

000 ROBUST ADAPTIVE MULTI-STEP PREDICTIVE SHIELD- 001 002 003 004 005 ING

006 **Anonymous authors**
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Reinforcement learning for safety-critical tasks requires policies that are both high-performing and safe throughout the learning process. While model-predictive shielding is a promising approach, existing methods are often computationally intractable for the high-dimensional, nonlinear systems where deep RL excels, as they typically rely on a patchwork of local models. We introduce RAMPS, a scalable shielding framework that overcomes this limitation by leveraging a learned, linear representation of the environment’s dynamics. This model can range from a linear regression in the original state space to a more complex operator learned in a high-dimensional feature space. The key is that this linear structure enables a robust, look-ahead safety technique based on a *multi-step Control Barrier Function (CBF)*. By moving beyond myopic one-step formulations, RAMPS accounts for model error and control delays to provide reliable, real-time interventions. The resulting framework is minimally invasive, computationally efficient, and built upon robust control-theoretic foundations. Our experiments demonstrate that RAMPS significantly reduces safety violations compared to existing safe RL methods while maintaining high task performance in complex control environments.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable success in solving complex control problems, yet its deployment in safety-critical applications like autonomous vehicles and robotics remains a grand challenge Gu et al. (2022). A core requirement in these domains is not only that the final policy is safe, but that safety is maintained throughout the entire learning process. This problem of *safe exploration* has motivated a range of solutions, among which model-predictive shielding has emerged as a promising paradigm Jovanović et al. (2020); Brunke et al. (2021).

Existing shielding frameworks present a difficult trade-off. On one hand, neural shields learn safety critics from data, offering flexibility but often requiring vast experience and failing to prevent violations during early training Bharadhwaj et al. (2021b); Dalal et al. (2018). On the other hand, symbolic shields provide formal, mathematical guarantees from the first interaction by analyzing an environment model Berkenkamp et al. (2017); Anderson et al. (2020); Wang & Zhu (2024). However, these methods have a critical limitation that has confined them to low-dimensional systems: they rely on explicitly partitioning the state space to construct a patchwork of local linear models. This approach suffers from the curse of dimensionality, rendering it computationally intractable for the complex, high-dimensional environments (> 10 dimensions) where modern deep RL excels.

This paper introduces RAMPS, a framework that bridges this critical gap by making formal shielding scalable to high-dimensional, nonlinear systems through a novel theoretical advance in safety certification. At the core of RAMPS is a new robust multi-step Control Barrier Function formulation that fundamentally changes how safety is guaranteed in discrete-time stochastic systems with model uncertainty. RAMPS achieves both theoretical soundness and practical scalability through a unified approach.

The key insight enabling RAMPS is the synergy between our robust multi-step CBF theory and the use of linear dynamics models. By representing the system dynamics through a single linear model, whether a linear regression in the original space or a learned operator in a high-dimensional feature space like the Deep Koopman Operator Shi & Meng (2022), we can efficiently propagate safety constraints multiple steps into the future while formally accounting for model error. Our

054 CBF formulation explicitly incorporates accumulated prediction error through a novel tightening
 055 mechanism, provides model-relative safety guarantees even with imperfect models. At each timestep,
 056 RAMPS’s shield solves a comparatively-small Quadratic Program to find the minimally invasive
 057 safe action, with adaptive horizon selection that maximizes foresight while avoiding excessive
 058 conservatism.

059 Our contributions are threefold:
 060

- 061 • We introduce RAMPS, a scalable shielding framework that provides probabilistic safety
 062 guarantees, in high-dimensional, nonlinear systems by unifying robust CBF theory with
 063 learned linear dynamics representations.
- 064 • We develop a novel robust multi-step CBF formulation for discrete-time stochastic systems
 065 featuring accumulated error tightening and adaptive horizon selection, providing a principled
 066 solution to high relative-degree safety constraints under model uncertainty.
- 067 • We demonstrate that RAMPS significantly outperforms state-of-the-art safe RL methods,
 068 reducing safety violations by up to 90% and scaling to 348-dimensional environments, while
 069 maintaining competitive task performance across challenging high-dimensional control
 070 environments including quadrupedal locomotion.

072 2 RELATED WORK

074 Research in safe reinforcement learning (safe RL) can be categorized by *what kind of safety guarantees*
 075 *are provided and when those guarantees apply*. Safety is usually defined in two ways: (i) a *cost-based*
 076 *formulation*, where each action may incur some penalty and the long-term cost must remain below
 077 a threshold, or (ii) a *state-based formulation*, where specific regions of the state space are marked
 078 unsafe and must never be entered. Our work adopts the state-based view.

079 **Worst-Case Guarantees.** One line of work provides *deterministic safety guarantees* under a worst-
 080 case environment model, ensuring forward invariance by construction (Anderson et al., 2020; Gillula
 081 & Tomlin, 2012; Alshiekh et al., 2018; Zhu et al., 2019; Fulton & Platzer, 2019; Bacci et al., 2021).
 082 These approaches offer strong guarantees but require an explicit model and are limited to low-
 083 dimensional settings due to the computational cost of state-space partitioning. In contrast, RAMPS
 084 does not require a predefined model and remains tractable in high-dimensional systems.

085 **Statistical Guarantees.** Another family of methods offers *probabilistic or statistical safety guarantees*.
 086 These approaches build or learn an approximate dynamics model and optimize policies that are
 087 *likely* to be safe with respect to that model (Achiam et al., 2017; Liu et al., 2020; Yang et al., 2020;
 088 Ma et al., 2021; Zhang et al., 2020; Satija et al., 2020). While more scalable than worst-case methods,
 089 they typically allow safety violations during training. In contrast, RAMPS enforces hard constraints
 090 with respect to its learned model, reducing violations in practice.

091 **Model-Predictive Shielding.** A complementary paradigm is *model-predictive shielding* (MPS),
 092 where a shield monitors the agent’s proposed action and intervenes only when it threatens
 093 safety (Wabersich & Zeilinger, 2018; Bastani, 2021; Anderson et al., 2020; 2023; Goodall & Belar-
 094 dinelli, 2023; Banerjee et al., 2024). Prior works differ in how they construct models and shields,
 095 but most struggle with scalability, particularly when moving beyond simple one-step predictions.
 096 Model-predictive shielding is closely related to **model predictive control (MPC)**: both use a model to
 097 roll out multi-step trajectories and solve constrained optimization problems. However, their objectives
 098 differ fundamentally. MPC optimizes long-horizon performance and effectively replaces the policy
 099 with its own control solution, whereas MPS acts purely as a *safety filter*: it retains the agent’s action
 100 whenever it is safe, and otherwise solves a feasibility problem to return the closest safe alternative.
 101 This shifts the role of prediction from planning to minimal, targeted intervention, making shielding
 102 compatible with arbitrary RL policies while still enforcing hard safety guarantees.

103 **Koopman Operators and Safety.** Prior work has combined Koopman models with safety mech-
 104 anisms, typically through *one-step* CBF filters. This includes Koopman-accelerated backup-CBF
 105 controllers, and neural or deep approaches that learn Koopman embeddings together with one-step
 106 CBF-QP filters or command governors Folkestad et al. (2020); Zinage & Bakolas (2022); Chen
 107 et al. (2024); Mitjans et al. (2024); Liang et al. (2025). Robust Koopman-MPC methods provide
 predictive control with error guarantees Mamakoukas et al. (2022); de Jong et al. (2024). However,

108 these methods either assume a known backup controller, rely on SMT-based CBF certification, or
 109 remain limited to one-step filtering and moderate-dimensional systems.
 110

111 **Cost-Based Safe RL.** Cost-based methods enforce safety indirectly by shaping the reward with
 112 carefully designed cost signals and applying constrained optimization techniques (Achiam et al.,
 113 2017; Sootla et al., 2022a; Gu et al., 2024; Sootla et al., 2022b; Zhang et al., 2022; Yang et al., 2022).
 114 These approaches are flexible but inherently allow violations while the agent learns the cost structure.
 115 Compared to these methods, RAMPS enforces stricter state-based safety constraints, leading to fewer
 116 violations.

117 Safe RL methods balance a trade-off: *formal and symbolic methods* offer strong guarantees but do
 118 not scale, while *statistical and cost-based methods* scale but permit many violations early in training.
 119 Existing model-predictive shielding methods are typically limited to systems with state dimensions
 120 in the tens, as they rely on computationally expensive state-space partitioning or explicit nonlinear
 121 model propagation. RAMPS bridges this gap by combining a learned, linear model with a novel
 122 robust multi-step control barrier function, enabling scalable shielding with strong safety assurances
 123 in complex, high-dimensional environments, successfully operating on systems with over 300 state
 124 dimensions (where current formal techniques struggle above 10-dimensions), while maintaining
 125 real-time computational efficiency.

126 3 PRELIMINARIES

127 **Safe Exploration.** We model the environment as a Markov decision process (MDP) $\mathcal{M} =$
 128 $(\mathcal{S}, \mathcal{A}, r, P, \gamma)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a re-
 129 ward function, $P(x' | x, a)$ is a probabilistic transition function, and p_0 is an initial distribu-
 130 tion over states. A *policy* π maps states to distributions over actions. The long-term return
 131 of a policy is $R(\pi) = \mathbb{E}_{s_i, a_i \sim \pi} \left[\sum_{i=0}^{\infty} \gamma^i r(s_i, a_i) \right]$. The goal of RL is to find an optimal policy
 132 $\pi^* = \arg \max_{\pi} R(\pi)$.

133 Most deep RL algorithms generate a sequence of policies $\pi_0, \pi_1, \dots, \pi_N$ with $\pi_N \rightarrow \pi^*$. We refer to
 134 this sequence as a *learning process*. In *safe exploration*, the aim is to ensure that every intermediate
 135 policy remains safe with high probability. Formally, given a safety threshold δ and unsafe set \mathcal{S}_U , we
 136 require $\forall 1 \leq i \leq N, \Pr_{s \sim \pi_i}(s \in \mathcal{S}_U) \leq \delta$, while the final policy π_N maximizes reward among all
 137 safe policies. Following prior work (Anderson et al., 2023; Wang & Zhu, 2024), we do not require
 138 the initial policy π_0 to be safe, since no prior model of the environment is assumed.

139 **Safety Specification.** We adopt the common state-based notion of safety in safe RL. The unsafe set \mathcal{S}_U
 140 is defined as a union of convex polyhedra over features of the state space (Anderson et al., 2023; Wang
 141 & Zhu, 2024). Equivalently, the safe set can be expressed as $\mathcal{S} \setminus \mathcal{S}_U = \bigcup_{i=1}^M \{s \in \mathcal{S} \mid G_i s \leq h_i\}$,
 142 for matrices G_i and vectors h_i . Unions of convex polyhedra are sufficient to approximate any compact
 143 safe set to arbitrary precision, and are widely used in model-predictive safety methods.

144 4 ROBUST ADAPTIVE MULTI-STEP PREDICTIVE SHIELDING

145 RAMPS, provides strong, real-time safety guarantees for reinforcement learning agents by integrating
 146 a learned, linear dynamics model with a robust, certificate-based safety shield. The framework is
 147 composed of three core components: (1) a learned linear dynamics model that provides a single,
 148 global representation of the environment’s dynamics from data; (2) a Robust Control Barrier Function
 149 (CBF) that uses this model to certify safety and correct potentially unsafe actions online; and (3) a
 150 standard deep RL agent that learns a high-performance policy inside the protection of the shield.

151 The key requirement for the dynamics model is that it must be linear, as this structure enables the
 152 efficient, multi-step predictions required by the shield. This allows for a flexible range of modeling
 153 choices, from a simple linear regression operating in the original state space to a more complex Deep
 154 Koopman Operator (Shi & Meng, 2022) that learns a linear transition function in a high-dimensional
 155 feature space.

156 RAMPS operates in an iterative loop. The agent first collects a dataset of environment interactions.
 157 This data is used to train the linear dynamics model and a worst-case error bound, which in turn

162 parameterize the CBF shield. The RL agent is then trained, with every action being verified and
 163 potentially corrected by the shield to ensure safety. The newly collected, safe data is added back to
 164 the dataset, allowing the dynamics model and error bound to be periodically refined. This creates a
 165 cycle where a more accurate model leads to a less conservative shield, allowing the agent to explore
 166 more freely and learn a better policy. This is illustrated in Algorithm 1.
 167

168 4.1 SAFETY SHIELDING WITH MULTI-STEP ROBUST CONTROL BARRIER FUNCTIONS

170 We propose a safety shield designed to address a fundamental limitation of standard Control Barrier
 171 Functions (CBFs) when applied to discrete-time stochastic systems. Although one-step CBFs offer
 172 strong guarantees in continuous time, their discrete-time analogues may fail when a system’s control
 173 inputs do not immediately affect the safety constraints; a challenge characterized by a relative
 174 degree greater than one. To resolve this issue, we construct a *multi-step robust CBF* by drawing
 175 upon principles from the theories of High-Order CBFs (HOCBFs; Tan et al. (2022)) and multi-step
 176 predictive control (Chriat & Sun, 2023). Our shield enforces safety over a variable prediction horizon
 177 H , which ensures that control authority is maintained despite such actuation delays. By adaptively
 178 selecting the largest feasible horizon at each timestep, the shield maximizes its predictive capability
 179 to eliminate “trap” states, which are configurations that appear safe in the short term but lead to
 180 inevitable future violations. This is accomplished while remaining minimally invasive to the actions
 181 proposed by the reinforcement learning agent’s policy.

