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ABSTRACT

The computational cost of Multimodal Large Language Models (MLLMs), driven
by the quadratic complexity of processing vision tokens, remains a significant
barrier to their widespread adoption. While progressive vision token pruning is
a promising solution, we find that its full potential has been unrealized due to
two key limitations: it misinterprets the role of shallow layers as being crucial
for fusion and employs overly rigid, non-adaptive pruning schedules. To address
these flaws, we introduce HiDivDrop, a framework that tailors token pruning to
the true hierarchical function of MLLM layers. HiDivDrop incorporates two key
innovations: (1) a Late Injection strategy that bypasses passive shallow layers,
introducing visual tokens directly where active fusion begins; and (2) a Concave
Pyramid Pruning scheme with an Early Exit mechanism that dynamically adjusts
the pruning rate throughout the middle and deep layers. This process is optimized
via an inter-layer similarity measure and a differentiable top-k operator. Extensive
experiments show that HiDivDrop compresses ∼90% visual tokens while match-
ing the original performance and accelerating training by 1.72×. Our work not
only sets a new state-of-the-art for efficient MLLM training and inference but also
provides valuable insights into the hierarchical nature of multimodal fusion.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have attracted growing attention for their ability
to integrate vision and language, enabling progress in tasks such as visual question answering and
embodied AI (OpenAI, 2023; 2024; Bai et al., 2025). The dominant paradigm adopts a connector-
based architecture that leverages powerful pre-trained Large Language Models (LLMs) (Liu et al.,
2023b;a; 2024a; Bai et al., 2023; Wang et al., 2024; Bai et al., 2025). In this design, a lightweight
connector projects visual features into the LLM’s embedding space, allowing a purely text-trained
backbone to process multimodal inputs without retraining from scratch. However, visual encoders
typically generate substantially more tokens than text due to their higher information density. As the
number of tokens scales quadratically with image resolution, and self-attention complexity is also
quadratic, the overall computational cost quickly becomes prohibitive.

To alleviate this issue, researchers have proposed progressive vision token pruning, a technique that
gradually removes less informative vision tokens as they flow through the model. Early layers retain
more tokens to preserve fine-grained details, while deeper layers operate on a reduced set of tokens
that concentrate on semantically important content. This strategy effectively reduces the number of
tokens involved in later computations without sacrificing much accuracy, and has become a widely
adopted and popular approach for lowering the inference cost of MLLMs. Yet, through a deeper
analysis of these models’ internal dynamics, we find that current pruning methods are hindered by
two fundamental misconceptions about how MLLMs process visual information across layers.

First, shallow layers are misinterpreted. Prior work observes that removing early layers degrades
performance and thus concludes that these layers are critical for multimodal integration (Xing et al.,
2024; Zhang et al., 2025; Wu et al., 2025). Our analysis shows otherwise: vision tokens, already
deeply processed by the vision encoder, undergo almost no transformation in the initial LLM layers.
Both intra-modal evolution and cross-modal influence are negligible. These layers primarily act as
propagators and attention sinks, not true integrators.
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Figure 1: Comparison of progressive vision token pruning methods. (a) FastV conducts single-stage pruning
at an early layer. (b) TwigVLM performs early pruning and removes remaining vision tokens at deeper layers.
(c) PDrop applies progressive pruning with uniform ratios and intervals. (d) HiDivDrop introduces vision
tokens only at the end of shallow layers, prunes them in a non-uniform progressive manner in middle layers,
and removes remaining vision tokens before deep layers. (e) HiDivDrop prunes vision tokens by about 4.8×
more aggressively than state-of-the-art progressive pruning method with negligible performance drop.

Second, pruning schedules are overly rigid. Existing approaches often adopt fixed-ratio, pyramid-
like schemes such as FastV (Chen et al., 2024b), TwigVLM (Shao et al., 2025), and PDrop (Xing
et al., 2024). However, we find that visual information flow is highly non-uniform: redundancy can
be removed more aggressively in middle layers where fusion dominates, while visual tokens can be
safely discarded altogether in the deep layers once integration is complete. Uniform schedules miss
this structure and thus lead to suboptimal efficiency–accuracy trade-offs.

Motivated by these findings, we propose HiDivDrop (Hierarchical Division-based Vision Token
Dropping), a framework that adapts pruning to the actual hierarchical dynamics of MLLMs.

To address the shallow-layer misconception, a straightforward solution might be to aggressively
prune visual tokens within these early layers. However, this is problematic: any token discarded
early is permanently lost and cannot participate in the crucial fusion that occurs in deeper, more
meaningful layers. Instead, we adopt a Late Injection strategy: rather than pruning in shallow
layers, we bypass them altogether and inject the full set of vision tokens only at the onset of the true
fusion stage. This approach perfectly reflects the functional redundancy of the early layers without
prematurely discarding potentially valuable information, marking the first attempt to deliberately
delay, rather than simply prune, visual input for greater efficiency in MLLMs.

To address the limitations of rigid schedules, we propose a Concave Pyramid Pruning scheme,
which accelerates token reduction early in the fusion stage and slows it later, together with an Early
Exit mechanism that fully discards vision tokens before the language-dominant layers. When apply-
ing this schedule, we identify reliable pruning layers using an Inter-Layer Visual Attention Similarity
(ILVAS) measure, and select the most informative tokens with a learnable differentiable top-k oper-
ator. These mechanisms jointly enable precise and end-to-end optimized pruning decisions.

Finally, we develop practical strategies to ensure compatibility with efficient implementations such
as FlashAttention and to resolve issues like position ID mismatches from dynamic token manage-
ment, ensuring that theoretical pruning gains translate into real-world acceleration.

Extensive experiments on LLaVA-1.5-7B show that HiDivDrop compresses ∼90% of visual tokens
while matching the original performance, accelerating training by up to 1.72× and substantially
improving inference throughput. Our contributions are threefold: (1) we diagnose two fundamental
weaknesses of existing pruning methods related to shallow-layer interpretation and pruning sched-
ules; (2) we introduce HiDivDrop, featuring the novel Late Injection strategy, Concave Pyramid
Pruning with Early Exit, and optimized layer- and token-selection mechanisms; and (3) we empiri-
cally demonstrate that HiDivDrop achieves state-of-the-art efficiency–accuracy trade-offs.

2 UNMASKING THE PROCESSING DYNAMICS IN MLLMS

A Multimodal Large Language Model (MLLM) processes a unified sequence of text and vision
embeddings, h0 = [Ev : Et], through its Transformer layers. The text embeddings Et ∈ RNt×d

come from a standard tokenizer, while the vision embeddings Ev ∈ RNv×d originate from a vision
encoder that partitions an image into Nv patches and projects their features into the LLM’s hidden

2
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Figure 2: Layer-wise representational dynamics, with the upper panel showing intra-modal refinement, and
the lower panel highlighting cross-modal interaction intensity.

dimension d. The primary computational bottleneck in this architecture is self-attention, whose cost
scales quadratically with the number of vision tokens, O(N2

v d), as typically Nv ≫ Nt.

