

MOLTEXTNET: A TWO-MILLION MOLECULE-TEXT DATASET FOR MULTIMODAL MOLECULAR LEARNING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Small molecules are essential to drug discovery, and graph-language models hold
012 promise for learning molecular properties and functions from text. However,
013 existing molecule-text datasets are limited in scale and informativeness, restricting
014 the training of generalizable multimodal models. We present **MolTextNet**, a
015 dataset of 2.5 million high-quality molecule-text pairs designed to overcome these
016 limitations. To construct it, we propose a synthetic text generation pipeline that
017 integrates structural features, computed properties, bioactivity data, and synthetic
018 complexity. Using GPT-4o-mini, we create structured descriptions for 2.5 million
019 molecules from ChEMBL35, with text over 10 times longer than prior datasets.
020 MolTextNet supports diverse downstream tasks, including property prediction and
021 structure retrieval. Pretraining CLIP-style models with Graph Neural Networks
022 and ModernBERT on MolTextNet yields improved performance, highlighting its
023 potential for advancing foundational multimodal modeling in molecular science.
024

1 INTRODUCTION

025 Small molecules play key roles in scientific discovery for both drug and material development (Ed-
026 wards et al., 2022; Liu et al., 2024b). A large body of literature describes molecular properties
027 and functions in plain text, motivating the development of machine learning models that jointly
028 understand molecular structures and associated texts Zdražil et al. (2024). This has driven recent
029 advances in molecule-text multimodal learning (Edwards et al., 2022; Fang et al., 2023; Liu et al.,
030 2024b).

031 Despite this progress, the development of foundational multimodal molecular models remains limited
032 by the lack of large-scale datasets that pair millions of molecules with diverse and informative
033 descriptions (Fang et al., 2023; Kim et al., 2021; Liu et al., 2024b). Such datasets are essential for
034 enabling generalization across downstream tasks, including property prediction, structure retrieval,
035 and molecule generation from text. Existing molecular textual descriptions are primarily sourced
036 from PubChem, contributed by hundreds of data providers (Kim et al., 2021). However, the number
037 of molecule-text pairs remains limited to about 300K (Fang et al., 2023), with a median description
038 length of only 13 words. For instance, the entry for *1,4-dideoxy-1,4-epithio-D-arabinitol* (structure
039 shown in Figure 1) contains only: “*has been reported in Salacia chinensis with data available*,”
040 which is a description too sparse for models to learn molecular structures or properties. We find that
041 nearly 50% of the dataset consists of similarly uninformative entries.
042

043 Informative, large-scale molecule-text datasets should capture three key aspects: structure, properties,
044 and synthesizability, as shown in Figure 1. Each poses a distinct challenge: (1) covering diverse
045 molecular structures across broad chemical spaces for effective pretraining; (2) providing descriptions
046 that reflect structure-property relationships to support tasks like property prediction and inverse
047 design; (3) describing synthetic complexity to enable tasks such as synthetic accessibility estimation,
048 forward and retrosynthetic prediction, and reaction condition inference.

049 In this work, we propose a synthetic text generation pipeline grounded in computational and experi-
050 mental molecular annotations. We begin by extracting diverse annotations and summarizing them
051 into coherent molecule-text pairs using GPT-4o-mini (Achiam et al., 2023). Structure-level features
052 are captured via SMARTS-defined functional groups (RDKit Project, 2024). Molecular utility is
053 derived from computed physicochemical properties and over one million bioactivity assays (Zdražil
et al., 2024). To estimate synthetic complexity, we compute heuristic scores and incorporate reaction

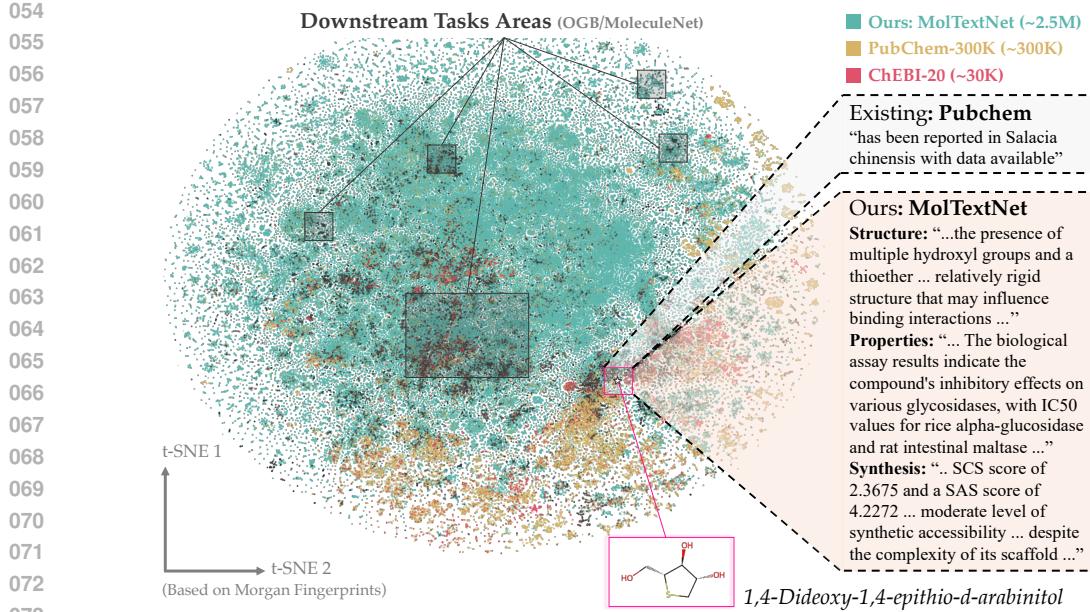


Figure 1: Comparison of PubChem-300K (Fang et al., 2023), ChEBI-20 (Edwards et al., 2021), and MolTextNet. Both PubChem-300K and ChEBI-20 are derived from PubChem (Kim et al., 2021). For reference, we also visualize molecules from commonly used downstream benchmarks (Hu et al., 2020; Wu et al., 2018). Only MolTextNet spans a broader chemical space that covers the structural diversity of these downstream tasks. It also provides more informative descriptions of molecular structures, properties, synthesizability, and their interrelations.

conditions from the USPTO dataset (Coley et al., 2018; Ertl & Schuffenhauer, 2009; Lowe, 2017). Finally, we design a template that integrates all annotations for each molecule, enabling GPT-4o-mini to generate structured scientific descriptions.

By applying our pipeline to the latest ChEMBL release (ChEMBL35, updated on 2024-12-11), we introduce a new dataset, **MolTextNet**. Starting from 2.5 million molecules, 1.7 million assays, and 21 million bioactivities, we generate around 2.5 million molecule-text pairs, as shown in Figures 1 and 2. MolTextNet covers broad chemical space with rich descriptions of molecular structure, properties, and synthesis. On average, the descriptions are over 10 times longer than those in prior datasets, offering a substantial improvement in textual depth. To validate our dataset, we pretrain CLIP-style models using Graph Neural Networks (GNNs) (Xu et al., 2018) and ModernBERT (Warner et al., 2024). Fine-tuning the GNN encoders for property prediction and zero-shot structure retrieval demonstrates the potential of MolTextNet for advancing multimodal molecular learning.

2 RELATED WORK

2.1 PUBLIC MOLECULE-TEXT DATABASE

Existing textual descriptions of molecules are often sourced from PubChem. Although PubChem contains over 110 million compounds, only a small fraction—approximately 0.28%—have associated textual descriptions, giving rise to datasets such as PCdes (Zeng et al., 2022), PubChemSTM (Liu et al., 2023c), and ChEBI-20 (Degtyarenko et al., 2007; Edwards et al., 2021), many of which contain only brief statements about molecular origin or occurrence. Among these, the version used in Mol-Instructions (Fang et al., 2023) is the largest, comprising approximately 300K molecule-text pairs. We refer to this dataset as PubChem-300K in this work. ChEBI-20 is another subset, focusing on a text-rich part of PubChem that overlaps with the ChEBI database (Degtyarenko et al., 2007).

ChEMBL is another public resource containing manually curated bioactivity data, compiled from over 90K publications. As of version 35 (released on 2024-12-01), it includes 2,496,355 molecules and

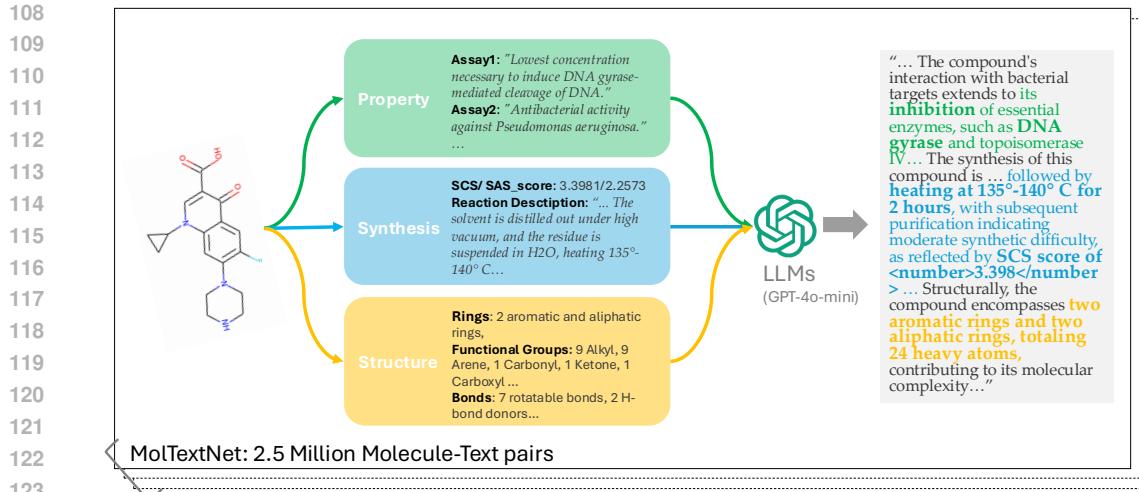


Figure 2: Synthetic Data Generation Pipeline for MolTextNet. Property information is derived from experimental and computational annotations in ChEMBL35 (Zdravil et al., 2024); synthesis descriptions are generated from heuristic scores and USPTO reaction data (Lowe, 2017). Structural features are extracted using RDKit and approximately 100 predefined functional groups.

approximately 21,123,501 activity records from 1,740,546 assays. While some prior studies (Hu et al., 2019) have used subsets of ChEMBL—such as 456K molecules and 1,410 biochemical assays—for modeling molecule-property relationships, few have utilized the full dataset to capture the complete assay space with textual definitions.