182 **Control Barrier Functions (CBFs)** (Nagumo, 1942; Prajna & Jadbabaie, 2004; Wieland & Allgöwer,
 183 2007; Ames et al., 2019) are a powerful tool for enforcing safety constraints in control systems by
 184 rendering a specific region of the state space forward invariant. In the **continuous-time** setting, for
 185 a system with dynamics $\dot{x} = f(x) + g(x)u$ and a safe set defined as $\mathcal{C} = \{x \in \mathbb{R}^n \mid h(x) \geq 0\}$,
 186 a function h is a CBF if there exists a class- \mathcal{K} function α such that for all $x \in \mathcal{C}$, the condition
 187 $\sup_{u \in U} [L_f h(x) + L_g h(x)u + \alpha(h(x))] \geq 0$ holds. This Lie derivative condition ensures that for
 188 any state on the boundary of the safe set, there exists a control action that prevents the system from
 189 instantaneously exiting \mathcal{C} .

190 In contrast, for a **discrete-time** system $x_{k+1} = F(x_k, u_k)$, the condition is fundamentally different. A
 191 function h is a discrete CBF if for all $x_k \in \mathcal{C}$, there exists a control $u_k \in U$ such that $h(F(x_k, u_k)) \geq$
 192 $\lambda h(x_k)$, where $\lambda \in [0, 1]$ is a decay rate. The key distinction lies in their temporal nature: the
 193 continuous condition is infinitesimal, guaranteeing safety based on the instantaneous velocity of the
 194 system, while the discrete condition provides a guarantee over a finite time step, ensuring that the
 195 state at step $k + 1$ remains safe given the state at step k . This often makes the discrete condition
 196 more conservative, as it must account for the system’s evolution over the entire sampling period.
 Reinforcement learning typically deals with discrete-time systems.

197 **Linear Dynamics.** The core of our shielding framework relies on a learned, linear dynamics model,
 198 as this structure is essential for performing the efficient, multi-step predictions needed for robust
 199 safety analysis. For systems with simple dynamics, this can be a direct linear model operating in
 200 the original state space. For more complex, non-linear environments, the state can be “lifted” via a
 201 learned, non-linear embedding into a higher-dimensional feature space (Shi & Meng, 2022). The
 202 fundamental principle is that within this lifted space, the intricate dynamics can be accurately captured
 203 by a simple linear transition, $z_{k+1} = Az_k + Bu_k + c$. This transformation from non-linear to linear
 204 dynamics is what enables the shield to efficiently propagate safety constraints far into the future,
 205 making the approach scalable to a wide range of complex systems.

206 **Safe Set and Dynamics.** Let the lifted state space be \mathbb{R}^{n+d} ($d \geq 0$) with the discrete-time affine
 207 dynamics

$$208 z_{k+1} = Az_k + Bu_k + c + w_k,$$

209 where c is a learned constant offset representing the system’s drift, and w_k is an additive model error
 210 satisfying $\|w_k\|_\infty \leq \varepsilon$. The admissible control set is $U \subset \mathbb{R}^m$. We define a polyhedral safe set \mathcal{C} as
 211 the intersection of half-spaces, such that

$$212 \mathcal{C} = \bigcap_{i=1}^M \{z \mid p_i^\top z + b_i \leq 0\}.$$

213 For each face i of the polyhedron, we define a corresponding safety function $h_i(z)$ as $h_i(z) =$
 214 $-(p_i^\top z + b_i)$, which means the safe set can be expressed as $\mathcal{C} = \{z \mid h_i(z) \geq 0, \forall i\}$.

216 **One-Step Robust CBF Condition.** To guarantee safety under model uncertainty, we formulate a
 217 robust CBF condition similar to (Cosner et al., 2023). The safety requirement is that the true next
 218 state, $z_{k+1} = Az_k + Bu_k + c + w_k$, must remain in the safe set \mathcal{C} . This implies that for each face i ,
 219 the condition $p_i^\top (Az_k + Bu_k + c + w_k) + b_i \leq 0$ must hold for bounded disturbances w_k .
 220

221 To ensure this, we design the constraint based on the worst-case disturbance, which has a value of
 222 $\varepsilon \|p_i\|_1$. By incorporating this worst-case term, we arrive at the robust CBF condition: for any state
 223 $z \in \mathcal{C}$, there must exist a control input $u \in \mathcal{U}$ such that

$$224 \quad p_i^\top (Az + Bu + c) + b_i \leq \lambda(p_i^\top z + b_i) - \varepsilon \|p_i\|_1, \quad \forall i, \quad (1)$$

225 where $\lambda \in (0, 1]$ is a decay parameter that governs the conservatism of the barrier condition. Values
 226 of λ close to 1 require the safety function $h_i(z)$ to remain nearly constant across timesteps, leading to
 227 stricter constraints and stronger invariance. Smaller values of λ relax this requirement by permitting
 228 $h_i(z)$ to decay over time, which can improve feasibility but reduces the safety margin. The term
 229 $-\varepsilon \|p_i\|_1$ provides an additional robust margin, ensuring safety under the worst-case model error.
 230

231 **Relative Degree.** The relative degree of a safety constraint $h(z)$ under dynamics $z_{k+1} = f(z_k) +$
 232 $g(z_k)u_k$ is the smallest integer $r \geq 1$ such that the control input u_k appears explicitly in the r -step
 233 evolution of $h(z_k)$, i.e. through $\frac{\partial h(z_{k+r})}{\partial u_k} \neq 0$.

234 **Multi-Step Robust CBF Condition.** The one-step condition in equation 1 is insufficient for systems
 235 where the control input has a delayed effect on a safety constraint (i.e., relative degree $r > 1$) 4.2. To
 236 eliminate the *trap* states that arise in such systems, our method ensures that the safety condition is
 237 met at *every* intermediate timestep j over a chosen horizon H , for all $j \geq r_i$. For each such step j ,
 238 we define the nominal reachable state under a control sequence $\mathbf{u} = (u_0, \dots, u_{H-1})$ as

$$239 \quad z_j(z, \mathbf{u}) = A^j z + \sum_{k=0}^{j-1} A^{j-1-k} B u_k + \sum_{k=0}^{j-1} A^k c,$$

242 where the final term represents the cumulative effect of the affine drift. The total accumulated error
 243 over this j -step horizon is bounded by a tightening term, $\mathcal{E}_j(p_i)$, which sums the worst-case error at
 244 each step:

$$245 \quad \mathcal{E}_j(p_i) = \sum_{k=0}^{j-1} \varepsilon \|p_i^\top A^k\|_1.$$

248 This leads to a set of robust CBF conditions, one for each valid step j and face i :

$$249 \quad p_i^\top z_j(z, \mathbf{u}) + b_i \leq \lambda^j(p_i^\top z + b_i) - \mathcal{E}_j(p_i). \quad (2)$$

251 Each of these inequalities is linear with respect to the full control sequence \mathbf{u} . We aggregate all such
 252 constraints into a single system of linear inequalities, $G\mathbf{u} \leq h$, which guarantees that any feasible
 253 control sequence maintains the system within the safe set \mathcal{C} throughout the entire horizon.

254 **Minimally Invasive Action Selection.** For a horizon H , the shield solves a Quadratic Program (QP)
 255 to find a safe control sequence that is minimally invasive to the RL agent’s intended action, a_π . The
 256 primary objective is to find a control sequence $\mathbf{u} = (u_0, \dots, u_{H-1})$ that minimizes the deviation of
 257 the first action, u_0 , from the agent’s proposal:

$$258 \quad \begin{aligned} \min_{\mathbf{u}} \quad & \|u_0 - a_\pi\|^2 \\ 259 \quad \text{s.t.} \quad & G\mathbf{u} \leq h, \quad (\text{representing all constraints from equation 2}), \\ 260 \quad & u_k \in \mathcal{U}, \quad k = 0, \dots, H-1. \end{aligned} \quad (3)$$

263 Following the receding horizon principle, only the first action of the solution, u_0 , is applied to the
 264 system. The subsequent actions, $u_{1:H-1}$, are optimized to ensure a feasible trajectory exists but are
 265 discarded, preserving flexibility at the next timestep.

266 **Adaptive Horizon Selection and Safety Guarantee.** At each timestep, we select the horizon H via
 267 a bounded binary search within $[H_{\min}, H_{\max}]$, where H_{\min} is the maximum relative degree among
 268 active constraints. Candidate horizons are tested by solving the QP in equation 3: feasible horizons
 269 remain candidates while the search continues toward larger values, and infeasible ones shrink the
 range. The largest feasible horizon H^* determines the minimally invasive action u_0 .

270 If no feasible horizon is found, a backup policy $u_{\text{backup}}(z)$ (A.4) is applied. Otherwise, the chosen
 271 action u_0 guarantees forward invariance: under disturbances $\|w_k\|_\infty \leq \varepsilon$, the closed-loop system
 272 satisfies $z_k \in \mathcal{C}, \quad \forall k \leq H$.
 273

274 4.2 ANALYSIS OF THE SHIELDING FRAMEWORK 275

276 The efficacy of our framework stems from the powerful synergy between a learned linear dynamics
 277 model and the multi-step robust CBF shield. Each component is designed to address a fundamental
 278 challenge in safe control, and their integration yields a solution that is formally sound, robust to
 279 model error, and computationally tractable.

280 **Synergy of a Linear Model and Multi-Step Shielding.** The foundational element of our approach
 281 is the use of a linear dynamics model. This structure is the key enabler for our multi-step shield; it
 282 allows safety constraints, defined as simple polyhedra, to be accurately and efficiently propagated
 283 through time. Unlike methods that rely on repeated local linearizations or computationally expensive
 284 nonlinear propagation, our approach maintains tractability even over extended prediction horizons.
 285 This synergy is critical: the linear model makes multi-step prediction feasible, and the multi-step
 286 prediction is what gives the shield its foresight and power.

287 **Robustness to Model Error.** A core design principle of our framework is that it does not assume a
 288 perfect dynamics model. Instead, it achieves robustness by formally accounting for model error. The
 289 shield's safety guarantee is not based on the model's nominal prediction alone, but on a worst-case
 290 analysis that considers the maximum possible deviation. The robust tightening term, $\mathcal{E}_j(p_i)$, is derived
 291 from a data-driven error bound ε , effectively creating a *tube* of uncertainty around the predicted
 292 trajectory. By ensuring this entire tube remains within the safe set, the shield remains effective even
 293 when the learned linear model is an imperfect approximation of the true, complex dynamics. This
 294 allows the framework to work well even with simple models like linear regression, as it plans for
 295 their inherent inaccuracies.

296 **Illustrative Example: Resolving High Relative-Degree Traps in Pendulum.** The multi-step CBF
 297 framework also addresses traps in systems where the safety constraint depends on a state that the
 298 control input does not influence in a single step. Consider the pendulum environment with state
 299 $z = (\theta, \omega)$, representing angle and angular velocity. Its dynamics can be written in affine form as

$$300 \quad z_{k+1} = Az_k + Bu_k + c(z_k), \text{ with } A = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{3\Delta t}{m\ell^2} \end{bmatrix}, \quad c(z_k) = \begin{bmatrix} 0 \\ \frac{g\Delta t}{2\ell} \sin(\theta_k) \end{bmatrix}.$$

302 Suppose we impose a safety constraint on the angle, $p^\top z + b = \theta + \delta \leq 0$, with normal $p = [1 \ 0]^\top$.
 303 The influence of the control input in one step is determined by $p^\top B$, which evaluates to 0. Thus,
 304 a one-step CBF cannot act directly on θ to prevent it from exceeding the bound. This creates a
 305 *relative-degree trap*: the shield has no immediate authority over the constrained variable.

306 In contrast, our multi-step formulation evaluates terms such as $p^\top A^{k-1}B$. For the pendulum,
 307 $p^\top AB = [1 \ 0] \begin{bmatrix} \frac{3\Delta t^2}{m\ell^2} \\ \frac{3\Delta t^2}{m\ell^2} \end{bmatrix} = \frac{3\Delta t^2}{m\ell^2} \neq 0$. This non-zero term indicates that the control input does affect θ ,
 308 but only after two steps. By enforcing constraints over a horizon $H \geq r$ (here, $r = 2$), our framework
 309 ensures that the control authority is accounted for, thereby resolving the trap. The affine term $c(z_k)$
 310 shifts the dynamics but does not alter the relative-degree analysis. This mirrors the role of High-Order
 311 Control Barrier Functions in continuous-time systems (Tan et al., 2022; Chriat & Sun, 2023).

312 4.2.1 CONDITIONAL SAFETY GUARANTEES 313

315 The safety guarantee provided by our framework is a probabilistic certificate, which is standard for
 316 systems with learned dynamics. The argument is twofold: we first establish a deterministic guarantee
 317 of safety relative to our learned model and its error bound, and then connect this guarantee to the true
 318 physical system with a probabilistic bound.

319 **Guarantee Relative to the Learned Model.** Let the true, unknown, discrete-time dynamics of the
 320 system be governed by the function $F : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$, such that the true next state is $s_{k+1} = F(s_k, u_k)$.
 321 Our framework learns a linear model, which we denote as \hat{F} , that approximates these dynamics in a
 322 lifted space:

$$323 \quad \hat{z}_{k+1} = \hat{F}(z_k, u_k) = Az_k + Bu_k + c.$$

324 The residual dynamics, or one-step prediction error, is the difference between the true evolution of
 325 the lifted state and the model’s prediction, denoted by $w_k = z_{k+1} - \hat{z}_{k+1}$. Our shield is constructed
 326 using the model \hat{F} and a worst-case bound on this error, $\|w_k\|_\infty \leq \varepsilon$. This leads to the following
 327 guarantee.