To mitigate this computational burden, a common solution is progressive token pruning, which
iteratively reduces the number of vision tokens across the model’s layers. Most existing strategies,
however, employ predetermined and static pruning schedules (e.g., linear or convex decay). These
fixed approaches are applied uniformly, without considering the specific processing that occurs at
different stages within the model.

This raises a critical question: what is the optimal way to prune visual tokens? We contend that a
truly effective strategy must be adaptive and grounded in the model’s actual behavior, rather than
relying on a fixed heuristic. To discover this optimal strategy, it is first crucial to understand how
MLLMs process and integrate visual information internally. Therefore, this section presents an in-
depth analysis of these internal dynamics, revealing that different layers play fundamentally distinct
roles in multimodal fusion and thereby informing a more principled approach to token pruning.

Shallow Layers: Propagators A prevalent assumption in progressive pruning is that shallow
layers are essential for early cross-modal fusion and must be preserved (Xing et al., 2024; Zhang
et al., 2025). Our analysis, however, reveals that these layers function not as active integrators but as
simple propagators. We demonstrate this by examining their contributions from two perspectives.

First, we analyze intra-modal refinement by measuring how visual token representations evolve
across layers. We compute the modality-specific cosine similarity (SM

intra) between the outputs of
consecutive layers:

SM
intra =

1

Nsample

Nsample∑
i=1

(
1

NM

∑
t∈TM

⟨xl
t, x

l+1
t ⟩

∥xl
t∥2 ∥x l+1

t ∥2

)
.

As shown in Fig. 2, visual tokens exhibit remarkable stability, indicating that the LLM backbone
performs negligible processing on them in this stage.

Second, to measure cross-modal influence, we quantify how much text embeddings for a fixed in-
struction change when paired with different images (Scross):

Scross = 1− 1

Nsample

Nsample∑
i=1

⟨H(i)
ins ,H

(ref)
ins ⟩

∥H(i)
ins∥2 ∥H

(ref)
ins ∥2

.

Contrary to common belief, Fig. 2 shows that text embeddings are nearly invariant to the visual input
in shallow layers, confirming that meaningful fusion has not yet occurred. Together, these findings
show that shallow layers act as passive conduits, simply passing visual information to deeper layers
where substantive processing begins.

Middle Layers: Sparse Fusion Hubs In stark contrast to the passive shallow layers, the middle
layers emerge as the primary hubs for cross-modal fusion. Here, the model actively integrates vi-
sual information, causing textual representations to change significantly in response to visual input
(Fig. 2). This fusion process is highly sparse: a small subset of key visual tokens grounds the textual
embeddings and, in doing so, renders the vast majority of other visual tokens redundant. This dual
characteristic, being both the center of fusion and the peak of redundancy, makes the middle layers
the natural bottleneck for multimodal processing.

3
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Figure 3: (a) Vision token reduction curves under dif-
ferent p values, where lower p enforces stronger prun-
ing. (b) Model performance remains stable even un-
der high compression rates, demonstrating robustness
of our pruning strategy.

We confirm this high redundancy with aggres-
sive pruning experiments. On LLaVA-v1.5-
7B, we applied an extreme pyramid schedule
that reduced visual tokens from 576 down to
just 1 across the middle layers; remarkably,
the model retained 99.3% of its original per-
formance. Furthermore, this robustness is not
an artifact of a single schedule. As shown
in Fig. 3, various alternative pruning strategies
also maintain near-perfect accuracy. Such in-
variance demonstrates that high visual redun-
dancy is a stable, inherent property of the mid-
dle layers, making them the ideal location for
aggressive token compression.

(a) Token reduction curves (b) Stable performance under high compression rates
55 
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Figure 4: Early vision exit analysis
under different masking ratios.

Deep Layers: Language-Dominant Reasoning Once
cross-modal fusion is completed in the middle layers, the net-
work transitions into its final stage, which is dominated by
abstract, language-centric reasoning. The direct influence of
visual tokens steadily diminishes until their role becomes neg-
ligible, as seen in Fig. 2.

We validate this with an “early exit” experiment, where we dis-
card all visual tokens at a specific layer and observe the impact
on performance. As shown in Fig. 4, removing visual tokens
in the shallow or middle layers causes a catastrophic perfor-
mance drop. However, removing them after the main fusion
stage (e.g., beyond layer 24) results in almost no degradation.
This finding provides strong evidence that the deep layers can
operate effectively without direct access to visual information, relying instead on the fused multi-
modal representations formed in the middle layers. At this point, the network transitions fully into
a language-dominant regime to refine semantics and generate the final output.

3 HIDIVDROP

We propose HiDivDrop (Hierarchical Division-based Vision Token Dropping), a framework that
adapts pruning to the actual hierarchical dynamics of MLLMs. As illustrated in Fig. 5, we exploit
hierarchical redundancy by partitioning the forward pass of the LLM into shallow, middle, and deep
layers: we handle the shallow and deep layers with Late Injection and Early Exit, respectively, and
apply Concave Pyramid Dropping in the middle layers to progressively reduce vision tokens.
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Figure 5: Overview of HiDivDrop. (a) Framework illustration, shallow layers focus on vision-independent
reasoning, middle layers progressively prune redundant tokens through differentiable top-k selection, and deep
layers enable early vision exit. (b) Comparison between hard top-k and our differentiable top-k, which achieves
differentiable selection and better information preservation.
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3.1 SHALLOW AND DEEP: JOINT VISUAL LAYER REDUCTION

As shown in Sec. 2, visual tokens are redundant in both shallow and deep stages. We therefore
combine Late Vision Injection, which delays their introduction until fusion begins, with Early Vision
Exit, which discards them once language-dominant reasoning takes over.

Late Vision Injection Knowing that shallow layers act as passive conduits (Sec. 2), our approach
avoids wasteful computation by employing a Late Vision Injection strategy. Instead of processing
visual tokens from the first layer, HiDivDrop bypasses the initial Linj −1 layers for the visual stream
entirely. The text-only forward pass proceeds until the injection layer Linj, where the vision tokens
are first introduced and concatenated with the text representations: hLinj = [hv

Linj
: ht

Linj
]. This

injection point is strategically chosen at the onset of the active fusion stage, which we identify by a
local minimum in the visual layer-wise similarity curve (layer 9 in our experiments, Fig. 2).

Early Vision Exit Our analysis in Sec. 2 shows that deep layers transition to a language-dominant
regime where direct visual input is no longer required for reasoning. Therefore, HiDivDrop incor-
porates an Early Vision Exit strategy after a specific exit layer Lexit, all remaining vision tokens are
discarded, and the forward pass continues with only the text stream. We determine this exit point by
identifying where model performance plateaus in our deep-to-shallow masking analysis, indicating
that visual tokens are no longer contributing (layer 25, Fig. 4).

Together, Late Injection and Early Exit create a focused “vision processing window,” restricting all
vision tokens to only middle layers. This targeted approach significantly accelerates both training
and inference, all while preserving the model’s predictive accuracy.

