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ABSTRACT

Small molecules are essential to drug discovery, and graph-language models hold
promise for learning molecular properties and functions from text. However,
existing molecule-text datasets are limited in scale and informativeness, restricting
the training of generalizable multimodal models. We present MolTextNet, a
dataset of 2.5 million high-quality molecule-text pairs designed to overcome these
limitations. To construct it, we propose a synthetic text generation pipeline that
integrates structural features, computed properties, bioactivity data, and synthetic
complexity. Using GPT-40-mini, we create structured descriptions for 2.5 million
molecules from ChEMBL35, with text over 10 times longer than prior datasets.
MolTextNet supports diverse downstream tasks, including property prediction and
structure retrieval. Pretraining CLIP-style models with Graph Neural Networks
and ModernBERT on MolTextNet yields improved performance, highlighting its
potential for advancing foundational multimodal modeling in molecular science.

1 INTRODUCTION

Small molecules play key roles in scientific discovery for both drug and material development (Ed-{
wards et al.| 2022} [Liu et al., 2024b). A large body of literature describes molecular properties
and functions in plain text, motivating the development of machine learning models that jointly
understand molecular structures and associated texts [Zdrazil et al.| (2024). This has driven recent
advances in molecule-text multimodal learning (Edwards et al., 2022; [Fang et al.| 2023} [Liu et al.,
2024D)).

Despite this progress, the development of foundational multimodal molecular models remains limited
by the lack of large-scale datasets that pair millions of molecules with diverse and informative
descriptions (Fang et al.| 2023} |[Kim et al.,|2021; [Liu et al.,|2024b). Such datasets are essential for
enabling generalization across downstream tasks, including property prediction, structure retrieval,
and molecule generation from text. Existing molecular textual descriptions are primarily sourced
from PubChem, contributed by hundreds of data providers (Kim et al.,|2021). However, the number
of molecule-text pairs remains limited to about 300K (Fang et al.,|2023), with a median description
length of only 13 words. For instance, the entry for 1,4-dideoxy-1,4-epithio-D-arabinitol (structure
shown in Figure |1) contains only: “has been reported in Salacia chinensis with data available,”
which is a description too sparse for models to learn molecular structures or properties. We find that
nearly 50% of the dataset consists of similarly uninformative entries.

Informative, large-scale molecule-text datasets should capture three key aspects: structure, properties,
and synthesizability, as shown in Figure[I} Each poses a distinct challenge: (1) covering diverse
molecular structures across broad chemical spaces for effective pretraining; (2) providing descriptions
that reflect structure-property relationships to support tasks like property prediction and inverse
design; (3) describing synthetic complexity to enable tasks such as synthetic accessibility estimation,
forward and retrosynthetic prediction, and reaction condition inference.

In this work, we propose a synthetic text generation pipeline grounded in computational and experi-
mental molecular annotations. We begin by extracting diverse annotations and summarizing them
into coherent molecule-text pairs using GPT-40-mini (Achiam et al.; 2023). Structure-level features
are captured via SMARTS-defined functional groups (RDKit Project, 2024). Molecular utility is
derived from computed physicochemical properties and over one million bioactivity assays (Zdrazil
et al.}2024). To estimate synthetic complexity, we compute heuristic scores and incorporate reaction
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Figure 1: Comparison of PubChem-300K (Fang et al.,[2023), ChEBI-20 (Edwards et al., 2021), and
MolTextNet. Both PubChem-300K and ChEBI-20 are derived from PubChem (Kim et al.| [2021)).
For reference, we also visualize molecules from commonly used downstream benchmarks (Hu et al.
2020}, Wu et al.,2018). Only MolTextNet spans a broader chemical space that covers the structural
diversity of these downstream tasks. It also provides more informative descriptions of molecular
structures, properties, synthesizability, and their interrelations.

conditions from the USPTO dataset (Coley et al., 2018}, [Ert] & Schuffenhauer}, 2009} [Lowel, 2017).
Finally, we design a template that integrates all annotations for each molecule, enabling GPT-40-mini
to generate structured scientific descriptions.

By applying our pipeline to the latest ChNEMBL release (ChEMBL35, updated on 2024-12-11), we
introduce a new dataset, MolTextNet. Starting from 2.5 million molecules, 1.7 million assays, and 21
million bioactivities, we generate around 2.5 million molecule-text pairs, as shown in Figures[I]and[2]
MolTextNet covers broad chemical space with rich descriptions of molecular structure, properties, and
synthesis. On average, the descriptions are over 10 times longer than those in prior datasets, offering
a substantial improvement in textual depth. To validate our dataset, we pretrain CLIP-style models
using Graph Neural Networks (GNNs) 2018)) and ModernBERT (Warner et al [2024).
Fine-tuning the GNN encoders for property prediction and zero-shot structure retrieval demonstrates
the potential of MolTextNet for advancing multimodal molecular learning.

2 RELATED WORK

2.1 PUBLIC MOLECULE-TEXT DATABASE

Existing textual descriptions of molecules are often sourced from PubChem. Although PubChem
contains over 110 million compounds, only a small fraction—approximately 0.28%—have associated
textual descriptions, giving rise to datasets such as PCdes (Zeng et al., [2022), PubChemSTM
2023c), and ChEBI-20 (Degtyarenko et al., 2007, [Edwards et al.| 2021), many of which
contain only brief statements about molecular origin or occurrence. Among these, the version used in
Mol-Instructions 2023) is the largest, comprising approximately 300K molecule-text
pairs. We refer to this dataset as PubChem-300K in this work. ChEBI-20 is another subset, focusing
on a text-rich part of PubChem that overlaps with the ChEBI database (Degtyarenko et al., 2007).

ChEMBL is another public resource containing manually curated bioactivity data, compiled from over
90K publications. As of version 35 (released on 2024-12-01), it includes 2,496,355 molecules and
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Figure 2: Synthetic Data Generation Pipeline for MolTextNet. Property information is derived
from experimental and computational annotations in ChEMBL35 (Zdrazil et al., [2024)); synthesis
descriptions are generated from heuristic scores and USPTO reaction data (Lowel [2017). Structural
features are extracted using RDKit and approximately 100 predefined functional groups.

approximately 21,123,501 activity records from 1,740,546 assays. While some prior studies (Hu et al.|
2019) have used subsets of ChHEMBL—such as 456K molecules and 1,410 biochemical assays—for
modeling molecule-property relationships, few have utilized the full dataset to capture the complete
assay space with textual definitions.