328 **Theorem 1** (Conditional Model-Relative Forward Invariance). *Given the learned dynamics model
 329 \hat{F} and an error bound ε , if at every timestep k the multi-step robust CBF problem defined by the
 330 constraints in equation 2 is feasible, and the true residual dynamics satisfy $\|w_k\|_\infty \leq \varepsilon$, then the
 331 state of the system z_k is guaranteed to remain within the safe set \mathcal{C} for all $k \geq 0$ (Blanchini, 1999).*

333 *Proof.* The proof is by construction and induction. At any state $z_k \in \mathcal{C}$, the feasibility of the QP
 334 in equation 3 implies the existence of a control sequence \mathbf{u} that satisfies the robust multi-step CBF
 335 condition in equation 2. This condition, by its formulation, ensures that all intermediate states
 336 z_{k+1}, \dots, z_{k+H} remain within \mathcal{C} for any possible realization of the error sequence where each
 337 $\|w_j\|_\infty \leq \varepsilon$. By applying the first action u_0 of this sequence, the resulting state z_{k+1} is guaranteed
 338 to be in \mathcal{C} . The argument then applies recursively at timestep $k+1$, as long as the condition stays
 339 feasible at $k+1$ \square

340 While Theorem 1 establishes conditional recursive feasibility under the assumption that the QP
 341 remains feasible at every timestep, this requirement is standard but difficult to analytically guarantee
 342 in practical safe-control or safe-RL settings, especially when the dynamics model is learned. Prior
 343 model-based shielding and safe-exploration methods similarly rely on stepwise feasibility assumptions
 344 in their theoretical guarantees, while noting that infinite-horizon feasibility cannot be fully certified
 345 in practice and is instead supported empirically (Wang & Zhu, 2024; Anderson et al., 2023; Banerjee
 346 et al., 2024; Wachi et al., 2023). Consistent with this common limitation, we find that the QP in
 347 our framework is feasible in over 98% of timesteps, indicating that the theoretical assumption is
 348 well-satisfied in practice.

349 **Probabilistic Connection to the Physical System.** The deterministic guarantee of Theorem 1 is
 350 conditioned on the validity of the error bound ε . In practice, ε is estimated empirically from a finite
 351 hold-out validation dataset, D_{val} , as the maximum observed one-step prediction error. The connection
 352 between this empirical bound and the true, underlying error distribution is necessarily probabilistic,
 353 but the bound is maintained with high probability. Theorem 2 formalizes this connection. The proof
 354 is given in Appendix A.2.

355 **Theorem 2** (High-Probability Model Accuracy). *Let $\epsilon_1, \dots, \epsilon_N$ be a set of i.i.d. sampled model
 356 errors from our learned model \hat{F} . Assume that the probability of any two samples being equal is zero.
 357 Choose a quantile $0 < q < 1$ and let ε be the $\lceil qN \rceil$ ’th smallest value among $\epsilon_1, \dots, \epsilon_N$. Then*

$$359 \quad \Pr[\|F(s_k, u_k) - \hat{F}(s_k, u_k)\|_\infty > \varepsilon] \leq 1 - q + \frac{1}{(2N)^{1/3}} + \frac{1}{4(2^{1/3})N^{2/3}}.$$

360 **Corollary 1** (Probabilistic Forward Invariance over Finite Horizon). *Let $\delta = 1 - q + \frac{1}{(2N)^{1/3}} +$
 361 $\frac{1}{4(2^{1/3})N^{2/3}}$ be the failure probability of the empirical error bound ε from Theorem 2. If the multi-step
 362 robust CBF problem (Eq. 3) is feasible at every timestep $k \in \{0, \dots, K-1\}$ over a finite horizon
 363 of K steps, then the true system state z_k remains within the safe set \mathcal{C} for all $k \in \{0, \dots, K\}$ with
 364 probability $P \geq 1 - K\delta$.*

365 *Proof Sketch.* By Theorem 2, $\Pr(\|w_k\|_\infty \leq \varepsilon) \geq 1 - \delta$ for each timestep k . By union bound over K
 366 timesteps, $\Pr(\forall k \in \{0, \dots, K-1\} : \|w_k\|_\infty \leq \varepsilon) \geq 1 - K\delta$. Conditioning Theorem 1’s forward
 367 invariance on this high-probability event yields the result. \square

371 5 EXPERIMENTAL EVALUATION

372 We conduct experiments to evaluate RAMPS on a suite of challenging control tasks. Our evaluation is
 373 designed to answer three primary research questions:

374 1. **Safety Analysis:** Does RAMPS reduce safety violations more effectively than state-of-the-art
 375 safe RL algorithms?

378 2. **Safety-Performance Tradeoff**: Does the minimally invasive nature of RAMPS allow the
 379 agent to learn a high-performing policy?
 380 3. **Role of Model Expressiveness** Does improved representational power of the learned
 381 dynamics model enhance the shielding performance of RAMPS?
 382

383 **Environments.** We evaluate our method on five challenging environments. **Pendulum** is a clas-
 384 sic low-dimensional control task. **SafeHopper**, **SafeCheetah**, **SafeAnt** and **SafeHumanoid** are
 385 high-dimensional locomotion tasks from the Safety-Gymnasium benchmark (Ji et al., 2023). **Safe-
 386 Humanoid** is a challenging benchmarks due to their high-dimensional state (348) and action spaces
 387 (17) and the complex, unstable dynamics of legged locomotion, where sophisticated coordination is
 388 required to prevent falling.

389 **Baselines.** We compare RAMPS against two classes of baselines. First, we consider state-of-the-art
 390 Constrained Markov Decision Process (CMDP) algorithms that optimize for reward while treating
 391 safety as a constraint: **PPOsauta** (Sootla et al., 2022a), **P3O** (Zhang et al., 2022), and **CUP** (Yang
 392 et al., 2022). We use the implementations from the OmniSafe-RL library (Ji et al., 2024). We compare
 393 against these methods because, unlike many symbolic approaches, they are capable of operating in
 394 the high-dimensional environments we consider. We discuss additional baselines in Appendix A.5.3.

395 Second, we compare against methods architecturally similar to RAMPS, which also learn a dynamics
 396 model for shielding. We selected **SPICE** (Anderson et al., 2023), which learns a simple linear
 397 model; we refer to this as **SPICE + L**. To provide a direct comparison of modeling techniques,
 398 we also implemented **SPICE + K**, a variant where we replace the original linear model with our
 399 learned Koopman operator. We found that while **SPICE + L** failed to scale to the high-dimensional
 400 SafeHopper and SafeCheetah environments, **SPICE + K** was able to produce a stable model. We
 401 attempted comparisons with other relevant MPS/MPC techniques - **DMPS** (Banerjee et al., 2024),
 402 **VELM** (Wang & Zhu, 2024), **MASE** (Wachi et al., 2023), and **Conservative Safety Critics** (Bharad-
 403 hwaj et al., 2021b), but these methods failed to achieve stable training on the high-dimensional
 404 locomotion tasks, accumulating over 1000 violations within the first 20-30k environment interactions.
 405 More details are in Appendix A.5.3.

406 5.1 EXPERIMENTAL SETUP

407 **Implementation Details.** To analyze the impact of the learned dynamics model, we evaluate two
 408 versions of our RAMPS framework: **RAMPS + L**, which uses a simple linear model learned via
 409 regularized regression in the original state space, and **RAMPS + K**, which uses the Deep Koopman
 410 Operator. The underlying policy for RAMPS variants is trained with PPO and SAC. For all baselines,
 411 we add a penalty reward of -100 and terminate the episode upon a safety violation to provide a clear
 412 learning signal. For the CMDP baselines, the cost is 1 for a violation and 0 otherwise. We also ran
 413 CMDP baselines using only the sparse violation cost (cost = 1 for a violation, 0 otherwise) without
 414 the -100 episode-termination penalty; under this protocol the CMDP baselines failed to learn a safe
 415 or performant policy within our training budget. For all experiments involving RAMPS and SPICE,
 416 we use a maximum prediction horizon of $H_{max} = 5$, which is justified in A.3. We use OSQP Stellato
 417 et al. (2020) to solve the quadratic program.

419 5.2 RESULTS AND ANALYSIS

420 **Safety Analysis.** As detailed in Table 1, all variants of RAMPS demonstrates a substantial reduction
 421 in cumulative safety violations compared to various baselines across different environments. This
 422 effect is particularly pronounced in high-dimensional tasks like **SafeHopper**, **SafeCheetah**, **SafeAnt**
 423 and **SafeHumanoid**, where RAMPS variants typically exhibit significantly fewer violations than
 424 other methods. The violation curves in Figure 1, 6 visually reinforce these findings; while other
 425 methods often show a continued accumulation of violations during training, the curves for RAMPS
 426 variants tend to flatten much earlier in the training phase, indicating the shield's success in mitigating
 427 unsafe actions. This suggests that our multi-step shielding approach provides robust safety assurances,
 428 especially where optimization-based or other model-predictive methods may face challenges.

429 The effectiveness of RAMPS stems from its robust shielding framework, rather than solely relying on
 430 the underlying dynamics model's accuracy. A comparison between RAMPS + K and SPICE + K, both
 431 utilizing Koopman dynamics, reveals that RAMPS consistently achieves superior safety performance.

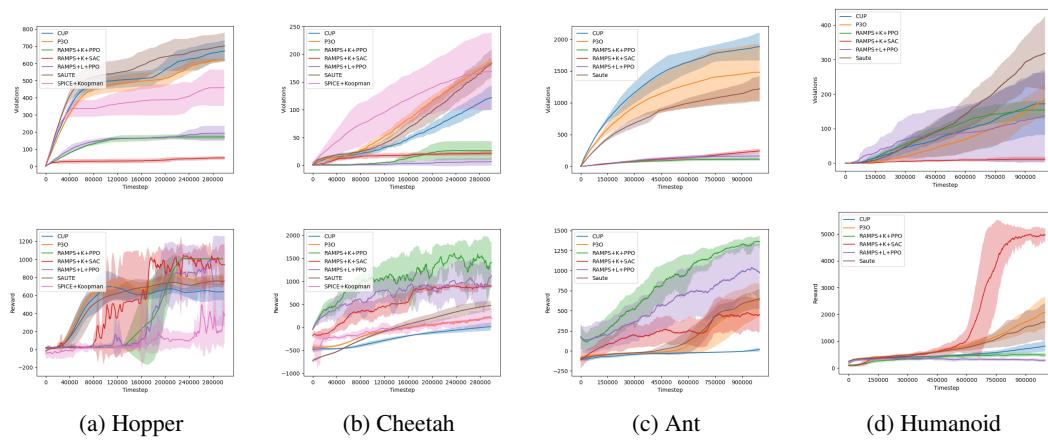


Figure 1: Cumulative Safety violations (top row in each subfigure) and episodic reward (bottom row) for all high-dimensional environments.

Algorithm	Pendulum	SafeHopper	SafeCheetah	SafeAnt	SafeHumanoid
SauteRL	91 \pm 22	703 \pm 78	183 \pm 25	1221 \pm 203	319 \pm 106
CUP	184 \pm 225	673 \pm 63	122 \pm 22	1883 \pm 221	172 \pm 90
P3O	173 \pm 166	620 \pm 6	185 \pm 8	1481 \pm 446	183 \pm 45
SPICE + L	495 \pm 128	Failed	Failed	Failed	Failed
SPICE + K	87 \pm 8	459 \pm 105	169 \pm 70	Failed	Failed
RAMPS + L + PPO	69 \pm 6	193 \pm 44	7 \pm 7	162 \pm 42	137 \pm 134
RAMPS + K + PPO	53 \pm 6	172 \pm 15	26 \pm 17	111 \pm 23	154 \pm 25
RAMPS + K + SAC	25 \pm 26	49 \pm 10	21 \pm 4	242 \pm 38	11 \pm 7

Table 1: Cumulative safety violations during training. Failed indicates that training quit or the agent never completed a safe episode. L = Linear Regression baseline; K = Koopman Dynamics model.

This difference highlights RAMPS’s ability to operate effectively even with an imperfect model, due to its explicit accounting for model error through robust multi-step predictions. While methods like SPICE typically require a highly accurate model with minimal error to ensure stable performance, RAMPS’s design allows it to maintain safety guarantees across a broader range of model accuracies. Furthermore, the real-time operation of the RAMPS shield is highly efficient. As detailed in Table 2, the mean per-step computation time ranges from just 0.23 ms for Pendulum to 0.40 ms for the high-dimensional Ant environment, suggesting feasibility for real-time control loops.

The Safety-Performance Tradeoff. A critical aspect of safe RL is balancing stringent safety with high task performance. The reward curves in Figure 1 illustrate that RAMPS effectively navigates this tradeoff. Across most environments, RAMPS achieves strong safety while obtaining competitive, and often superior, task rewards compared to the baselines. This suggests that the shield provides necessary interventions without being overly conservative, allowing the policy to explore and exploit high-reward regions.

Policy-Agnostic Shielding. We evaluate RAMPS with both PPO (on-policy) and SAC (off-policy) to highlight that the shield operates independently of the underlying RL algorithm. SAC is generally more reliable, especially in high-dimensional settings such as **SafeHumanoid**, while PPO performs competitively and even surpasses SAC on **SafeAnt**. These results indicate that RAMPS is compatible with multiple learning paradigms and scales effectively to challenging continuous-control tasks.