3.2 MIDDLE: AGGRESSIVE CONCAVE PYRAMID PRUNING

Within the core vision processing window, we propose Concave Pyramid Pruning, an aggressive
yet adaptive strategy to manage the high redundancy found in the middle layers (Sec. 2). This ap-
proach is designed to prune tokens rapidly at the start of the fusion stage and then more gradually,
preserving essential information while maximizing computational savings. Implementing this strat-
egy requires answering two key questions: (1) Where in the middle layers should pruning occur?
and (2) Which specific tokens should be pruned at these locations?
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Figure 6: ILVAS curves for dif-
ferent window sizes, extended re-
sults in App. F.5.

Where to Prune: Identifying Filtering Layers with ILVAS To
determine the optimal layers for pruning, we introduce the Inter-
Layer Visual Attention Similarity (ILVAS) metric. The core idea is
to identify layers where the model has formed a stable assessment
of token importance, making them ideal “filtering” points. ILVAS
measures how consistently the most attended to visual tokens at
one layer remain important in subsequent layers. Specifically, we
compare the top-K attention distributions for vision tokens between
a layer l and a future layer l + n:

ILVAS(l, l+n,K) =
1

|V l
K |

∑
i∈Vl

K

〈
Ãl

i, Ã
l+n
i

〉
∥∥∥Ãl

i

∥∥∥ ∥∥∥Ã l+n
i

∥∥∥ ,
where Ãl

i is the head-wise attention vector for vision token i. A high ILVAS score indicates a stable
filtering capacity. We compute its curve across the middle layers and select the local maxima to
form our set of filtering layers F (e.g., layers {10, 14, 16, 18} in Fig. 6).

Which Tokens to Prune: Learnable Selection with Differentiable Top-K Once the filtering
layers are identified, the next challenge is to select which specific tokens to prune. Previous meth-
ods often rely on non-differentiable Hard Top-K selection, which prevents the model from learning
token importance directly. To overcome this, we employ a Differentiable Top-K (DTop-K) opera-
tor (Liu et al., 2024b), which provides a continuous relaxation of the selection process.

Given a vector of importance scores c ∈ RN for N tokens, the DTop-K operator first computes a
normalized rank score c′ for each token: c′i =

1
n

∑n
j=1 ⊮(ci ≥ cj). This maps the scores to a [0, 1]
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range. Next, a soft mask is generated using a sigmoid function with a learnable pruning ratio a:

Mask(c, a) = Sigmoid((c− a) · λ) = 1

1 + e−λ(c′i−a)
.

This soft mask allows gradients to flow during backpropagation, enabling the model to learn which
tokens are important. For the forward pass, a hard threshold is applied to the mask to make a
discrete token selection. By combining ILVAS to determine where to prune and DTop-K to learn
which tokens to prune, our method dynamically and efficiently compresses visual information. A
detailed comparison with Hard Top-K is provided in Sec. 4.3.

3.3 SOLUTIONS TO IMPLEMENTATION CHALLENGES

Persistent Position Encoding HiDivDrop dynamically changes the set of active visual tokens
along depth, due to late injection, progressive dropping, and early exit-so naively reindexing tokens
can misalign positional encodings. To avoid this, each visual token is assigned a persistent positional
identifier at input: although the shallow layers contain no visual tokens, their indices are reserved,
activated upon injection, and preserved through subsequent dropping or exit. For RoPE, queries and
keys are always rotated using these fixed identifiers, ensuring consistent relative geometry across the
model.

Efficient Attention Compatibility To remain compatible with efficient attention kernels such as
FlashAttention, the original attention computation is left intact over the full sequence. Token selec-
tion is handled separately by a lightweight auxiliary attention pass, restricted to interactions between
the final text token and visual tokens. Since this auxiliary step involves only a single query, its over-
head is negligible, and the efficiency benefits of HiDivDrop are fully preserved.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Models Within the LLaVA-1.5 architecture (Liu et al., 2023a), we verify the effectiveness of the
proposed HiDivDrop with two different LLM backbones: Vicuna-7B-v1.5 (Zheng et al., 2023) and
MobileLLaMA-2.7B (Wu et al., 2024). The details are provided in Appendix C.

Benchmarks To thoroughly evaluate the HiDivDrop, we conduct experiments on 11 mainstream
benchmarks, including MMEP (Fu et al., 2023), MMB, MMBCN (Liu et al., 2025), GQA (Hudson &
Manning, 2019), VQAv2 (Goyal et al., 2017), SQAI (Lu et al., 2022), VizWiz (Gurari et al., 2018),
TextVQA (Singh et al., 2019), POPE (Li et al., 2023), SEEDI (Li et al., 2024a), and MMStar (Chen
et al., 2024c). Notably, MMStar (Chen et al., 2024c) is a multimodal benchmark characterized by
strong visual dependency and minimal data leakage. See Appendix D for details.

Efficiency Evaluation We consider the efficiency in both training and inference following
PDrop (Xing et al., 2024). For training, we report real GPU hours on the same device; for in-
ference, we report FLOPs for vision token part. Specifically, for a Transformer block, the FLOPs
from MHA and FFN are 4nd2 + 2n2d + 3ndm, where n is the number of vision tokens, d is the
hidden size, and m is the FFN intermediate dimension. Aggregating across layers (with nℓ denoting
the number of vision tokens at layer ℓ), the total FLOPs are:

FLOPs =

L∑
ℓ=1

(
4nℓd

2 + 2n2
ℓd+ 3nℓdm

)
Implementation Details For DTop-K operation, we set the temperate λ = Nv , which means the
number of the visual candidate vision tokens. For LLaVA-1.5-7B, we adopt late injection layer
Linj = 9, early exit layer Lexit = 25, and filtering layers F = {10, 14, 16, 18}. For LLaVA-1.5-
MobileLLaMA-2.7B, we ues Linj = 15, Lexit = 28, and F = {16, 19, 22, 25}. All experiments are
conducted on 8 NVIDIA A100 40 GB GPUs. Unless otherwise stated, we follow LLaVA’s default
training and evaluation settings for benchmarks included in its suite. The evalution of the MMStar
is done via LMMS-Eval (Zhang et al., 2024a) toolkit.
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Table 1: Performance comparisons with three pruning ratios on 11 benchmarks. All methods are applied on
the same base model LLaVA-1.5-7B. The best result for each benchmark and pruning ratio is bolded. Dashed
lines separate training-free (above) and training-based (below) methods within each block. The ∗ denotes
results reproduced using the official checkpoints; † denotes training-based methods evaluated under training-
free settings; ‡ denotes training-free methods evaluated under training-based settings.
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Upper Bound, 576 Tokens (100%)
LLaVA-1.5-7B 1510.7 64.3 58.3 62.0 78.5 66.8 50.0 58.2 85.9 66.1 - -

LLaVA-1.5-7B∗ 1506.5 64.7 58.1 61.9 78.5 69.5 50.1 58.2 86.8 66.2 33.7 100.0

Retain 80 Tokens in Average (↓ 86.1%)
FastV 1214.4 57.3 47.8 51.3 66.6 68.8 51.3 52.1 73.7 52.9 31.1 87.9

