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ABSTRACT

Reinforcement learning for safety-critical tasks requires policies that are both
high-performing and safe throughout the learning process. While model-predictive
shielding is a promising approach, existing methods are often computationally
intractable for the high-dimensional, nonlinear systems where deep RL excels,
as they typically rely on a patchwork of local models. We introduce RAMPS, a
scalable shielding framework that overcomes this limitation by leveraging a learned,
linear representation of the environment’s dynamics. This model can range from
a linear regression in the original state space to a more complex operator learned
in a high-dimensional feature space. The key is that this linear structure enables a
robust, look-ahead safety technique based on a multi-step Control Barrier Function
(CBF). By moving beyond myopic one-step formulations, RAMPS accounts for
model error and control delays to provide reliable, real-time interventions. The
resulting framework is minimally invasive, computationally efficient, and built upon
robust control-theoretic foundations. Our experiments demonstrate that RAMPS
significantly reduces safety violations compared to existing safe RL methods while
maintaining high task performance in complex control environments.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable success in solving complex control
problems, yet its deployment in safety-critical applications like autonomous vehicles and robotics
remains a grand challenge Gu et al. (2022). A core requirement in these domains is not only that the
final policy is safe, but that safety is maintained throughout the entire learning process. This problem
of safe exploration has motivated a range of solutions, among which model-predictive shielding has
emerged as a promising paradigm Jovanovi’c et al. (2020); Brunke et al. (2021).

Existing shielding frameworks present a difficult trade-off. On one hand, neural shields learn safety
critics from data, offering flexibility but often requiring vast experience and failing to prevent
violations during early training Bharadhwaj et al. (2021b); Dalal et al. (2018). On the other hand,
symbolic shields provide formal, mathematical guarantees from the first interaction by analyzing an
environment model Berkenkamp et al. (2017); Anderson et al. (2020); Wang & Zhu (2024). However,
these methods have a critical limitation that has confined them to low-dimensional systems: they
rely on explicitly partitioning the state space to construct a patchwork of local linear models. This
approach suffers from the curse of dimensionality, rendering it computationally intractable for the
complex, high-dimensional environments (> 10 dimensions) where modern deep RL excels.

This paper introduces RAMPS, a framework that bridges this critical gap by making formal shielding
scalable to high-dimensional, nonlinear systems through a novel theoretical advance in safety cer-
tification. At the core of RAMPS is a new robust multi-step Control Barrier Function formulation
that fundamentally changes how safety is guaranteed in discrete-time stochastic systems with model
uncertainty. RAMPS achieves both theoretical soundness and practical scalability through a unified
approach.

The key insight enabling RAMPS is the synergy between our robust multi-step CBF theory and
the use of linear dynamics models. By representing the system dynamics through a single linear
model, whether a linear regression in the original space or a learned operator in a high-dimensional
feature space like the Deep Koopman OperatorShi & Meng (2022), we can efficiently propagate
safety constraints multiple steps into the future while formally accounting for model error. Our
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CBF formulation explicitly incorporates accumulated prediction error through a novel tightening
mechanism, provides model-relative safety guarantees even with imperfect models. At each timestep,
RAMPS’s shield solves a comparatively-small Quadratic Program to find the minimally invasive
safe action, with adaptive horizon selection that maximizes foresight while avoiding excessive
conservatism.

Our contributions are threefold:

• We introduce RAMPS, a scalable shielding framework that provides probabilisitic safety
guarantees, in high-dimensional, nonlinear systems by unifying robust CBF theory with
learned linear dynamics representations.

• We develop a novel robust multi-step CBF formulation for discrete-time stochastic systems
featuring accumulated error tightening and adaptive horizon selection, providing a principled
solution to high relative-degree safety constraints under model uncertainty.

• We demonstrate that RAMPS significantly outperforms state-of-the-art safe RL methods,
reducing safety violations by up to 90% and scaling to 348-dimensional environments, while
maintaining competitive task performance across challenging high-dimensional control
environments including quadrupedal locomotion.

2 RELATED WORK

Research in safe reinforcement learning (safe RL) can be categorized by what kind of safety guarantees
are provided and when those guarantees apply. Safety is usually defined in two ways: (i) a cost-based
formulation, where each action may incur some penalty and the long-term cost must remain below
a threshold, or (ii) a state-based formulation, where specific regions of the state space are marked
unsafe and must never be entered. Our work adopts the state-based view.

Worst-Case Guarantees. One line of work provides deterministic safety guarantees under a worst-
case environment model, ensuring forward invariance by construction (Anderson et al., 2020; Gillula
& Tomlin, 2012; Alshiekh et al., 2018; Zhu et al., 2019; Fulton & Platzer, 2019; Bacci et al., 2021).
These approaches offer strong guarantees but require an explicit model and are limited to low-
dimensional settings due to the computational cost of state-space partitioning. In contrast, RAMPS
does not require a predefined model and remains tractable in high-dimensional systems.

Statistical Guarantees. Another family of methods offers probabilistic or statistical safety guaran-
tees. These approaches build or learn an approximate dynamics model and optimize policies that are
likely to be safe with respect to that model (Achiam et al., 2017; Liu et al., 2020; Yang et al., 2020;
Ma et al., 2021; Zhang et al., 2020; Satija et al., 2020). While more scalable than worst-case methods,
they typically allow safety violations during training. In contrast, RAMPS enforces hard constraints
with respect to its learned model, reducing violations in practice.