2.2 SYNTHETIC DATA GENERATION FOR MOLECULES

High-quality pretrained models, such as large language models (LLMs), offer a cost-effective and scalable approach to data generation, and have been widely used to instruct smaller LLMs to follow human prompts (Taori et al., 2023; Wang et al., 2022). Training graph-language multimodal models requires large-scale, aligned molecule-text pairs, which remain underexplored (Liu et al., 2024b). The chemical space is vast, spanning diverse domains across life sciences and materials, yet foundational molecular models for property prediction (Liu et al., 2023a) and structure generation (Liu et al., 2024c) are still lacking. Therefore, we focus on generating synthetic molecular descriptions using LLMs grounded in existing molecular annotations from ChEMBL (Zdravil et al., 2024), rather than mixing with pseudo-labels as in (Liu et al., 2024b; 2023b).

2.3 MULTIMODAL MOLECULAR LEARNING

Molecular structures can be paired with diverse modalities for multimodal learning, such as 3D protein structures (Schneuing et al., 2024), cellular responses (Liu et al., 2024a), and text descriptions (Edwards et al., 2021; Fang et al., 2023; Liu et al., 2024b; 2023c; Zeng et al., 2022). Among these, text offers a flexible and expressive medium for describing molecules, enabling diverse tasks such as extracting molecular entities from unstructured data (Zeng et al., 2022), captioning molecular structures (Edwards et al., 2022), editing molecules with text prompts (Liu et al., 2023c), and designing molecules guided by textual instructions (Liu et al., 2024b). Existing molecule-text models have shown strong potential and our dataset, MolTextNet, can further unlock their capabilities for building foundational molecular models.

3 METHODOLOGY OF DATA COLLECTION

We introduce a synthetic text generation pipeline for molecules, grounded in computational and experimental annotations, and define a prompting template for large language models (LLMs) to rephrase these annotations into scientific descriptions. The overall pipeline is presented in Figure 2.

162 3.1 PREPARATION OF MOLECULAR ANNOTATIONS
163164 We use all molecules from ChEMBL35 (Zdrazil et al., 2024), each annotated along three dimen-
165 sions: structure, properties, and synthesizability. The detailed processing procedure is described
166 in Section A.2167
168 **Structure Annotations** We hypothesize that a compound’s biological activity is determined by
169 its chemical scaffold and key functional groups. For each molecule, we extract structures using
170 RDKit, including the Murcko scaffold, ring composition, rotatable bonds, hydrogen bond donors and
171 acceptors, and the presence of over 90 functional groups defined by SMARTS patterns. These features
172 are converted into structured textual phrases in the format “{count} {structure_name},”
173 such as “7 rotatable bonds.”174
175 **Property Annotations** We incorporate both computational and experimental annotations. For
176 computational annotations, we extract over 20 physicochemical properties using RDKit (RDKit
177 Project, 2024) and ChemAxon. These include molecular weight, ALogP, polar surface area, rotatable
178 bonds, aromatic ring count, heavy atom count, and drug-likeness scores such as QED and natural
179 product-likeness. Additional descriptors include pK_a values, partition and distribution coefficients,
180 Lipinski rule violations, and compound classification (acidic, basic, or neutral), as recorded in the
181 COMPOUND_PROPERTIES table of ChEMBL35. We present the complete table in Table 7.182 For experimental annotations, ChEMBL35 has over 1.7 million assays with 21 million associated
183 bioactivity records, covering binding affinity, biological function, ADME, and toxicity. Each assay
184 has a textual definition sourced from the original publication (e.g., “Anticoccidial activity which
185 controlled infection by *Eimeria tenella* in Leghorn cockerels”) and standardized activity values with
186 units. We use the pChEMBL, i.e., negative logarithm of activity (e.g., IC_{50} , EC_{50} , K_i), and categorize
187 molecules based on thresholds: <5 as “inactive”, 5-8 as “slightly active”, and >8 as “active”.188
189 **Synthesizability Annotations** We augment each molecule with synthesis-related information by
190 computing two established scores: the Synthetic Complexity Score (SCScore) (Coley et al., 2018),
191 derived from a neural network trained on Reaxys reaction data, and the Synthetic Accessibility Score
192 (SAScore) (Ertl & Schuffenhauer, 2009), which combines fragment contributions and topological
193 complexity. Additionally, we query each molecule against the USPTO reaction dataset (Lowe, 2017).
194 If a match is found, we include the corresponding reaction conditions from the associated patent
195 description.

196 3.2 SYNTHETIC TEXT GENERATION WITH MOLECULAR ANNOTATIONS AND LLMs

197 We use GPT-4 series models (Achiam et al., 2023) to generate coherent scientific descriptions from
198 molecular annotations. Each molecule is represented as a structured dictionary of property-value
199 pairs, integrating structural features, physicochemical properties, bioactivity profiles, and synthesis
200 information from ChEMBL35 and curated sources. GPT-4o-mini is used for batched generation,
201 while GPT-4o handles samples with high token counts or complex annotations. The template is
202 provided Figure 3.203 The models are explicitly prompted to reason over structure-property and structure-synthesis relation-
204 ships, rather than merely rephrasing or concatenating fields. For example, in Figure 1, the generated
205 description notes the “presence of multiple hydroxyl groups and a thioether, which enhance solubility
206 in aqueous environments,” and “various functional groups such as hydroxyls and thioethers ... which
207 could enhance its biological activity against glycosidases.” illustrating structure-property reasoning.
208 For structure-synthesis relationships, in Figure 2, the model identifies “two aromatic rings and two
209 aliphatic rings ... contributing to its molecular complexity.” Given the rich structural and property
210 annotations, such relational reasoning enables pretraining of foundational models that map scaffolds,
211 functional groups, and computed descriptors to physicochemical behavior, bioactivity, and synthetic
212 complexity, supporting generalization across diverse downstream tasks.213 In addition to prompting the reasoning paths, the model is instructed to provide a formal academic
214 analysis (100-500 words) that strictly describes observed data without summarizing or evaluating;
215 extract relevant factual information concisely. The text must be written as a single plain-text
216 paragraph, avoid repetition, preserve diversity, and exclude unsupported or speculative links. Critical

216
217**Prompt Template**218
219
220
221
222

Given a dictionary containing details about a chemical compound, including its name, canonical SMILES string, calculated properties, structural description, biological assay results, and synthetic accessibility, analyze the relationships among structure, properties, complexity, and experimental assay outcomes. \n {annotation_dictionary} \n Requirements:

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

1. Provide a formal academic analysis (100-500 words) that strictly describes observed data without any concluding, summarizing, or evaluative statements.
2. Extract and present the most relevant factual information concisely.
3. Analyze physicochemical behavior, bioactivity, and synthetic complexity by mapping core scaffolds, functional groups, and computed descriptors to molecular interactions, solubility, binding, hydrophobicity, steric effects, and synthetic feasibility, without drawing overall conclusions.
4. Write in plain text as a single paragraph without formatting.
5. Ensure diversity in descriptions and avoid repetition.
6. Keep <number>...</number> format unchanged.
7. State the compound name and canonical SMILES exactly.
8. Ignore missing values and avoid unsupported or speculative links.
9. Exclude introductory phrases such as “Here is the analysis of the polymer...”.

Figure 3: Prompt template used for generating molecular text grounded in annotations.

tokens—such as SMILES strings, compound names, and numerical values—are preserved exactly as provided, including special <number> tags designed to improve numerical understanding in text. Introductory phrases (e.g., “Here is the analysis...”) are excluded, and missing values are ignored.

3.3 QUALITY CONTROL

To ensure the quality of synthetic text, we apply specific criteria, filtering rules, and validation steps throughout both the annotation collection and text generation processes.

Pre-generation The original database consists of multiple tables. We extract the canonical SMILES string for each molecule, discard entries with missing or invalid structures (validated using RDKit), and use the ChEMBL identifier `molregno` to deduplicate compounds across tables. Entries with missing values for computed properties or experimental assays are dropped. For fields labeled as “N/A” (i.e., non-null but uninformative), we explicitly instruct the LLM to ignore them. Since ChEMBL provides activity values in various units (e.g., nM, mM), we normalize all concentration-based measurements to nanomolar (nM).

Long-Text Chunked Processing Some entries contain extensive annotations that exceed the 128K-token context window of GPT-4o(-mini). We reserve an 8K-token window for output tokens, resulting in a 120K-token limit for the input tokens, including the system and user prompts. Under this constraint, there are 401 entries that exceed the 120K-token limit, with the maximum length reaching 1.7 million tokens. To feed those entries into LLMs, we chunk the inputs into batches and process them incrementally. The assay dictionary is divided into successive batches that fit within the context limit. For each batch, we prepend the previously generated summary and prompt the model to integrate the new information without modifying or omitting earlier content. This iterative process continues until all assays are incorporated, resulting in a single, coherent summary per molecule.