PDrop† 1133.1 53.6 41.1 50.8 67.2 69.1 46.9 51.5 72.0 50.8 30.8 84.5

FastV‡ 1348.2 62.3 53.1 55.4 68.9 68.8 43.4 49.1 80.6 55.3 34.7 91.3
PDrop 1412.1 64.6 54.7 57.9 74.3 69.8 52.4 54.3 83.7 59.3 35.0 96.8

VoCo-LLaMA 1307.0 58.0 44.5 58.7 74.2 66.7 52.1 50.4 83.9 54.7 32.2 91.2
TwigVLM 1471.5 62.8 56.4 59.5 76.8 69.7 51.5 56.9 85.0 60.7 34.0 97.9

HiDivDrop (Ours) 1467.0 63.7 56.3 61.3 76.6 67.5 51.4 54.9 86.6 65.3 31.2 98.4

Retain 64 Tokens in Average (↓ 88.9%)
FastV 1086.6 53.3 42.7 48.8 61.6 68.9 50.5 49.9 67.7 49.1 29.6 82.8

PDrop† 962.0 45.6 32.7 45.4 58.3 68.2 45.9 48.2 64.0 47.3 29.0 76.5

FastV‡ 1303.8 61.7 52.7 56.2 70.7 70.0 43.8 51.0 83.1 55.6 33.8 91.8
PDrop 1350.7 63.1 54.3 56.6 71.8 70.3 51.8 51.7 82.6 57.9 32.7 94.2

VoCo-LLaMA 1256.5 55.4 44.2 58.1 73.9 66.2 51.8 49.5 83.2 54.7 33.3 90.4
TwigVLM 1404.0 60.4 53.6 58.8 75.6 70.0 51.2 55.8 82.7 56.9 33.1 95.3

HiDivDrop (Ours) 1473.3 63.2 58.0 60.5 76.5 68.9 52.6 55.2 86.4 64.5 32.0 98.3

Retain 48 Tokens in Average (↓ 91.7%)
FastV 816.9 37.3 29.8 42.1 49.6 68.7 47.6 46.3 56.1 42.4 25.6 70.2

FastV‡ 1327.4 61.3 53.6 54.4 68.4 69.0 45.8 49.6 82.2 54.6 34.4 91.4
VoCo-LLaMA 1321.9 56.2 46.2 58.6 74.1 68.1 51.8 50.9 83.9 54.9 32.3 91.6

TwigVLM 1199.9 53.1 42.6 55.0 71.8 69.0 49.4 53.6 75.7 48.6 31.6 87.3
HiDivDrop (Ours) 1446.4 63.7 55.5 59.8 75.6 67.7 49.5 54.4 85.8 61.8 32.7 96.5

4.2 MAIN RESULTS

Comparison with State-of-the-art Methods As shown in Table 1, using LLaVA-1.5-7B as the
base LMM, we compare HiDivDrop against state-of-the-art in-LLM vision token compression meth-
ods across eleven widely used benchmarks. HiDivDrop consistently and markedly outperforms all
counterparts at all pruning ratios. Notably, it retains 98.3% and 96.5% of the baseline performance
while pruning 88.9% and 91.7% of vision tokens, respectively. Compared with the most similar
progressive token pruning approach, PDrop (Xing et al., 2024), HiDivDrop achieves higher per-
formance on nearly all benchmarks under the 88.9% pruning ratio, with a gap of 4.1% average
performance. At even more aggressive compression, HiDivDrop still retains 96.5% of the baseline
at 91.7% pruning, whereas PDrop cannot reach this pruning level under the same protocol.

Table 2: Efficiency comparison across two LLM backbones within the LLaVA-1.5 framework.

Model Method Avg.
Vis. Tokens

Train
hours

Infer
TFlops MMEP MMB GQA VizWiz VQAT Avg(%)

LLaVA-1.5-
MobileLLaMA-2.7B

Vanilla 576 108.4 1.52 1258.2 57.0 59.4 32.6 48.6 100.0
PDrop 270 50.3 0.70 1231.1 54.3 57.0 30.9 47.5 96.3
ours 64 ↓ 206 45.6 0.17 1206.6 53.1 56.1 30.4 47.2 94.8 ↓ 1.5

LLaVA-1.5-7B
Vanilla 576 159.3 3.82 1506.5 64.7 61.9 50.1 58.2 100.0
PDrop 270 107.3 1.78 1490.1 63.9 61.7 52.4 57.7 100.2
ours 64 ↓ 206 94.4 0.42 1474.3 63.2 60.5 52.6 55.2 98.6↓ 1.6
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Table 3: Performance comparison of LLaVA variants with Hard vs. Differentiable Top-K Operators.
PT and FT denote pretrain and finetune, respectively.

Model Train Top-K MMEP MMB GQA VQAv2 VizWiz VQAT MMStar Avg(%)

LLaVA-1.5-7B - - 1506.5 64.7 61.9 78.5 50.1 58.2 33.7 100.0

LLaVA-1.5-7B
+ Top-K

PT+FT Hard 1436.9 64.2 59.7 76.4 50.1 55.7 33.9 97.7
Diff. 1484.7 65.5 60.2 76.3 52.7 56.2 34.3 99.7

FT Hard 1482.7 65.0 60.3 76.5 46.8 55.9 33.4 97.5
Diff. 1471.7 65.2 59.9 76.5 47.1 56.2 34.8 98.1

Efficiency of HiDivDrop in Training & Inference As shown in Table 2, HiDivDrop reduces the
training time (including both pretraining and finetuning stages) of LLaVA-1.5-7B from 159.3 to 94.4
GPU hours, resulting in an impressive 40.7% reduction in overall time. In addition to the training
efficiency improvement, HiDivDrop also reduces the inference FLOPs from 3.82T to 0.42T, achiev-
ing an 88.9% reduction. Notably, compared to PDrop’s pruning ratio of 46.9%, HiDivDrop achieves
a much higher pruning ratio of 89.0%, which is 4.8 times more aggressive, while the performance
drop is only 1.6%, demonstrating HiDivDrop’s superior efficiency and minimal accuracy trade-off.

4.3 ABLATION STUDIES

To better understand the proposed HiDivDrop, we conduct three group ablation studies to investi-
gate the key attributes of several critical components: (1) Late injrection and early exit, assessed
independently on the base model; (2) The effect of differentiable top-k and token importance cal-
culation, examined within the progressive dropping setup, where vision tokens are pruned in stages
(576 → 64 → 8 → 1) at evenly spaced intervals; and (3) Position encoding and filter layer selection,
analyzed within the complete shallow-middle-deep compression structure.
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Figure 7: Ablation across visual perception lay-
ers comparing Late Injection, Fixed-Entry Span, and
Equal-Depth Window, confirming that our setting is the
most efficient. The full per-benchmark results are pro-
vided in Appendix F.1, Table 7.