2.2  SYNTHETIC DATA GENERATION FOR MOLECULES

High-quality pretrained models, such as large language models (LLMs), offer a cost-effective and
scalable approach to data generation, and have been widely used to instruct smaller LLMs to follow
human prompts (Taori et al., [2023; |Wang et al.| 2022). Training graph-language multimodal models
requires large-scale, aligned molecule-text pairs, which remain underexplored (Liu et al.l[2024b). The
chemical space is vast, spanning diverse domains across life sciences and materials, yet foundational
molecular models for property prediction (Liu et al.,2023a) and structure generation (Liu et al.|
2024c) are still lacking. Therefore, we focus on generating synthetic molecular descriptions using
LLMs grounded in existing molecular annotations from ChEMBL (Zdrazil et al.,|2024)), rather than
mixing with pseudo-labels as in (Liu et al.| [2024b} [2023b).

2.3 MULTIMODAL MOLECULAR LEARNING

Molecular structures can be paired with diverse modalities for multimodal learning, such as 3D
protein structures (Schneuing et al., 2024), cellular responses (Liu et al.| 2024a), and text descrip-
tions (Edwards et al., 2021} [Fang et al., 2023} [Liu et al.| |2024bj; 2023c; |Zeng et al.| 2022). Among
these, text offers a flexible and expressive medium for describing molecules, enabling diverse tasks
such as extracting molecular entities from unstructured data (Zeng et al.||2022), captioning molecular
structures (Edwards et al. 2022), editing molecules with text prompts (Liu et al.||2023c), and design-
ing molecules guided by textual instructions (Liu et al.| [2024b). Existing molecule-text models have
shown strong potential and our dataset, MolTextNet, can further unlock their capabilities for building
foundational molecular models.

3 METHODOLOGY OF DATA COLLECTION

We introduce a synthetic text generation pipeline for molecules, grounded in computational and
experimental annotations, and define a prompting template for large language models (LLMs) to
rephrase these annotations into scientific descriptions. The overall pipeline is presented in Figure 2]
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3.1 PREPARATION OF MOLECULAR ANNOTATIONS

We use all molecules from ChEMBL35 (Zdrazil et al., 2024)), each annotated along three dimen-
sions: structure, properties, and synthesizability. The detailed processing procedure is described
in Section[A 2]

Structure Annotations We hypothesize that a compound’s biological activity is determined by
its chemical scaffold and key functional groups. For each molecule, we extract structures using
RDKit, including the Murcko scaffold, ring composition, rotatable bonds, hydrogen bond donors and
acceptors, and the presence of over 90 functional groups defined by SMARTS patterns. These features
are converted into structured textual phrases in the format “{count} {structure_name},’
such as “7 rotatable bonds.”

Property Annotations We incorporate both computational and experimental annotations. For
computational annotations, we extract over 20 physicochemical properties using RDKit (RDKit
Project, [2024) and ChemAxon. These include molecular weight, ALogP, polar surface area, rotatable
bonds, aromatic ring count, heavy atom count, and drug-likeness scores such as QED and natural
product-likeness. Additional descriptors include pK, values, partition and distribution coefficients,
Lipinski rule violations, and compound classification (acidic, basic, or neutral), as recorded in the
COMPOUND_PROPERTIES table of ChEMBL35. We present the complete table in Table[7]

For experimental annotations, ChEMBL35 has over 1.7 million assays with 21 million associated
bioactivity records, covering binding affinity, biological function, ADME, and toxicity. Each assay
has a textual definition sourced from the original publication (e.g., “Anticoccidial activity which
controlled infection by Eimeria tenella in Leghorn cockerels”) and standardized activity values with
units. We use the pChEMBL, i.e., negative logarithm of activity (e.g., ICso, ECs, Kj), and categorize
molecules based on thresholds: <5 as “inactive”, 5-8 as “slightly active”, and >8 as “active”.

Synthesizability Annotations We augment each molecule with synthesis-related information by
computing two established scores: the Synthetic Complexity Score (SCScore) (Coley et al., [ 2018)),
derived from a neural network trained on Reaxys reaction data, and the Synthetic Accessibility Score
(SAScore) (Ertl & Schuffenhauer, 2009), which combines fragment contributions and topological
complexity. Additionally, we query each molecule against the USPTO reaction dataset (Lowe} 2017).
If a match is found, we include the corresponding reaction conditions from the associated patent
description.

3.2 SYNTHETIC TEXT GENERATION WITH MOLECULAR ANNOTATIONS AND LLMS

We use GPT-4 series models (Achiam et al.|[2023) to generate coherent scientific descriptions from
molecular annotations. Each molecule is represented as a structured dictionary of property-value
pairs, integrating structural features, physicochemical properties, bioactivity profiles, and synthesis
information from ChEMBL35 and curated sources. GPT-40-mini is used for batched generation,
while GPT-40 handles samples with high token counts or complex annotations. The template is
provided Figure

The models are explicitly prompted to reason over structure-property and structure-synthesis relation-
ships, rather than merely rephrasing or concatenating fields. For example, in Figure[I] the generated
description notes the “presence of multiple hydroxyl groups and a thioether, which enhance solubility
in aqueous environments,” and “various functional groups such as hydroxyls and thioethers ... which
could enhance its biological activity against glycosidases.” illustrating structure-property reasoning.
For structure-synthesis relationships, in Figure[2] the model identifies “rwo aromatic rings and two
aliphatic rings ... contributing to its molecular complexity.” Given the rich structural and property
annotations, such relational reasoning enables pretraining of foundational models that map scaffolds,
functional groups, and computed descriptors to physicochemical behavior, bioactivity, and synthetic
complexity, supporting generalization across diverse downstream tasks.