Model-Predictive Shielding. A complementary paradigm is model-predictive shielding (MPS),
where a shield monitors the agent’s proposed action and intervenes only when it threatens
safety (Wabersich & Zeilinger, 2018; Bastani, 2021; Anderson et al., 2020; 2023; Goodall & Belar-
dinelli, 2023; Banerjee et al., 2024). Prior works differ in how they construct models and shields,
but most struggle with scalability, particularly when moving beyond simple one-step predictions.
Model-predictive shielding is closely related to model predictive control (MPC): both use a model to
roll out multi-step trajectories and solve constrained optimization problems. However, their objectives
differ fundamentally. MPC optimizes long-horizon performance and effectively replaces the policy
with its own control solution, whereas MPS acts purely as a safety filter: it retains the agent’s action
whenever it is safe, and otherwise solves a feasibility problem to return the closest safe alternative.
This shifts the role of prediction from planning to minimal, targeted intervention, making shielding
compatible with arbitrary RL policies while still enforcing hard safety guarantees.

Koopman Operators and Safety. Prior work has combined Koopman models with safety mech-
anisms, typically through one-step CBF filters. This includes Koopman-accelerated backup-CBF
controllers, and neural or deep approaches that learn Koopman embeddings together with one-step
CBF-QP filters or command governors Folkestad et al. (2020); Zinage & Bakolas (2022); Chen
et al. (2024); Mitjans et al. (2024); Liang et al. (2025). Robust Koopman-MPC methods provide
predictive control with error guarantees Mamakoukas et al. (2022); de Jong et al. (2024). However,
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these methods either assume a known backup controller, rely on SMT-based CBF certification, or
remain limited to one-step filtering and moderate-dimensional systems.

Cost-Based Safe RL. Cost-based methods enforce safety indirectly by shaping the reward with
carefully designed cost signals and applying constrained optimization techniques (Achiam et al.,
2017; Sootla et al., 2022a; Gu et al., 2024; Sootla et al., 2022b; Zhang et al., 2022; Yang et al., 2022).
These approaches are flexible but inherently allow violations while the agent learns the cost structure.
Compared to these methods, RAMPS enforces stricter state-based safety constraints, leading to fewer
violations.

Safe RL methods balance a trade-off: formal and symbolic methods offer strong guarantees but do
not scale, while statistical and cost-based methods scale but permit many violations early in training.
Existing model-predictive shielding methods are typically limited to systems with state dimensions
in the tens, as they rely on computationally expensive state-space partitioning or explicit nonlinear
model propagation. RAMPS bridges this gap by combining a learned, linear model with a novel
robust multi-step control barrier function, enabling scalable shielding with strong safety assurances
in complex, high-dimensional environments, successfully operating on systems with over 300 state
dimensions (where current formal techniques struggle above 10-dimensions), while maintaining
real-time computational efficiency.

3 PRELIMINARIES

Safe Exploration. We model the environment as a Markov decision process (MDP) M =
(S,A, r, P, γ), where S is the state space, A is the action space, r : S × A → R is a re-
ward function, P (x′ | x, a) is a probabilistic transition function, and p0 is an initial distribu-
tion over states. A policy π maps states to distributions over actions. The long-term return
of a policy is R(π) = Esi,ai∼π

[∑∞
i=0 γ

ir(si, ai)
]
. The goal of RL is to find an optimal policy

π∗ = argmaxπ R(π).

Most deep RL algorithms generate a sequence of policies π0, π1, . . . , πN with πN → π∗. We refer to
this sequence as a learning process. In safe exploration, the aim is to ensure that every intermediate
policy remains safe with high probability. Formally, given a safety threshold δ and unsafe set SU , we
require ∀ 1 ≤ i ≤ N, Prs∼πi(s ∈ SU ) ≤ δ, while the final policy πN maximizes reward among all
safe policies. Following prior work (Anderson et al., 2023; Wang & Zhu, 2024), we do not require
the initial policy π0 to be safe, since no prior model of the environment is assumed.

Safety Specification. We adopt the common state-based notion of safety in safe RL. The unsafe set SU
is defined as a union of convex polyhedra over features of the state space (Anderson et al., 2023; Wang
& Zhu, 2024). Equivalently, the safe set can be expressed as S \ SU =

⋃M
i=1{ s ∈ S | Gis ≤ hi },

for matrices Gi and vectors hi. Unions of convex polyhedra are sufficient to approximate any compact
safe set to arbitrary precision, and are widely used in model-predictive safety methods.

4 ROBUST ADAPTIVE MULTI-STEP PREDICTIVE SHIELDING

RAMPS, provides strong, real-time safety guarantees for reinforcement learning agents by integrating
a learned, linear dynamics model with a robust, certificate-based safety shield. The framework is
composed of three core components: (1) a learned linear dynamics model that provides a single,
global representation of the environment’s dynamics from data; (2) a Robust Control Barrier Function
(CBF) that uses this model to certify safety and correct potentially unsafe actions online; and (3) a
standard deep RL agent that learns a high-performance policy inside the protection of the shield.