The PPO instability observed on Humanoid is not a shield-specific failure but a known limitation of on-policy methods under action modification. Prior work shows that even simple invalid-action masking, structurally analogous to shielding because the executed action differs from the policy’s proposal, can cause PPO’s KL divergence to spike and training to collapse (Huang & Ontañón, 2020; Hou et al., 2023). Similar sensitivity has been documented in safe-RL algorithms such as CPO and

486 primal-dual CMDP methods, where constraint-induced distribution shift destabilizes updates without
 487 additional safeguards (Achiam et al., 2017; Paternain et al., 2019; Ding et al., 2020). In contrast,
 488 off-policy approaches exhibit greater robustness to distribution mismatch (Haarnoja et al., 2018; Liu
 489 et al., 2022).

490 **Empirical Feasibility of Multi-step constraints** A crucial element of our framework’s reliability is
 491 the practical feasibility of the multi-step QP. We analyzed the action selection distribution, and the
 492 results (detailed in Appendix A.5.5, Table 3) confirm our shield is highly robust. For the complex
 493 locomotion tasks, the backup policy was invoked in **less than 2% of all timesteps**, and for Pendulum
 494 and SafeHumanoid, it was never used at all. This demonstrates that our primary shield consistently
 495 finds a feasible, safe solution, validating the empirical stability of our approach and showing that the
 496 conditional guarantee of Theorem 1 is almost always active.

497 **Role of Model Expressiveness.** The choice of dynamics model within RAMPS can influence this
 498 balance between safety and reward, particularly in environments with complex dynamics. While
 499 both RAMPS + L (simple linear model) and RAMPS + K (Koopman model) offer significant safety
 500 improvements, the more expressive Koopman model generally supports better reward performance.
 501 This is observed in all environments, but particularly in **SafeCheetah**, where RAMPS + L achieves
 502 extremely low violations but shows lower reward accumulation compared to RAMPS + K. As shown
 503 in Appendix A.6, this is an outcome of the simpler linear model leading to a more conservative
 504 shield (due to larger estimated error bounds), resulting in interventions with larger deviations from
 505 the neural action. This hinders the agent’s ability to learn a policy that maximizes the reward. In
 506 contrast, the more accurate Koopman model allows for a less conservative, yet still provably safe,
 507 shield, thereby improving the overall safety-performance balance.

508 **Ablation Analysis.** We performed an extensive ablation analysis, detailed in Appendix A.3, to
 509 validate the design principles of the RAMPS framework. These studies confirm that robust, multi-step
 510 shielding is a co-designed system requiring a careful balance of competing factors. Our most critical
 511 finding is that **explicit robustness to model error is the essential component for safety**; removing
 512 the error-aware tightening term proved catastrophic, leading to continuous safety violations regardless
 513 of other hyperparameter settings (Figure 2).

514 Furthermore, the ablations justify our hyperparameter choices by exploring key trade-offs. The
 515 prediction horizon H must be long enough to resolve high relative-degree traps but short enough
 516 to avoid compounding model error (Figure 4). The CBF decay rate λ must be permissive enough
 517 to ensure the underlying QP remains feasible, as an overly conservative setting harms both safety
 518 and reward (Figure 3). Finally, we show that a high-confidence error bound (99th percentile)
 519 is a prerequisite for achieving both safety and high reward, as it creates a more stable learning
 520 environment (Figure 5). We further evaluate RAMPS under *multi-dimensional safety constraints* to
 521 demonstrate scalability A.7. In the **SAFEHUMANOID** benchmark, we simultaneously constrain the 3
 522 coordinate and 18 joint angular velocities (a 21-dimensional safety set). RAMPS accumulates only
 523 **256 violations**, whereas CMDP-based baselines exceed **3000 violations** and fail to learn a safe policy,
 524 reflected by their steadily increasing violation curves. Additionally, RAMPS is the only method that
 525 attains a high task reward of **5,000**, while CMDP baselines plateau near **500**. Together, these results
 526 show that RAMPS maintains safety even under high-dimensional constraints without sacrificing
 527 performance. Collectively, these results validate our methodology and demonstrate that effective
 528 shielding arises from a calibrated synthesis of all framework components.

529 6 CONCLUSION

530 We present RAMPS, a scalable model-predictive shielding framework that enables safe policy learning
 531 for complex, high-dimensional systems. The core of our approach is the synergy between a learned,
 532 linear dynamics model and a robust, multi-step safety shield. By leveraging a linear representation,
 533 which can range from a simple regression to a more complex latent model like the koopman operator,
 534 RAMPS remains computationally tractable. Its multi-step, adaptive-horizon Control Barrier Function
 535 provides strong foresight to prevent safety violations, even when the learned model is an imperfect
 536 approximation of the true dynamics. Experiments on a suite of challenging environments demonstrate
 537 the efficacy of RAMPS, showing it can dramatically reduce safety violations while maintaining high
 538 task performance. Its ability to learn a reliable safety model from a few samples makes it particularly
 539 well-suited for deployment of reinforcement learning agents in safety-critical applications.

540 REPRODUCIBILITY STATEMENT
541

542 We are committed to ensuring the reproducibility of our work. To this end, we provide the following
543 resources. **Source Code:** The complete implementation of the RAMPS framework, including the
544 Koopman dynamics model, the multi-step CBF shield, and all training scripts used to generate
545 our results, is available as supplementary material. **Theoretical Foundations:** The mathematical
546 formulation of our multi-step robust CBF, including the derivation of the safety constraints and the
547 robust tightening term, is detailed in Section 4. The probabilistic safety guarantees relative to the
548 learned model are established in 4. **Experimental Details:** Our experimental setup, including envi-
549 ronment descriptions, safety specifications, and baseline implementations, is described in Section 5
550 and Section A. Furthermore, our extensive ablation studies, detailed in Appendix A.3, provide a
551 clear analysis of hyperparameter sensitivity and justify our final configuration choices. We believe
552 these resources provide a clear and complete path for reproducing our findings and building upon our
553 work.

554 REFERENCES
555

556 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
557 *Proceedings of the 34th International Conference on Machine Learning - Volume 70*, ICML'17, pp.
558 22–31. JMLR.org, 2017.

559 Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
560 Ufuk Topcu. Safe reinforcement learning via shielding. In Sheila A. McIlraith and Kilian Q.
561 Weinberger (eds.), *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
563 Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
564 USA, February 2-7, 2018*, pp. 2669–2678. AAAI Press, 2018. URL <https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211>.

565 Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
566 Paulo Tabuada. Control barrier functions: Theory and applications. In *2019 18th European control
567 conference (ECC)*, pp. 3420–3431. Ieee, 2019.

568 Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic reinforcement
569 learning with formally verified exploration. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
570 Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp.
571 6172–6183. Curran Associates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/file/448d5eda79895153938a8431919f4c9f-Paper.pdf>.

572 Greg Anderson, Swarat Chaudhuri, and Isil Dillig. Guiding safe exploration with weakest precondi-
573 tions. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
574 Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://iclr.cc/virtual/2023/poster/12258>.

575 Edoardo Bacci, Mirco Giacobbe, and David Parker. Verifying reinforcement learning up to infinity.
576 In Zhi-Hua Zhou (ed.), *Proceedings of the Thirtieth International Joint Conference on Artificial
577 Intelligence, IJCAI-21*, pp. 2154–2160. International Joint Conferences on Artificial Intelligence
578 Organization, 8 2021. doi: 10.24963/ijcai.2021/297. URL <https://doi.org/10.24963/ijcai.2021/297>. Main Track.

579 Arko Banerjee, Kia Rahmani, Joydeep Biswas, and Isil Dillig. Dynamic model predictive shielding
580 for provably safe reinforcement learning. In *The Thirty-eighth Annual Conference on Neural
581 Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=x2zY4hZcmg>.

582 Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive shielding.
583 In *2021 American Control Conference (ACC)*, pp. 3488–3494, 2021. doi: 10.23919/ACC50511.
584 2021.9483182.

585 Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
586 reinforcement learning with stability guarantees. *Advances in neural information processing
587 systems*, 30, 2017.

594 Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
 595 Animesh Garg. Conservative safety critics for exploration. In *International Conference on Learning*
 596 *Representations*, 2021a. URL <https://openreview.net/forum?id=ia086DUuKi>.

597

598 Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
 599 Animesh Garg. Conservative safety critics for exploration. In *9th International Conference on*
 600 *Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
 601 2021b. URL <https://openreview.net/forum?id=ia086DUuKi>.

602

603 Franco Blanchini. Set invariance in control. *Automatica*, 35(11):1747–1767, 1999.

604

605 Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
 606 Angela P. Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
 607 learning. *ArXiv*, abs/2108.06266, 2021. URL <https://arxiv.org/pdf/2108.06266.pdf>.

608

609 Hao Chen, Xiangkun He, Shuo Cheng, and Chen Lv. Deep koopman operator-informed safety
 610 command governor for autonomous vehicles. *IEEE/ASME Transactions on Mechatronics*, 29(5):
 611 3568–3578, 2024.

612

613 Alaa Eddine Chriat and Chuangchuang Sun. On the optimality, stability, and feasibility of control
 614 barrier functions: An adaptive learning-based approach. *IEEE Robotics and Automation Letters*, 8
 615 (11):7865–7872, 2023.

616

617 Ryan K Cosner, Preston Culbertson, Andrew J Taylor, and Aaron D Ames. Robust safety
 618 under stochastic uncertainty with discrete-time control barrier functions. *arXiv preprint*
 619 *arXiv:2302.07469*, 2023.

620

621 Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, Todd Hester, Cosmin Paduraru, and Yuval
 622 Tassa. Safe exploration in continuous action spaces. *CoRR*, abs/1801.08757, 2018. URL <http://arxiv.org/abs/1801.08757>.

623

624 Thomas de Jong, Valentina Breschi, Maarten Schoukens, and Mircea Lazar. Koopman data-driven
 625 predictive control with robust stability and recursive feasibility guarantees. In *2024 IEEE 63rd*
 626 *Conference on Decision and Control (CDC)*, pp. 140–145. IEEE, 2024.

627

628 Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
 629 primal-dual method for constrained markov decision processes. *Advances in Neural Information*
Processing Systems, 33:8378–8390, 2020.

630

631 Carl Folkestad, Yuxiao Chen, Aaron D Ames, and Joel W Burdick. Data-driven safety-critical control:
 632 Synthesizing control barrier functions with koopman operators. *IEEE Control Systems Letters*, 5
 633 (6):2012–2017, 2020.

634

635 Nathan Fulton and André Platzer. Verifiably safe off-model reinforcement learning. In *International*
636 Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 413–430.
 Springer, 2019.

637

638 Jeremy H. Gillula and Claire J. Tomlin. Guaranteed safe online learning via reachability: tracking a
 639 ground target using a quadrotor. In *IEEE International Conference on Robotics and Automation,*
640 ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA, pp. 2723–2730, 2012. doi: 10.1109/ICRA.2012.6225136. URL <https://doi.org/10.1109/ICRA.2012.6225136>.

641

642 Alexander W. Goodall and Francesco Belardinelli. Approximate model-based shielding for safe
 643 reinforcement learning. In Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and Roxana
 644 Radulescu (eds.), *ECAI 2023 - 26th European Conference on Artificial Intelligence, September*
 645 *30 - October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of*
 646 *Intelligent Systems (PAIS 2023)*, volume 372 of *Frontiers in Artificial Intelligence and Applications*,
 647 pp. 883–890. IOS Press, 2023. doi: 10.3233/FAIA230357. URL <https://doi.org/10.3233/FAIA230357>.

648 Shangding Gu, Longyu Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang,
 649 and Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications.
 650 *ArXiv*, abs/2205.10330, 2022. URL <https://api.semanticscholar.org/CorpusId:248965265>.

652 Shangding Gu, Bilgehan Sel, Yuhao Ding, Lu Wang, Qingwei Lin, Ming Jin, and Alois Knoll.
 653 Balance reward and safety optimization for safe reinforcement learning: A perspective of gradient
 654 manipulation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 655 21099–21106, 2024.

657 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 658 maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
 659 Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80
 660 of *Proceedings of Machine Learning Research*, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL
 661 <https://proceedings.mlr.press/v80/haarnoja18b.html>.

662 Yueqi Hou, Xiaolong Liang, Jiaqiang Zhang, Qisong Yang, Aiwu Yang, and Ning Wang. Exploring
 663 the use of invalid action masking in reinforcement learning: A comparative study of on-policy and
 664 off-policy algorithms in real-time strategy games. *Applied Sciences*, 13(14):8283, 2023.

666 Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
 667 algorithms. *arXiv preprint arXiv:2006.14171*, 2020.

668 Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan
 669 Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learning
 670 benchmark. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and*
 671 *Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=WZmlxIuIGR>.

673 Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
 674 Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
 675 reinforcement learning research. *Journal of Machine Learning Research*, 25(285):1–6, 2024. URL
 676 <http://jmlr.org/papers/v25/23-0681.html>.

677 Mihailo R. Jovanović, Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, and Zhaoran Wang. Provably
 678 efficient safe exploration via primal-dual policy optimization. In *International Conference on*
 679 *Artificial Intelligence and Statistics*, 2020. URL <https://api.semanticscholar.org/CorpusId:211677570>.

682 Kaier Liang, Guang Yang, Mingyu Cai, and Cristian-Ioan Vasile. Safe navigation in dynamic
 683 environments using data-driven koopman operators and conformal prediction. *arXiv preprint*
 684 *arXiv:2504.00352*, 2025.

685 Zuxin Liu, Hongyi Zhou, Baiming Chen, Sicheng Zhong, Martial Hebert, and Ding Zhao. Constrained
 686 model-based reinforcement learning with robust cross-entropy method, 2020.

688 Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained
 689 variational policy optimization for safe reinforcement learning. In *International Conference on*
 690 *Machine Learning*, pp. 13644–13668. PMLR, 2022.