Late Injection and Early Exit Our late in-
jection and early exit are guided by two diag-
nostics: layer 9 aligns with a local minimum in
the visual layer-wise similarities (Fig. 2), and
accuracy plateaus around layer 25 under deep-
to-shallow masking (Fig. 4). We validate these
choices with three sweeps (Fig. 7). In the late
entry sweep, varying the injection layer with
the exit fixed shows a clear peak at layer 9; in-
jecting earlier adds cost with little gain, and in-
jecting later degrades accuracy. In the fixed en-
try span sweep, fixing injection at layer 9 and
varying the exit peaks around layers 25 to 26;
later exits add cost and earlier exits hurt accu-
racy. In the equal depth window sweep, sliding
a constant-length window confirms 8–24 and 9–25 as near-optimal, while 10–26 underperforms.
Notably, in the deep-to-shallow diagnostic, performance matches the baseline at layer 26 and is only
slightly lower at layer 25; we therefore choose 25 as the exit, expecting training to recover the small
gap, and the sweeps verify that the 9 to 25 window is a strong choice.

Differentiable Top-K We study hard top-k and differentable top-k under a progressive pruning
schedule. As shown in Table 3, replacing hard top-k with differentable top-k lifts the average perfor-
mance from 97.7% to 99.7% with two-stage training (pretraining then finetuning) and from 97.5%
to 98.1% with one-stage training (finetuning only), indicating more faithful token selection under
the same training setting. Since the gain is larger with two-stage training, we adopt this recipe as the
default in our experiments. See Appendix F.2 for additional token decay schedules.

Token Weighting Strategies We compare training-time strategies for estimating the importance
of vision tokens. As shown in Table 4, using attention from all text tokens to vision tokens with
L2-norm weighting performs only on par with the multi-round last token variant. In fact, on the full
set of 11 benchmarks (see Table 9 in the Appendix F.3), the latter is 0.3% lower on average. Given
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Table 4: Effect of different strategies for estimating vision token saliency.
Model MMEP MMB GQA VQAv2 VizWiz VQAT MMStar Avg(%)

LLaVA-1.5-7B 1506.5 64.7 61.9 78.5 50.1 58.2 33.7 100.0

Last token (1-rounds) 1424.7 65.3 59.6 75.6 49.0 55.5 33.2 97.1
Last token (n-rounds) 1484.7 65.5 60.2 76.3 52.7 56.2 34.3 99.7
Last token (n-rounds, L2 norm) 1447.0 65.2 59.7 76.3 48.8 55.9 34.0 97.9
All token 1414.8 65.0 59.0 74.8 51.4 56.6 34.3 98.1
All token (L2 norm) 1424.0 65.5 59.9 75.2 53.2 56.6 35.5 99.6

Table 5: Effect of position encoding (PE) schemes under shallow–middle–deep compression.

Model MMEP MMB GQA VQAv2 VizWiz VQAT MMStar Avg(%)

LLaVA-1.5-7B 1506.5 64.7 61.9 78.5 50.1 58.2 33.7 100.0

Persistent PE 1414.4 63.7 61.3 76.6 52.1 55.6 32.0 97.6
Compacted PE 1452.3 64.6 61.1 76.8 48.9 55.1 30.3 96.4
Group PE 1442.2 63.9 60.4 76.2 51.2 55.5 31.1 97.0

the extra cost from the eager attention used for importance calculation, we default to the multi-round
last-token scheme.

Position Encoding Conceptually similar to the “position-ID mismatch” in streaming LLMs (Tong
et al., 2025), but distinct in cause: ours arises from cross-layer changes in the set of surviving vision
tokens due to late injection (insertion), progressive dropping (pruning), and early exit (removal). We
therefore compare three positional encoding (PE) schemes: (1) Persistent PE: assign fixed RoPE
indices at input and never update them; (2) Compacted PE (PDrop-style): start with preset indices
and, at pruning stages, reset indices to compact surviving vision tokens and fill gaps; and (3) Group
PE: allocate disjoint RoPE index ranges for instruction and vision tokens, with no in-place updates
during injection, pruning, or exit. As summarized in Table 5, Persistent PE achieves the best average
performance, Group PE is close (slightly lower on average), and Compacted PE performs worst, con-
sistent with the hypothesis that resetting indices exacerbates cross-layer position mismatch. Given
its accuracy and zero overhead, we adopt Persistent PE by default. More benchmark results appear
in Appendix F.4.

{12,15,18,21} {12} {13} {14} {15} {13,18}{13,19}{14,18}{14,19}
Layer

96

97

98

99

100

Av
g 

(%
)

97.7

96.5
96.9

98.3
97.9

96.9

97.5

98.3

97.2

Control {10, _, 16, 18} {10, _, 16, _}

Figure 8: Ablation across filter layers, con-
firming that our setting is the most efficient.
The full per-benchmark results are provided
in Appendix F.5, Table 11.

Filtering Layer Selection We first compute the ILVAS
curve over the middle layers on a model configured with
late injection and early exit, and select its local maxima
as the filtering layers, yielding {10, 14, 16, 18} (Fig. 6).
To validate this choice, we fix a token–decay schedule
that follows the concave pyramid dropping policy and
sweep the filtering layers (Fig. 8). Compared with a
control schedule {12, 15, 18, 21}, the ILVAS-based set
achieves higher average accuracy. Fixing {10, 16, 18}
and sweeping the remaining slot produces a clear peak
at 14, whereas 12 or 13 degrades performance. Jointly
sweeping the middle pair further confirms {14, 18} as the
best combination; nearby alternatives {13, 18}, {13, 19},
and {14, 19} underperform. We therefore adopt {10, 14, 16, 18} in all main experiments.

5 CONCLUSION

In summary, our study challenges prevailing assumptions about visual processing in MLLMs and
demonstrates that shallow layers only act as passive propagators for visual tokens. By introducing
HiDivDrop with Late Injection, Concave Pyramid Pruning, and Early Exit, we align pruning with the
true hierarchical dynamics of multimodal integration. Our findings not only achieve state-of-the-art
efficiency–accuracy trade-offs, but also provide new insights into how MLLMs allocate computation
across layers, paving the way for more principled and scalable multimodal architectures.
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A THE USE OF LARGE LANGUAGE MODELS

We employed large language models (LLMs) solely as general-purpose writing assistants for lan-
guage refinement, including improving clarity, grammar, and style. Importantly, no LLM was in-
volved in research ideation, methodological design, analysis, or result interpretation; the role of
the LLM was limited to linguistic polishing. All substantive contributions originated from the au-
thors. This ensured that the scientific content remained entirely authored by the researchers, while
benefiting from improved academic writing quality.

B RELATED WORK

A distinctive property of MLLMs is that vision tokens are far more numerous yet information-sparse
compared to text tokens (Marr, 2010), making them the primary source of redundancy and motivat-
ing research on token compression. Most prior work is training-free, pruning vision tokens during
inference via heuristic rules (Chen et al., 2024b; Zhang et al., 2024b; Yang et al., 2025; Liu et al.,
2024c). While effective in reducing computation, these methods introduce a train–inference mis-
match. To address this issue, training-based approaches learn token reduction end-to-end, achieving
alignment between training and inference and enhancing adaptability.