The key requirement for the dynamics model is that it must be linear, as this structure enables the
efficient, multi-step predictions required by the shield. This allows for a flexible range of modeling
choices, from a simple linear regression operating in the original state space to a more complex Deep
Koopman Operator (Shi & Meng, 2022) that learns a linear transition function in a high-dimensional
feature space.

RAMPS operates in an iterative loop. The agent first collects a dataset of environment interactions.
This data is used to train the linear dynamics model and a worst-case error bound, which in turn

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

parameterize the CBF shield. The RL agent is then trained, with every action being verified and
potentially corrected by the shield to ensure safety. The newly collected, safe data is added back to
the dataset, allowing the dynamics model and error bound to be periodically refined. This creates a
cycle where a more accurate model leads to a less conservative shield, allowing the agent to explore
more freely and learn a better policy. This is illustrated in Algorithm 1.

4.1 SAFETY SHIELDING WITH MULTI-STEP ROBUST CONTROL BARRIER FUNCTIONS

We propose a safety shield designed to address a fundamental limitation of standard Control Barrier
Functions (CBFs) when applied to discrete-time stochastic systems. Although one-step CBFs offer
strong guarantees in continuous time, their discrete-time analogues may fail when a system’s control
inputs do not immediately affect the safety constraints; a challenge characterized by a relative
degree greater than one. To resolve this issue, we construct a multi-step robust CBF by drawing
upon principles from the theories of High-Order CBFs (HOCBFs; Tan et al. (2022)) and multi-step
predictive control (Chriat & Sun, 2023). Our shield enforces safety over a variable prediction horizon
H , which ensures that control authority is maintained despite such actuation delays. By adaptively
selecting the largest feasible horizon at each timestep, the shield maximizes its predictive capability
to eliminate “trap” states, which are configurations that appear safe in the short term but lead to
inevitable future violations. This is accomplished while remaining minimally invasive to the actions
proposed by the reinforcement learning agent’s policy.

Control Barrier Functions (CBFs) (Nagumo, 1942; Prajna & Jadbabaie, 2004; Wieland & Allgöwer,
2007; Ames et al., 2019) are a powerful tool for enforcing safety constraints in control systems by
rendering a specific region of the state space forward invariant. In the continuous-time setting, for
a system with dynamics ẋ = f(x) + g(x)u and a safe set defined as C = {x ∈ Rn | h(x) ≥ 0},
a function h is a CBF if there exists a class-K function α such that for all x ∈ C, the condition
supu∈U [Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0 holds. This Lie derivative condition ensures that for
any state on the boundary of the safe set, there exists a control action that prevents the system from
instantaneously exiting C.

In contrast, for a discrete-time system xk+1 = F (xk, uk), the condition is fundamentally different. A
function h is a discrete CBF if for all xk ∈ C, there exists a control uk ∈ U such that h(F (xk, uk)) ≥
λh(xk), where λ ∈ [0, 1] is a decay rate. The key distinction lies in their temporal nature: the
continuous condition is infinitesimal, guaranteeing safety based on the instantaneous velocity of the
system, while the discrete condition provides a guarantee over a finite time step, ensuring that the
state at step k + 1 remains safe given the state at step k. This often makes the discrete condition
more conservative, as it must account for the system’s evolution over the entire sampling period.
Reinforcement learning typically deals with discrete-time systems.

Linear Dynamics. The core of our shielding framework relies on a learned, linear dynamics model,
as this structure is essential for performing the efficient, multi-step predictions needed for robust
safety analysis. For systems with simple dynamics, this can be a direct linear model operating in
the original state space. For more complex, non-linear environments, the state can be “lifted” via a
learned, non-linear embedding into a higher-dimensional feature space (Shi & Meng, 2022). The
fundamental principle is that within this lifted space, the intricate dynamics can be accurately captured
by a simple linear transition, zk+1 = Azk +Buk + c. This transformation from non-linear to linear
dynamics is what enables the shield to efficiently propagate safety constraints far into the future,
making the approach scalable to a wide range of complex systems.

Safe Set and Dynamics. Let the lifted state space be Rn+d (d ≥ 0) with the discrete-time affine
dynamics

zk+1 = Azk +Buk + c+ wk,

where c is a learned constant offset representing the system’s drift, and wk is an additive model error
satisfying ∥wk∥∞ ≤ ε. The admissible control set is U ⊂ Rm. We define a polyhedral safe set C as
the intersection of half-spaces, such that

C =

M⋂
i=1

{ z | p⊤i z + bi ≤ 0 }.

For each face i of the polyhedron, we define a corresponding safety function hi(z) as hi(z) =
−
(
p⊤i z + bi

)
, which means the safe set can be expressed as C = { z | hi(z) ≥ 0, ∀i}.
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One-Step Robust CBF Condition. To guarantee safety under model uncertainty, we formulate a
robust CBF condition similar to (Cosner et al., 2023). The safety requirement is that the true next
state, zk+1 = Azk +Buk + c+ wk, must remain in the safe set C. This implies that for each face i,
the condition p⊤i (Azk +Buk + c+ wk) + bi ≤ 0 must hold for bounded disturbances wk.