Post-generation Several rules are applied to validate the output quality after LLM generation. These include checks on description length and consistency between SMILES and compound names. Outputs with insufficient length (e.g., fewer than 100 characters), repetitive patterns, or mismatches

270
271 Table 1: Comparison of dataset statistics, including number of pairs, and average/maximum number
272 of words and atoms.
273

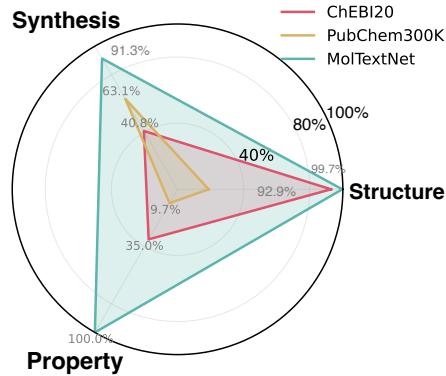
Dataset	# Molecule-Text Pairs	Words		Atoms	
		Avg. #	Max #	Avg. #	Max #
ChEBI-20	32,998	43.49	166	32.20	574
PubChem-300K	298,306	17.60	874	33.67	574
MolTextNet	2,474,590	253.33	1,871	30.63	780

279
280 in key fields (e.g., `compound_name`, SMILES) are discarded. Any record failing these checks is
281 regenerated or resubmitted to the API.
282283
284

4 DATASET ANALYSIS

285286 Table 1 summarizes dataset statistics for MolTextNet and existing baselines, while Figure 6 shows
287 joint histograms of molecular size and description length. On average, molecules contain around 30
288 atoms, but description lengths vary significantly across datasets. Longer descriptions offer greater
289 capacity to convey detailed information. To analyze content diversity, we apply Non-Negative Matrix
290 Factorization (NMF) and Latent Dirichlet Allocation (LDA) to extract latent topics. Topic summaries
291 are shown in Table 2, with full details in Tables 8 and 9. We further group the topics into three cate-
292 gories—structure, property, and synthesizability—and compute the frequency of associated keywords
293 in each molecule-text pair. The normalized values, i.e., the proportions of molecular descriptions con-
294 taining these keywords, are shown in Figure 4. Details of the categorization are provided in Table 10.
295296 From the tables and figures, ChEBI-20 primarily
297 captures chemical classes such as acid-base species,
298 coenzymes, and fatty acids. While it illustrates struc-
299 tural information well, it falls short in describing
300 properties and synthesizability. PubChem-300K cov-
301 ers a broader range of compounds, including natural
302 products, antibiotics, and synthetic agents, with mod-
303 erate biological context. Its entries often include
304 synthesis-related information, reflecting molecular
305 availability and supporting synthesizability analysis.
306307 MolTextNet provides the most comprehensive cover-
308 age across structural, property, and synthesis dimen-
309 sions. It contains task-relevant language focused on
310 bioassays, binding affinity, permeability, and molec-
311 ular property measurements, making it the most suit-
312 able dataset for model pretraining.
313314

5 DATASET VALIDATION WITH EXPERIMENTS

315316 In this section, we evaluate molecule-text pairs using GNN-BERT-based CLIP models (Radford
317 et al., 2021) to compare MolTextNet against ChEBI-20 and PubChem-300K. We provide both
318 quantitative and qualitative validation of MolTextNet. We randomly sample entries from MolTextNet
319 to match the size of ChEBI-20 and PubChem-300K, constructing two subsets: MolTextNet-50K and
320 MolTextNet-300K, respectively. Dataset statistics are summarized in Tables 1 and 3.
321322 Given molecule-text pairs, we represent molecules as graphs and encode them using a five-layer
323 Graph Isomorphism Network (GIN) (Xu et al., 2018). The GIN is pretrained from scratch. Text
324 descriptions are processed with ModernBERT-Large (Warner et al., 2024), a transformer with an
325 8192-token context window, well-suited for the long, detailed entries in MolTextNet. The model is
326 pretrained and available on Hugging Face; we continue pretraining its parameters in CLIP models.
327 Its extended capacity allows it to retain long-range dependencies without significant information loss.
328329 Figure 4: Keyword Coverage (%) in Molecular Descriptions
330

324
325
326
327 Table 2: Topics from LDA and NMF across three molecule-text datasets. Each cell summarizes a
328 topic based on top keywords.
329

330 Topic ID	331 ChEBI20		332 PubChem300K		333 MolTextNet	
	334 LDA	335 NMF	336 LDA	337 NMF	338 LDA	339 NMF
340 1	341 Acid-Base 342 Chemistry	343 Carboxylic 344 Acid 345 Derivatives	346 Cancer Cell 347 Inhibitors	348 Natural Product 349 Metadata	350 Structure- 351 Activity 352 Relationships	353 Bioassay 354 Results
355 2	356 Metabolite and 357 Ester Roles	358 Substituted 359 Agents	360 Drug Receptor 361 Agents	362 Antibiotic and 363 Macrocycles	364 Molecular 365 Targets and 366 Synthesis	367 Binding and 368 Affinity 369 Evidence
370 3	371 Amino Acids 372 and Derivatives	373 Coenzyme and 374 Acyl Units	375 Organic 376 Liquids and 377 Assemblies	378 Peptides and 379 Linkers	380 Chemical 381 Fragments and 382 Bioactivity	383 High- 384 throughput 385 Screen 386 Statistics
387 4	388 Ammonium 389 Inhibitors	390 Linked 391 Saccharides 392 and Residues	393 Peptides and 394 Aromatic 395 Compounds	396 Aromatic and 397 Sugar 398 Assemblies	399 Antibacterial 400 Activities	401 Ionization 402 States and pKa 403 Behavior
404 5	405 Fatty Acids and 406 CoA 407 Derivatives	408 Protonation 409 Chemistry	410 Microbial 411 Natural 412 Products	413 Streptomyces- 414 Derived 415 Compounds	416 Partitioning 417 and Solubility	418 Partition 419 Coefficients
420 6	421 Acetylated 422 Sugars	423 Glycerol 424 Derivatives	425 Microbial 426 Extracts	427 Functional 428 Fatty Acids	429 Structure and 430 Binding 431 Profiles	432 Molecular 433 Weight 434 Estimation
435 7	436 Glycero- 437 phospholipids	438 Steroidal 439 Positions	440 Fatty Acid 441 Chemistry	442 Organic 443 Molecular 444 Classes	445 Drug-likeness 446 Violations	447 Cytotoxicity 448 Markers
449 8	450 Drug Agents 451 and Salts	452 Amino Cations	453 Steroids and 454 Derivatives	455 Yeast 456 Metabolites	457 Binding and 458 Permeability	459 Antibacterial 460 Sensitivity
463 9	464 Methylated 465 Metabolites	466 Species- 467 Specific 468 Metabolites	469 Natural Product 470 Antibiotics	471 Sulfonamides 472 and Pyridines	473 Acid-Base 474 Balance	475 Pathogen 476 Inhibition 477 Assays
478 10	479 Hydroxy- 480 steroids	481 Fatty Acid 482 Chains	483 Steroid 484 Functional 485 Groups	486 Aromatic 487 Substructures	488 Cellular Assays 489 and Potency	490 Structural 491 Challenges

357
358
359 Table 3: Token statistics using ModernBERT and SciBERT tokenizers for CLIP model pretraining.
360

361 Dataset	362 Tokens (ModernBERT)		363 Tokens (SciBERT)	
	364 Avg. #	365 Max #	366 Avg. #	367 Max #
368 ChEBI-20	369 85.33	370 763	371 83.83	372 754
373 PubChem-300K	374 30.27	375 1,308	376 29.46	377 1,278
378 MolTextNet	379 465.00	380 24,603	381 476.72	382 24,576
383 MolTextNet-50K	384 439.62	385 3,162	386 450.40	387 3,214
388 MolTextNet-300K	389 441.82	390 3,162	391 452.73	392 3,214

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

395 Token limits are set based on the average summary length per dataset: 256 tokens for ChEBI-20 and
396 PubChem-300K, and 1536 tokens for MolTextNet.

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

395 We pretrain the GIN-ModernBERT CLIP models for 8 epochs over approximately 2 days on a
396 NVIDIA A6000 GPU. We then evaluate the GIN encoder on downstream property prediction tasks
397 (Section 5.1) and assess both GIN and ModernBERT on zero-shot structure retrieval (Section 5.2).
398 Additionally, we investigate SciBERT as an alternative text encoder in Section 5.3. All pretraining
399 and evaluations are conducted on NVIDIA RTX A6000 GPUs.