Among training-based methods, previous studies can be grouped into Pre-LLM, In-LLM, and joint
approaches, according to where the reduction is applied. (1) Pre-LLM approaches compress tokens
before the LLM via compact projectors (Cha et al., 2024; Li et al., 2024b) or encoder-side mod-
ules (Hu et al., 2024; Song et al., 2025; Zhang et al., 2025). Such approaches remain disconnected
from the LLM’s internal reasoning, preventing compression from adapting to cross-modal interac-
tions. (2) In-LLM approaches integrate compression into the LLM, enabling strategies for token
selection, aggregation, or reduction. Some methods perform representation compression by replac-
ing vision tokens with latent tokens (Ye et al., 2024b) or by pooling operations (Chen et al., 2024a),
while others adopt selection-based pruning, either through heuristic schedules (Xing et al., 2024;
Shao et al., 2025) or adaptive strategies (Ye et al., 2024a). However, most pruning approaches rely
on non-differentiable Top-k operators, hindering end-to-end optimization. Dynamic-LLaVA (Huang
et al., 2024) relaxes this with soft gating but still provides only approximate gradients, whereas
our differentiable Top-k yields a continuous relaxation with stable gradient flow. (3) Joint ap-
proaches combine the strengths of both Pre-LLM and In-LLM strategies, e.g., FocusLLaVA (Zhu
et al., 2024), which applies vision-guided pre-LLM compression and text-guided pruning inside the
LLM. While such hybrid designs demonstrate the potential of combining both perspectives, their
two-stage pipeline increases architectural complexity and prevents unified end-to-end optimization.
Our work instead focuses on the In-LLM setting, aiming to achieve effective compression with a
fully differentiable and text-aware token selection strategy.

C LLM BACKBONES

Table 6: Detailed settings of LLM backbones.

Model Blocks Heads Hidden Dim FFN Dim

MobileLLaMA 2.7B 32 32 2560 6912
Vicuna-7B-v1.5 32 32 4096 11008

We use two decoder-only LLM backbones within the LLaVA-1.5 framework: MobileLLaMA
2.7B (Wu et al., 2024) and Vicuna-7B-v1.5 (Zheng et al., 2023). As shown in Table 6, both have
32 transformer blocks and 32 attention heads. MobileLLaMA 2.7B uses a hidden size of 2560 with
an FFN dimension of 6912, while Vicuna-7B-v1.5 uses 4096 and 11008, respectively. Unless other-
wise noted, all other architectural and training settings follow LLaVA defaults; our method changes
only the vision token schedule and leaves the tokenizer, projector, and attention kernels untouched.
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D BENCHMARKS

We conduct experiments on 11 mainstream benchmarks, including MME-Perception (Fu et al.,
2023), MMBench, MMBench-CN (Liu et al., 2025), GQA (Hudson & Manning, 2019),
VQAv2 (Goyal et al., 2017), ScienceQA-Iamge (Lu et al., 2022), VizWiz (Gurari et al., 2018),
TextVQA (Singh et al., 2019), POPE (Li et al., 2023), SEED-Image (Li et al., 2024a), and MM-
Star (Chen et al., 2024c).

MME-Perception (Fu et al., 2023). A subset of tasks within the MME benchmark that focuses on
evaluating a model’s perception abilities. It relies on manually constructed instruction–answer pairs
to ensure that the model must genuinely “understand” the image or comprehend the text to respond,
rather than relying on memory or data leakage.

MMBench (Liu et al., 2025). Comprehensively measures a model’s performance across different
ability dimensions. It not only assesses whether the model can “understand” images or text but also
evaluates its reasoning ability, knowledge integration, and more refined cognitive performance.

GQA (Hudson & Manning, 2019). Used to evaluate a model’s understanding and reasoning abilities
on real images. It emphasizes scene understanding and logical reasoning, not just the recognition of
individual objects.

VQAv2 (Goyal et al., 2017). Evaluates a model’s visual perception ability through open-ended
questions. Its core objective is to test whether the model can understand the content of an image and
provide reasonable answers based on the questions.

ScienceQA-Iamge (Lu et al., 2022). Aims to evaluate a model’s multimodal understanding, com-
plex reasoning, and explainability abilities, covering multiple domains including natural sciences,
language sciences, and social sciences.

VizWiz (Gurari et al., 2018). Used to evaluate a model’s visual understanding under real-world,
non-ideal image conditions. Its goal is to test whether the model can provide accurate answers in
low-quality images and real-world question scenarios.

TextVQA (Singh et al., 2019). Focuses on evaluating a model’s ability to understand textual infor-
mation in images. It requires the model to recognize, read, and reason about the text in the image,
and then generate correct answers by integrating visual information.

POPE (Li et al., 2023). Used to evaluate the degree of object hallucination in models. Its core
objective is to quantify the extent to which a model produces hallucinations, helping researchers
understand the model’s reliability in visual perception and generation.

SEED-Image (Li et al., 2024a). Evaluates a multimodal large model’s ability to understand and
generate image content. Its goal is to test the model’s comprehensive multimodal abilities in visual
perception, spatial reasoning, and image–text interaction tasks.

MMStar (Chen et al., 2024c). Aims to address insufficient visual dependency and data leakage
issues in current multimodal evaluations. It defines 6 core visual–language (VL) abilities and con-
structs 18 detailed evaluation dimensions based on them, covering multiple aspects from coarse
perception to fine-grained reasoning.

Protocol. Unless otherwise noted, we follow the official LLaVA evaluation protocol for all bench-
marks above; MMStar is evaluated via LMMS-Eval.

E INTRODUCTION TO BASELINES

We conduct comparisons under the LLaVA-v1.5 (Liu et al., 2023a) framework to ensure consistency
and fairness across different approaches. Specifically, we evaluate our method alongside several
representative vision compression techniques, including FastV (Chen et al., 2024b), PDrop (Xing
et al., 2024), VoCo-LLaMA (Ye et al., 2024b) and TwigVLM (Shao et al., 2025).

