelly decoupled visual KV projec-
tion and fewer dropping stages. Notably, compared to PDrop’s pruning ratio of 46.9%, HiDivDrop
achieves a much higher pruning ratio of 89.0%, which is 4.8 times more aggressive, while the per-
formance drop is only 1.6%, demonstrating HiDivDrop’s superior efficiency and minimal accuracy
trade-off. Similar trends are observed on LLaVA-1.5-MobileLLaMA-2.7B and LLaVA-1.5-13B:
across both smaller and larger backbones, HiDivDrop consistently delivers substantial reductions in
training time, FLOPs, and prefill latency under much stronger pruning ratios, while incurring only a
slight degradation compared to the vanilla models.
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Table 1: Performance comparisons with three pruning ratios on 11 benchmarks. All methods are applied on
the same base model LLaVA-1.5-7B. The best result for each benchmark and pruning ratio is bolded. Dashed
lines separate training-free (above) and training-based (below) methods within each block. The * denotes
results reproduced using the official checkpoints; T denotes training-based methods evaluated under training-
free settings; ¥ denotes training-free methods evaluated under training-based settings.

- s s |
& o & N - - S
= =) | g - = Z = = @ &
= £ 2 & 3 3 % % 5 2 2%
Method = = = &) > 17} > = - 7 = <
Upper Bound, 576 Tokens (100%)
LLaVA-1.5-7B | 1510.7 643 583 62.0 785 66.8 50.0 582 859 66.1 - -
LLaVA-1.5-7B* | 1506.5 64.7 58.1 619 785 69.5 50.1 582 868 662 33.7 | 100.0
Retain 80 Tokens in Average (/. 86.1%)
FastV | 12144 573 478 513 66.6 68.8 513 521 737 529 3l.1 87.9
PDrop’ | 1133.1 53.6 41.1 508 672 69.1 469 515 720 50.8 308 | 845
FastV¥ | 13482 623 53.1 554 689 688 434 491 80.6 553 347 | 913
PDrop | 1412.1 64.6 547 579 743 698 524 543 837 593 350 | 96.8
VoCo-LLaMA | 1307.0 58.0 445 587 742 66.7 52.1 504 839 547 322 | 912
TwigVLM | 1471.5 628 564 595 768 69.7 515 569 850 60.7 340 | 979
HiDivDrop (Ours) | 1467.0 637 563 613 76.6 675 514 549 86.6 653 312 | 984
Retain 64 Tokens in Average (| 88.9%)
FastV | 1086.6 533 427 488 61.6 689 50.5 499 677 49.1 296 | 828
PDrop’ | 9620 456 327 454 583 682 459 482 640 473 290 | 765
FastV¥ | 1303.8 61.7 527 562 707 700 438 51.0 831 556 338 | 91.8
PDrop | 1350.7 63.1 543 566 718 703 518 51.7 826 579 327 | 942
VoCo-LLaMA | 1256.5 554 442 581 739 662 51.8 495 832 547 333 | 904
TwigVLM | 14040 604 536 588 756 70.0 512 558 827 569 33.1 | 953
HiDivDrop (Ours) | 1473.3 63.2 58.0 60.5 76.5 689 526 552 864 645 320 | 983
Retain 48 Tokens in Average (| 91.7%)
FastV | 8169 373 298 421 496 687 476 463 561 424 256 | 702
FastV¥ | 13274 613 536 544 684 69.0 458 496 822 546 344 | 914
VoCo-LLaMA | 13219 562 462 58.6 741 681 518 509 839 549 323 | 916
TwigVLM | 11999 53.1 426 550 718 69.0 494 536 757 48.6 31.6 | 873
HiDivDrop (Ours) | 1446.4 63.7 555 59.8 75.6 67.7 495 544 858 618 327 | 96.5

Table 2: Efficiency comparison across three LLM backbones within the LLaVA-1.5 framework.
Prefill latency (ms) is reported as actual / decoupled visual-KV / fewer dropping stages.

Avg. Train Infer Prefill P — T

Model Method ‘ Vis. Tokens hours TFlops  Latency (ms) MME MMB GQA VizWiz VQA Avg(%)

LLaVA-1.5- Vanilla 576 108.4 1.52 353 1258.2 57.0 59.4 32.6 48.6 100.0

MobichLaMA-Z 7B PDrop 270 50.3 0.70 28.7 1231.1 54.3 57.0 30.9 475 96.3
’ ours 64 | 206 45.6 0.17 25.4/25.1/22.0 | 1206.6 53.1 56.1 30.4 472 948 | 1.5