378 Table 4: Fine-tuning performance on seven OGBG classification tasks (Hu et al., 2020): GIN
 379 pretrained on MolTextNet-300K consistently achieves the highest AUC(\uparrow).
 380

381 Pretraining Dataset	382 HIV	383 ToxCast	384 Tox21	385 BBBP	386 BACE	387 ClinTox	388 SIDER
ChEBI-20	0.741 \pm 0.021	0.616 \pm 0.015	0.732 \pm 0.002	0.679 \pm 0.010	0.836 \pm 0.011	0.885 \pm 0.003	0.547 \pm 0.014
PubChem-300K	0.752 \pm 0.009	0.633 \pm 0.004	0.746 \pm 0.002	0.686 \pm 0.011	0.840 \pm 0.006	0.890 \pm 0.010	0.602 \pm 0.078
MolTextNet-50K	0.768 \pm 0.020	0.635 \pm 0.002	0.744 \pm 0.007	0.695 \pm 0.003	0.841 \pm 0.000	0.886 \pm 0.026	0.621 \pm 0.068
MolTextNet-300K	0.778\pm0.010	0.638\pm0.003	0.751\pm0.002	0.712\pm0.004	0.847\pm0.001	0.900\pm0.002	0.640\pm0.031

389 Table 5: Fine-tuning performance on three OGBG regression tasks (Hu et al., 2020): GIN pretrained
 390 on MolTextNet-300K consistently achieves the highest R^2 and lowest RMSE.
 391

392 Pretraining Dataset	393 MolSol		394 MolFreeSol		395 MolLipo	
	396 $R^2 \uparrow$	397 RMSE \downarrow	398 $R^2 \uparrow$	399 RMSE \downarrow	400 $R^2 \uparrow$	401 RMSE \downarrow
ChEBI-20	0.693 \pm 0.009	1.171 \pm 0.017	0.543 \pm 0.136	2.496 \pm 0.395	0.358 \pm 0.169	0.876 \pm 0.112
PubChem-300K	0.697 \pm 0.008	1.164 \pm 0.016	0.563 \pm 0.044	2.439 \pm 0.150	0.474 \pm 0.016	0.797 \pm 0.012
MolTextNet-50K	0.701 \pm 0.033	1.161 \pm 0.066	0.547 \pm 0.031	2.478 \pm 0.105	0.503 \pm 0.027	0.775 \pm 0.021
MolTextNet-300K	0.728\pm0.016	1.106\pm0.039	0.572\pm0.007	2.429\pm0.019	0.531\pm0.010	0.753\pm0.008

396 5.1 DOWNSTREAM TASK 1: MOLECULAR PROPERTY PREDICTION

397 To validate MolTextNet, we evaluate pretrained GIN encoders on standard molecular property
 398 prediction benchmarks from the OGB benchmarks (Hu et al., 2020). To avoid data leakage, we
 399 removed all overlapping molecules between the OGB benchmarks and the four datasets. The overlap
 400 ratios are comparable across datasets of similar sizes (e.g., PubChem-300K and MolTextNet-300K),
 401 and in all cases remain below 7%. We use scaffold-based splits to ensure that structurally similar
 402 molecules remain within the same split, enabling more rigorous evaluation of generalization.
 403

404 We use pretrained GIN encoders from ChEBI-20, PubChem-300K, MolTextNet-50K, and
 405 MolTextNet-300K, each paired with a lightweight multi-layer perceptron (MLP) prediction head. All
 406 models are fine-tuned using the same hyperparameters for 50 epochs with early stopping. We report
 407 Area Under the ROC Curve (AUC) for classification tasks and Root Mean Square Error (RMSE)
 408 along with the coefficient of determination (R^2) for regression. Results are shown in Tables 4 and 5.
 409

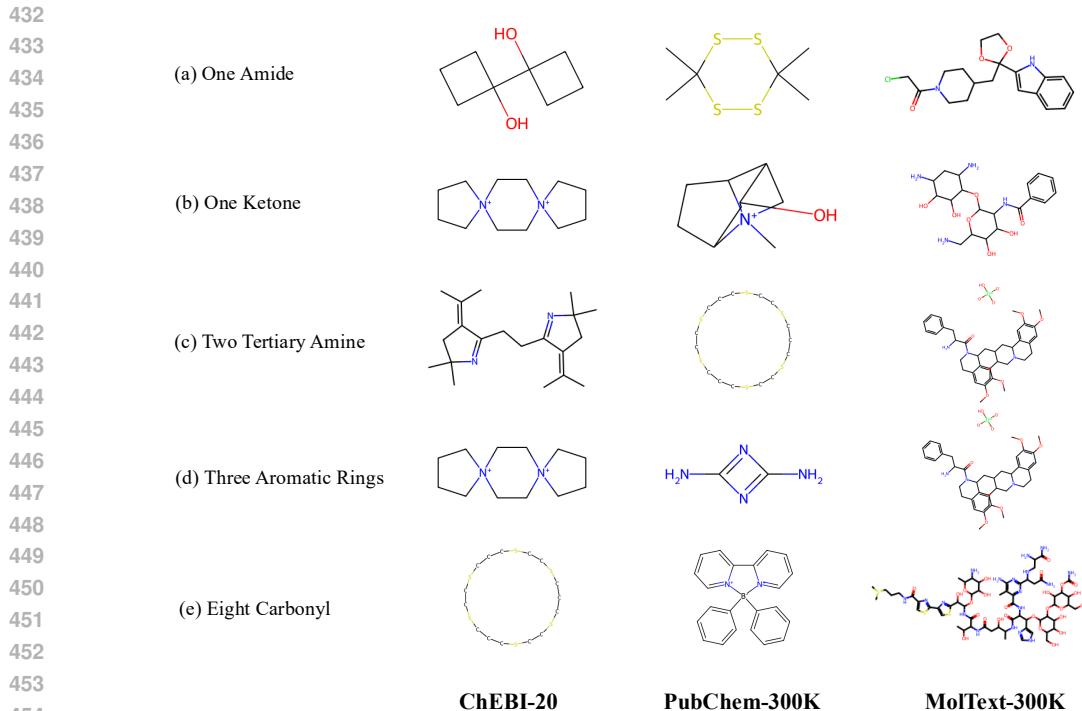
410 We observed that the GIN encoder pretrained on MolTextNet-50K achieves competitive performance
 411 across both classification and regression tasks, surpassing ChEBI-20 on all 10 tasks and PubChem-
 412 300K on 7 out of 10. Pretraining with more data, as in MolTextNet-300K, further improves the
 413 encoder, yielding the best results across all ten tasks after fine-tuning: AUC scores improved by 1-2%
 414 on classification tasks, while for the three regression tasks, R^2 increased by approximately 6% with
 415 corresponding RMSE reductions of 5-10%.
 416

5.2 DOWNSTREAM TASK 2: ZERO-SHOT STRUCTURE RETRIEVAL

417 We validate the zero-shot structure retrieval ability of the pretrained models using test examples
 418 from OGBG-MolHIV. Graph representations are generated using pretrained GIN encoders, and
 419 structure retrieval queries are formulated as “The molecule has {Number} {Functional Group
 420 Name},” then encoded with the text encoders. Molecules are ranked by the similarity between graph
 421 and text embeddings. If the number of retrieved functional groups exceeds the required count,
 422 accuracy is computed as the ratio of required to retrieved instances. Figure 5 presents the top-1
 423 retrieval results for five queries. Pretrained on MolTextNet-300K, the CLIP models successfully
 424 retrieve all queried structures, while ChEBI-20 and PubChem-300K fail in all cases.
 425

5.3 ABLATION STUDY ON TEXT ENCODER

426 Table 6 presents the results of pretraining the CLIP model using SciBERT, a domain-specific en-
 427 coder optimized for scientific text with a maximum input length of 512 tokens. To accommodate
 428 this limitation, text inputs from MolTextNet were truncated to 512 tokens, while all other exper-
 429 imental settings remained constant. Both MolTextNet-50K and MolTextNet-300K outperform
 430 ChEBI-20 and PubChem-300K, demonstrating the positive impact of MolTextNet. However, scaling
 431



455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Top-1 structure retrieval results on five functional groups: GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in queries.

Table 6: Fine-tuning performance of the GIN encoder pretrained with the SciBERT text encoder.

	HIV				Molsol				MolLipo			
	AUC \uparrow	Tox21	BBBP	ClinTox	R ² \uparrow	RMSE \downarrow	R ² \uparrow	RMSE \downarrow	R ² \uparrow	RMSE \downarrow	R ² \uparrow	RMSE \downarrow
ChEBI-20	0.760\pm0.016	0.723 \pm 0.007	0.674 \pm 0.014	0.896\pm0.017	0.663 \pm 0.029	1.228 \pm 0.052	0.474 \pm 0.020	0.797 \pm 0.015				
PubChem-300K	0.757 \pm 0.025	0.738 \pm 0.002	0.694 \pm 0.003	0.893 \pm 0.023	0.674 \pm 0.023	1.207 \pm 0.052	0.452 \pm 0.001	0.813 \pm 0.001				
MolTextNet-50K	0.757 \pm 0.011	0.735 \pm 0.006	0.710\pm0.011	0.889 \pm 0.010	0.688\pm0.017	1.185\pm0.034	0.490\pm0.024	0.785\pm0.022				
MolTextNet-300K	0.778\pm0.008	0.743\pm0.007	0.695\pm0.003	0.902\pm0.007	0.703\pm0.021	1.155\pm0.050	0.540\pm0.019	0.747\pm0.018				

up to MolTextNet-300K yields limited gains on OGBG-MolHIV, likely due to the severe truncation—reducing input length by two-thirds compared to the 1536-token capacity of ModernBERT-Large. These results highlight the importance of using text encoders with sufficient context length when training on long molecular descriptions.

6 CONCLUSION

We presented MolTextNet, a 2.5 million molecule-text dataset to support multimodal molecular learning. Built from the complete CHEMBL35 release, the dataset incorporated 21 million bioactivity records spanning 1.7 million assays. We introduced a synthetic text generation pipeline grounded in diverse molecular annotations, ensuring factual alignment with reference data. The resulting dataset covered broader chemical spaces than existing benchmarks and provided richer descriptions of molecular properties and synthesizability. Experimental results validated its effectiveness in property prediction and structure retrieval, establishing a strong foundation for future molecular models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

486 Connor W Coley, Luke Rogers, William H Green, and Klavs F Jensen. Scescore: synthetic complexity
 487 learned from a reaction corpus. *Journal of chemical information and modeling*, 58(2):252–261,
 488 2018.

489 Kirill Degtyarenko, Paula De Matos, Marcus Ennis, Janna Hastings, Martin Zbinden, Alan McNaught,
 490 Rafael Alcántara, Michael Darsow, Mickaël Guedj, and Michael Ashburner. Chebi: a database
 491 and ontology for chemical entities of biological interest. *Nucleic acids research*, 36(suppl_1):
 492 D344–D350, 2007.