In addition to prompting the reasoning paths, the model is instructed to provide a formal academic
analysis (100-500 words) that strictly describes observed data without summarizing or evaluating;
extract relevant factual information concisely. The text must be written as a single plain-text
paragraph, avoid repetition, preserve diversity, and exclude unsupported or speculative links. Critical
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Prompt Template

Given a dictionary containing details about a chemical compound, including its name, canon-
ical SMILES string, calculated properties, structural description, biological assay results, and
synthetic accessibility, analyze the relationships among structure, properties, complexity, and
experimental assay outcomes. \n {annotation_dictionary} \n

Requirements:

1. Provide a formal academic analysis (100-500 words) that strictly describes observed
data without any concluding, summarizing, or evaluative statements.

2. Extract and present the most relevant factual information concisely.

3. Analyze physicochemical behavior, bioactivity, and synthetic complexity by map-
ping core scaffolds, functional groups, and computed descriptors to molecular
interactions, solubility, binding, hydrophobicity, steric effects, and synthetic feasibil-
ity, without drawing overall conclusions.

Write in plain text as a single paragraph without formatting.
Ensure diversity in descriptions and avoid repetition.

Keep <number>. . .</number> format unchanged.
State the compound name and canonical SMILES exactly.

Ignore missing values and avoid unsupported or speculative links.

S U S NS

Exclude introductory phrases such as “Here is the analysis of the polymer...”.

Figure 3: Prompt template used for generating molecular text grounded in annotations.

tokens—such as SMILES strings, compound names, and numerical values—are preserved exactly as
provided, including special <number> tags designed to improve numerical understanding in text.
Introductory phrases (e.g., “Here is the analysis...”) are excluded, and missing values are ignored.

3.3 QUALITY CONTROL

To ensure the quality of synthetic text, we apply specific criteria, filtering rules, and validation steps
throughout both the annotation collection and text generation processes.

Pre-generation The original database consists of multiple tables. We extract the canonical SMILES
string for each molecule, discard entries with missing or invalid structures (validated using RDKit),
and use the ChEMBL identifier molregno to deduplicate compounds across tables. Entries with
missing values for computed properties or experimental assays are dropped. For fields labeled as “N/A”
(i.e., non-null but uninformative), we explicitly instruct the LLM to ignore them. Since ChEMBL
provides activity values in various units (e.g., nM, mM), we normalize all concentration-based
measurements to nanomolar (nM).

Long-Text Chunked Processing Some entries contain extensive annotations that exceed the 128K-
token context window of GPT-4o(-mini). We reserve an 8K-token window for output tokens, resulting
in a 120K-token limit for the input tokens, including the system and user prompts. Under this
constraint, there are 401 entries that exceed the 120K-token limit, with the maximum length reaching
1.7 million tokens. To feed those entries into LLMs, we chunk the inputs into batches and process
them incrementally. The assay dictionary is divided into successive batches that fit within the context
limit. For each batch, we prepend the previously generated summary and prompt the model to
integrate the new information without modifying or omitting earlier content. This iterative process
continues until all assays are incorporated, resulting in a single, coherent summary per molecule.

Post-generation Several rules are applied to validate the output quality after LLM generation.
These include checks on description length and consistency between SMILES and compound names.
Outputs with insufficient length (e.g., fewer than 100 characters), repetitive patterns, or mismatches
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Table 1: Comparison of dataset statistics, including number of pairs, and average/maximum number
of words and atoms.

Dataset # Molecule-Text Pairs Words Atoms
Avg. # Max# Avg. # Max#
ChEBI-20 32,998 43.49 166 32.20 574
PubChem-300K 298,306  17.60 874 33.67 574
MolTextNet 2,474,590 25333 1,871 30.63 780

in key fields (e.g., compound_name, SMILES) are discarded. Any record failing these checks is
regenerated or resubmitted to the API.

4 DATASET ANALYSIS

Table[I] summarizes dataset statistics for Mol TextNet and existing baselines, while Figure [6] shows
joint histograms of molecular size and description length. On average, molecules contain around 30
atoms, but description lengths vary significantly across datasets. Longer descriptions offer greater
capacity to convey detailed information. To analyze content diversity, we apply Non-Negative Matrix
Factorization (NMF) and Latent Dirichlet Allocation (LDA) to extract latent topics. Topic summaries
are shown in Table 2} with full details in Tables [8|and [9] We further group the topics into three cate-
gories—structure, property, and synthesizability—and compute the frequency of associated keywords
in each molecule-text pair. The normalized values, i.e., the proportions of molecular descriptions con-
taining these keywords, are shown in Figure [ Details of the categorization are provided in Table

S : —— ChEBI20
From the tables and figures, ChEBI-20 primarily Synthesis pubChem300K
captures chemical classes such as acid-base species, MolTextNet

coenzymes, and fatty acids. While it illustrates struc-
tural information well, it falls short in describing
properties and synthesizability. PubChem-300K cov-
ers a broader range of compounds, including natural
products, antibiotics, and synthetic agents, with mod-
erate biological context. Its entries often include
synthesis-related information, reflecting molecular
availability and supporting synthesizability analysis.

MolTextNet provides the most comprehensive cover- 100
age across structural, property, and synthesis dimen- Propert
sions. It contains task-relevant language focused on
bioassays, binding affinity, permeability, and molec-
ular property measurements, making it the most suit-
able dataset for model pretraining.

Figure 4: Keyword Coverage (%) in Molecu-
lar Descriptions

5 DATASET VALIDATION WITH EXPERIMENTS

In this section, we evaluate molecule-text pairs using GNN-BERT-based CLIP models (Radford
et al.l [2021) to compare MolTextNet against ChEBI-20 and PubChem-300K. We provide both
quantitative and qualitative validation of MolTextNet. We randomly sample entries from MolTextNet
to match the size of ChEBI-20 and PubChem-300K, constructing two subsets: MolTextNet-50K and
MolTextNet-300K, respectively. Dataset statistics are summarized in Tables [I|and

Given molecule-text pairs, we represent molecules as graphs and encode them using a five-layer
Graph Isomorphism Network (GIN) (Xu et al., 2018). The GIN is pretrained from scratch. Text
descriptions are processed with ModernBERT-Large (Warner et al., 2024), a transformer with an
8192-token context window, well-suited for the long, detailed entries in MolTextNet. The model is
pretrained and available on Hugging Face; we continue pretraining its parameters in CLIP models.
Its extended capacity allows it to retain long-range dependencies without significant information loss.
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Table 2: Topics from LDA and NMF across three molecule-text datasets. Each cell summarizes a
topic based on top keywords.