Vanilla 576 159.3 3.82 63.6 1506.5 64.7 61.9 50.1 58.2 100.0

LLaVA-1.5-7B PDrop 270 107.3 1.78 43.7 1490.1 63.9 61.7 52.4 577 100.2
ours 64 | 206 94.4 0.42 32.6/31.8/28.8 | 14743 63.2 60.5 52.6 552 98.6] 1.6

Vanilla 576 297.2 7.44 122.8 1529.9 68.5 63.5 53.6 61.2 100.0

LLaVA-1.5-13B PDrop 270 213.7 3.47 74.9 15552 68.8 63.1 53.7 60.8 100.3
ours 64 | 206 175.8 0.82 48.6/46.6/43.5 | 1497.2 66.9 62.1 56.3 58.0 98.7] 1.6

4.3 ABLATION STUDIES

To better understand the proposed HiDivDrop, we conduct three group ablation studies to investi-
gate the key attributes of several critical components: (1) Late injrection and early exit, assessed
independently on the base model; (2) The effect of differentiable top-k and token importance cal-
culation, examined within the progressive dropping setup, where vision tokens are pruned in stages
(576 — 64 — 8 — 1) at evenly spaced intervals; and (3) Position encoding and filter layer selection,
analyzed within the complete shallow-middle-deep compression structure.



Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of LLaVA variants with Hard vs. Differentiable Top- K Operators.
PT and FT denote pretrain and finetune, respectively.

Model | Train Top-K | MME®* MMB GQA VQA™ VizWiz VQA" MMStar | Avg(%)
LLaVA-15-7B | - - | 15065 647 619 78.5 50.1 58.2 337 | 1000
prapr Had | 14369 642 597 76.4 50.1 55.7 33.9 97.7
LLaVA-1.5-7B Diff. | 14847 655 602 763 52.7 56.2 343 99.7
+ Top-K T Hard | 14827 650  60.3 76.5 46.8 55.9 334 97.5
Diff. | 14717 652  59.9 76.5 47.1 56.2 34.8 98.1

Table 4: Effect of different strategies for estimating vision token saliency.

Model | MME" MMB GQA VQA" VizWiz VQA"T MMStar | Avg(%)
LLaVA-1.5-7B ‘ 1506.5 64.7 61.9 78.5 50.1 58.2 33.7 ‘ 100.0
Last token (1-rounds) 1424.7 65.3 59.6 75.6 49.0 55.5 33.2 97.1
Last token (n-rounds) 14847 655 602 763 52.7 56.2 343 99.7
Last token (n-rounds, L2 norm) | 1447.0 65.2 59.7 76.3 48.8 559 34.0 97.9
All token 1414.8 65.0 59.0 74.8 514 56.6 343 98.1
All token (L2 norm) 1424.0 65.5 59.9 75.2 53.2 56.6 355 99.6

Late Injection and Early Exit Our late in- B Lo injccton B Fixcd-Enty Span Equal-Depth Window

jection and early exit are guided by two diag- ' it09

nostics: layer 9 aligns with a local minimumin ~_ » Z 91y 92

the visual layer-wise similarities (Fig. ), and < P

accuracy plateaus around layer 25 under deep- < . 7 I

to-shallow masking (Fig. E[) We validate these bed

choices with three sweeps (Fig. [7). In the late *

entry sweep, varying the injection layer with SEA RS NN PP RPEDS PP

the exit fixed shows a clear peak at layer 9; in-
jecting earlier adds cost with little gain, and in-
jecting later degrades accuracy. In the fixed en-

Layer

Figure 7: Ablation across visual perception lay-
SR ers comparing Late Injection, Fixed-Entry Span, and
try span ;WGeP» ﬁx;?(g aneCt:jOIll at 1ayzer 9 aznq Equal-Depth Window, confirming that our setting is the
Varymg't e exit peaks around fayers 5 to 26; most efficient. The full per-benchmark results are pro-
later exits add cost and earlier exits hurt accu-  yiged in Appendix [G.1] Table[f]

racy. In the equal depth window sweep, sliding

a constant-length window confirms 8-24 and 9-25 as near-optimal, while 10-26 underperforms.
Notably, in the deep-to-shallow diagnostic, performance matches the baseline at layer 26 and is only
slightly lower at layer 25; we therefore choose 25 as the exit, expecting training to recover the small
gap, and the sweeps verify that the 9 to 25 window is a strong choice.

Differentiable Top-K We study hard top-%£ and differentable top-k under a progressive pruning
schedule. As shown in Table[3] replacing hard top-k with differentable top-F lifts the average perfor-
mance from 97.7% to 99.7% with two-stage training (pretraining then finetuning) and from 97.5%
to 98.1% with one-stage training (finetuning only), indicating more faithful token selection under
the same training setting. Since the gain is larger with two-stage training, we adopt this recipe as the
default in our experiments. See Appendix [G.2]for additional token decay schedules.