493 Carl Edwards, ChengXiang Zhai, and Heng Ji. Text2mol: Cross-modal molecule retrieval with
 494 natural language queries. In *Proceedings of the 2021 Conference on Empirical Methods in Natural
 495 Language Processing*, pp. 595–607, 2021.

496 Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
 497 between molecules and natural language. *arXiv preprint arXiv:2204.11817*, 2022.

498 Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
 499 molecules based on molecular complexity and fragment contributions. *Journal of cheminformatics*, 1:1–11, 2009.

500 Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
 501 Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
 502 models. *arXiv preprint arXiv:2306.08018*, 2023.

503 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
 504 Strategies for pre-training graph neural networks. *arXiv preprint arXiv:1905.12265*, 2019.

505 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 506 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *arXiv
 507 preprint arXiv:2005.00687*, 2020.

508 Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
 509 Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem in 2021: new data content and improved web
 510 interfaces. *Nucleic acids research*, 49(D1):D1388–D1395, 2021.

511 Gang Liu, Eric Inae, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Data-centric learning from
 512 unlabeled graphs with diffusion model. *Advances in neural information processing systems*, 36:
 513 21039–21057, 2023a.

514 Gang Liu, Tong Zhao, Eric Inae, Tengfei Luo, and Meng Jiang. Semi-supervised graph imbalanced
 515 regression. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
 516 Data Mining*, pp. 1453–1465, 2023b.

517 Gang Liu, Srijit Seal, John Arevalo, Zhenwen Liang, Anne E Carpenter, Meng Jiang, and Shantanu
 518 Singh. Learning molecular representation in a cell. *ArXiv*, pp. arXiv–2406, 2024a.

519 Gang Liu, Michael Sun, Wojciech Matusik, Meng Jiang, and Jie Chen. Multimodal large language
 520 models for inverse molecular design with retrosynthetic planning. *arXiv preprint arXiv:2410.04223*,
 521 2024b.

522 Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph diffusion transformers for multi-conditional
 523 molecular generation. *arXiv preprint arXiv:2401.13858*, 2024c.

524 Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
 525 Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for text-based
 526 retrieval and editing. *Nature Machine Intelligence*, 5(12):1447–1457, 2023c.

527 Daniel Lowe. Chemical reactions from us patents (1976–sep2016), 2017. URL <https://doi.org/10.6084/m9.figshare.5104873.v1>. Accessed: 2025-05-08.

528 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 529 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 530 models from natural language supervision. In *International conference on machine learning*, pp.
 531 8748–8763. PMLR, 2021.

540 RDKit Project. Rdkit cookbook, 2024. URL <https://www.rdkit.org/docs/Cookbook.html>. Accessed: 2025-05-08.

541

542

543 Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
544 Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant
545 diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

546 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
547 Liang, and Tatsunori B. Hashimoto. Alpaca: A strong, replicable instruction-following model,
548 2023. URL <https://cfrm.stanford.edu/2023/03/13/alpaca.html>. Accessed:
549 2025-05-08.

550

551 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
552 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
553 *arXiv preprint arXiv:2212.10560*, 2022.

554 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
555 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, bet-
556 ter, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context
557 finetuning and inference. *arXiv preprint arXiv:2412.13663*, 2024.

558

559 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
560 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
561 *Chemical science*, 9(2):513–530, 2018.

562

563 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
564 networks? *arXiv preprint arXiv:1810.00826*, 2018.

565

566 Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett,
567 Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, et al. The chembl
568 database in 2023: a drug discovery platform spanning multiple bioactivity data types and time
569 periods. *Nucleic acids research*, 52(D1):D1180–D1192, 2024.

570

571 Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. A deep-learning system bridging molecule
572 structure and biomedical text with comprehension comparable to human professionals. *Nature
573 communications*, 13(1):862, 2022.

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL
595596
597 A.1 MORE DETAILS ON MOLECULAR ANNOTATIONS
598599
600 Table 7: Computed molecular descriptors from ChEMBL based on RDKit and ChemAxon software.
601

602 Calculated Properties	603 Type	604 Description
605 MW_FREEBASE	606 Number	607 Molecular weight of parent compound
608 ALOGP	609 Number	610 Calculated ALogP
611 HBA	612 Number	613 Number of hydrogen bond acceptors
614 HBD	615 Number	616 Number of hydrogen bond donors
617 PSA	618 Number	619 Polar surface area
620 RTB	621 Number	622 Number of rotatable bonds
623 RO3_PASS	624 String	625 Indicates whether the compound passes the rule-of-three (MW < 300, logP < 3, etc.)
626 NUM_RO5_VIOLATIONS	627 Number	628 Number of violations of Lipinski's rule-of-five, using HBA and HBD definitions
629 CX_MOST_APKA	630 Number	631 The most acidic pKa calculated using ChemAxon v17.29.0
632 CX_MOST_BPKA	633 Number	634 The most basic pKa calculated using ChemAxon v17.29.0
635 CX_LOGP	636 Number	637 The calculated octanol/water partition coefficient using ChemAxon v17.29.0
638 CX_LOGD	639 Number	640 The calculated octanol/water distribution coefficient at pH 7.4 using ChemAxon v17.29.0
641 MOLECULAR_SPECIES	642 String	643 Indicates whether the compound is an acid, base, or neutral
644 FULL_MWT	645 Number	646 Molecular weight of the full compound including any salts
647 AROMATIC_RINGS	648 Number	649 Number of aromatic rings
650 HEAVY_ATOMS	651 Number	652 Number of heavy (non-hydrogen) atoms
653 QED_WEIGHTED	654 Number	655 Weighted quantitative estimate of drug-likeness (Bicker- ton et al., Nature Chem 2012)
656 MW_MONOISOTOPIC	657 Number	658 Monoisotopic parent molecular weight
659 FULL_MOLFORMULA	660 String	661 Molecular formula for the full compound (including any salt)
662 HBA_LIPINSKI	663 Number	664 Number of hydrogen bond acceptors by Lipinski's original rules (N + O count)
665 HBD_LIPINSKI	666 Number	667 Number of hydrogen bond donors by Lipinski's original rules (NH + OH count)
668 NUM_LIPINSKI_RO5_VIOLATIONS	669 Number	670 Number of violations of Lipinski's rule-of-five using HBA_LIPINSKI and HBD_LIPINSKI
671 NP_LIKENESS_SCORE	672 Number	673 Natural product-likeness score (Ertl et al., J. Chem. Inf. Model., 2008)

636
637 The full list of computable properties is shown in Table 7. These properties are also available in the
638 ChEMBL35 database.639 The functional groups considered include Alkyl, Alkene, Alkyne, Arene, Carbonyl, Aldehyde, Ketone,
640 Carboxyl, Ester, Amide, Anhydride, Acyl Halide, Hydroxyl, Phenol, Enol, Ether, Thiol, Sulfoxide,
641 Sulfone, Sulfonic Acid, Sulfonamide, Nitrile, Nitro, Azide, Diazo, Azo, Hydrazone, Oxime, Imine,
642 Azomethine, Hydroxylamine, Hydrazine, Hydrazide, Iminium, Carbamate, Cyanamide, N-Oxide,
643 Peroxide, Phosphate, Sulfate, Primary Amine, Secondary Amine, Tertiary Amine, Thioether, Disul-
644 fide, Thioester, Sulfinic Acid, Sulfonate Ester, Sulfamate, Sulfamide, Isocyanate, Isothiocyanate,
645 Urea, Guanidine, Carbodiimide, Phosphine, Phosphonic Acid, Phosphonate Ester, Phosphorami-
646 date, Phosphoramidate, Phosphonamide, Phosphine Oxide, Phosphite, Phosphonite, Phosphoramidite,
647 Phosphoramidate, Phosphinate, Boronic Acid, Boronate Ester, Boronic Ester, Silyl Ether, Silanol,
Silyl Halide, Alkyl Halide, Aryl Halide, Perfluoroalkyl, Epoxide, Lactone, Lactam, Semicarbazide,
Aziridine, Azepane, Aminal, Thioamide, Sulfenic Acid, Sulfanyl, and Sulfonyl.

648
649

A.2 CHEMBL PROCESSING PROCEDURE

650
651
652
653
654
655

We construct MolTextNet starting from ChEMBL35, a database maintained by the European Bioinformatics Institute (EMBL-EBI) that integrates chemical structures, biological activity data, and genomic information. The latest release contains approximately 2.4 million distinct small molecules, 20.8 million bioactivity measurements, and over 1.6 million assays. Below, we describe our pipeline for constructing a molecule-text dataset using curated molecular annotations and high-quality generated descriptions.

656
657

A.2.1 DATABASE FILTERING

658
659
660
661
662

ChEMBL35 is distributed in various formats—including MySQL, PostgreSQL, SQLite dumps; SDF structure files; FASTA sequences; and RDF triples—each exposing a molecule → structure → activity → assay relational schema. We use the MySQL release, which includes 65 tables and over 100 million rows, to extract high-quality molecular samples.

663

SMILES Validation Canonical SMILES strings are used as the molecular graph input for downstream GNNs. We extract each molecule’s SMILES and `compound_name`, discard missing or RDKit-invalid entries, and collapse duplicates using the ChEMBL identifier `molregno` to ensure one representative entry per molecule.

664

Information Curation For each validated molecule, we extract compound-level physicochemical properties—such as molecular weight, ALogP, HBA/HBD counts, PSA, rotatable bonds, Rule-of-Three/Five compliance, pK_a/pK_b , and QED—from the `compound_properties` table. These are joined with other tables (e.g., `activities`, `assays`) to collect quantitative assay endpoints with normalized units. Qualitative or unit-less values are excluded, and missing data is dropped. Because one molecule may be associated with multiple assays, we group all assay-level descriptions and measurements under the parent molecule, preserving full experimental context.