691 Yecheng Jason Ma, Andrew Shen, Osbert Bastani, and Dinesh Jayaraman. Conservative and adaptive
 692 penalty for model-based safe reinforcement learning, 2021. URL <https://arxiv.org/abs/2112.07701>.

695 Giorgos Mamakoukas, Stefano Di Cairano, and Abraham P Vinod. Robust model predictive control
 696 with data-driven koopman operators. In *2022 American Control Conference (ACC)*, pp. 3885–3892.
 697 IEEE, 2022.

698 Marc Mitjans, Liangting Wu, and Roberto Tron. Learning deep koopman operators with convex
 699 stability constraints. *arXiv preprint arXiv:2404.15978*, 2024.

701 Mitio Nagumo. Über die lage der integralkurven gewöhnlicher differentialgleichungen. *Proceedings*
 702 *of the physico-mathematical society of Japan. 3rd Series*, 24:551–559, 1942.

702 Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Safe poli-
 703 cies for reinforcement learning via primal-dual methods. arxiv e-prints, art. *arXiv preprint*
 704 *arXiv:1911.09101*, 2019.

705

706 Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates. In
 707 *International workshop on hybrid systems: Computation and control*, pp. 477–492. Springer, 2004.

708

709 Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained markov decision processes via
 710 backward value functions. In *Proceedings of the 37th International Conference on Machine*
 711 *Learning*, ICML’20. JMLR.org, 2020.

712

713 Haojie Shi and Max Q. H. Meng. Deep koopman operator with control for nonlinear systems, 2022.
 714 URL <https://arxiv.org/abs/2202.08004>.

715

716 Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyian Wang, David H Mguni, Jun Wang,
 717 and Haitham Ammar. Sauté rl: Almost surely safe reinforcement learning using state augmentation.
 718 In *International Conference on Machine Learning*, pp. 20423–20443. PMLR, 2022a.

719

720 Aivar Sootla, Alexander I Cowen-Rivers, Jun Wang, and Haitham Bou Ammar. Effects of safety state
 721 augmentation on safe exploration. *arXiv preprint arXiv:2206.02675*, 2022b.

722

723 B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver for
 724 quadratic programs. *Mathematical Programming Computation*, 12(4):637–672, 2020. doi: 10.1007/
 725 s12532-020-00179-2. URL <https://doi.org/10.1007/s12532-020-00179-2>.

726

727 Xiao Tan, Wenceslao Shaw Cortez, and Dimos V. Dimarogonas. High-order barrier functions:
 728 Robustness, safety, and performance-critical control. *IEEE Transactions on Automatic Control*, 67
 729 (6):3021–3028, 2022. doi: 10.1109/TAC.2021.3089639.

730

731 Kim P Wabersich and Melanie N Zeilinger. Linear model predictive safety certification for learning-
 732 based control. In *2018 IEEE Conference on Decision and Control (CDC)*, pp. 7130–7135. IEEE,
 733 2018.

734

735 Akifumi Wachi, Wataru Hashimoto, Xun Shen, and Kazumune Hashimoto. Safe exploration in
 736 reinforcement learning: A generalized formulation and algorithms. *Advances in Neural Information*
 737 *Processing Systems*, 36:29252–29272, 2023.

738

739 Yuning Wang and He Zhu. *Safe Exploration in Reinforcement Learning by Reachability Analy-
 740 sis over Learned Models*, pp. 232–255. 07 2024. ISBN 978-3-031-65632-3. doi: 10.1007/
 741 978-3-031-65633-0_11.

742

743 Peter Wieland and Frank Allgöwer. Constructive safety using control barrier functions. *IFAC*
 744 *Proceedings Volumes*, 40(12):462–467, 2007.

745

746 Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang,
 747 and Gang Pan. Constrained update projection approach to safe policy optimization. In
 748 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in*
 749 *Neural Information Processing Systems*, volume 35, pp. 9111–9124. Curran Associates, Inc.,
 750 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/3ba7560b4c3e66d760fbdd472cf4a5a9-Paper-Conference.pdf.

751

752 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
 753 constrained policy optimization. *arXiv preprint arXiv:2010.03152*, 2020.

754

755 Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Xueqian Wang, Bo Yuan, and Dacheng Tao.
 756 Penalized proximal policy optimization for safe reinforcement learning. In Lud De Raedt (ed.),
 757 *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*,
 758 pp. 3744–3750. International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi:
 759 10.24963/ijcai.2022/520. URL <https://doi.org/10.24963/ijcai.2022/520>. Main
 760 Track.

756 Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in pol-
757 icy space. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-*
758 *vances in Neural Information Processing Systems*, volume 33, pp. 15338–15349. Curran As-
759 *sociates, Inc.*, 2020. URL <https://proceedings.neurips.cc/paper/2020/file/af5d5ef24881f3c3049a7b9bfe74d58b-Paper.pdf>.

760
761 He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An inductive synthesis framework
762 for verifiable reinforcement learning. In *ACM Conference on Programming Language Design and*
763 *Implementation (SIGPLAN)*, 2019.

764
765 Vrushabh Zinage and Efstathios Bakolas. Neural koopman control barrier functions for safety-critical
766 control of unknown nonlinear systems. *arXiv preprint arXiv:2209.07685*, 2022.

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A APPENDIX
811812 **Algorithm 1 RAMPS**
813

814 **Input:** Policy π , environment \mathcal{E} , initial datasets D, D_{val} , model-update period T_{model} , policy-update
815 period T_π

816 1: Train initial linear model $\hat{F} = (A, B, c)$ on D ; compute validation errors $\{\varepsilon_i\}$ on D_{val}
817 2: Set error bound $\varepsilon \leftarrow \text{quantile}(\{\varepsilon_i\}, q)$
818 3: Precompute matrices for all horizons up to H_{max} (matrix powers A^k , constraint templates $G(H)$,
819 accumulators M_h)

820 4: **loop**

821 5: $a_\pi \leftarrow \pi(s)$
822 6: Observe lifted state z from s
823 7: $u_{\text{best}} \leftarrow \text{None}$; $\text{best_H} \leftarrow \text{None}$
824 8: $H_{\text{lo}} \leftarrow H_{\text{min}}$; $H_{\text{hi}} \leftarrow H_{\text{max}}$
825 9: **while** $H_{\text{lo}} \leq H_{\text{hi}}$ **do**
826 10: $H_{\text{mid}} \leftarrow \lfloor (H_{\text{lo}} + H_{\text{hi}}) / 2 \rfloor$
827 11: Build constraint matrices $G(H_{\text{mid}})$ and $h(H_{\text{mid}})$ using $(A, B, c), \varepsilon$, and precomputed $\{A^k\}$
828 12: Solve QP $_{H_{\text{mid}}}$: $\min_{u_{0:H-1}} \|u_0 - a_\pi\|_2^2$
s.t. $G(H_{\text{mid}})u \leq h(H_{\text{mid}})$, $u_k \in \mathcal{U}$

829 13: **if** QP $_{H_{\text{mid}}}$ feasible **then**
830 14: $u_{\text{best}} \leftarrow \text{solution}$; $\text{best_H} \leftarrow H_{\text{mid}}$
831 15: $H_{\text{lo}} \leftarrow H_{\text{mid}} + 1$
832 16: **else**
833 17: $H_{\text{hi}} \leftarrow H_{\text{mid}} - 1$
834 18: **end if**
835 19: **end while**
836 20: **if** $u_{\text{best}} = \text{None}$ **then**
837 21: Apply backup action $u \leftarrow u_{\text{backup}}(z)$
838 22: **else**
839 23: Apply shielded action $u \leftarrow u_{\text{best}}[0]$
840 24: **end if**
841 25: Execute u in environment, store transition in D
842 26: Periodically refit (A, B, c) and recompute ε and QP precomputations (every T_{model} steps)
843 27: Periodically update policy π from D (every T_π steps)
844 28: **end loop**

845 A.1 COMPUTATIONAL COMPLEXITY ANALYSIS
846

847 The computational efficiency of our shielding framework is critical for its real-time applicability.
848 The architecture of our method is designed to front-load the most intensive computations into a
849 single, state-independent pre-computation phase, leaving the per-timestep solve phase remarkably
850 lightweight. We analyze the complexity of these two phases below, defining s as the state dimension,
851 u as the action dimension, H as the maximum prediction horizon, and m as the number of faces in
852 the safety polyhedron.

853 **One-Time Pre-computation Cost.** The computationally intensive construction of the QP’s state-
854 independent components is performed in a pre-computation phase, which is executed only when the
855 underlying Koopman dynamics model is updated. This pre-computes and caches all components of
856 the QP that are independent of the current state z_k . The construction of the QP constraint matrices
857 dominates the complexity of this phase.

858

- 859 • **Matrix Power and Affine Term Pre-computation:** Calculating the powers of the state
860 matrix A up to A^H requires $\mathcal{O}(H \cdot s^3)$ operations. The cumulative affine terms are subse-
861 quently computed in $\mathcal{O}(H \cdot s^2)$.
- 862 • **Constraint Matrix Construction:** The primary cost lies in constructing the matrices for the
863 full-horizon QP. The constraint matrix G_{all} has dimensions $(N_c \times Hu)$, where the number of

864 constraints $N_c \leq mH$. The vectorized right-hand-side matrices, M_h and v_h , are constructed
 865 with a complexity of approximately $\mathcal{O}(\mathbf{m} \cdot \mathbf{H} \cdot \mathbf{s}^2)$.
 866

867 The dominant term arises from the matrix power calculation, making the total complexity of the
 868 pre-computation phase $\mathcal{O}(\mathbf{H} \cdot \mathbf{s}^3 + \mathbf{m} \cdot \mathbf{H} \cdot \mathbf{s}^2)$. This cost is incurred only once per model update,
 869 not at every control step.

870 **Real-Time Solve Cost.** The shield is executed at each timestep and is designed for high-frequency
 871 operation. Its complexity is significantly lower due to the extensive pre-computation.
 872

- 873 • **State-Dependent Calculation:** The only significant state-dependent computation is the
 874 calculation of the right-hand-side vector h_{all} . Leveraging the pre-computed matrices, this is
 875 reduced to a single matrix-vector product, $h_{\text{all}} = M_h z_k + v_h$, which has a complexity of
 876 $\mathcal{O}(\mathbf{m} \cdot \mathbf{H} \cdot \mathbf{s})$.
- 877 • **Binary Search and QP Solution:** The binary search for the largest feasible horizon performs
 878 $\mathcal{O}(\log H)$ iterations. Within each iteration, we update the QP's bounds and solve it. The
 879 'update' operation is linear in the number of constraints, $\mathcal{O}(N_c)$. Crucially, the 'solve' call
 880 is warm-started from the previous iteration's solution, making its average-case complexity,
 881 which we denote $T_{\text{qp,warm}}$, substantially lower than solving from scratch.
 882

883 Therefore, the total real-time complexity of the adaptive horizon selection is approximately
 884 $\mathcal{O}(\mathbf{m} \cdot \mathbf{H} \cdot \mathbf{s} + \log(\mathbf{H}) \cdot T_{\text{qp,warm}})$. This low polynomial complexity ensures that the shield can
 885 operate efficiently in real-time control loops.

886 A.2 PROOF OF THEOREM 2

888 We restate the theorem for convenience:

889 **Theorem.** Let $\epsilon_1, \dots, \epsilon_N$ be a set of i.i.d. sampled model errors from our learned model \hat{F} . Assume
 890 that the probability of any two samples being equal is zero. Choose a quantile $0 < q < 1$ and let ε be
 891 the $\lceil qN \rceil$ 'th smallest value among $\epsilon_1, \dots, \epsilon_N$. Then
 892

$$893 \Pr[\|F(s_k, u_k) - \hat{F}(s_k, u_k)\|_\infty > \varepsilon] \leq 1 - q + \frac{1}{(2N)^{1/3}} + \frac{1}{4(2^{1/3})N^{2/3}}.$$

896 *Proof.* Let E be a random variable defining the errors in the learned model so that $\epsilon_1, \dots, \epsilon_N$ are
 897 i.i.d. samples from E . Let ε be a conservative q -quantile of these errors (that is, $\varepsilon = \epsilon_{(\lceil qN \rceil)}$ where
 898 $\epsilon_{(i)}$ is the i 'th order statistic of the sampled errors). Define a random variable X such that

$$899 \quad X = \begin{cases} 1 & E > \varepsilon \\ 0 & \text{otherwise} \end{cases}.$$

900 Then X is a Bernoulli random variable with success probability $P[E > \varepsilon]$ so that in particular
 901 $\mathbb{E}[X] = P[E > \varepsilon]$ and $\text{Var}[X] = P[E > \varepsilon](1 - P[E > \varepsilon])$. We can now view our error samples
 902 $\epsilon_1, \dots, \epsilon_n$ in terms of X . By construction, exactly $\lceil qN \rceil$ of the error samples are less than or equal
 903 to ε , so we compute the sample mean of X

$$904 \quad \hat{\mu}_X = \frac{N - \lceil qN \rceil}{N} = \frac{\lfloor N - qN \rfloor}{N} \leq 1 - q.$$

905 Applying Chebyshev's inequality to $\hat{\mu}_X$, we find that for any positive c

$$906 \quad P[|\hat{\mu}_X - P[E > \varepsilon]| \geq c] \leq \frac{P[E > \varepsilon](1 - P[E > \varepsilon])}{Nc^2}$$

907 Notice that for all $0 \leq p \leq 1$ we have $p(1 - p) \leq 1/4$ so that

$$908 \quad P[|\hat{\mu}_X - P[E > \varepsilon]| \geq c] \leq \frac{1}{4Nc^2} \implies P[P[E < \varepsilon] - \hat{\mu}_X \geq c] \leq \frac{1}{4Nc^2}.$$