Token Weighting Strategies We compare training-time strategies for estimating the importance
of vision tokens. As shown in Table f] using attention from all text tokens to vision tokens with
L2-norm weighting performs only on par with the multi-round last token variant. In fact, on the full
set of 11 benchmarks (see Table[I0]in the Appendix|[G.3), the latter is 0.3% lower on average. Given
the extra cost from the eager attention used for importance calculation, we default to the multi-round
last-token scheme.

Position Encoding Conceptually, similar to the “position-ID mismatch” in streaming LLMs (Tong
et al.,2025), but distinct in cause: ours arises from cross-layer changes in the set of surviving vision
tokens due to late injection (insertion), progressive dropping (pruning), and early exit (removal). We
therefore compare three positional encoding (PE) schemes: (1) Persistent PE: assign fixed RoPE
indices at input and never update them; (2) Compacted PE (PDrop-style): start with preset indices
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Table 5: Effect of position encoding (PE) schemes under shallow—middle—deep compression.

Model | MME* MMB GQA VQA“ VizWiz VQA" MMStar | Avg(%)
LLaVA-1.5-7B | 1506.5 647 619 78.5 50.1 58.2 337 | 100.0
Persistent PE 14144 637 613 76.6 52.1 55.6 32.0 97.6
Compacted PE | 14523 646  61.1 76.8 48.9 55.1 30.3 96.4
Group PE 14422 639 604 76.2 51.2 55.5 31.1 97.0

Table 6: Effect of instruction fine-tuning data scale (HiDivDrop retains 48 visual tokens in average).

Model DataScale | MME" MMB GQA VQA™ VizWiz' VQA"™ MMStar | Avg(%)
LLaVA-1.5-7B 665k 1506.5 647 619 785 544 58.2 33.7 100.0
HiDivDrop IM 14464 637 598 756 56.3 54.4 327 97.0
LLaVA-1.5-7B 665k 15261 687 627 792 612 58.8 382 100.0
HiDivDrop IM 14539 662 595 761 60.7 554 36.9 96.3

and, at pruning stages, reset indices to compact surviving vision tokens and fill gaps; and (3) Group
PE: allocate disjoint RoPE index ranges for instruction and vision tokens, with no in-place updates
during injection, pruning, or exit. As summarized in Table[5] Persistent PE achieves the best average
performance, Group PE is close, and Compacted PE performs worst, consistent with the hypothe-
sis that resetting indices exacerbates cross-layer position mismatch. Given its accuracy and zero
overhead, we adopt Persistent PE by default. More benchmark results appear in Appendix[G.4]

Filtering Layer Selection We first compute the ILVAS
curve over the middle layers on a model configured with
late injection and early exit, and select its local maxima _ »
as the filtering layers, yielding {10,14, 16, 18} (Fig.[f). wo s
To validate this choice, we fix a token—decay schedule o e
that follows the concave pyramid dropping policy and
sweep the filtering layers (Fig. [§). Compared with a | EEEREN EHN y
control schedule {12,15,18,21}, the ILVAS-based set IRESS AR A S
achieves higher average accuracy. Fixing {10, 16,18}

and sweeping the remaining slot produces a clear peak Figure 8: Ablation across filter layers, con-
at 14, whereas 12 or 13 degrades performance. Jointly firming that our setting is the most efficient.
sweeping the middle pair further confirms {14, 18} as the Thzfull [Er-bencl%msfk results are provided
best combination; nearby alternatives {13, 18}, {13,19}, " PPe! ix[G.3} Table[l}

and {14, 19} underperform. We therefore adopt {10, 14, 16, 18} in all main experiments.

BEE Contol  WEE {10, 16,18} N {10, .16, }

Avg (%)

Training Data Scale The HiDivDrop variant evaluated in Table [f] retains only 48 visual tokens
across all settings. We compare the base LLaVA-v1.5-7B and its HiDivDrop-equipped counterpart
under two instruction fine-tuning data scales (665k vs. 1M). As the data scale increases, both the base
model and HiDivDrop consistently improve on most benchmarks (e.g., MMB, MMB-CN, SEED-
IMG, MMStar), indicating that HiDivDrop continues to benefit from additional instruction data
rather than being bottlenecked by compression. At the same time, the compressed model remains
close to the base model, with average performance drops of only 3.0% (665k) and 3.7% (1M) despite
operating under a much more aggressive visual-token budget. These results show that HiDivDrop
tracks the gains of the base model as data scale grows, supporting that our layer-wise compression
design is compatible with stronger instruction tuning and that the observed improvements are not
artifacts of under-training.