To ensure this, we design the constraint based on the worst-case disturbance, which has a value of
ε∥pi∥1. By incorporating this worst-case term, we arrive at the robust CBF condition: for any state
z ∈ C, there must exist a control input u ∈ U such that

p⊤i (Az +Bu+ c) + bi ≤ λ
(
p⊤i z + bi

)
− ε∥pi∥1, ∀i, (1)

where λ ∈ (0, 1] is a decay parameter that governs the conservatism of the barrier condition. Values
of λ close to 1 require the safety function hi(z) to remain nearly constant across timesteps, leading to
stricter constraints and stronger invariance. Smaller values of λ relax this requirement by permitting
hi(z) to decay over time, which can improve feasibility but reduces the safety margin. The term
−ε∥pi∥1 provides an additional robust margin, ensuring safety under the worst-case model error.

Relative Degree. The relative degree of a safety constraint h(z) under dynamics zk+1 = f(zk) +
g(zk)uk is the smallest integer r ≥ 1 such that the control input uk appears explicitly in the r-step
evolution of h(zk), i.e. through ∂h(zk+r)

∂uk
̸= 0.

Multi-Step Robust CBF Condition. The one-step condition in equation 1 is insufficient for systems
where the control input has a delayed effect on a safety constraint (i.e., relative degree r > 1) 4.2. To
eliminate the trap states that arise in such systems, our method ensures that the safety condition is
met at every intermediate timestep j over a chosen horizon H , for all j ≥ ri. For each such step j,
we define the nominal reachable state under a control sequence u = (u0, . . . , uH−1) as

zj(z,u) = Ajz +

j−1∑
k=0

Aj−1−kBuk +

j−1∑
k=0

Akc,

where the final term represents the cumulative effect of the affine drift. The total accumulated error
over this j-step horizon is bounded by a tightening term, Ej(pi), which sums the worst-case error at
each step:

Ej(pi) =

j−1∑
k=0

ε∥p⊤i Ak∥1.

This leads to a set of robust CBF conditions, one for each valid step j and face i:

p⊤i zj(z,u) + bi ≤ λj
(
p⊤i z + bi

)
− Ej(pi). (2)

Each of these inequalities is linear with respect to the full control sequence u. We aggregate all such
constraints into a single system of linear inequalities, Gu ≤ h, which guarantees that any feasible
control sequence maintains the system within the safe set C throughout the entire horizon.

Minimally Invasive Action Selection. For a horizon H , the shield solves a Quadratic Program (QP)
to find a safe control sequence that is minimally invasive to the RL agent’s intended action, aπ . The
primary objective is to find a control sequence u = (u0, . . . , uH−1) that minimizes the deviation of
the first action, u0, from the agent’s proposal:

min
u

∥u0 − aπ∥22 (3)

s.t. Gu ≤ h, (representing all constraints from equation 2),
uk ∈ U , k = 0, . . . ,H − 1.

Following the receding horizon principle, only the first action of the solution, u0, is applied to the
system. The subsequent actions, u1:H−1, are optimized to ensure a feasible trajectory exists but are
discarded, preserving flexibility at the next timestep.

Adaptive Horizon Selection and Safety Guarantee. At each timestep, we select the horizon H via
a bounded binary search within [Hmin, Hmax], where Hmin is the maximum relative degree among
active constraints. Candidate horizons are tested by solving the QP in equation 3: feasible horizons
remain candidates while the search continues toward larger values, and infeasible ones shrink the
range. The largest feasible horizon H∗ determines the minimally invasive action u0.

5
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If no feasible horizon is found, a backup policy ubackup(z) (A.4) is applied. Otherwise, the chosen
action u0 guarantees forward invariance: under disturbances ∥wk∥∞ ≤ ε, the closed-loop system
satisfies zk ∈ C, ∀k ≤ H.

4.2 ANALYSIS OF THE SHIELDING FRAMEWORK

The efficacy of our framework stems from the powerful synergy between a learned linear dynamics
model and the multi-step robust CBF shield. Each component is designed to address a fundamental
challenge in safe control, and their integration yields a solution that is formally sound, robust to
model error, and computationally tractable.

Synergy of a Linear Model and Multi-Step Shielding. The foundational element of our approach
is the use of a linear dynamics model. This structure is the key enabler for our multi-step shield; it
allows safety constraints, defined as simple polyhedra, to be accurately and efficiently propagated
through time. Unlike methods that rely on repeated local linearizations or computationally expensive
nonlinear propagation, our approach maintains tractability even over extended prediction horizons.
This synergy is critical: the linear model makes multi-step prediction feasible, and the multi-step
prediction is what gives the shield its foresight and power.

Robustness to Model Error. A core design principle of our framework is that it does not assume a
perfect dynamics model. Instead, it achieves robustness by formally accounting for model error. The
shield’s safety guarantee is not based on the model’s nominal prediction alone, but on a worst-case
analysis that considers the maximum possible deviation. The robust tightening term, Ej(pi), is derived
from a data-driven error bound ε, effectively creating a tube of uncertainty around the predicted
trajectory. By ensuring this entire tube remains within the safe set, the shield remains effective even
when the learned linear model is an imperfect approximation of the true, complex dynamics. This
allows the framework to work well even with simple models like linear regression, as it plans for
their inherent inaccuracies.