FastV (Chen et al., 2024b). A general plug-and-play method that prunes unnecessary visual to-
kens in the early filtering layer according to attention score ranking, thereby significantly reducing
inference cost without sacrificing performance.
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Table 7: Complete per-benchmark results corresponding to Fig. 7. Ii denotes visual injection at layer
i, Ei denotes early visual exit at layer i

# Model M
M
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P

M
M

B

M
M
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Q
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v2

SQ
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V
iz
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SE
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M
M
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ar

Av
g(

%
)

1 Baseline 1506.5 64.7 58.1 61.9 78.5 69.5 50.1 58.2 86.8 66.2 33.7 100.0

Late Injection
2 I5 1441.9 66.0 59.9 62.4 78.5 69.5 51.9 55.9 86.5 65.6 34.0 100.1
3 I6 1442.5 65.8 58.3 62.4 78.5 69.3 51.5 56.5 86.8 66.1 33.3 99.7
4 I7 1413.8 66.2 58.8 62.2 78.3 69.8 48.6 56.6 86.4 65.3 33.1 99.0
5 I8 1424.1 65.1 58.2 62.7 78.3 69.1 50.7 57.3 87.1 65.9 31.9 99.1
6 I9 1444.4 65.4 57.9 61.5 77.9 68.9 53.0 56.1 86.5 65.3 32.7 99.3
7 I10 1402.3 63.5 54.4 62.0 77.8 68.9 50.6 56.8 87.0 63.7 32.7 97.7
8 I11 1392.8 63.1 56.4 61.9 77.7 68.6 50.9 57.6 86.8 62.8 33.3 97.7

Fixed-Injection Span
9 I9 & E22 1456.2 63.8 56.4 61.9 78.1 68.1 50.9 57.6 86.9 64.3 31.8 98.4

10 I9 & E23 1438.2 63.9 56.6 61.9 78.1 66.7 51.9 58.0 86.7 65.0 32.9 98.7
11 I9 & E24 1461.5 63.9 57.4 61.7 78.1 68.7 51.2 57.8 86.7 64.1 31.9 98.7
12 I9 & E25 1436.6 65.8 56.4 62.5 77.9 67.1 51.5 57.3 87.1 65.3 33.5 99.2
13 I9 & E26 1460.8 65.4 57.9 62.2 78.1 68.8 50.9 57.4 87.1 65.0 35.2 100.0
14 I9 & E27 1435.9 65.2 58.2 62.4 78.0 68.5 48.3 56.7 86.9 64.9 33.1 98.6
15 I9 & E28 1467.2 65.2 57.8 62.4 78.0 68.3 50.7 56.2 87.2 65.0 33.0 99.2

Equal-Depth Window
16 I8 & E24 1441.5 64.7 56.2 61.7 78.1 68.0 50.1 57.7 87.2 65.0 34.7 99.1
17 I9 & E25 1436.6 65.8 56.4 62.5 77.9 67.1 51.5 57.3 87.1 65.3 33.5 99.2
18 I10 & E26 1383.4 62.4 53.3 61.6 77.8 68.1 51.3 56.8 86.7 63.1 30.6 96.6

PDrop (Xing et al., 2024). An approach dividing the LVLM into several stages, discarding part
of the image tokens at the end of each stage based on lightweight similarity computation with a
predefined ratio, with negligible time overhead.

VoCo-LLaMA (Chen et al., 2024b). The first method to compress visual information using LLMs,
distilling the LLM’s understanding of visual tokens into compact representations, compressing hun-
dreds of visual tokens into a single VoCo token while minimizing information loss.

TwigVLM (Shao et al., 2025). A method that trains a lightweight twig block on the early layers
of the base VLM, and through a twig-guided token pruning (TTP) strategy and a self-speculative
decoding (SSD) strategy, achieves better accuracy and faster generation.

F EXTENDED EXPERIMENTAL RESULTS

F.1 LATE INJECTION AND EARLY EXIT

Our design of late injection and early exit is guided by two key diagnostics. First, layer 9 coincides
with a local minimum in the visual layer-wise similarity curve (Fig. 2), suggesting a natural entry
point for visual tokens. Second, accuracy plateaus around layer 25 under the deep-to-shallow mask-
ing experiment (Fig. 4), indicating a reasonable cutoff for discarding vision tokens. We validate
these choices through three sets of sweeps (Fig. 7):

(1) Late injection sweep. Varying the injection layer while fixing the exit depth reveals a clear peak
at layer 9. Injecting earlier increases computation with negligible gains, whereas injecting later leads
to accuracy degradation.

(2) Fixed-entry span sweep. With injection fixed at layer 9, varying the exit depth yields an optimum
around layers 25–26. Exiting later adds cost, while exiting earlier reduces accuracy.

(3) Equal-depth window sweep. Sliding a constant-length window confirms 8–24 and 9–25 as near-
optimal spans, while 10–26 underperforms.
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Notably, in the deep-to-shallow diagnostic, accuracy at layer 26 matches the baseline and at layer
25 is only marginally lower. We therefore select 25 as the exit depth, expecting training to recover
the small gap. Taken together, these ablations validate the 9–25 window as a strong design choice
for balancing efficiency and accuracy.

F.2 DIFFERENTIABLE TOP-k

Here we present more detailed results on the advantages brought by our differentiable Top-k op-
erator. In the main text, we compared hard and differentiable Top-k under a progressive pruning
schedule (Table 3), showing that replacing hard Top-k with differentiable Top-k improves the av-
erage score from 97.7% to 99.7% with two-stage training (PT+FT) and from 97.5% to 98.1% with
one-stage training (FT only).

Appendix Table 8 further demonstrates that the gain of differentiable Top-k is most pronounced
under high compression ratios. For example, when the number of visual tokens is reduced from
the original 576 to as few as 72, hard Top-k suffers clear degradation, whereas our differentiable
Top-k consistently preserves accuracy across benchmarks. The improvement is especially evident
in vision-heavy tasks such as MMBench, SQA-I, and VizWiz, where more faithful token retention
plays a critical role.

These results confirm that differentiable Top-k provides a smoother selection mechanism that adapts
to training signals, making it particularly effective in aggressive pruning regimes. We therefore adopt
PT+FT with differentiable Top-k as the default configuration in all main experiments.

Table 8: Performance comparison of LLaVA variants with Hard vs. Differentiable top-k Operators.
PT and FT denote pretrain and finetune, respectively.

Model Train Topk M
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)

LLaVA-1.5-7B - - 1506.5 64.7 58.1 61.9 78.5 69.5 50.1 58.2 86.8 66.2 33.7 100.0

576 → 64 → 8 → 1

LLaVA-1.5-7B
+ TopK

PT+FT Hard 1436.9 64.2 57.0 59.7 76.4 70.4 50.1 55.7 86.5 63.1 33.6 98.0
Diff. 1484.7 65.5 56.3 60.2 76.3 71.5 52.7 56.2 86.2 63.3 34.3 99.3

FT Hard 1482.7 65.0 54.9 60.3 76.5 69.9 46.8 55.9 86.0 63.5 33.4 97.5
Diff. 1471.7 65.2 56.6 59.9 76.5 70.7 47.1 56.2 85.9 63.2 34.8 98.2

F.3 TOKEN WEIGHTING STRATEGIES.

Table 9 reports the detailed results of different strategies for scoring visual tokens during training.
We evaluate both last-token based methods, which compute importance by repeatedly attending from
the last text token across multiple rounds, and all-token based methods, which aggregate attention
from all text tokens to vision tokens. For each family, we also test variants that incorporate L2-norm
weighting.

The results show that while all-token strategies slightly improve performance on some individual
benchmarks, their overall average is not better than the multi-round last-token baseline. For exam-
ple, the best all-token variant achieves 99.6% average, compared to 99.9% for the last-token (n-R)
variant. Given the additional computational cost of eager attention required by all-token approaches,
we conclude that the multi-round last-token scheme provides the best trade-off between efficiency
and performance.