. ChEBI20 PubChem300K MolTextNet
Topic ID
LDA NMF LDA NMF LDA NMF
1 Acid-Base Carboxylic Cancer Cell Natural Product Structure- Bioassay
Chemistry Acid Inhibitors Metadata Activity Results
Derivatives Relationships
2 Metabolite and Substituted Drug Receptor Antibiotic and Molecular Binding and
Ester Roles Agents Agents Macrocycles  Targets and Affinity
Synthesis Evidence
3 Amino Acids Coenzyme and Organic Peptides and ~ Chemical High-
and Derivatives Acyl Units Liquids and Linkers Fragments and throughput
Assemblies Bioactivity Screen
Statistics
4 Ammonium Linked Peptides and ~ Aromatic and  Antibacterial  Ionization
Inhibitors Saccharides Aromatic Sugar Activities States and pKa
and Residues ~ Compounds Assemblies Behavior
5 Fatty Acids and Protonation Microbial Streptomyces- Partitioning Partition
CoA Chemistry Natural Derived and Solubility Coefficients
Derivatives Products Compounds
6 Acetylated Glycerol Microbial Functional Structure and  Molecular
Sugars Derivatives Extracts Fatty Acids Binding Weight
Profiles Estimation
7 Glycero- Steroidal Fatty Acid Organic Drug-likeness  Cytotoxicity
phospholipids  Positions Chemistry Molecular Violations Markers
Classes
8 Drug Agents  Amino Cations Steroids and  Yeast Binding and  Antibacterial
and Salts Derivatives Metabolites Permeability  Sensitivity
9 Methylated Species- Natural Product Sulfonamides Acid-Base Pathogen
Metabolites Specific Antibiotics and Pyridines  Balance Inhibition
Metabolites Assays
10 Hydroxy- Fatty Acid Steroid Aromatic Cellular Assays Structural
steroids Chains Functional Substructures  and Potency Challenges
Groups

Table 3: Token statistics using ModernBERT and SciBERT tokenizers for CLIP model pretraining.

Tokens (ModernBERT)

Tokens (SciBERT)

Dataset

Avg. # Max # Avg. # Max #
ChEBI-20 85.33 763  83.83 754
PubChem-300K 30.27 1,308  29.46 1,278
MolTextNet 465.00 24,603 476.72 24,576
MolTextNet-50K  439.62 3,162 450.40 3,214
MolTextNet-300K  441.82 3,162 452.73 3,214

Token limits are set based on the average summary length per dataset: 256 tokens for ChEBI-20 and
PubChem-300K, and 1536 tokens for MolTextNet.

We pretrain the GIN-ModernBERT CLIP models for 8 epochs over approximately 2 days on a
NVIDIA A6000 GPU. We then evaluate the GIN encoder on downstream property prediction tasks
(Section [5.1)) and assess both GIN and ModernBERT on zero-shot structure retrieval (Section[5.2).
Additionally, we investigate SciBERT as an alternative text encoder in Section[5.3] All pretraining
and evaluations are conducted on NVIDIA RTX A6000 GPUs.
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Table 4: Fine-tuning performance on seven OGBG classification tasks (Hu et al., 2020): GIN
pretrained on MolTextNet-300K consistently achieves the highest AUC(?).

Pretraining Dataset HIV ToxCast Tox21 BBBP BACE ClinTox SIDER

ChEBI-20 0.741£0.021  0.616+0.015 0.732+0.002  0.679+0.010 0.836+0.011 0.885+0.003  0.547+0.014
PubChem-300K 0.75240.009  0.633x£0.004  0.746+0.002 0.686+0.011  0.840+0.006 0.890£0.010 0.602+0.078
MolTextNet-50K 0.768+0.020  0.635+0.002  0.744+0.007 0.695+0.003  0.841+0.000 0.886+0.026 0.621+0.068
MolTextNet-300K  0.778+0.010  0.638+0.003  0.751£0.002  0.712£0.004  0.847+0.001  0.900+0.002 0.640+0.031

Table 5: Fine-tuning performance on three OGBG regression tasks (Hu et al., 2020): GIN pretrained
on MolTextNet-300K consistently achieves the highest R? and lowest RMSE.

.. MolSol MolFreeSol MolLipo
Pretraining Dataset
R% 1 RMSE | R% 1 RMSE | R% ¢ RMSE |
ChEBI-20 0.693+0.009 1.171+0.017 0.543+0.136  2.496+0.395 0.358+0.169 0.876+0.112

PubChem-300K 0.697+0.008 1.164+0.016 0.563+0.044 2.439+0.150 0.474+0.016 0.797+0.012
MolTextNet-50K 0.701£0.033  1.161+0.066 0.547+0.031 2.478+0.105 0.503+0.027 0.775+0.021
MolTextNet-300K  0.728+0.016 1.106+0.039  0.572+0.007 2.429+0.019 0.531+0.010  0.753+0.008

5.1 DOWNSTREAM TASK 1: MOLECULAR PROPERTY PREDICTION

To validate MolTextNet, we evaluate pretrained GIN encoders on standard molecular property
prediction benchmarks from the OGB benchmarks (Hu et al., 2020).vTo avoid data leakage, we
removed all overlapping molecules between the OGB benchmarks and the four datasets. The overlap
ratios are comparable across datasets of similar sizes (e.g., PubChem-300K and MolTextNet-300K),
and in all cases remain below 7%. We use scaffold-based splits to ensure that structurally similar
molecules remain within the same split, enabling more rigorous evaluation of generalization.

We use pretrained GIN encoders from ChEBI-20, PubChem-300K, MolTextNet-50K, and
MolTextNet-300K, each paired with a lightweight multi-layer perceptron (MLP) prediction head. All
models are fine-tuned using the same hyperparameters for 50 epochs with early stopping. We report
Area Under the ROC Curve (AUC) for classification tasks and Root Mean Square Error (RMSE)
along with the coefficient of determination (R?) for regression. Results are shown in Tables 4 and

We observed that the GIN encoder pretrained on MolTextNet-50K achieves competitive performance
across both classification and regression tasks, surpassing ChEBI-20 on all 10 tasks and PubChem-
300K on 7 out of 10. Pretraining with more data, as in MolTextNet-300K, further improves the
encoder, yielding the best results across all ten tasks after fine-tuning: AUC scores improved by 1-2%
on classification tasks, while for the three regression tasks, R? increased by approximately 6% with
corresponding RMSE reductions of 5-10%.