5 CONCLUSION

In summary, our study challenges prevailing assumptions about visual processing in MLLMs and
demonstrates that shallow layers only act as passive propagators for visual tokens. By introducing
HiDivDrop with Late Injection, Concave Pyramid Pruning, and Early Exit, we align pruning with the
true hierarchical dynamics of multimodal integration. Our findings not only achieve state-of-the-art
efficiency—accuracy trade-offs, but also provide new insights into how MLLMs allocate computation
across layers, paving the way for more principled and scalable multimodal architectures.

10
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A THE USE OF LARGE LANGUAGE MODELS

We employed large language models (LLMs) solely as general-purpose writing assistants for lan-
guage refinement, including improving clarity, grammar, and style. Importantly, no LLM was in-
volved in research ideation, methodological design, analysis, or result interpretation; the role of
the LLM was limited to linguistic polishing. All substantive contributions originated from the au-
thors. This ensured that the scientific content remained entirely authored by the researchers, while
benefiting from improved academic writing quality.

B RELATED WORK

A distinctive property of MLLMs is that vision tokens are far more numerous yet information-sparse
compared to text tokens (Marr,2010), making them the primary source of redundancy and motivat-
ing research on token compression. Most prior work is training-free, pruning vision tokens during
inference via heuristic rules (Chen et al., |2024b; Zhang et al., 2024b}; |Yang et al., [ 2025; [Liu et al.
2024c). While effective in reducing computation, these methods introduce a train—inference mis-
match. To address this issue, training-based approaches learn token reduction end-to-end, achieving
alignment between training and inference and enhancing adaptability.

Among training-based methods, previous studies can be grouped into Pre-LLM, In-LLM, and joint
approaches, according to where the reduction is applied. (1) Pre-LLM approaches compress tokens
before the LLM via compact projectors (Cha et al., |2024; |L1 et al., [2024b) or encoder-side mod-
ules (Hu et al., [2024; [Song et al.| [2025; Zhang et al.||2025). Such approaches remain disconnected
from the LLM’s internal reasoning, preventing compression from adapting to cross-modal interac-
tions. (2) In-LLM approaches integrate compression into the LLM, enabling strategies for token
selection, aggregation, or reduction. Some methods perform representation compression by replac-
ing vision tokens with latent tokens (Ye et al., 2024b)) or by pooling operations (Chen et al.| 2024a)),
while others adopt selection-based pruning, either through heuristic schedules (Xing et al., 2024;
Shao et al.,|2025) or adaptive strategies (Ye et al., 2024a). However, most pruning approaches rely
on non-differentiable Top-k operators, hindering end-to-end optimization. Dynamic-LLaVA (Huang
et al [2024) relaxes this with soft gating but still provides only approximate gradients, whereas
our differentiable Top-k yields a continuous relaxation with stable gradient flow. (3) Joint ap-
proaches combine the strengths of both Pre-LLM and In-LLM strategies, e.g., FocusLLaVA (Zhu
et al.| 2024)), which applies vision-guided pre-LLM compression and text-guided pruning inside the
LLM. While such hybrid designs demonstrate the potential of combining both perspectives, their
two-stage pipeline increases architectural complexity and prevents unified end-to-end optimization.
Our work instead focuses on the In-LLM setting, aiming to achieve effective compression with a
fully differentiable and text-aware token selection strategy.

C LLM BACKBONES

Table 7: Detailed settings of LLM backbones.

Model Blocks Heads Hidden Dim FFN Dim
MobileLLaMA 2.7B 32 32 2560 6912
Vicuna-7B-v1.5 32 32 4096 11008
Vicuna-13B-v1.5 40 40 5120 13824

We use two decoder-only LLM backbones within the LLaVA-1.5 framework: MobileLLaMA
2.7B (Wu et al., 2024) and Vicuna-7B-v1.5 (Zheng et al., 2023). As shown in Table [/} both have
32 transformer blocks and 32 attention heads. MobileLLaMA 2.7B uses a hidden size of 2560 with
an FFN dimension of 6912, while Vicuna-7B-v1.5 uses 4096 and 11008, respectively. Unless other-
wise noted, all other architectural and training settings follow LLaVA defaults; our method changes
only the vision token schedule and leaves the tokenizer, projector, and attention kernels untouched.
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D BENCHMARKS

We conduct experiments on 11 mainstream benchmarks, including MME-Perception (Fu et al.
2023), MMBench, MMBench-CN (Liu et al) 2025), GQA (Hudson & Manning, [2019),
VQAV2 (Goyal et al.| [2017), ScienceQA-Iamge (Lu et al., 2022), VizWiz (Gurari et al.| [2018),
TextVQA (Singh et al., [2019), POPE (Li et al.| [2023)), SEED-Image (L1 et al., 2024a), and MM-
Star (Chen et al., 2024c).