665
666
667
668
669
670
671
672
673
674

This yields approximately 2.4 million JSON-encoded entries, each containing a sanitized SMILES string, compound name, physicochemical properties, and assay metadata with experimental results and descriptions.

675
676
677

A.2.2 DATASET POST-PROCESSING

678
679
680
681
682

After constructing the initial dataset, we apply post-processing steps to enrich each JSON entry with standardized annotations, structural summaries, and synthesis metrics.

683
684

Additional Information

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

- **Bioactivity:** For each assay, we extract the human-readable `action_type` and map the associated pChEMBL value into three categories: “not active” ($p\text{ChEMBL} < 5$), “slightly active” ($5 \leq p\text{ChEMBL} < 8$), and “active” ($p\text{ChEMBL} \geq 8$). This provides a unified scale for biological activity.
- **Structure:** We incorporate structured summaries to reflect the hypothesis that biological activity is influenced by a molecule’s scaffold and functional groups. For each SMILES, we extract the Bemis-Murcko scaffold, ring counts, H-bond donors/acceptors, rotatable bonds, and functional group frequencies (using SMARTS patterns), and convert these into descriptive sentences.
- **Synthesis:** We compute synthesis-related metrics, including the Synthetic Complexity Score (SCScore), obtained from a neural network trained on Reaxys reactions (Coley et al., 2018), and the Synthetic Accessibility Score (SAScore) (Ertl & Schuffenhauer, 2009), which combines fragment contributions with topological features. Additionally, we match molecules to USPTO reaction precedents to include synthesis conditions where available.

700
701

Numeric Tagging To preserve quantitative content during generation, all numeric fields (e.g., bioactivity values) are wrapped in `<number>...</number>` markers, enabling the model to distinguish numerical values from surrounding text.

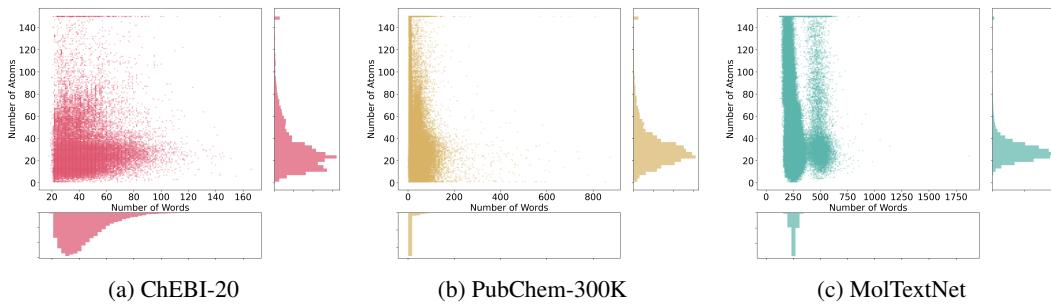


Figure 6: Joint histograms of word and atom counts for different datasets.

A.3 MORE DETAILS ON DATASET ANALYSIS

Figure 6 shows joint histograms of word and atom counts for MolTextNet, ChEBI-20, and PubChem-300K. Most descriptions in ChEBI-20 contain fewer than 100 words, and those in PubChem-300K fewer than 200. In contrast, MolTextNet predominantly contains descriptions ranging from 250 to 500 words, indicating that the LLMs effectively follow length-specific generation instructions.

A.4 MORE DETAILS ON EXPERIMENTAL SETUPS

Given the substantial size of the MolTextNet dataset, we adopt a memory-efficient data loading strategy. The full corpus is preprocessed and stored in HDF5 format, partitioned into several shards of 50K samples each. During training, we implement an on-demand loading mechanism that dynamically reads only the relevant shard into memory for the current epoch. This design ensures full dataset coverage across epochs while effectively mitigating out-of-memory issues, thereby enabling large-scale training on resource-constrained environments.

For downstream tasks, we adopt the standard molecular property prediction benchmarks from the OGB dataset Hu et al. (2020), following the original scaffold-based train/validation/test split for consistent evaluation. Molecular property prediction is conducted by fine-tuning pretrained GIN encoders with a 2-layer MLP for 50 epochs, using early stopping with a patience of 10 epochs. The MLP learning rate is fixed to 1e-3, while the GIN encoder learning rate is set as 1e-3 or 1e-4, with a drop ratio of 0 or 0.1. To ensure fidelity, all pretrained models share a unified hyperparameter configuration across tasks. For the zero-shot structure retrieval task, the pretrained GIN encoders directly encode SMILES strings, which are then matched against the embeddings of the query text generated by the pretrained text encoders. Detailed query texts and SMILES mappings are provided in Section A.6.

A.5 MORE DETAILS ON TOPIC MODELING OF MOLECULAR DESCRIPTIONS

To evaluate which dataset is most suitable for pretraining molecular language models, we analyzed the topic keywords extracted from ChEBI-20, PubChem-300K, and MolTextNet using both LDA and NMF. The full topic lists are presented in Tables 8 and 9. We further group these keywords into three categories, as shown in Table 10, to highlight the different dimensions present in molecular descriptions.

From the tables, ChEBI-20 predominantly contains ontology-style terms related to basic chemical groups (e.g., acid, anion, carboxylic) and shows limited lexical variation and minimal coverage of molecular effects. PubChem-300K offers greater diversity, including references to both biosourced and synthetic molecules (e.g., streptomyces, macrolide, antibiotic), with moderate coverage of experimental conditions.

In contrast, MolTextNet exhibits the richest and most varied language, with terms describing assay protocols, molecular properties, and activity patterns (e.g., assays, partition, inhibition, affinity, suggesting), as well as detailed experimental contexts (e.g., MIC, IC₅₀, cytotoxicity, partition coefficient, synthetic route). It also includes structure-aware terms (e.g., likeness, violations, ccc, structural) that are likely bene-

756
757
758
759
760
761

Table 8: Keywords and topic proportions from LDA on three molecular text datasets.

Topic	ChEBI-20		PubChem-300K		MolTextNet	
	Keywords	Prop.	Keywords	Prop.	Keywords	Prop.
1	conjugate, base, acid, an- ion, major, pH, deproto- nation, species, obtained, group	13.4%	cell, activity, inhibitor, cells, tumor, compound, antineoplastic, inhibits, produced, kinase	5.2%	cc, suggesting, prop- erties, level, influence, structural, activity, inhi- bition, binding, targets	9.3%
2	metabolite, acid, role, de- rives, human, group, hy- droxy, ester, formal, con- densation	10.0%	used, treatment, drug, agent, receptor, inhibitor, polysaccharide, antago- nist, activity, effects	5.2%	cc, activity, binding, mul- tiple, suggests, nm, tar- gets, complex, synthesis, ccc	15.3%
3	acid, amino, conjugate, 10.7% alpha, group, monocar- boxylic, derives, deriva- tive, hydroxy, tautomer	10.7%	compound, sn, used, wa- ter, organic, glycero, ring, liquid, assembly, chemi- cal	5.5%	cc, nc, nm, yl, ccc, ic, human, methyl, activity, amino	8.1%
4	amino, group, cation, 6.6% role, organic, ion, acid, derivative, ammonium, inhibitor	6.6%	member, peptide, aro- matic, ether, benzenes, oligopeptide, amide, biphenyls, amine, tripterygium	6.7%	ml, cc, activity, μ g, mic, strains, antibacterial, in- hibitory, suggesting, ex- hibits	3.5%
5	coa, fatty, acid, acyl, 6.3% chain, group, long, con- jugate, trans, hydroxy	6.3%	product, natural, avail- able, data, streptomyces, aspergillus, organisms, carbohydrate, derivatives, carbohydrates	13.1%	coefficient, cc, suggest- ing, water, octanol, prop- erties, targets, partition, inhibition, structural	8.9%
6	beta, alpha, acetyl, 9.6% amino, residue, con- sisting, residues, glu- cosamine, oligosaccha- ride, linked	9.6%	product, natural, avail- able, data, organisms, penicillium, japonica, artemisia, isodon, indica	31.9%	nm, assays, cc, sid, tar- gets, suggesting, activ- ity, influence, properties, structural	14.0%
7	acyl, sn, acid, phosphate, 5.8% glycero, derives, speci- fied, groups, glycerol, re- spectively	5.8%	acid, conjugate, base, 10.4% fatty, group, metabolite, lactam, azamacrocyclic, acyl, related	10.4%	likeness, drug, quantita- tive, estimate, weighted, suggesting, violations, structural, absence, activity	4.9%
8	agent, role, inhibitor, salt, 9.5% drug, used, contains, anti- ec, antagonist	9.5%	member, steroid, glyco- side, acids, salt, role, con- tains, ureas, ester, hy- droxy	7.0%	targets, binding, prop- erties, suggesting, fa- vorable, suggests, activ- ity, enhance, permeabil- ity, structural	11.3%
9	member, group, position, 16.6% compound, role, sub- stituted, methyl, class, metabolite, positions	16.6%	natural, product, avail- able, data, sulfonamide, euphorbia, triglyceride, organisms, piper, lauren- cia	5.6%	cc, pka, ccc, suggest- ing, basic, nc, influence, acidic, value, nm	15.8%
10	hydroxy, metabolite, role, 11.4% beta, steroid, position, isolated, derives, group, alpha	11.4%	role, beta, alpha, metabo- lite, group, position, amino, compound, re- lated, functionally	9.4%	cc, nm, cells, activity, ic, oc, human, suggesting, exhibits, assays	9.1%

805
806
807
808
809

810
811
812
813
814
815

Table 9: Keywords and normalized topic proportions from NMF on three molecular text datasets.