5.2 DOWNSTREAM TASK 2: ZERO-SHOT STRUCTURE RETRIEVAL

We validate the zero-shot structure retrieval ability of the pretrained models using test examples
from OGBG-MolHIV. Graph representations are generated using pretrained GIN encoders, and
structure retrieval queries are formulated as “The molecule has {Number} {Functional Group
Name },” then encoded with the text encoders. Molecules are ranked by the similarity between graph
and text embeddings. If the number of retrieved functional groups exceeds the required count,
accuracy is computed as the ratio of required to retrieved instances. Figure [] presents the top-1
retrieval results for five queries. Pretrained on MolTextNet-300K, the CLIP models successfully
retrieve all queried structures, while ChEBI-20 and PubChem-300K fail in all cases.

5.3 ABLATION STUDY ON TEXT ENCODER

Table [6] presents the results of pretraining the CLIP model using SciBERT, a domain-specific en-
coder optimized for scientific text with a maximum input length of 512 tokens. To accommodate
this limitation, text inputs from MolTextNet were truncated to 512 tokens, while all other exper-
imental settings remained constant. Both MolTextNet-50K and MolTextNet-300K outperform
ChEBI-20 and PubChem-300K, demonstrating the positive impact of MolTextNet. However, scaling
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Figure 5: Top-1 structure retrieval results on five functional groups: GIN pretrained on MolTextNet-
300K consistently retrieve the right structure described in queries.

Table 6: Fine-tuning performance of the GIN encoder pretrained with the SciBERT text encoder.

HIV Tox21 BBBP ClinTox Molsol Mollipo
AUC 1 AUC 1 AUC 1 AUC 1 R 1 RMSE | R 1 RMSE |
ChEBI-20 0.760£0.016  0.723+0.007 0.674£0.014  0.896+0.017  0.663+0.029  1.228+0.052 0.474+0.020 0.797+0.015

PubChem-300K 0.7574£0.025  0.73840.002  0.694+0.003  0.893+0.023  0.674+0.023  1.207+0.052  0.452+0.001  0.813+0.001
MolTextNet-50K  0.757+0.011  0.735+0.006  0.710£0.011  0.889+0.010 0.688+0.017 1.185+0.034 0.490+0.024  0.785+0.022
MolTextNet-300K  0.778+£0.008  0.743+0.007  0.695+0.003  0.902+0.007 0.703+0.021 1.155£0.050 0.540+£0.019 0.747+0.018

up to MolTextNet-300K yields limited gains on OGBG-MolHIV, likely due to the severe trunca-
tion—reducing input length by two-thirds compared to the 1536-token capacity of ModernBERT-
Large. These results highlight the importance of using text encoders with sufficient context length
when training on long molecular descriptions.

6 CONCLUSION

We presented MolTextNet, a 2.5 million molecule-text dataset to support multimodal molecular
learning. Built from the complete ChnEMBL35 release, the dataset incorporated 21 million bioactivity
records spanning 1.7 million assays. We introduced a synthetic text generation pipeline grounded in
diverse molecular annotations, ensuring factual alignment with reference data. The resulting dataset
covered broader chemical spaces than existing benchmarks and provided richer descriptions of
molecular properties and synthesizability. Experimental results validated its effectiveness in property
prediction and structure retrieval, establishing a strong foundation for future molecular models.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 MORE DETAILS ON MOLECULAR ANNOTATIONS

Table 7: Computed molecular descriptors from ChEMBL based on RDKit and ChemAxon software.

Calculated Properties Type Description

MW_FREEBASE Number Molecular weight of parent compound

ALOGP Number Calculated ALogP

HBA Number  Number of hydrogen bond acceptors

HBD Number  Number of hydrogen bond donors

PSA Number Polar surface area

RTB Number  Number of rotatable bonds

RO3_PASS String Indicates whether the compound passes the rule-of-three
(MW < 300, logP < 3, etc.)

NUM_ROS5_VIOLATIONS Number Number of violations of Lipinski’s rule-of-five, using
HBA and HBD definitions

CX_MOST_APKA Number The most acidic pKa calculated using ChemAxon
v17.29.0

CX_MOST_BPKA Number The most basic pKa calculated using ChemAxon
v17.29.0

CX_LOGP Number The calculated octanol/water partition coefficient using
ChemAxon v17.29.0

CX_LOGD Number The calculated octanol/water distribution coefficient at
pH 7.4 using ChemAxon v17.29.0

MOLECULAR_SPECIES String Indicates whether the compound is an acid, base, or
neutral

FULL_MWT Number Molecular weight of the full compound including any
salts

AROMATIC_RINGS Number Number of aromatic rings

HEAVY_ATOMS Number  Number of heavy (non-hydrogen) atoms

QED_WEIGHTED Number  Weighted quantitative estimate of drug-likeness (Bicker-
ton et al., Nature Chem 2012)

MW_MONOISOTOPIC Number Monoisotopic parent molecular weight

FULL_MOLFORMULA String Molecular formula for the full compound (including any
salt)

HBA_LIPINSKI Number Number of hydrogen bond acceptors by Lipinski’s origi-
nal rules (N + O count)

HBD_LIPINSKI Number Number of hydrogen bond donors by Lipinski’s original
rules (NH + OH count)

NUM_LIPINSKI_ROS5_VIOLATIONS Number Number of violations of Lipinski’s rule-of-five using
HBA_LIPINSKI and HBD_LIPINSKI

NP_LIKENESS_SCORE Number Natural product-likeness score (Ertl et al., J. Chem. Inf.
Model., 2008)

The full list of computable properties is shown in Table[7] These properties are also available in the
ChEMBL35 database.