909 Plugging in, $\hat{\mu}_X \leq 1 - q$ we find

$$910 \quad P[P[E > \varepsilon] \geq 1 - q + c] \leq \frac{1}{4Nc^2} \implies P[E > \varepsilon] \leq 1 - q + c + \frac{1}{4Nc^2}.$$

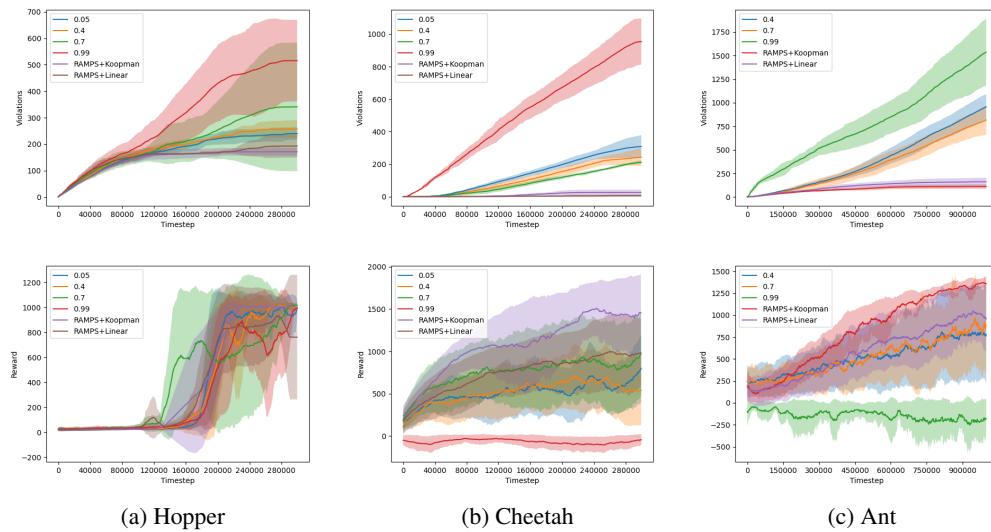
918 Since this bound holds for any positive c , we set $c = (2N)^{-1/3}$, which minimizes the value of the
 919 right-hand side. Plugging in this value of c , we find the bound
 920

$$921 P[E > \varepsilon] \leq 1 - q + \frac{1}{(2N)^{1/3}} + \frac{1}{4(2^{1/3})N^{2/3}}. \\ 922$$

□

923
 924
 925
A.3 ABLATIONS
 926
 927

928 **A.3.1 EXPLORING THE EFFECT OF THE ROBUSTNESS TERM**
 929
 930

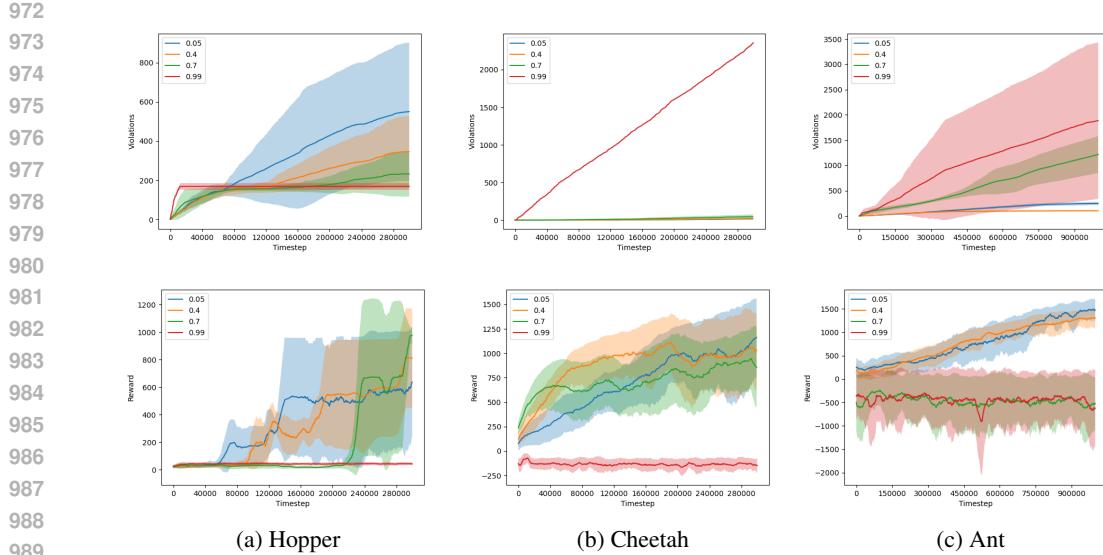


931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948 Figure 2: The critical role of the robustness term in ensuring safety. This figure compares the
 949 cumulative safety violations of the full RAMPs framework against a non-robust version that operates
 950 without the error-aware tightening term. While the non-robust shield continuously accumulates
 951 violations across all settings for the decay rate λ , the full RAMPs framework successfully learns to
 952 operate safely, evidenced by the flattening of its violation curves.
 953

954 To isolate the contribution of our robust formulation, we performed a critical ablation study, presented
 955 in Figure 2. In this experiment, the shield operated without its error-aware tightening term. For direct
 956 comparison, each plot includes the performance of the full RAMPs framework using both the learned
 957 Koopman and a baseline Linear model.

958 While all non-robust configurations continuously accumulate safety violations, the full RAMPs
 959 framework’s violation curve consistently flattens, demonstrating its ability to learn to operate safely.
 960 This failure of the ablated models occurs because they operate on an overly optimistic view of
 961 the dynamics; they consistently certify actions that are safe within their flawed model but lead to
 962 catastrophic failures in the physical system. This result provides definitive evidence that while the
 963 multi-step CBF is a necessary structure, the explicit robustness to model uncertainty is the essential
 964 component that enables our framework to achieve strong safety guarantees.

965 Furthermore, the reward curves reveal that ineffective shielding directly harms task performance. The
 966 most conservative non-robust setting ($\lambda = 0.99$), which also suffers from high violations, yields the
 967 worst reward, often collapsing to negative values. This occurs because its overly strict constraints lead
 968 to frequent QP infeasibility, forcing the agent to rely on a simple backup policy that is not designed
 969 for task progression. In contrast, the full RAMPs framework not only achieves the best safety but
 970 also learns the highest-performing reward policy. This demonstrates that the shield is not overly
 971 aggressive; rather, by being robust and minimally invasive, it creates a stable learning environment
 972 that allows the agent to safely explore and find a more optimal policy.



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 3: The impact of CBF conservatism (λ) on safety and performance. Moderately conservative decay rates (e.g., $\lambda = 0.4, \lambda = 0.7$) achieve the best balance of low safety violations and high task reward. The most conservative setting ($\lambda = 0.99$) paradoxically performs the worst due to frequent QP infeasibility.

A.3.2 THE EFFECT OF CBF λ CONSERVATISM

A key hyperparameter in our framework is the CBF decay rate λ , which dictates the conservatism of the shield. Figure 3 explores this parameter’s effect on both safety and reward performance when using the full, robust RAMPS framework. The results reveal a critical trade-off between constraint strictness and the feasibility of the shielding problem, a trade-off that varies with the complexity of the environment dynamics.

In the **Hopper** environment, the most conservative setting ($\lambda = 0.99$) results in a *safe failure*; the lowest violation count but also near-zero reward. This occurs because the strict requirement to preserve 99% of the safety margin makes the QP problem frequently infeasible, forcing the agent to over-rely on a passive backup policy that prevents task progression. Conversely, a setting of $\lambda = 0.7$ achieves the best performance in both safety and reward, indicating that the learned model is sufficiently accurate to consistently find feasible solutions under this demanding safety requirement.

The **Cheetah** environment paints a similar but distinct picture. Here, the $\lambda = 0.99$ setting again results in the worst performance, but leads to high violations and low reward, suggesting that when the primary QP fails, the simple backup policy is insufficient to manage Cheetah’s unstable dynamics. The best results are achieved with more permissive values ($\lambda \in \{0.05, 0.4\}$), suggesting that for more complex systems, the shield requires greater flexibility to ensure the underlying optimization problem remains feasible.

This trend is further emphasized in the highly unstable **Ant** environment. As with Cheetah, the $\lambda = 0.99$ setting is catastrophically poor in both safety and reward. A setting of $\lambda = 0.7$ is also too restrictive, hampering the agent’s ability to learn. The best overall performance is achieved with $\lambda = 0.4$, which provides a strong safety guarantee while allowing enough flexibility for the agent to learn a high-reward policy. A highly permissive setting like $\lambda = 0.05$ enables good policy learning but at the cost of higher safety violations. Ultimately, these results show that λ is a critical tuning parameter, with the optimal value becoming more permissive as the inherent instability of the environment increases.

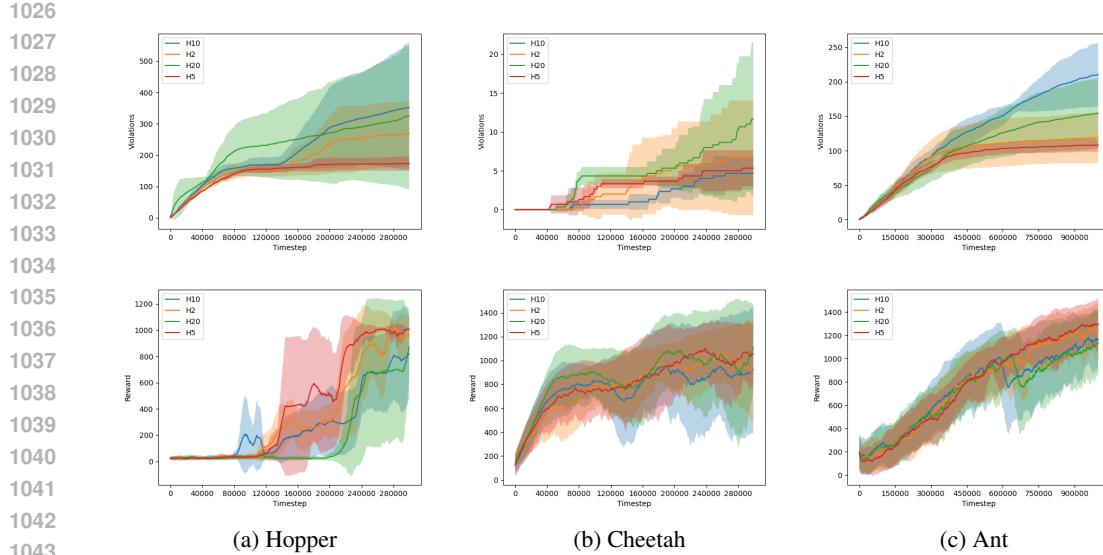


Figure 4: The trade-off between foresight and model reliability for the prediction horizon H . A moderate horizon ($H = 5$) achieves the best balance of low violations and high reward, avoiding both the myopic failures of a short horizon ($H = 2$) and the unreliable predictions of a long horizon ($H = 20$).

A.3.3 THE EFFECT OF PREDICTION HORIZON

The selection of the prediction horizon H presents a critical trade-off between predictive foresight and the reliability of the learned dynamics model. Figure 4 explores this trade-off, revealing that the optimal choice for H is environment-dependent but follows a clear pattern.

A long horizon ($H = 20$) consistently leads to poor performance in both safety and reward. This occurs because the multi-step predictions of the Koopman model become increasingly inaccurate as errors compound over the extended rollout. The shield is forced to make decisions based on this unreliable information, leading to suboptimal or unsafe interventions.

Conversely, a short horizon ($H = 2$) is also suboptimal. While the model is accurate over this brief window, the limited lookahead is insufficient to resolve the high relative-degree traps present in the dynamics, a core challenge this paper aims to address. The shield becomes myopic, failing to prevent safety violations that are inevitable several steps in the future.

The results show that a moderate horizon ($H = 5$) provides the optimal balance. It is long enough to provide the necessary foresight to handle control delays and traps, yet short enough that the learned model's predictions remain reliable. This empirical finding validates our choice of $H = 5$ for the main experiments presented in this paper.

A.3.4 THE EFFECT OF ERROR BOUND CONFIDENCE

The robust tightening term in our framework is calibrated using an error bound, ϵ , derived from a hold-out validation set. The confidence of this bound is a critical hyperparameter, which we control by taking a percentile of the absolute one-step prediction errors. Figure 5 explores the impact of this choice on safety and reward.

The results show a clear and direct correlation between the confidence of the error bound and the safety of the resulting shield. A lower percentile (e.g., 25 or 50) provides an error bound that is too optimistic; it underestimates the true model error, leading to a high number of safety violations. As the confidence increases, the shield becomes more conservative and effective, with the 99th percentile (99) achieving the best safety performance by a significant margin.