Illustrative Example: Resolving High Relative-Degree Traps in Pendulum. The multi-step CBF
framework also addresses traps in systems where the safety constraint depends on a state that the
control input does not influence in a single step. Consider the pendulum environment with state
z = (θ, ω), representing angle and angular velocity. Its dynamics can be written in affine form as

zk+1 = Azk +Buk + c(zk), with A =

[
1 ∆t
0 1

]
, B =

[
0

3∆t
mℓ2

]
, c(zk) =

[
0

g∆t
2ℓ sin(θk)

]
.

Suppose we impose a safety constraint on the angle, p⊤z + b = θ + δ ≤ 0, with normal p = [1 0]⊤.
The influence of the control input in one step is determined by p⊤B, which evaluates to 0. Thus,
a one-step CBF cannot act directly on θ to prevent it from exceeding the bound. This creates a
relative-degree trap: the shield has no immediate authority over the constrained variable.

In contrast, our multi-step formulation evaluates terms such as p⊤Ak−1B. For the pendulum,

p⊤AB = [1 0]

[
3∆t2

mℓ2
3∆t
mℓ2

]
= 3∆t2

mℓ2 ̸= 0. This non-zero term indicates that the control input does affect θ,

but only after two steps. By enforcing constraints over a horizon H ≥ r (here, r = 2), our framework
ensures that the control authority is accounted for, thereby resolving the trap. The affine term c(zk)
shifts the dynamics but does not alter the relative-degree analysis. This mirrors the role of High-Order
Control Barrier Functions in continuous-time systems (Tan et al., 2022; Chriat & Sun, 2023).
4.2.1 CONDITIONAL SAFETY GUARANTEES

The safety guarantee provided by our framework is a probabilistic certificate, which is standard for
systems with learned dynamics. The argument is twofold: we first establish a deterministic guarantee
of safety relative to our learned model and its error bound, and then connect this guarantee to the true
physical system with a probabilistic bound.

Guarantee Relative to the Learned Model. Let the true, unknown, discrete-time dynamics of the
system be governed by the function F : S×A → S , such that the true next state is sk+1 = F (sk, uk).
Our framework learns a linear model, which we denote as F̂ , that approximates these dynamics in a
lifted space:

ẑk+1 = F̂ (zk, uk) = Azk +Buk + c.

6
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The residual dynamics, or one-step prediction error, is the difference between the true evolution of
the lifted state and the model’s prediction, denoted by wk = zk+1 − ẑk+1. Our shield is constructed
using the model F̂ and a worst-case bound on this error, ∥wk∥∞ ≤ ε. This leads to the following
guarantee.
Theorem 1 (Conditional Model-Relative Forward Invariance). Given the learned dynamics model
F̂ and an error bound ε, if at every timestep k the multi-step robust CBF problem defined by the
constraints in equation 2 is feasible, and the true residual dynamics satisfy ∥wk∥∞ ≤ ε, then the
state of the system zk is guaranteed to remain within the safe set C for all k ≥ 0 (Blanchini, 1999).

Proof. The proof is by construction and induction. At any state zk ∈ C, the feasibility of the QP
in equation 3 implies the existence of a control sequence u that satisfies the robust multi-step CBF
condition in equation 2. This condition, by its formulation, ensures that all intermediate states
zk+1, . . . , zk+H remain within C for any possible realization of the error sequence where each
∥wj∥∞ ≤ ε. By applying the first action u0 of this sequence, the resulting state zk+1 is guaranteed
to be in C. The argument then applies recursively at timestep k + 1, as long as the condition stays
feasible at k + 1

While Theorem 1 establishes conditional recursive feasibility under the assumption that the QP
remains feasible at every timestep, this requirement is standard but difficult to analytically guarantee
in practical safe-control or safe-RL settings, especially when the dynamics model is learned. Prior
model-based shielding and safe-exploration methods similarly rely on stepwise feasibility assumptions
in their theoretical guarantees, while noting that infinite-horizon feasibility cannot be fully certified
in practice and is instead supported empirically (Wang & Zhu, 2024; Anderson et al., 2023; Banerjee
et al., 2024; Wachi et al., 2023). Consistent with this common limitation, we find that the QP in
our framework is feasible in over 98% of timesteps, indicating that the theoretical assumption is
well-satisfied in practice.

Probabilistic Connection to the Physical System. The deterministic guarantee of Theorem 1 is
conditioned on the validity of the error bound ε. In practice, ε is estimated empirically from a finite
hold-out validation dataset, Dval, as the maximum observed one-step prediction error. The connection
between this empirical bound and the true, underlying error distribution is necessarily probabilistic,
but the bound is maintained with high probability. Theorem 2 formalizes this connection. The proof
is given in Appendix A.2.
Theorem 2 (High-Probability Model Accuracy). Let ϵ1, . . . , ϵN be a set of i.i.d. sampled model
errors from our learned model F̂ . Assume that the probability of any two samples being equal is zero.
Choose a quantile 0 < q < 1 and let ε be the ⌈qN⌉’th smallest value among ϵ1, . . . , ϵN . Then

Pr[∥F (sk, uk)− F̂ (sk, uk)∥∞ > ε] ≤ 1− q +
1

(2N)1/3
+

1

4(21/3)N2/3
.