MME-Perception (Fu et al., 2023). A subset of tasks within the MME benchmark that focuses on
evaluating a model’s perception abilities. It relies on manually constructed instruction—answer pairs
to ensure that the model must genuinely “understand” the image or comprehend the text to respond,
rather than relying on memory or data leakage.

MMBench (Liu et al, 2025). Comprehensively measures a model’s performance across different
ability dimensions. It not only assesses whether the model can “understand” images or text but also
evaluates its reasoning ability, knowledge integration, and more refined cognitive performance.

GQA (Hudson & Manning,[2019). Used to evaluate a model’s understanding and reasoning abilities
on real images. It emphasizes scene understanding and logical reasoning, not just the recognition of
individual objects.

VQAV2 (Goyal et al,, [2017). Evaluates a model’s visual perception ability through open-ended
questions. Its core objective is to test whether the model can understand the content of an image and
provide reasonable answers based on the questions.

ScienceQA-Iamge (Lu et al.;|2022). Aims to evaluate a model’s multimodal understanding, com-
plex reasoning, and explainability abilities, covering multiple domains including natural sciences,
language sciences, and social sciences.

VizWiz (Gurari et al.l 2018). Used to evaluate a model’s visual understanding under real-world,
non-ideal image conditions. Its goal is to test whether the model can provide accurate answers in
low-quality images and real-world question scenarios.

TextVQA (Singh et al., [2019). Focuses on evaluating a model’s ability to understand textual infor-
mation in images. It requires the model to recognize, read, and reason about the text in the image,
and then generate correct answers by integrating visual information.

POPE (L1 et al., [2023). Used to evaluate the degree of object hallucination in models. Its core
objective is to quantify the extent to which a model produces hallucinations, helping researchers
understand the model’s reliability in visual perception and generation.

SEED-Image (Li et al., 2024a)). Evaluates a multimodal large model’s ability to understand and
generate image content. Its goal is to test the model’s comprehensive multimodal abilities in visual
perception, spatial reasoning, and image—text interaction tasks.

MMStar (Chen et al., [2024c). Aims to address insufficient visual dependency and data leakage
issues in current multimodal evaluations. It defines 6 core visual-language (VL) abilities and con-
structs 18 detailed evaluation dimensions based on them, covering multiple aspects from coarse
perception to fine-grained reasoning.

Protocol. Unless otherwise noted, we follow the official LLaVA evaluation protocol for all bench-
marks above; MMStar is evaluated via LMMS—-Eval.

E INTRODUCTION TO BASELINES

We conduct comparisons under the LLaVA-v1.5 (Liu et al.,2023a) framework to ensure consistency
and fairness across different approaches. Specifically, we evaluate our method alongside several
representative vision compression techniques, including FastV (Chen et al.l [2024b), PDrop (Xing
et al.,[2024)), VoCo-LLaMA (Ye et al.,|2024b) and TwigVLM (Shao et al., 2025).

FastV (Chen et al.| 2024b). A general plug-and-play method that prunes unnecessary visual to-
kens in the early filtering layer according to attention score ranking, thereby significantly reducing
inference cost without sacrificing performance.
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Figure 9: Layer-wise representational dynamics, where each subfigure consists of a left panel show-
ing intra-modal refinement and a right panel highlighting cross-modal interaction intensity

PDrop 2024). An approach dividing the LVLM into several stages, discarding part
of the image tokens at the end of each stage based on lightweight similarity computation with a

predefined ratio, with negligible time overhead.

VoCo-LLaMA (Chen et al} 2024b)). The first method to compress visual information using LLMs,
distilling the LLM’s understanding of visual tokens into compact representations, compressing hun-
dreds of visual tokens into a single VoCo token while minimizing information loss.

TwigVLM (Shao et al., 2025). A method that trains a lightweight twig block on the early layers
of the base VLM, and through a twig-guided token pruning (TTP) strategy and a self-speculative

decoding (SSD) strategy, achieves better accuracy and faster generation.

F EXTENDED ANALYSIS

F.1 LAYER-WISE REPRESENTATIONAL DYNAMICS ANAYLSIS

To demonstrate that the phenomena observed in this paper are universal, we conducted layer-wise
representational dynamics analysis on various LLM backbones and model sizes within the LLaVA-
v1.5 framework, including MobileLLaMA-2.7B, Vicuna-7B, LLaMA3.1-8B and Vicuna-13B. As
shown in Figs. Pa} Pd] all these LLMs exhibit similar trends and behaviors: (1) the intra-modality
similarity in shallow layers starts at a relatively high level, then decreases and remains low for a
while, before gradually increasing again and stabilizing at a higher level; and (2) the cross-modality
similarity is also relatively high in the shallow layers. Besides, we also performed the same analysis
under the LLaVA-NeXT framework using Vicuna-7B and LLaMA3-8B as backbones, as shown in
Figs.[Oeland [Of] and observed highly consistent patterns in both intra-modality and cross-modality
similarity across layers. This further supports the universality of the identified phenomena across
different LLM architectures and multimodal training pipelines.
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Table 8: Complete per-benchmark results corresponding to Fig.|7} I; denotes visual injection at layer
i, E; denotes early visual exit at layer ¢