Topic	ChEBI-20		PubChem-300K		MolTextNet	
	Keywords	Prop.	Keywords	Prop.	Keywords	Prop.
1	acid, monocarboxylic, conjugate, derives, group, carboxy, dicarboxylic, carboxylic, amino, formal	10.95	data, product, natural, available, organisms, aspergillus, penicillium, euphorbia, artemisia, japonica	25.94	sid, nm, inconclusive, assays, potency, named, results, representation, inactive, inhibitors	9.82
2	member, position, group, substituted, compound, methyl, agent, class, positions, inhibitor	12.38	azamacrocyclic, lactam, sulfate, macrolide, role, beta, gamma, antibiotic, metabolite, agent	4.28	receptor, activity, binding, suggests, multiple, enhance, likely, affinity, potentially, indicates	18.90
3	coa, acyl, coenzyme, diphosphate, thiol, results, condensation, formal, phosphate, fatty	6.25	peptide, cyclic, role, composed, joined, metabolite, linkages, sequence, leucine, tripeptide	3.95	mmv, percentage, nf, nanoglo, um, hours, primary, unknown, screen, remains	9.63
4	beta, alpha, acetyl, amino, residue, glucosamine, oligosaccharide, trisaccharide, consisting, linked	10.37	member, ureas, benzenes, assembly, ring, quinolines, carbohydrates, biphenyls, derivatives, carbohydrate	7.64	pka, basic, acidic, physiological, conditions, ionization, state, suggesting, states, protonation	14.72
5	base, conjugate, anion, deprotonation, pH, major, species, obtained, carboxy, phosphate	10.80	streptomyces, data, product, natural, available, albidoflavus, hygroscopicus, griseus, platensis, albus	4.09	coefficient, water, octanol, partition, distribution, pH, hydrophobic, supported, parent, atoms	8.76
6	sn, acyl, glycero, phosphate, specified, glycerol, oleoyl, diacyl, groups, respectively	6.37	acid, amino, conjugate, fatty, group, base, functionally, related, hydroxy, chain	7.95	likeness, drug, estimate, weighted, quantitative, absence, supports, atoms, heavy, violations	9.95
7	steroid, hydroxy, beta, oxo, alpha, delta, hydride, derives, position, positions	6.66	compound, glycosyl, carbonyl, organooxygen, organonitrogen, organic, amino, organohalogen, functionally, related	3.85	nm, cells, ic, human, oc, cell, values, lines, cytotoxicity, yl	12.05
8	cation, organic, amino, ion, ammonium, protonation, derivative, conjugate, obtained, tertiary	7.02	metabolite, produced, saccharomyces, cerevisiae, escherichia, coli, strain, mg, role, human	4.19	ml, µg, mic, antibacterial, minimum, strains, staphylococcus, inhibitory, aureus, ug	5.37
9	metabolite, role, human, mouse, plant, cerevisiae, saccharomyces, coli, escherichia, derives	13.61	sulfonamide, benzenes, antibiotic, group, role, used, antibacterial, agent, inhibitor, pyridines	2.06	ddd, inhibition, percentages, stage, falciparum, um, hepg, leishmania, targets, assays	8.73
10	fatty, chain, long, acid, hydroxy, anion, omega, polyunsaturated, saturated, branched	5.69	aromatic, ether, amide, ketone, amine, flavonoids, benzenoid, amino, furans, thiophenes	3.05	nc, cc, ccc, yl, challenges, ccccc, amino, significant, oral, high	13.38

859
860
861
862
863

864
865
866
Table 10: Keyword sets for each semantic dimension (structure, property or synthesizability) used in
867
description categorization.

867 Dimension	868 Structure	869 Property	870 Synthesizability
871 Keywords	872 conjugate, base, acid, anion, ph, 873 deprotonation, species, group, 874 amino, alpha, beta, 875 monocarboxylic, derivative, 876 hydroxy, tautomer, cation, 877 organic, ion, ammonium, acyl, 878 phosphate, glycero, glycerol, sn, 879 position, substituted, methyl, 880 class, steroid, ring, liquid, 881 assembly, yl, nc, ccc, pka, value, 882 basic, acidic, coefficient, 883 octanol, partition, structural	884 cell, activity, inhibitor, tumor, 885 compound, antineoplastic, inhibits, 886 kinase, receptor, drug, treatment, 887 agent, antagonist, effects, binding, 888 suggests, suggesting, targets, 889 multiple, μ g, mic, strains, 890 antibacterial, inhibitory, exhibits, 891 assays, nm, ic, oc, human, likeness, 892 quantitative, estimate, weighted, 893 violations, enhance, permeability, 894 favorable, cells	895 coa, fatty, acyl, chain, long, trans, 896 residue, residues, acetyl, 897 glucosamine, oligosaccharide, linked, 898 product, natural, available, data, 899 streptomyces, aspergillus, 900 penicillium, organisms, carbohydrate, 901 carbohydrates, japonica, artemisia, 902 isodon, indica, biosynthetic, contains, 903 salt, ureas, glycoside, ec, related, 904 complex, synthesis

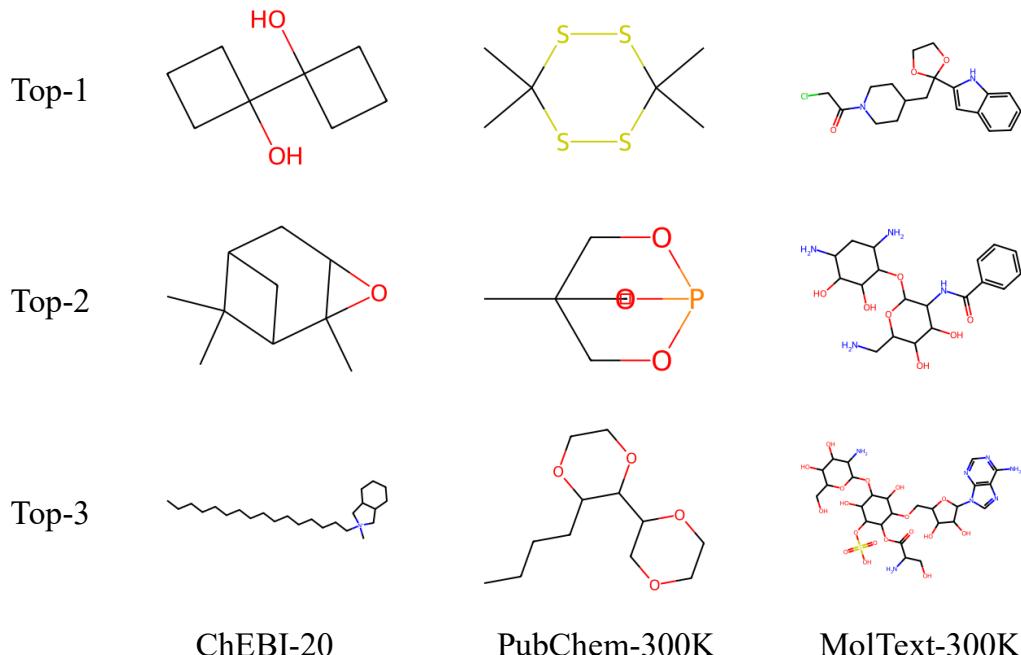
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
ficial for generative modeling. These findings suggest that MolTextNet provides the most comprehensive linguistic and contextual grounding for pretraining models across diverse downstream tasks, including property prediction, structure generation, and reaction condition inference.

918 A.6 MORE RESULTS ON ZERO-SHOT STRUCTURE RETRIEVAL
919920 We defined 7 case studies to retrieve multiple functional groups. Their query texts are defined as:
921

- 922 • **Case 1:** The molecule has one Amide group,
- 923 • **Case 2:** The molecule has one Ketone group,
- 924 • **Case 3:** The molecule has one Primary Amine group,
- 925 • **Case 4:** The molecule has two Tertiary Amine groups,
- 926 • **Case 5:** The molecule has three Aromatic Rings,
- 927 • **Case 6:** The molecule has four Ester groups,
- 928 • **Case 7:** The molecule has eight Carbonyl groups,
- 929
- 930

931 Functional group-SMILES mapping is:
932

- 933 • Amide: [NX3][CX3](=O)[#6],
- 934 • Ketone: [CX3](=O)[#6],
- 935 • Primary Amine: [NX3H2],
- 936 • Tertiary Amine: [NX3]([#6])([#6])[#6],
- 937 • Aromatic Ring: [c],
- 938 • Ester: [CX3](=O)[OX2H0][#6],
- 939 • Carbonyl: [CX3]=O.
- 940
- 941

942 For ChEBI-20, PubChem-300K, MolTextNet-300K, their top-3 retrieved results are visualized in
943 Figures 7 to 13.972 Figure 7: Top-3 structure retrieval results on Case 1 (The molecule has one Amide group): GIN
973 pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.
974