Corollary 1 (Probabilistic Forward Invariance over Finite Horizon). Let δ = 1 − q + 1
(2N)1/3

+
1

4(21/3)N2/3 be the failure probability of the empirical error bound ϵ from Theorem 2. If the multi-step
robust CBF problem (Eq. 3) is feasible at every timestep k ∈ {0, . . . ,K − 1} over a finite horizon
of K steps, then the true system state zk remains within the safe set C for all k ∈ {0, . . . ,K} with
probability P ≥ 1−Kδ.

Proof Sketch. By Theorem 2, Pr(||wk||∞ ≤ ϵ) ≥ 1− δ for each timestep k. By union bound over K
timesteps, Pr(∀k ∈ {0, . . . ,K − 1} : ||wk||∞ ≤ ϵ) ≥ 1−Kδ. Conditioning Theorem 1’s forward
invariance on this high-probability event yields the result.

5 EXPERIMENTAL EVALUATION

We conduct experiments to evaluate RAMPS on a suite of challenging control tasks. Our evaluation is
designed to answer three primary research questions:

1. Safety Analysis: Does RAMPS reduce safety violations more effectively than state-of-the-art
safe RL algorithms?

7
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2. Safety-Performance Tradeoff: Does the minimally invasive nature of RAMPS allow the
agent to learn a high-performing policy?

3. Role of Model Expressiveness Does improved representational power of the learned
dynamics model enhance the shielding performance of RAMPS?

Environments. We evaluate our method on five challenging environments. Pendulum is a clas-
sic low-dimensional control task. SafeHopper, SafeCheetah, SafeAnt and SafeHumanoid are
high-dimensional locomotion tasks from the Safety-Gymnasium benchmark (Ji et al., 2023). Safe-
Humanoid is a challenging benchmarks due to their high-dimensional state (348) and action spaces
(17) and the complex, unstable dynamics of legged locomotion, where sophisticated coordination is
required to prevent falling.

Baselines. We compare RAMPS against two classes of baselines. First, we consider state-of-the-art
Constrained Markov Decision Process (CMDP) algorithms that optimize for reward while treating
safety as a constraint: PPOSaute (Sootla et al., 2022a), P3O (Zhang et al., 2022), and CUP (Yang
et al., 2022). We use the implementations from the OmniSafe-RL library (Ji et al., 2024). We compare
against these methods because, unlike many symbolic approaches, they are capable of operating in
the high-dimensional environments we consider. We discuss additional baselines in Appendix A.5.3.

Second, we compare against methods architecturally similar to RAMPS, which also learn a dynamics
model for shielding. We selected SPICE (Anderson et al., 2023), which learns a simple linear
model; we refer to this as SPICE + L. To provide a direct comparison of modeling techniques,
we also implemented SPICE + K, a variant where we replace the original linear model with our
learned Koopman operator. We found that while SPICE + L failed to scale to the high-dimensional
SafeHopper and SafeCheetah environments, SPICE + K was able to produce a stable model. We
attempted comparisons with other relevant MPS/MPC techniques - DMPS (Banerjee et al., 2024),
VELM (Wang & Zhu, 2024), MASE (Wachi et al., 2023), and Conservative Safety Critics (Bharad-
hwaj et al., 2021b), but these methods failed to achieve stable training on the high-dimensional
locomotion tasks, accumulating over 1000 violations within the first 20-30k environment interactions.
More details are in Appendix A.5.3.

5.1 EXPERIMENTAL SETUP

Implementation Details. To analyze the impact of the learned dynamics model, we evaluate two
versions of our RAMPS framework: RAMPS + L, which uses a simple linear model learned via
regularized regression in the original state space, and RAMPS + K, which uses the Deep Koopman
Operator. The underlying policy for RAMPS variants is trained with PPO and SAC. For all baselines,
we add a penalty reward of -100 and terminate the episode upon a safety violation to provide a clear
learning signal. For the CMDP baselines, the cost is 1 for a violation and 0 otherwise. We also ran
CMDP baselines using only the sparse violation cost (cost = 1 for a violation, 0 otherwise) without
the -100 episode-termination penalty; under this protocol the CMDP baselines failed to learn a safe
or performant policy within our training budget. For all experiments involving RAMPS and SPICE,
we use a maximum prediction horizon of Hmax = 5, which is justified in A.3. We use OSQP Stellato
et al. (2020) to solve the quadratic program.

5.2 RESULTS AND ANALYSIS

Safety Analysis. As detailed in Table 1, all variants of RAMPS demonstrates a substantial reduction
in cumulative safety violations compared to various baselines across different environments. This
effect is particularly pronounced in high-dimensional tasks like SafeHopper, SafeCheetah, SafeAnt
and SafeHumanoid, where RAMPS variants typically exhibit significantly fewer violations than
other methods. The violation curves in Figure 1, 6 visually reinforce these findings; while other
methods often show a continued accumulation of violations during training, the curves for RAMPS
variants tend to flatten much earlier in the training phase, indicating the shield’s success in mitigating
unsafe actions. This suggests that our multi-step shielding approach provides robust safety assurances,
especially where optimization-based or other model-predictive methods may face challenges.