Crucially, this improved safety directly enables better reward performance. By providing a more reliable and stable training environment, the 99th percentile configuration allows the RL agent to

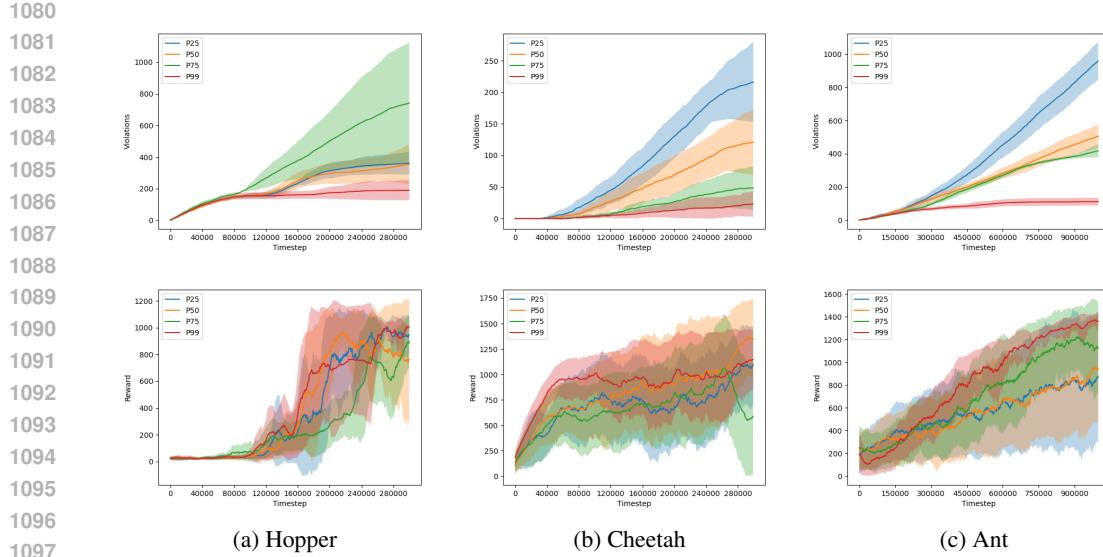


Figure 5: The impact of error bound confidence (percentile) on performance. A higher percentile (99), corresponding to a more conservative error bound, achieves the best safety (lowest violations) and enables the agent to learn a higher-reward policy.

explore more effectively and learn a higher-reward policy. Less confident settings, while seemingly more permissive, lead to catastrophic failures that terminate episodes, ultimately harming the agent’s ability to learn the task. This demonstrates that a sufficiently conservative, high-confidence error bound is not a hindrance to performance but is in fact a prerequisite for achieving both safety and high reward in complex environments.

A.3.5 SUMMARY OF ABLATION STUDIES

Taken together, our ablation studies validate the core design principles of the RAMPS framework and illuminate the critical trade-offs inherent in learning-based predictive safety. The results consistently demonstrate that achieving robust safety is not a matter of maximizing any single parameter, but of finding a carefully calibrated balance between competing factors.

The most crucial finding is that explicit *robustness to model error is the essential component for safety*. As shown in Figure 2, removing the error-aware tightening term is catastrophic; the shield becomes overly optimistic and fails to prevent a continuous accumulation of violations, regardless of other hyperparameter settings. This confirms that the ability to reason about its own model’s uncertainty is a prerequisite for the shield’s success.

Building upon this robust foundation, the remaining hyperparameters tune the balance between safety and performance. The prediction horizon H must balance foresight against model reliability; a moderate horizon (Figure 4) is optimal, as short horizons are too myopic to handle control delays, while long horizons suffer from compounding prediction errors. Similarly, the CBF decay rate λ must balance constraint strictness against QP feasibility (Figure 3), where an overly conservative setting can paradoxically harm both safety and reward by causing frequent reliance on a simple backup policy. Finally, our analysis of the error bound confidence (Figure 5) resolves a key trade-off, showing that a more conservative, high-confidence error bound (99th percentile) does not hamper performance but instead enables it by creating a more stable learning environment. Collectively, these results show that RAMPS is a co-designed system where each component is critical for achieving both high performance and strong safety guarantees.

A.4 ACTIVE RECOVERY BACKUP POLICY

In the rare event that the primary multi-step QP is infeasible, a deterministic backup policy is invoked. The use of such a policy is a standard practice in model-predictive shielding to ensure the agent

1134 can always take an action. The active recovery approach detailed here is therefore **not a novel**
 1135 **contribution of this work**, but rather follows a common pattern established in prior literature.
 1136 Similar geometric recovery strategies are employed in other prominent shielding frameworks, such as
 1137 SPICE Anderson et al. (2023), DMPS Banerjee et al. (2024), and MASE Wachi et al. (2023). For
 1138 completeness, we describe our specific implementation of this widely-used technique below.

1139 The policy, detailed in Algorithm 2, identifies the single most critical safety constraint, which is the
 1140 one the agent is closest to violating; and solves a secondary, lightweight QP. The objective of this
 1141 QP is to find a control action that maximally steers the system away from that constraint’s boundary,
 1142 leveraging the inward-pointing normal vector of the safe set.
 1143

1144 **Algorithm 2** Active Recovery Backup Policy (following e.g., Anderson et al. (2023); Banerjee et al.
 1145 (2024))

1146 1: **Input:** Current latent state z
 1147 2: **Initialize:** Minimum barrier value $h_{\min} \leftarrow \infty$, critical normal vector $p^* \leftarrow \text{null}$
 1148 3: **for all** polyhedron face (p_i, b_i) in the definition of the safe set \mathcal{C} **do**
 1149 4: Compute barrier value $h_i(z) \leftarrow -(p_i^\top z + b_i)$
 1150 5: **if** $h_i(z) < h_{\min}$ **then**
 1151 6: $h_{\min} \leftarrow h_i(z)$
 1152 7: $p^* \leftarrow p_i$
 1153 8: **end if**
 1154 9: **end for**
 1155 10: **if** p^* is null **then**
 1156 11: {This occurs only if the state is not within any defined polyhedron.}
 1157 12: **return** 0
 1158 13: **end if**
 1159 14: Define QP cost vector $q \leftarrow (p^*)^\top B$
 1160 15: Solve the following QP for the recovery action u_{backup} :

$$\begin{aligned} \min_u \quad & q^\top u \\ \text{s.t.} \quad & u \in \mathcal{U} \quad (\text{action bounds}) \end{aligned}$$

1161 16: **return** u_{backup} if QP is solved, else return 0.

1162
 1163
 1164
 1165
 1166
 1167 **Limitations of Backup Policy.** This recovery strategy is designed for computational efficiency,
 1168 which necessitates several trade-offs common to such backup controllers. First, it is **non-robust**,
 1169 relying on the nominal dynamics matrix B without accounting for model error. Second, it is **myopic**,
 1170 operating as a one-step greedy controller without the foresight of a multi-step planner. Third, it
 1171 focuses on the **single most critical constraint**, which may be insufficient when multiple constraints
 1172 are nearly violated. Despite these inherent limitations, it provides a more principled fallback than a
 1173 simple passive policy.
 1174

1175 A.5 EXPERIMENTAL DETAILS

1176 We evaluate our approach on five distinct environments, ranging from classic control tasks to more
 1177 complex locomotion challenges, to demonstrate its efficacy across varying dimensionalities and
 1178 dynamics.
 1179

1180 **Pendulum** In this classic control benchmark, the goal is to swing up and stabilize an inverted
 1181 pendulum. The environment has a 2-dimensional state space (encoding the pendulum’s angle and
 1182 angular velocity) and a 1-dimensional action space (torque). A state is considered unsafe if the
 1183 pendulum’s angle $|\theta|$ exceeds 0.4 radians. We allow all baselines 200000 environment interactions.
 1184

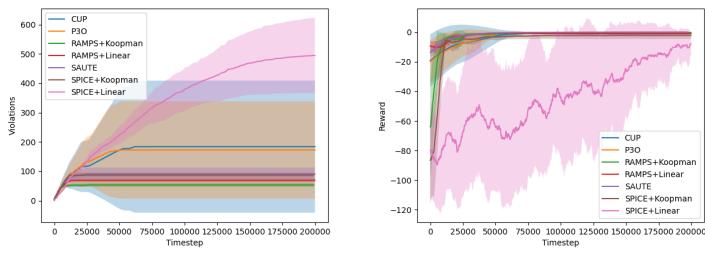
1185 **SafeHopper** To test our method on more complex dynamics, we use the SafeHopper environment.
 1186 This task involves controlling a two-legged robot, presenting a higher-dimensional challenge with
 1187 an 11-dimensional state space and a 3-dimensional action space. Safety is defined by constraints on

1188 the robot's velocity ($-0.37315 \leq v \leq 0.37315$) to ensure stable hopping. We allow all baselines
 1189 300000 environment interactions.
 1190

1191 **SafeCheetah** The SafeCheetah environment is another complex benchmark. The agent must control
 1192 a planar cheetah-like robot to run forward. This environment features a 17-dimensional state space
 1193 and a 6-dimensional action space. Similar to SafeHopper, the safety specifications impose constraints
 1194 on the robot's velocity ($-2.8795 \leq v \leq 2.8795$) to prevent unstable or dangerous movements. We
 1195 allow all baselines 300000 environment interactions.
 1196

1197 **SafeAnt** We further increase the complexity with the SafeAnt environment, which involves controlling
 1198 a quadrupedal robot. The agent must learn to walk forward in a high-dimensional state space of
 1199 105 dimensions, with an 8-dimensional action space. Safety is defined by constraints on the robot's
 1200 velocity ($-2.3475 \leq v \leq 2.3475$). We allow all baselines 1000000 environment interactions.
 1201

1202 **SafeHumanoid** We also test RAMPS on SafeHumanoid, a highly challenging benchmark with a
 1203 348-dimensional state space and 17-dimensional action space. The agent must learn to coordinate
 1204 full-body locomotion while remaining within prescribed safety limits, defined by velocity constraints
 1205 ($-2.3475 \leq v \leq 2.3475$). As with the other environments, each baseline receives 1000000 environment
 1206 interactions. Due to its dimensionality and instability, SafeHumanoid is known to be difficult
 1207 for safe-RL algorithms, making it a strong stress test for both the learned dynamics and the shielding
 1208 mechanism.
 1209



1210
 1211 Figure 6: Safety violations (top) and episodic reward (bottom) for Pendulum.
 1212
 1213
 1214
 1215
 1216
 1217

1218 Pendulum is a low-dimensional, easy-to-control system where safety constraints and dynamics pose
 1219 minimal difficulty. As expected, all methods achieve near-perfect safety and high reward. We include
 1220 the results here for completeness; the main paper focuses on higher-dimensional domains where
 1221 RAMPS' multi-step shielding and scalable model-based prediction are essential.
 1222

1223 A.5.1 DEEP KOOPMAN OPERATOR IMPLEMENTATION

1224 For all experiments involving a learned latent dynamics model (RAMPS + K and SPICE + K), we use
 1225 the Deep Koopman Operator framework introduced by Shi & Meng Shi & Meng (2022). The central
 1226 idea of this approach is to represent the nonlinear system dynamics with a linear model in a suitably
 1227 constructed higher-dimensional *lifted* space. This is achieved by augmenting the original state with
 1228 learned features that allow the dynamics to evolve linearly in the expanded coordinate system.
 1229

1230 **Lifted State Representation.** Let x_k denote the original system state at time k . A deep encoder
 1231 network $g_\theta(\cdot)$ generates additional latent coordinates, producing the lifted state
 1232

$$1233 z_k = \begin{bmatrix} x_k \\ g_\theta(x_k) \end{bmatrix}.$$

1234 In this lifted space, the system evolution is modeled by a linear dynamical system:
 1235

$$1236 z_{k+1} = \mathbf{A}z_k + \mathbf{B}u_k,$$

1237 where u_k is the control input and the matrices \mathbf{A} and \mathbf{B} are learned jointly with the encoder.
 1238
 1239

Network Architecture. The encoder is realized as a three-layer multilayer perceptron (MLP) with two hidden layers of 256 units each. Hidden layers use SiLU activations and the final layer uses a Tanh activation. The dimensionality of the lifted latent features is environment-specific, chosen to balance model accuracy and computational tractability: we use 2 for Pendulum, 22 for SafeHopper, 34 for SafeCheetah, and 100 for both SafeAnt and SafeHumanoid. These dimensions were selected empirically based on prediction accuracy and shield feasibility profiles.

Training Objective. The Koopman model is trained end-to-end using the loss function proposed by Shi & Meng Shi & Meng (2022), consisting of two complementary components:

1. **State Prediction Loss:** Measures the discrepancy between the true next state x_{k+1} and the predicted next state extracted from $z'_{k+1} = \mathbf{A}z_k + \mathbf{B}u_k$. This encourages accurate one-step predictions in the original state space.
2. **Linearity Loss:** Enforces consistency between the learned feature representation and linear evolution under the Koopman operator. Specifically, it penalizes the difference between the predicted lifted features $g_\theta(x'_{k+1})$ and the lifted features of the true next state $g_\theta(x_{k+1})$.

Together, these losses encourage g_θ to discover a set of basis functions that linearize the system dynamics, effectively serving as a global regularizer and promoting long-horizon predictive stability.

Constraint Handling in the Lifted Space. Safety constraints are defined in the original state space via polyhedral sets. Rather than imposing constraints directly on the learned latent coordinates, we preserve the original safety specifications by *zero-padding* the additional Koopman features. That is, the lifted constraint set is constructed by embedding the original constraint polytope into the higher-dimensional space as:

$$\mathcal{C}_{\text{lifted}} = \mathcal{C} \times \{0\}^{d_{\text{latent}}}.$$

This approach ensures that safety checks and subsequent CBF/QP computations remain well-defined without introducing arbitrary or unverified restrictions on the latent variables. While conservative, this choice has two benefits: (i) it guarantees compatibility with the underlying safety definitions, and (ii) it avoids imposing structural constraints on the learned features whose semantics are not directly interpretable. Investigating learned or data-driven safety projections in the latent space is an interesting direction for future work.

Summary. In combination, these design choices allow the Deep Koopman Operator to model high-dimensional, nonlinear systems with a compact linear approximation in the lifted space, enabling fast multi-step predictions and efficient computation of safety certificates needed for RAMPS and SPICE. Despite its simplicity, the model is sufficiently expressive for the complex locomotion domains we consider, while maintaining the computational tractability required for real-time shielding.