The functional groups considered include Alkyl, Alkene, Alkyne, Arene, Carbonyl, Aldehyde, Ketone,
Carboxyl, Ester, Amide, Anhydride, Acyl Halide, Hydroxyl, Phenol, Enol, Ether, Thiol, Sulfoxide,
Sulfone, Sulfonic Acid, Sulfonamide, Nitrile, Nitro, Azide, Diazo, Azo, Hydrazone, Oxime, Imine,
Azomethine, Hydroxylamine, Hydrazine, Hydrazide, Iminium, Carbamate, Cyanamide, N-Oxide,
Peroxide, Phosphate, Sulfate, Primary Amine, Secondary Amine, Tertiary Amine, Thioether, Disul-
fide, Thioester, Sulfinic Acid, Sulfonate Ester, Sulfamate, Sulfamide, Isocyanate, Isothiocyanate,
Urea, Guanidine, Carbodiimide, Phosphine, Phosphonic Acid, Phosphonate Ester, Phosphorami-
date, Phosphoramide, Phosphonamide, Phosphine Oxide, Phosphite, Phosphonite, Phosphoramidite,
Phosphoramidate, Phosphinate, Boronic Acid, Boronate Ester, Boronic Ester, Silyl Ether, Silanol,
Silyl Halide, Alkyl Halide, Aryl Halide, Perfluoroalkyl, Epoxide, Lactone, Lactam, Semicarbazide,
Aziridine, Azepane, Aminal, Thioamide, Sulfenic Acid, Sulfinyl, and Sulfonyl.
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A.2 CHEMBL PROCESSING PROCEDURE

We construct MolTextNet starting from ChEMBL35, a database maintained by the European Bioinfor-
matics Institute (EMBL-EBI) that integrates chemical structures, biological activity data, and genomic
information. The latest release contains approximately 2.4 million distinct small molecules, 20.8
million bioactivity measurements, and over 1.6 million assays. Below, we describe our pipeline for
constructing a molecule-text dataset using curated molecular annotations and high-quality generated
descriptions.

A.2.1 DATABASE FILTERING

ChEMBL35 is distributed in various formats—including MySQL, PostgreSQL, SQLite dumps; SDF
structure files; FASTA sequences; and RDF triples—each exposing a molecule — structure — activity
—> assay relational schema. We use the MySQL release, which includes 65 tables and over 100
million rows, to extract high-quality molecular samples.

SMILES Validation Canonical SMILES strings are used as the molecular graph input for down-
stream GNNs. We extract each molecule’s SMILES and compound_name, discard missing or
RDKit-invalid entries, and collapse duplicates using the ChEMBL identifier molregno to ensure
one representative entry per molecule.

Information Curation For each validated molecule, we extract compound-level physicochemical
properties—such as molecular weight, ALogP, HBA/HBD counts, PSA, rotatable bonds, Rule-of-
Three/Five compliance, pK,/pK}, and QED—from the compound_properties table. These
are joined with other tables (e.g., activities, assays) to collect quantitative assay endpoints
with normalized units. Qualitative or unit-less values are excluded, and missing data is dropped.
Because one molecule may be associated with multiple assays, we group all assay-level descriptions
and measurements under the parent molecule, preserving full experimental context.

This yields approximately 2.4 million JSON-encoded entries, each containing a sanitized SMILES
string, compound name, physicochemical properties, and assay metadata with experimental results
and descriptions.

A.2.2 DATASET POST-PROCESSING

After constructing the initial dataset, we apply post-processing steps to enrich each JSON entry with
standardized annotations, structural summaries, and synthesis metrics.

Additional Information

* Bioactivity: For each assay, we extract the human-readable act ion_type and map the
associated pPChEMBL value into three categories: “not active” (p)ChEMBL < 5), “slightly
active” (5 < pChEMBL < 8), and “active” (pChEMBL > 8). This provides a unified scale
for biological activity.

* Structure: We incorporate structured summaries to reflect the hypothesis that biological
activity is influenced by a molecule’s scaffold and functional groups. For each SMILES,
we extract the Bemis-Murcko scaffold, ring counts, H-bond donors/acceptors, rotatable
bonds, and functional group frequencies (using SMARTS patterns), and convert these into
descriptive sentences.

* Synthesis: We compute synthesis-related metrics, including the Synthetic Complexity
Score (SCScore), obtained from a neural network trained on Reaxys reactions (Coley et al.|
2018)), and the Synthetic Accessibility Score (SAScore) (Ertl & Schuffenhauer, [2009),
which combines fragment contributions with topological features. Additionally, we match
molecules to USPTO reaction precedents to include synthesis conditions where available.

Numeric Tagging To preserve quantitative content during generation, all numeric fields (e.g.,
bioactivity values) are wrapped in <number>. ..</number> markers, enabling the model to
distinguish numerical values from surrounding text.
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Figure 6: Joint histograms of word and atom counts for different datasets.

A.3 MORE DETAILS ON DATASET ANALYSIS

Figure [6] shows joint histograms of word and atom counts for MolTextNet, ChEBI-20, and PubChem-
300K. Most descriptions in ChEBI-20 contain fewer than 100 words, and those in PubChem-300K
fewer than 200. In contrast, MolTextNet predominantly contains descriptions ranging from 250 to
500 words, indicating that the LLMs effectively follow length-specific generation instructions.

A.4 MORE DETAILS ON EXPERIMENTAL SETUPS

Given the substantial size of the MolTextNet dataset, we adopt a memory-efficient data loading
strategy. The full corpus is preprocessed and stored in HDF5 format, partitioned into several shards
of 50K samples each. During training, we implement an on-demand loading mechanism that
dynamically reads only the relevant shard into memory for the current epoch. This design ensures full
dataset coverage across epochs while effectively mitigating out-of-memory issues, thereby enabling
large-scale training on resource-constrained environments.

For downstream tasks, we adopt the standard molecular property prediction benchmarks from the
OGB dataset |Hu et al.| (2020), following the original scaffold-based train/validation/test split for
consistent evaluation. Molecular property prediction is conducted by fine-tuning pretrained GIN
encoders with a 2-layer MLP for 50 epochs, using early stopping with a patience of 10 epochs.The
MLP learning rate is fixed to 1e-3, while the GIN encoder learning rate is set as le-3 or le-4, with
a drop ratio of 0 or 0.1. To ensure fidelity, all pretrained models share a unified hyperparameter
configuration across tasks. For the zero-shot structure retrieval task, the pretrained GIN encoders
directly encode SMILES strings, which are then matched against the embeddings of the query text
generated by the pretrained text encoders. Detailed query texts and SMILES mappings are provided
in Section

A.5 MORE DETAILS ON TOPIC MODELING OF MOLECULAR DESCRIPTIONS

To evaluate which dataset is most suitable for pretraining molecular language models, we analyzed
the topic keywords extracted from ChEBI-20, PubChem-300K, and MolTextNet using both LDA
and NMF. The full topic lists are presented in Tables [8]and[0] We further group these keywords into
three categories, as shown in Table to highlight the different dimensions present in molecular
descriptions.