The effectiveness of RAMPS stems from its robust shielding framework, rather than solely relying on
the underlying dynamics model’s accuracy. A comparison between RAMPS + K and SPICE + K, both
utilizing Koopman dynamics, reveals that RAMPS consistently achieves superior safety performance.
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(a) Hopper (b) Cheetah (c) Ant (d) Humanoid

Figure 1: Cumulative Safety violations (top row in each subfigure) and episodic reward (bottom row)
for all high-dimensional environments.

Algorithm Pendulum SafeHopper SafeCheetah SafeAnt SafeHumanoid

SauteRL 91± 22 703± 78 183± 25 1221± 203 319± 106
CUP 184± 225 673± 63 122± 22 1883± 221 172± 90
P3O 173± 166 620± 6 185± 8 1481± 446 183± 45
SPICE + L 495± 128 Failed Failed Failed Failed
SPICE + K 87± 8 459± 105 169± 70 Failed Failed
RAMPS + L + PPO 69± 6 193± 44 7± 7 162± 42 137± 134
RAMPS + K + PPO 53± 6 172± 15 26± 17 111± 23 154± 25
RAMPS + K + SAC 25± 26 49± 10 21± 4 242± 38 11± 7

Table 1: Cumulative safety violations during training. Failed indicates that training quit or the agent
never completed a safe episode. L = Linear Regression baseline; K = Koopman Dynamics model.

This difference highlights RAMPS’s ability to operate effectively even with an imperfect model, due
to its explicit accounting for model error through robust multi-step predictions. While methods like
SPICE typically require a highly accurate model with minimal error to ensure stable performance,
RAMPS’s design allows it to maintain safety guarantees across a broader range of model accuracies.
Furthermore, the real-time operation of the RAMPS shield is highly efficient. As detailed in Table
2, the mean per-step computation time ranges from just 0.23 ms for Pendulum to 0.40 ms for the
high-dimensional Ant environment, suggesting feasibility for real-time control loops.

The Safety-Performance Tradeoff. A critical aspect of safe RL is balancing stringent safety with
high task performance. The reward curves in Figure 1 illustrate that RAMPS effectively navigates
this tradeoff. Across most environments, RAMPS achieves strong safety while obtaining competitive,
and often superior, task rewards compared to the baselines. This suggests that the shield provides
necessary interventions without being overly conservative, allowing the policy to explore and exploit
high-reward regions.

Policy-Agnostic Shielding. We evaluate RAMPS with both PPO (on-policy) and SAC (off-policy) to
highlight that the shield operates independently of the underlying RL algorithm. SAC is generally
more reliable, especially in high-dimensional settings such as SafeHumanoid, while PPO performs
competitively and even surpasses SAC on SafeAnt. These results indicate that RAMPS is compatible
with multiple learning paradigms and scales effectively to challenging continuous-control tasks.

The PPO instability observed on Humanoid is not a shield-specific failure but a known limitation
of on-policy methods under action modification. Prior work shows that even simple invalid-action
masking, structurally analogous to shielding because the executed action differs from the policy’s
proposal, can cause PPO’s KL divergence to spike and training to collapse (Huang & Ontañón, 2020;
Hou et al., 2023). Similar sensitivity has been documented in safe-RL algorithms such as CPO and

9
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primal–dual CMDP methods, where constraint-induced distribution shift destabilizes updates without
additional safeguards (Achiam et al., 2017; Paternain et al., 2019; Ding et al., 2020). In contrast,
off-policy approaches exhibit greater robustness to distribution mismatch (Haarnoja et al., 2018; Liu
et al., 2022).

Empirical Feasibility of Multi-step constraints A crucial element of our framework’s reliability is
the practical feasibility of the multi-step QP. We analyzed the action selection distribution, and the
results (detailed in Appendix A.5.5, Table 3) confirm our shield is highly robust. For the complex
locomotion tasks, the backup policy was invoked in less than 2% of all timesteps, and for Pendulum
and SafeHumanoid, it was never used at all. This demonstrates that our primary shield consistently
finds a feasible, safe solution, validating the empirical stability of our approach and showing that the
conditional guarantee of Theorem 1 is almost always active.

Role of Model Expressiveness. The choice of dynamics model within RAMPS can influence this
balance between safety and reward, particularly in environments with complex dynamics. While
both RAMPS + L (simple linear model) and RAMPS + K (Koopman model) offer significant safety
improvements, the more expressive Koopman model generally supports better reward performance.
This is observed in all environments, but particularly in SafeCheetah, where RAMPS + L achieves
extremely low violations but shows lower reward accumulation compared to RAMPS + K. As shown
in Appendix A.6, this is an outcome of the simpler linear model leading to a more conservative
shield (due to larger estimated error bounds), resulting in interventions with larger deviations from
the neural action. This hinder the agent’s ability to learn a policy that maximizes the reward. In
contrast, the more accurate Koopman model allows for a less conservative, yet still provably safe,
shield, thereby improving the overall safety-performance balance.

Ablation Analysis. We performed an extensive ablation analysis, detailed in Appendix A.3, to
validate the design principles of the RAMPS framework. These studies confirm that robust, multi-step
shielding is a co-designed system requiring a careful balance of competing factors. Our most critical
finding is that explicit robustness to model error is the essential component for safety; removing
the error-aware tightening term proved catastrophic, leading to continuous safety violations regardless
of other hyperparameter settings (Figure 2).