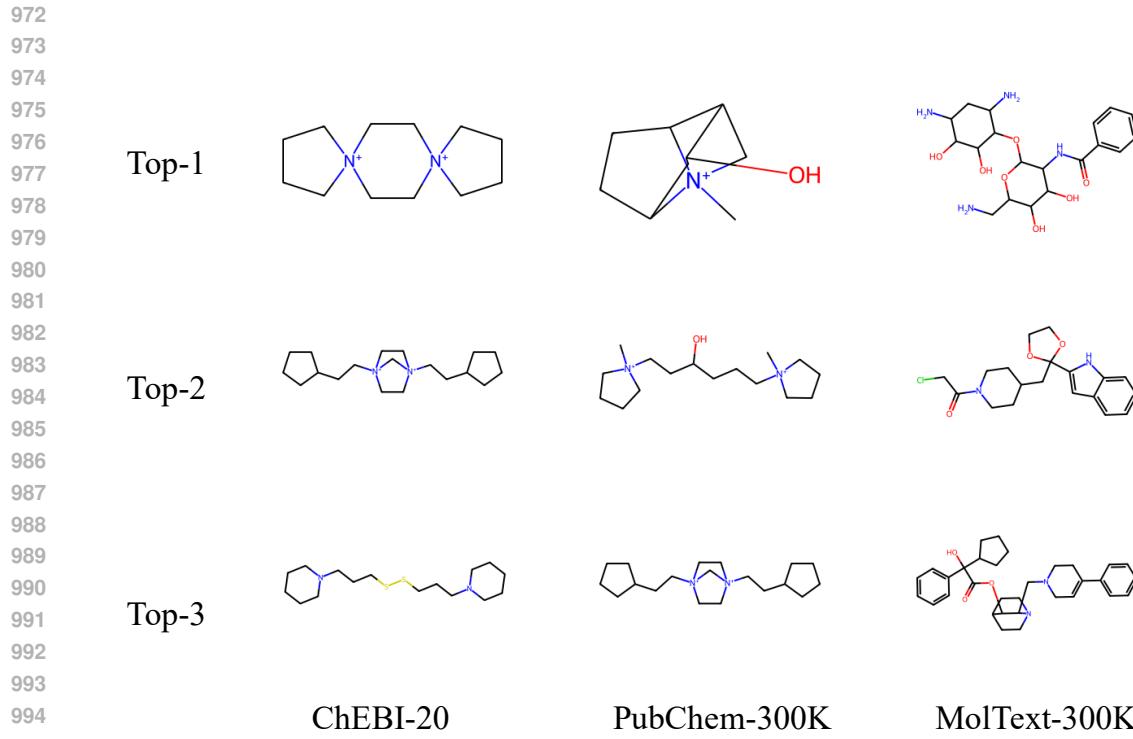


Figure 8: Top-3 structure retrieval results on Case 2 (The molecule has one Ketone group): GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.

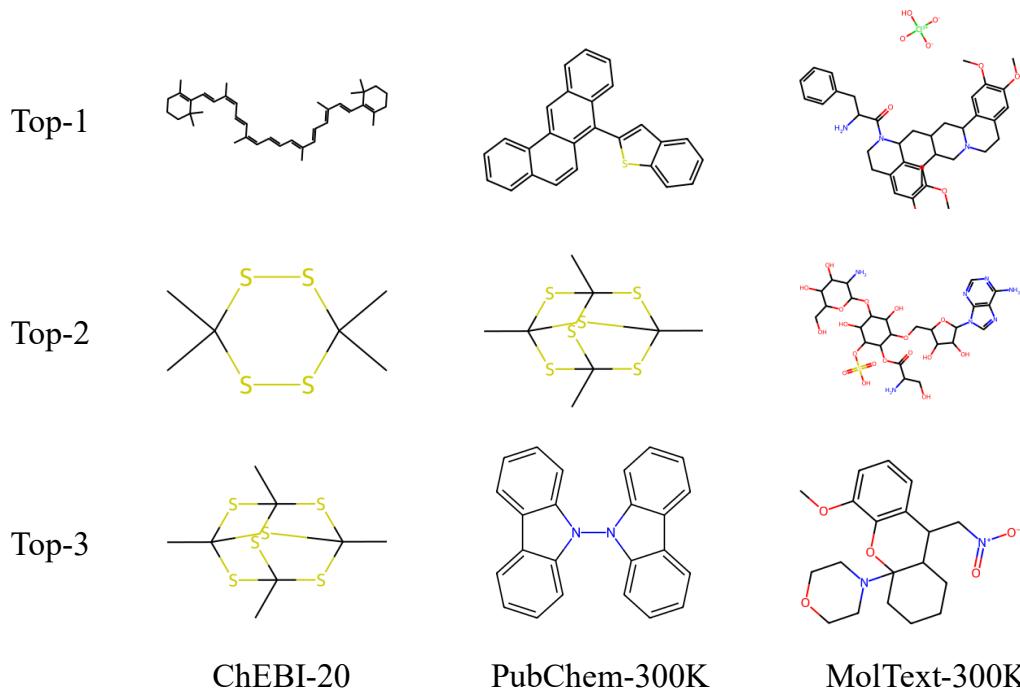


Figure 9: Top-3 structure retrieval results on Case 3 (The molecule has one Primary Amine group): GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.

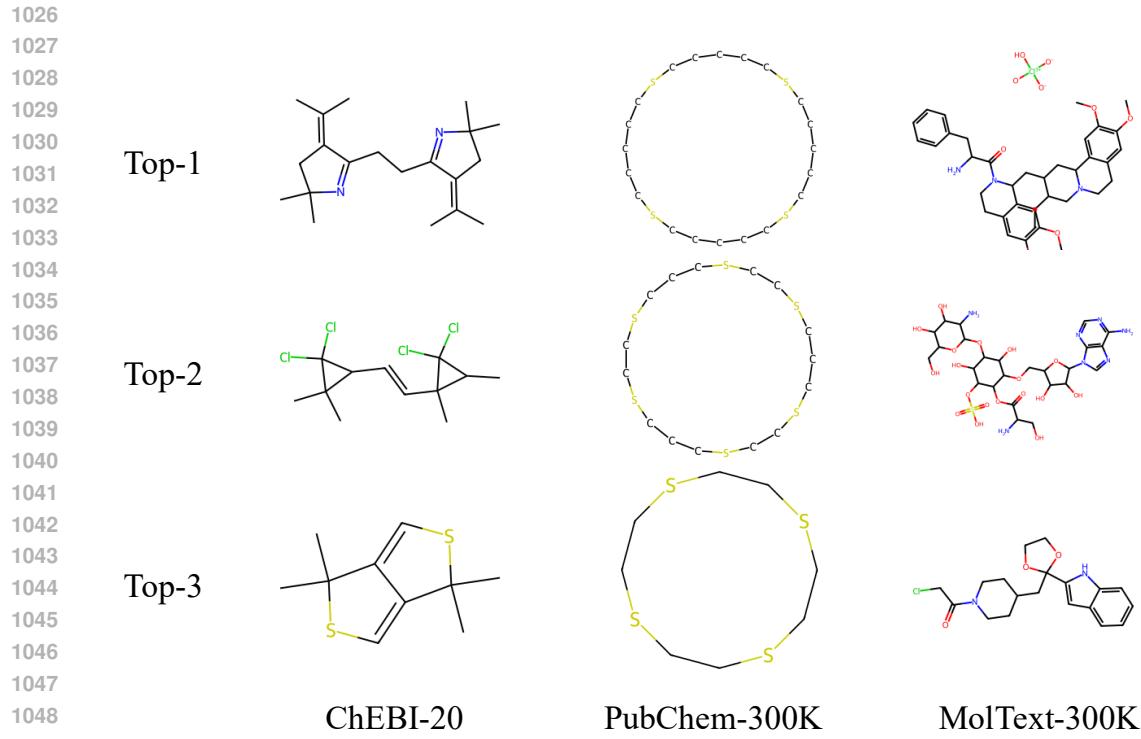


Figure 10: Top-3 structure retrieval results on Case 4 (The molecule has two Tertiary Amine groups): GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.

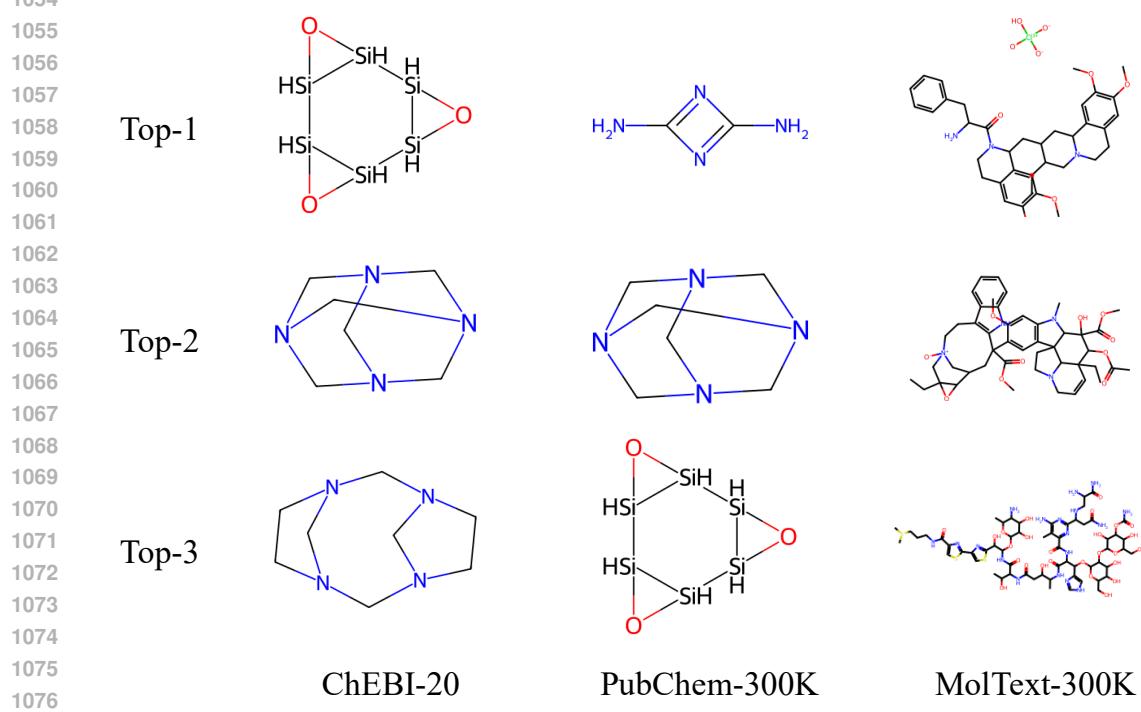


Figure 11: Top-3 structure retrieval results on Case 5 (The molecule has three Aromatic Rings): GIN pretrained on MolTextNet-300K consistently retrieve the right structure described in the query.