z é, = —_

-9 ) o N — S o

= ) ) - ~ = > = a 7 &

= = 2 3 3 3 % 3 5 B 2| %

# | Model = = = O > A > = -9 7 = <
1 \ Baseline \ 1506.5 64.7 58.1 619 785 69.5 50.1 582 86.8 662 33.7 \ 100.0

Late Injection

2 Is 14419 660 599 624 785 695 519 559 865 656 34.0 | 100.1
3 Is 14425 658 583 624 785 693 515 565 868 66.1 333 99.7
4 I; 1413.8 66.2 588 622 783 698 486 56.6 864 653 331 99.0
5 Ig 1424.1 65.1 582 627 783 69.1 507 573 871 659 319 99.1
6 Iy 14444 654 579 615 779 689 530 56.1 86.5 653 32.7 99.3
7 Lo 14023 635 544 620 778 689 506 568 87.0 637 32.7 97.7
8 I 13928 63.1 564 619 777 68.6 509 576 86.8 628 333 97.7

Fixed-Injection Span
9 Io & Ex 1456.2 638 564 619 781 681 509 576 869 643 31.8 | 984
10 | Io & Exs 1438.2 639 566 619 78.1 667 519 580 867 650 329 | 98.7
11 | Io & Exn 14615 639 574 61.7 781 687 512 578 86.7 64.1 319 | 98.7
12 | Iy & Eps 1436.6 65.8 564 625 779 67.1 515 573 87.1 653 335 99.2
13 | Io & Ey | 1460.8 654 579 622 781 688 509 574 87.1 650 352 | 100.0
14 | Iy & Ey; 14359 652 582 624 78.0 68.5 483 567 869 649 33.1 98.6
15 | Io & Exg 1467.2 652 578 624 78.0 683 507 562 872 650 330 | 99.2

Equal-Depth Window

16 | Is & Eoy | 14415 647 562 61.7 781 680 50.1 57.7 872 650 347 | 99.1
17 | Io & Exs | 1436.6 658 564 625 779 67.1 515 573 87.1 653 335 | 99.2
18 | Iio & Ex | 13834 624 533 616 778 681 513 56.8 867 631 306 | 96.6

G EXTENDED EXPERIMENTAL RESULTS

G.1 LATE INJECTION AND EARLY EXIT

Our design of late injection and early exit is guided by two key diagnostics. First, layer 9 coincides
with a local minimum in the visual layer-wise similarity curve (Fig. [2), suggesting a natural entry
point for visual tokens. Second, accuracy plateaus around layer 25 under the deep-to-shallow mask-
ing experiment (Fig. ), indicating a reasonable cutoff for discarding vision tokens. We validate
these choices through three sets of sweeps (Fig.[7):

(1) Late injection sweep. Varying the injection layer while fixing the exit depth reveals a clear peak
at layer 9. Injecting earlier increases computation with negligible gains, whereas injecting later leads
to accuracy degradation.

(2) Fixed-entry span sweep. With injection fixed at layer 9, varying the exit depth yields an optimum
around layers 25-26. Exiting later adds cost, while exiting earlier reduces accuracy.

(3) Equal-depth window sweep. Sliding a constant-length window confirms 8-24 and 9-25 as near-
optimal spans, while 10-26 underperforms.

Notably, in the deep-to-shallow diagnostic, accuracy at layer 26 matches the baseline and at layer
25 is only marginally lower. We therefore select 25 as the exit depth, expecting training to recover
the small gap. Taken together, these ablations validate the 9-25 window as a strong design choice
for balancing efficiency and accuracy.

G.2 DIFFERENTIABLE TOP-k

Here we present more detailed results on the advantages brought by our differentiable Top-k op-
erator. In the main text, we compared hard and differentiable Top-k under a progressive pruning
schedule (Table [3), showing that replacing hard Top-k with differentiable Top-k improves the av-
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erage score from 97.7% to 99.7% with two-stage training (PT+FT) and from 97.5% to 98.1% with
one-stage training (FT only).

Appendix Table 9] further demonstrates that the gain of differentiable Top-k is most pronounced
under high compression ratios. For example, when the number of visual tokens is reduced from
the original 576 to as few as 72, hard Top-k suffers clear degradation, whereas our differentiable
Top-k consistently preserves accuracy across benchmarks. The improvement is especially evident
in vision-heavy tasks such as MMBench, SQA-I, and VizWiz, where more faithful token retention
plays a critical role.