From the tables, ChEBI-20 predominantly contains ontology-style terms related to basic chemical
groups (e.g., acid, anion, carboxylic) and shows limited lexical variation and minimal cov-
erage of molecular effects. PubChem-300K offers greater diversity, including references to both
biosourced and synthetic molecules (e.g., streptomyces, macrolide, antibiotic), with
moderate coverage of experimental conditions.

In contrast, MolTextNet exhibits the richest and most varied language, with terms describ-
ing assay protocols, molecular properties, and activity patterns (e.g., assays, partition,
inhibition,affinity, suggesting), as well as detailed experimental contexts (e.g., MIC,
ICs9, cytotoxicity, partition coefficient, synthetic route). It also includes
structure-aware terms (e.g., Likeness, violations, ccc, structural) that are likely bene-
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Table 8: Keywords and topic proportions from LDA on three molecular text datasets.

Topic | ChEBI-20 | PubChem-300K | MolTextNet
\Keywords Prop. | Keywords Prop.| Keywords Prop.
1 |conjugate, base, acid, an- 13.4%|cell, activity, inhibitor, 5.2%|cc, suggesting, prop- 9.3%
ion, major, pH, deproto- cells, tumor, compound, erties, level, influence,
nation, species, obtained, antineoplastic, inhibits, structural, activity, inhi-
group produced, kinase bition, binding, targets
2 |metabolite, acid, role, de- 10.0% |used, treatment, drug, 5.2% | cc, activity, binding, mul- 15.3%
rives, human, group, hy- agent, receptor, inhibitor, tiple, suggests, nm, tar-
droxy, ester, formal, con- polysaccharide, antago- gets, complex, synthesis,
densation nist, activity, effects cce
3 |acid, amino, conjugate, 10.7% |compound, sn, used, wa- 5.5%|cc, nc, nm, yl, ccc, ic, 8.1%
alpha, group, monocar- ter, organic, glycero, ring, human, methyl, activity,
boxylic, derives, deriva- liquid, assembly, chemi- amino
tive, hydroxy, tautomer cal
4 |amino, group, cation, 6.6%|member, peptide, aro- 6.7% |ml, cc, activity, ug, mic, 3.5%
role, organic, ion, acid, matic, ether, benzenes, strains, antibacterial, in-
derivative, ammonium, oligopeptide, amide, hibitory, suggesting, ex-
inhibitor biphenyls, amine, hibits
tripterygium
5 |coa, fatty, acid, acyl, 6.3% product, natural, avail- 13.1% |coefficient, cc, suggest- 8.9%
chain, group, long, con- able, data, streptomyces, ing, water, octanol, prop-
jugate, trans, hydroxy aspergillus, organisms, erties, targets, partition,
carbohydrate, derivatives, inhibition, structural
carbohydrates
6 |beta, alpha, acetyl, 9.6% product, natural, avail-31.9% nm, assays, cc, sid, tar- 14.0%
amino, residue, con- able, data, organisms, gets, suggesting, activ-
sisting, residues, glu- penicillium,  japonica, ity, influence, properties,
cosamine, oligosaccha- artemisia, isodon, indica structural
ride, linked
7 |acyl, sn, acid, phosphate, 5.8%|acid, conjugate, base, 10.4% |likeness, drug, quantita- 4.9%
glycero, derives, speci- fatty, group, metabolite, tive, estimate, weighted,
fied, groups, glycerol, re- lactam, azamacrocycle, suggesting, violations,
spectively acyl, related structural, absence,
activity
8 |agent, role, inhibitor, salt, 9.5%|member, steroid, glyco- 7.0%|targets, binding, prop-11.3%
drug, used, contains, anti, side, acids, salt, role, con- erties, suggesting, fa-
ec, antagonist tains, ureas, ester, hy- vorable, suggests, activ-
droxy ity, enhance, permeabil-
ity, structural
9 |member, group, position, 16.6% |natural, product, avail- 5.6%|cc, pka, ccc, suggest- 15.8%
compound, role, sub- able, data, sulfonamide, ing, basic, nc, influence,
stituted, methyl, class, euphorbia, triglyceride, acidic, value, nm
metabolite, positions organisms, piper, lauren-
cia
10 |hydroxy, metabolite, role, 11.4% |role, beta, alpha, metabo- 9.4% |cc, nm, cells, activity, ic, 9.1%

beta, steroid, position,
isolated, derives, group,
alpha

lite, group, position,
amino, compound, re-
lated, functionally

oc, human, suggesting,
exhibits, assays
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Table 9: Keywords and normalized topic proportions from NMF on three molecular text datasets.