A.5.2 ERROR BOUND CALIBRATION

The dynamics model and its corresponding error bound, ϵ , are periodically recalibrated throughout training to adapt to newly collected data. An initial model is trained after the first 10,000 environment steps. Subsequently, the model is fine-tuned at progressively doubling intervals (e.g., at 20,000, 40,000, and 80,000 steps). At each training stage, the error bound is calibrated using a hold-out validation set comprising 20% of all collected experience. To maintain computational efficiency, the size of this validation set is capped at a maximum of 100,000 samples.

A.5.3 ANALYSIS OF BASELINE FAILURES

As noted in Table 1, the SPICE+L baseline failed on all high-dimensional locomotion tasks (**SafeHopper**, **SafeCheetah**, and **SafeAnt**). This is attributable to the representational limits of a simple linear model in capturing the complex, nonlinear dynamics of these environments. The resulting model exhibited large prediction errors, which, within SPICE’s one-step shielding formulation, rendered the safety QP persistently infeasible. This forced the agent to over-rely on its backup policy, preventing it from learning the task.

More critically, **SPICE+K** also failed on the most complex environment, **SafeAnt**. This failure occurred even when using the *exact same* pre-trained Deep Koopman Operator that was successful for

1296 our method, RAMPS + K . This finding isolates the failure to SPICE’s underlying shielding technique.
 1297 Its myopic, one-step approach is not sufficiently robust to the larger, yet unavoidable, prediction
 1298 errors of a learned model in such a high-dimensional space. In contrast, our multi-step formulation is
 1299 explicitly designed to tolerate these errors, explaining the significant performance difference.

1300 We note explicitly that **DMPS** (Banerjee et al., 2024), **VELM** (Wang & Zhu, 2024) and **MASE** (Wachi
 1301 et al., 2023) are model-predictive shielding (MPS) techniques which operate using a safety predicate
 1302 or safe/unsafe-state specification rather than relying on dense cost or reward shaping. As such they
 1303 are directly related to SPICE and RAMPS in design intent: all attempt to find safe actions via online
 1304 planning under a safety specification. Despite operating with this stronger safety interface, the publicly
 1305 available implementations of DMPS and VELM, and our re-implementation of MASE (Wachi et al.,
 1306 2023), exhibited rapid violation growth and frequent infeasible/timeout planner returns on the MuJoCo
 1307 locomotion benchmarks (Hopper, Cheetah, Ant), accumulating >1000 violations in the first 20–30k
 1308 environment interactions. We also tested the **Conservative Safety Critics** approach (Bharadhwaj
 1309 et al., 2021a), which similarly failed to train stably in these setting. Because these failure modes
 1310 made them impractical and unstable as baselines for our main comparisons, we exclude them from
 1311 the final baseline table. For transparency and validation, we will release all code and scripts for these
 1312 baselines along with our framework implementation.

1313 A.5.4 ANALYSIS OF COMPUTATIONAL EFFICIENCY

1316 ENVIRONMENT	1317 RAMPS	1318 SPICE
PENDULUM	0.2289 ± 0.01	0.4061 ± 0.0063
HOPPER	0.2822 ± 0.04	0.5996 ± 0.0624
CHEETAH	0.3234 ± 0.03	0.5244 ± 0.0418
ANT	0.4038 ± 0.08	2.4820 ± 1.8329
HUMANOID	0.5061 ± 0.02	3.7105 ± 1.2512

1322 Table 2: Shield Computation Time Analysis. This table shows the mean and standard deviation
 1323 of the per-step execution time of the safety shield (Policy action proposal, state space lifting via
 1324 Koopman, constraint assembly and QP solving) across all training episodes for each environment.
 1325 The consistently low average times (all under 0.5 ms) confirm the real-time feasibility of the RAMPS
 1326 framework.

1328 The primary design goal of the RAMPS framework is to make predictive shielding computationally
 1329 tractable for real-time applications. The timing results in Table 2 confirm the success of this approach.
 1330 Across all tested environments, the mean per-step computation time for the shield is remarkably low,
 1331 remaining well under half a millisecond.

1332 Notably, the computation time scales gracefully with the complexity of the environment. For the
 1333 simple **Pendulum** environment, the mean solve time is just 0.2289 ms. For the high-dimensional and
 1334 dynamically complex **Ant** environment, this time increases to only 0.4038 ms. This sub-millisecond
 1335 performance demonstrates that the extensive pre-computation phase is effective, leaving the online
 1336 QP solve lightweight and suitable for high-frequency control loops. Furthermore, the low standard
 1337 deviation across all environments indicates that the solver’s performance is consistent and predictable,
 1338 a critical feature for reliable real-time systems. We use OSQP Stellato et al. (2020) for solving the
 1339 QP.

1341 A.5.5 ANALYSIS OF ACTION TYPE DISTRIBUTION

1343 Table 3 details the ratio of actions selected by the primary shield, the original RL agent’s policy
 1344 (Neural), and the fallback backup policy. This analysis reveals how the shield’s behavior adapts to
 1345 the complexity of the environment.

1346 The shield is the dominant actor in all environments, indicating its critical role in maintaining safety.
 1347 This is most pronounced in the highly unstable **Ant** environment, where the shield intervenes in over
 1348 96% of steps, indicating that the RL agent rarely proposes a provably safe action on its own. It is
 1349 critical to note that this high intervention rate does not prevent the agent from learning a high-reward
 policy. This is a direct result of the shield’s minimally invasive objective function, which finds the

ENVIRONMENT	SHIELD RATIO (%)	NEURAL RATIO (%)	BACKUP RATIO (%)
PENDULUM	74.72 \pm 31.48	25.28 \pm 31.48	0.00 \pm 0.00
HOPPER	82.06 \pm 4.11	17.08 \pm 3.79	0.86 \pm 0.93
CHEETAH	81.13 \pm 4.55	17.27 \pm 4.25	1.60 \pm 0.59
ANT	96.50 \pm 1.39	2.45 \pm 1.25	1.05 \pm 0.81
HUMANOID	96.28 \pm 1.39	3.81 \pm 0.81	0.00 \pm 0.00

Table 3: This table shows the per-episode average ratio of actions selected by the Shield, the original RL agent (Neural), and the Backup policy for results in Figure 1 and Table 1. The results show that the shield is highly active but allows the agent more freedom in less complex environments. The extremely low reliance on the Backup policy across all environments confirms the robustness and high feasibility rate of the primary multi-step QP shield.

closest possible safe action to the agent’s original proposal. Consequently, many interventions are slight corrections that nudge the agent back towards safety without fundamentally disrupting its learned behavior.

In the moderately complex **Cheetah** and **Hopper** environments, the shield remains the primary actor but is significantly less invasive, allowing the agent’s neural policy to act directly approximately 17% of the time. This suggests that for these dynamics, the RL agent is better able to learn a policy that aligns with the safety constraints. The **Pendulum** environment shows the most interesting behavior; while the shield is active for 75% of the steps on average, the extremely high standard deviation (31.48%) suggests a bimodal behavior where the agent learns to operate safely for long periods before requiring periods of heavy intervention.

Finally, a crucial indicator of the primary shield’s robustness is the extremely low reliance on the backup policy. For all locomotion tasks, the backup policy is invoked only 1% of the time, and for Pendulum, it is never used at all. This demonstrates that the multi-step, adaptive-horizon QP is consistently able to find a feasible, provably safe solution, rarely needing to resort to its simpler fallback mechanism.

A.6 ANALYSIS OF SHIELD INTERVENTION

To better understand the trade-off between reward maximization and safety interventions, we analyze the average per-step action deviation ($\|u_{\text{shielded}} - u_{\text{agent}}\|$) during training in the Cheetah environment (Fig. 7).

We observe that **RAMPS+L** (linear model) produces consistently higher action deviations, indicating that the shield intervenes more aggressively to maintain safety. This stronger intervention translates into more reliable shielding performance, but it also limits the agent’s ability to explore freely, resulting in lower asymptotic reward.

By contrast, **RAMPS+K** (Koopman model) exhibits substantially smaller action deviations throughout training. This reduced level of intervention reflects the shield’s greater *invasiveness efficiency*: the agent is allowed to execute its intended actions more faithfully, leading to improved reward performance while still respecting safety constraints. In other words, RAMPS+K achieves a better balance between enforcing safety and preserving the agent’s autonomy.

A.7 ANALYSIS OF MULTI-DIMENSIONAL CONSTRAINTS ON HUMANOID

To evaluate RAMPS under realistic multi-dimensional safety conditions, we conducted an additional experiment on **SAFEHUMANOID** with a 348-dimensional state space and imposed a 21-dimensional polyhedral safety constraint set. Specifically, we constrained all coordinate velocities (state indices 23–25) to lie in $[-2.3475, 2.3475]$ and all angular velocities (state indices 28–45) to lie in $[-20, 20]$. Figure 8b shows that RAMPS+SAC achieves high reward (approximately 5000) and continues improving throughout training, while CMDP baselines (P3O, CUP, PPO-Saute) plateau early and fail to make progress.

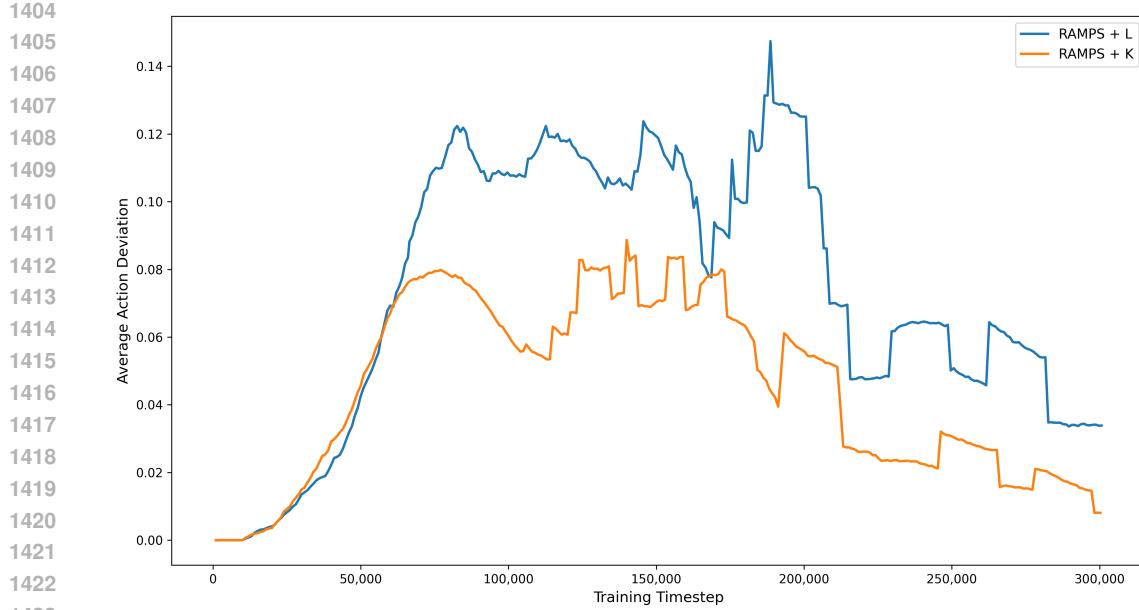


Figure 7: Average per-step action deviation ($\|u_{\text{shielded}} - u_{\text{agent}}\|$) during training on the Cheetah environment. Both variants show increasing intervention early in training as the agent explores unsafe behaviors, with RAMPS+K consistently yielding smaller deviations (less invasive interventions) and decaying sooner as the policy and model improve.

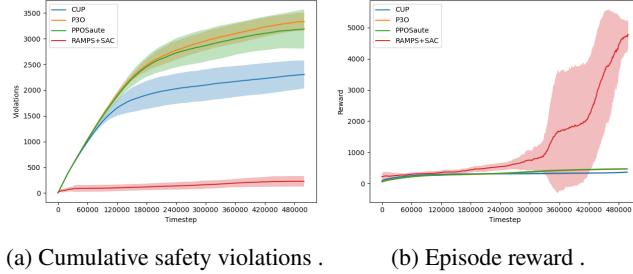


Figure 8: RAMPS evaluation on Humanoid with constraints on 21 dimensions (3 coordinate velocity constraints and 18 angular velocity constraints): (a) cumulative safety violations over training; (b) episode reward over training.

Figure 8a also demonstrates the safety behavior: RAMPS accumulates only about 256 cumulative violations over 500,000 steps, and reducing violations to 0 after 400,000 steps. CMDP baselines never learn to be safe, as evidenced by their increasing violation curves. These results confirm that RAMPS scales effectively to high-dimensional, coupled safety constraints and maintains both strong safety and high performance in settings where CMDP methods fail completely.

A.8 LIMITATIONS AND FUTURE WORK

Our framework operates under a common assumption in online learning: no a priori model of the environment is available. Consequently, the initial policy, π_0 , begins exploring without any prior knowledge of the environment, which can lead to safety violations while the dynamics model is being learned. These have also been reported in SPICE Anderson et al. (2023), VELM Wang & Zhu (2024) and DMPS Banerjee et al. (2024). A promising direction for future work is to mitigate these *cold start* violations by pre-training the Koopman model on relevant offline datasets, thereby enabling a safer initial policy. Furthermore, while our method provides a high-confidence probabilistic safety certificate, it does not offer a hard, worst-case guarantee on the number of violations. Future research

1458 could focus on bridging this gap by employing formal verification techniques, such as abstract
1459 interpretation, to compute a rigorous upper bound on the number of potential safety violations
1460 throughout the learning process.
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511