F.4 POSITION ENCODING

Table 10 provides the detailed benchmark results of the three positional encoding (PE) schemes com-
pared under the shallow–middle–deep compression setting. As discussed in the main text, the un-
derlying challenge is conceptually similar to the “position-ID mismatch” in streaming LLMs (Tong
et al., 2025), but arises here from dynamic changes in the set of surviving vision tokens across layers
due to late injection, progressive dropping, and early exit.
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Table 9: Different strategies for scoring visual tokens. Last-token variants are computed using
repeated attention from the last text token, while all-token variants aggregate attention from all text
tokens, with or without L2-norm weighting.

Model M
M

E
P

M
M

B

M
M

B
C

N

G
Q

A

V
Q

A
v2

SQ
A

I

V
iz

W
iz

Te
xt

V
Q

A

PO
PE

SE
E

D
I

M
M

St
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LLaVA-1.5-7B 1506.5 64.7 58.1 61.9 78.5 69.5 50.1 58.2 86.8 66.2 33.7 100.0

Last token (1-R) 1424.7 65.3 56.9 59.6 75.6 71.0 49.0 55.5 86.2 63.0 33.2 97.7
Last token (n-R) 1484.7 65.5 56.3 60.2 76.3 71.5 52.7 56.2 86.2 63.3 34.3 99.3
Last token (n-R, L2) 1447.0 65.2 56.8 59.7 76.3 70.6 48.8 55.9 86.5 63.5 34.0 98.2
All token 1414.8 65.0 59.2 59.0 74.8 70.3 51.4 56.6 86.4 63.4 34.3 98.6
All token (L2) 1424.0 65.5 58.7 59.9 75.2 68.9 53.2 56.6 87.0 64.7 35.5 99.6

We evaluate three PE strategies: 1) Persistent PE: fixed RoPE indices assigned at input and never
updated across layers. 2) Compacted PE (PDrop-style): indices are reset after pruning to compact
surviving tokens and fill gaps. 3) Group PE: disjoint RoPE index ranges are allocated for text and
vision tokens, avoiding in-place updates during token injection or removal.

As shown in Table 10, Persistent PE achieves the highest average performance (97.8%), supporting
the hypothesis that stable positional assignments mitigate cross-layer mismatch. Group PE performs
slightly worse (97.1%), suggesting that disjoint indexing is viable but not superior. By contrast,
Compacted PE yields the lowest accuracy (96.9%), confirming that index resets exacerbate position
inconsistency. Given both its accuracy and zero additional overhead, we adopt Persistent PE as the
default in all main experiments.

Table 10: Effect of position encoding (PE) schemes under shallow–middle–deep compression. Per-
sistent PE with fixed RoPE indices performs best overall, while resetting indices (Compacted PE)
leads to accuracy degradation.
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LLaVA-1.5-7B 1506.5 64.7 58.1 61.9 78.5 69.5 50.1 58.2 86.8 66.2 33.7 100.0

Persistent PE 1414.4 63.7 56.7 61.3 76.6 67.0 52.1 55.6 86.9 65.2 32.0 97.8
Compacted PE 1452.3 64.6 56.1 61.1 76.8 67.9 48.9 55.1 86.5 64.6 30.3 96.9

Group PE 1442.2 63.9 55.4 60.4 76.2 67.6 51.2 55.5 86.9 63.6 31.1 97.1

F.5 FILTERING LAYER SELECTION

Table 11 reports the detailed per-benchmark results for the selection of filtering layers. We first com-
pute the ILVAS curve over the middle layers on a model configured with late injection and early exit.

Table 11: Per-benchmark results for different filtering layer configurations under the concave pyra-
mid dropping policy. The ILVAS-based set {10, 14, 16, 18} achieves the best trade-off.
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1 Baseline 1506.5 64.7 58.1 61.9 78.5 69.5 50.1 58.2 86.8 66.2 33.7 100.0
2 {12,15,18,21} 1431.0 64.6 59.5 61.4 77.4 67.4 46.5 56.2 86.7 65.3 32.0 97.7

3 {10,12,16,18} 1452.9 61.3 55.2 60.7 76.8 67.6 49.3 54.1 86.4 64.5 31.7 96.5
4 {10,13,16,18} 1459.3 64.8 56.8 60.0 76.3 68.1 49.3 55.3 86.6 64.5 29.9 96.9
5 {10,14,16,18} 1469.5 65.0 56.2 60.9 76.7 69.0 50.8 55.1 86.1 64.7 33.1 98.3
6 {10,15,16,18} 1468.9 64.9 57.0 61.6 77.2 68.6 50.0 56.2 86.8 64.5 30.6 97.9

7 {10,13,16,18} 1459.3 64.8 56.8 60.0 76.3 68.1 49.3 55.3 86.6 64.5 29.9 96.9
8 {10,13,16,19} 1460.9 63.6 56.6 60.8 76.6 67.9 50.1 54.8 86.6 64.6 31.8 97.5
9 {10,14,16,18} 1469.5 65.0 56.2 60.9 76.7 69.0 50.8 55.1 86.1 64.7 33.1 98.3

10 {10,14 ,16,19} 1472.6 64.0 57.2 60.5 76.8 68.5 47.5 55.1 86.2 64.6 31.5 97.2

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

9 11 13 15 17 19
Layer

0.1

0.2

0.3

0.4

0.5

In
te

r-L
ay

er
 A

ttn
 S

im
ila

rit
y

LLaVA-v1.5-7B: n=4
LLaVA-v1.5-7B: n=8

(a) Top-5
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(b) Top-10
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(c) Top-20
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(d) Top-50
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(e) Top-100
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(f) Top-200

Figure 9: ILVAS curve over the middle layers on a model configured with the late injection and early
exit. (a)–(f) sweep top-k∈{5, 10, 20, 50, 100, 200}, and each curve compares observation windows
n = 4 and n = 8. Consistent valleys across K indicate layers with strong filtering ability, i.e.,
candidates for the pruning set F .

As shown in Figure 9, the ILVAS profiles are consistent across Top-K ∈ {5, 10, 20, 50, 100, 200}
and window sizes n ∈ {4, 8}, with local maxima occurring at layers 10, 14, 16, 18. We therefore
select {10, 14, 16, 18} as the filtering layer set F .

To validate this choice, we fix the concave pyramid token–decay schedule and sweep different
layer configurations. Compared with a control schedule {12, 15, 18, 21}, the ILVAS-based selec-
tion achieves consistently higher average accuracy. Fixing {10, 16, 18} and sweeping the remaining
slot yields a clear peak at 14, whereas 12 or 13 lead to noticeable degradation. Similarly, joint
sweeps of the middle pair confirm {14, 18} as the strongest combination, while nearby alternatives
such as {13, 18}, {13, 19}, and {14, 19} underperform. These ablations confirm {10, 14, 16, 18}
as our final filtering-layer configuration for all main experiments, balancing efficiency and accuracy
across tasks.

These results support our final choice of {10, 14, 16, 18} as the filtering layers for all main experi-
ments, balancing efficiency and accuracy across tasks.
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