These results confirm that differentiable Top-£ provides a smoother selection mechanism that adapts
to training signals, making it particularly effective in aggressive pruning regimes. We therefore adopt
PT+FT with differentiable Top-k as the default configuration in all main experiments.

Table 9: Performance comparison of LLaVA variants with Hard vs. Differentiable top-k Operators.
PT and FT denote pretrain and finetune, respectively.

z g, ] -

a ] o N - k| S

= =] a2 ~ —~ = Z ) =] 12 )

: £ 2 3 3 3 % % 5 B2 £ ¢%

Model Train  Topk = = = &) > * > = = % = <
LLaVA-1.5-7B ‘ - - ‘ 1506.5 64.7 58.1 619 785 695 50.1 582 868 662 33.7 ‘ 100.0

576 64 -8 —1

PT4FT Hard | 14369 642 570 59.7 764 704 50.1 557 865 631 336 | 98.0

LLaVA-1.5-7B Diff. | 1484.7 655 563 602 763 715 527 562 862 633 343 | 993
+ TopK FT Hard | 14827 65.0 549 603 765 699 468 559 860 635 334 | 975
Diff. | 1471.7 652 56.6 599 765 70.7 47.1 562 859 632 348 | 98.2

G.3 TOKEN WEIGHTING STRATEGIES.

Table [TI0|reports the detailed results of different strategies for scoring visual tokens during training.
We evaluate both last-token based methods, which compute importance by repeatedly attending from
the last text token across multiple rounds, and all-token based methods, which aggregate attention
from all text tokens to vision tokens. For each family, we also test variants that incorporate L2-norm
weighting.

The results show that while all-token strategies slightly improve performance on some individual
benchmarks, their overall average is not better than the multi-round last-token baseline. For exam-
ple, the best all-token variant achieves 99.6% average, compared to 99.9% for the last-token (n-R)
variant. Given the additional computational cost of eager attention required by all-token approaches,
we conclude that the multi-round last-token scheme provides the best trade-off between efficiency
and performance.

G.4 POSITION ENCODING

Table[TT]provides the detailed benchmark results of the three positional encoding (PE) schemes com-
pared under the shallow—middle—deep compression setting. As discussed in the main text, the un-
derlying challenge is conceptually similar to the “position-ID mismatch” in streaming LLMs (Tong
et al.,|2025)), but arises here from dynamic changes in the set of surviving vision tokens across layers
due to late injection, progressive dropping, and early exit.

We evaluate three PE strategies: 1) Persistent PE: fixed RoPE indices assigned at input and never
updated across layers. 2) Compacted PE (PDrop-style): indices are reset after pruning to compact
surviving tokens and fill gaps. 3) Group PE: disjoint RoPE index ranges are allocated for text and
vision tokens, avoiding in-place updates during token injection or removal.

As shown in Table[TT] Persistent PE achieves the highest average performance (97.8%), supporting
the hypothesis that stable positional assignments mitigate cross-layer mismatch. Group PE performs
slightly worse (97.1%), suggesting that disjoint indexing is viable but not superior. By contrast,
Compacted PE yields the lowest accuracy (96.9%), confirming that index resets exacerbate position
inconsistency. Given both its accuracy and zero additional overhead, we adopt Persistent PE as the
default in all main experiments.

18



Under review as a conference paper at ICLR 2026

Table 10: Different strategies for scoring visual tokens. Last-token variants are computed using
repeated attention from the last text token, while all-token variants aggregate attention from all text
tokens, with or without L2-norm weighting.
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= =) E] ~ - > z = =] @ &

= 2 2 3 5§ % % % &5 B2 2|9
Model = = = & > & > = -9 7 = <
LLaVA-1.5-7B | 15065 647 581 619 785 695 S0.1 582 868 662 337 | 100.0
Last token (1-R) 14247 653 569 596 756 71.0 490 555 862 630 332 | 977
Last token (n-R) 14847 655 563 602 763 715 527 562 862 633 343 | 993
Last token (n-R, L2) | 1447.0 652 568 597 763 706 488 559 865 635 340 | 982
All token 14148 650 592 590 748 703 514 566 864 634 343 | 98.6
All token (L2) 14240 655 587 599 752 689 532 566 870 647 355 | 99.6

Table 11: Effect of position encoding (PE) schemes under shallow—-middle—deep compression. Per-
sistent PE with fixed RoPE indices performs best overall, while resetting indices (Compacted PE)
leads to accuracy degradation.
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LLaVA-1.5-7B | 1506.5 64.7 581 619 785 695 50.1 582 868 662 337 | 100.0