Topic \ ChEBI-20 \ PubChem-300K \ MolTextNet
| Keywords Prop.| Keywords Prop.| Keywords Prop.
1 J|acid, monocarboxylic, 10.95|data, product, natural, 25.94 |sid, nm, inconclusive, as- 9.82
conjugate, derives, group, available, organisms, as- says, potency, named, re-
carboxy, dicarboxylic, pergillus, penicillium, eu- sults, representation, in-
carboxylic, amino, for- phorbia, artemisia, japon- active, inhibitors
mal ica
2 |member, position, group, 12.38|azamacrocycle, lactam, 4.28|receptor, activity, bind- 18.90
substituted, compound, sulfate, macrolide, role, ing, suggests, multiple,
methyl, agent, class, po- beta, gamma, antibiotic, enhance, likely, affinity,
sitions, inhibitor metabolite, agent potentially, indicates
3 |coa, acyl, coenzyme, 6.25|peptide,cyclic, role,com- 3.95|mmv, percentage, nf, 9.63
diphosphate, thiol, re- posed, joined, metabo- nanoglo, um, hours, pri-
sults, condensation, for- lite, linkages, sequence, mary, unknown, screen,
mal, phosphate, fatty leucine, tripeptide remains
4 |beta, alpha, acetyl, 10.37|member, ureas, benzenes, 7.64|pka, basic, acidic, physi- 14.72
amino, residue, glu- assembly, ring, quino- ological, conditions, ion-
cosamine, oligosac- lines, carbohydrates, ization, state, suggesting,
charide, trisaccharide, biphenyls, derivatives, states, protonation
consisting, linked carbohydrate
5 |base, conjugate, anion, 10.80|streptomyces, data, prod- 4.09|coefficient, water, oc- 8.76
deprotonation, pH, ma- uct, natural, available, al- tanol, partition, distribu-
jor, species, obtained, car- bidoflavus, hygroscopi- tion, pH, hydrophobic,
boxy, phosphate cus, griseus, platensis, al- supported, parent, atoms
bus
6 |sn, acyl, glycero, phos- 6.37|acid, amino, conjugate, 7.95|likeness, drug, estimate, 9.95
phate, specified, glycerol, fatty, group, base, func- weighted, quantitative,
oleoyl, diacyl, groups, re- tionally, related, hydroxy, absence, supports, atoms,
spectively chain heavy, violations
7 |steroid, hydroxy, beta, 6.66|compound, glycosyl, 3.85|nm, cells, ic, human, oc, 12.05
oxo, alpha, delta, hydride, carbonyl, organooxygen, cell, values, lines, cyto-
derives, position, posi- organonitrogen, organic, toxicity, yl
tions amino, organohalogen,
functionally, related
8 |[cation, organic, amino, 7.02|metabolite, produced, 4.19|ml, ug, mic, antibacte- 5.37
ion, ammonium, proto- saccharomyces, cere- rial, minimum, strains,
nation, derivative, conju- visiae, escherichia, coli, staphylococcus, in-
gate, obtained, tertiary strain, mg, role, human hibitory, aureus, ug
9 |metabolite, role, human, 13.61|sulfonamide, benzenes, 2.06|ddd, inhibition, percent- 8.73
mouse, plant, cerevisiae, antibiotic, group, role, ages, stage, falciparum,
saccharomyces, coli, es- used, antibacterial, agent, um, hepg, leishmania, tar-
cherichia, derives inhibitor, pyridines gets, assays
10 |fatty, chain, long, acid, 5.69|aromatic, ether, 3.05|nc, cc, ccc, yl, challenges, 13.38
hydroxy, anion, omega, amide, ketone, amine, ccece, amino, significant,
polyunsaturated,  satu- flavonoids, benzenoid, oral, high
rated, branched amino, furans, thio-
phenes
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Table 10: Keyword sets for each semantic dimension (structure, property or synthesizability) used in

description categorization.

Dimension Structure

Property

Synthesizability

Keywords  conjugate, base, acid, anion, ph,
deprotonation, species, group,
amino, alpha, beta,
monocarboxylic, derivative,
hydroxy, tautomer, cation,
organic, ion, ammonium, acyl,
phosphate, glycero, glycerol, sn,
position, substituted, methyl,
class, steroid, ring, liquid,
assembly, yl, nc, ccc, pka, value,
basic, acidic, coefficient,
octanol, partition, structural

cell, activity, inhibitor, tumor,
compound, antineoplastic, inhibits,
kinase, receptor, drug, treatment,
agent, antagonist, effects, binding,
suggests, suggesting, targets,
multiple, pug, mic, strains,
antibacterial, inhibitory, exhibits,
assays, nm, ic, oc, human, likeness,
quantitative, estimate, weighted,
violations, enhance, permeability,
favorable, cells

coa, fatty, acyl, chain, long, trans,
residue, residues, acetyl,
glucosamine, oligosaccharide, linked,
product, natural, available, data,
streptomyces, aspergillus,
penicillium, organisms, carbohydrate,
carbohydrates, japonica, artemisia,
isodon, indica, biosynthetic, contains,
salt, ureas, glycoside, ec, related,
complex, synthesis

ficial for generative modeling. These findings suggest that MolTextNet provides the most compre-
hensive linguistic and contextual grounding for pretraining models across diverse downstream tasks,
including property prediction, structure generation, and reaction condition inference.
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A.6 MORE RESULTS ON ZERO-SHOT STRUCTURE RETRIEVAL

We defined 7 case studies to retrieve multiple functional groups. Their query texts are defined as:

* Case 1: The molecule has one Amide group,

* Case 2: The molecule has one Ketone group,

* Case 3: The molecule has one Primary Amine group,

* Case 4: The molecule has two Tertiary Amine groups,

* Case 5: The molecule has three Aromatic Rings,

* Case 6: The molecule has four Ester groups,

» Case 7: The molecule has eight Carbonyl groups,

Functional group-SMILES mapping is:

* Amide: [NX3][CX3](=0O)[#6],

¢ Ketone: [CX3](=0)[#6],
e Primary Amine: [NX3H2],

» Tertiary Amine: [NX3]([#6])([#6])[#6],

* Aromatic Ring: [c],

* Ester: [CX3](=0)[OX2HO][#6],

e Carbonyl: [CX3]=0.

For ChEBI-20, PubChem-300K, MolTextNet-300K, their top-3 retrieved results are visualized in

Figures [7)to[13]
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Figure 7: Top-3 structure retrieval results on Case 1 (The molecule has one Amide group): GIN
pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
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Figure 8: Top-3 structure retrieval results on Case 2 (The molecule has one Ketone group): GIN
pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.

Top-3 — ——

5

ChEBI-20 PubChem-300K MolText-300K

Figure 9: Top-3 structure retrieval results on Case 3 (The molecule has one Primary Amine group):
GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
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Figure 10: Top-3 structure retrieval results on Case 4 (The molecule has two Tertiary Amine groups):
GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
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Figure 11: Top-3 structure retrieval results on Case 5 (The molecule has three Aromatic Rings): GIN
pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
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Figure 12: Top-3 structure retrieval results on Case 6 (The molecule has four Ester groups): GIN
pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
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Figure 13: Top-3 structure retrieval results on Case 7 (The molecule has eight Carbonyl groups): GIN
pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
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