Persistent PE | 14144 63.7 56.7 613 766 67.0 521 556 869 652 320 | 97.8
Compacted PE | 14523 64.6 56.1 61.1 768 679 489 551 865 646 303 | 969
Group PE 14422 639 554 604 762 676 512 555 869 636 31.1 | 971

G.5 FILTERING LAYER SELECTION

Table[T2)reports the detailed per-benchmark results for the selection of filtering layers. We first com-
pute the ILVAS curve over the middle layers on a model configured with late injection and early exit.
As shown in Figure the ILVAS profiles are consistent across Top-K € {5, 10, 20, 50, 100, 200}
and window sizes n € {4, 8}, with local maxima occurring at layers 10, 14,16, 18. We therefore
select {10, 14, 16, 18} as the filtering layer set F.

To validate this choice, we fix the concave pyramid token—decay schedule and sweep different
layer configurations. Compared with a control schedule {12, 15,18,21}, the ILVAS-based selec-
tion achieves consistently higher average accuracy. Fixing {10, 16, 18} and sweeping the remaining
slot yields a clear peak at 14, whereas 12 or 13 lead to noticeable degradation. Similarly, joint
sweeps of the middle pair confirm {14, 18} as the strongest combination, while nearby alternatives
such as {13, 18}, {13,19}, and {14, 19} underperform. These ablations confirm {10, 14, 16, 18}
as our final filtering-layer configuration for all main experiments, balancing efficiency and accuracy
across tasks.

Table 12: Per-benchmark results for different filtering layer configurations under the concave pyra-
mid dropping policy. The ILVAS-based set {10, 14,16, 18} achieves the best trade-off.
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# Model = = = & > % > = - 7 = <
1 Baseline 1506.5 647 581 619 785 695 50.1 582 868 662 337 | 100.0
2 | {12,151821} | 1431.0 646 595 614 774 674 465 562 867 653 320 | 977
3 | {10,12,16,18} | 14529 613 552 607 768 676 493 541 864 645 317 | 965
4 | {10,13,16,18} | 14593 648 568 600 763 68.1 493 553 866 645 299 | 969
5 | {10,14,16,18} | 1469.5 650 562 609 767 69.0 508 551 86.1 647 33.1 | 983
6 | {10,15,16,18} | 14689 649 570 616 772 686 500 562 868 645 306 | 97.9
7 | {10,13,16,18} | 14593 648 568 600 763 68.1 493 553 866 645 299 | 969
8 | {10,13,16,19} | 14609 63.6 566 60.8 766 679 50.1 548 866 646 318 | 97.5
9 | {10,14,16,18} | 1469.5 650 562 609 767 690 508 551 861 647 33.1 | 983
10 | {10,14,16,19} | 1472.6 640 572 605 768 685 475 551 862 646 315 | 972

19



Under review as a conference paper at ICLR 2026

o
s

o
s

Inter-Layer Attn Similarity
o =
S o

°

o

s
=

Inter-Layer Attn Similarity
s s
S b

o

LLaVA-v1.5-7B: n=4
—=— LLaVA-v1.5-7B: n=8

Inter-Layer Attn Similarity

o
s

o
s

o

N

°

LLaVA-v1.5-7B: n=4
—=— LLaVA-v1.5-7B: n=8

Inter-Layer Attn Similarity

o
s

o
s

o

N

°

LLaVA-v1.5-7B: n=4
—=— LLaVA-v1.5-7B: n=8

9 13 15 17 19 9 13 15 17 19 9 13 15 17 19
Layer Layer Layer
(a) Top-5 (b) Top-10 (c) Top-20

LLaVA-v1.5-7B: n=4
—=— LLaVA-v1.5-7B: n=8

Inter-Layer Attn Similarity

o

s
=

s

s

i

=

LLaVA-v1.5-7B: n=4
—=— LLaVA-v1.5-7B: n=8

Inter-Layer Attn Similarity

o

s
=

s

s

i

s

LLaVA-v1.5-7B: n=4
—=— LLaVA-v1.5-7B: n=8

\/

13 15 17 19 13 15 17 19 13 15 17 19
Layer Layer Layer
(d) Top-50 (e) Top-100 (f) Top-200

Figure 10: ILVAS curve over the middle layers on a model configured with the late injection and
early exit. (a)—(f) sweep top-k € {5, 10, 20, 50,100,200}, and each curve compares observation
windows n = 4 and n = 8. Consistent valleys across K indicate layers with strong filtering ability,
i.e., candidates for the pruning set F.

These results support our final choice of {10, 14, 16, 18} as the filtering layers for all main experi-
ments, balancing efficiency and accuracy across tasks.
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