Furthermore, the ablations justify our hyperparameter choices by exploring key trade-offs. The
prediction horizon H must be long enough to resolve high relative-degree traps but short enough
to avoid compounding model error (Figure 4). The CBF decay rate λ must be permissive enough
to ensure the underlying QP remains feasible, as an overly conservative setting harms both safety
and reward (Figure 3). Finally, we show that a high-confidence error bound (99th percentile)
is a prerequisite for achieving both safety and high reward, as it creates a more stable learning
environment (Figure 5). We further evaluate RAMPS under multi-dimensional safety constraints to
demonstrate scalability A.7. In the SAFEHUMANOID benchmark, we simultaneously constrain the 3
coordinate and 18 joint angular velocities (a 21-dimensional safety set). RAMPS accumulates only
256 violations, whereas CMDP-based baselines exceed 3000 violations and fail to learn a safe policy,
reflected by their steadily increasing violation curves. Additonally, RAMPS is the only method that
attains a high task reward of 5,000, while CMDP baselines plateau near 500. Together, these results
show that RAMPS maintains safety even under high-dimensional constraints without sacrificing
performance. Collectively, these results validate our methodology and demonstrate that effective
shielding arises from a calibrated synthesis of all framework components.

6 CONCLUSION

We present RAMPS, a scalable model-predictive shielding framework that enables safe policy learning
for complex, high-dimensional systems. The core of our approach is the synergy between a learned,
linear dynamics model and a robust, multi-step safety shield. By leveraging a linear representation,
which can range from a simple regression to a more complex latent model like the koopman operator,
RAMPS remains computationally tractable. Its multi-step, adaptive-horizon Control Barrier Function
provides strong foresight to prevent safety violations, even when the learned model is an imperfect
approximation of the true dynamics. Experiments on a suite of challenging environments demonstrate
the efficacy of RAMPS, showing it can dramatically reduce safety violations while maintaining high
task performance. Its ability to learn a reliable safety model from a few samples makes it particularly
well-suited for deployment of reinforcement learning agents in safety-critical applications.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we provide the following
resources. Source Code: The complete implementation of the RAMPS framework, including the
Koopman dynamics model, the multi-step CBF shield, and all training scripts used to generate
our results, is available as supplementary material. Theoretical Foundations: The mathematical
formulation of our multi-step robust CBF, including the derivation of the safety constraints and the
robust tightening term, is detailed in Section 4. The probabilistic safety guarantees relative to the
learned model are established in 4. Experimental Details: Our experimental setup, including envi-
ronment descriptions, safety specifications, and baseline implementations, is described in Section 5
and Section A. Furthermore, our extensive ablation studies, detailed in Appendix A.3, provide a
clear analysis of hyperparameter sensitivity and justify our final configuration choices. We believe
these resources provide a clear and complete path for reproducing our findings and building upon our
work.
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A APPENDIX

Algorithm 1 RAMPS

Input: Policy π, environment E , initial datasets D,Dval, model-update period Tmodel, policy-update
period Tπ

1: Train initial linear model F̂ = (A,B, c) on D; compute validation errors {εi} on Dval

2: Set error bound ε← quantile({εi}, q)
3: Precompute matrices for all horizons up to Hmax (matrix powers Ak, constraint templates G(H),

accumulators Mh)
4: loop
5: aπ ← π(s)
6: Observe lifted state z from s
7: ubest ← None; best H← None
8: Hlo ← Hmin; Hhi ← Hmax

9: while Hlo ≤ Hhi do
10: Hmid ← ⌊(Hlo +Hhi)/2⌋
11: Build constraint matrices G(Hmid) and h(Hmid) using (A,B, c), ε, and precomputed {Ak}
12: Solve QPHmid : minu0:H−1

∥u0 − aπ∥22
s.t. G(Hmid)u ≤ h(Hmid), uk ∈ U

13: if QPHmid feasible then
14: ubest ← solution; best H← Hmid
15: Hlo ← Hmid + 1
16: else
17: Hhi ← Hmid − 1
18: end if
19: end while
20: if ubest = None then
21: Apply backup action u← ubackup(z)
22: else
23: Apply shielded action u← ubest[0]
24: end if
25: Execute u in environment, store transition in D
26: Periodically refit (A,B, c) and recompute ε and QP precomputations (every Tmodel steps)
27: Periodically update policy π from D (every Tπ steps)
28: end loop

A.1 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational efficiency of our shielding framework is critical for its real-time applicability.
The architecture of our method is designed to front-load the most intensive computations into a
single, state-independent pre-computation phase, leaving the per-timestep solve phase remarkably
lightweight. We analyze the complexity of these two phases below, defining s as the state dimension,
u as the action dimension, H as the maximum prediction horizon, and m as the number of faces in
the safety polyhedron.

One-Time Pre-computation Cost. The computationally intensive construction of the QP’s state-
independent components is performed in a pre-computation phase, which is executed only when the
underlying Koopman dynamics model is updated. This pre-computes and caches all components of
the QP that are independent of the current state zk. The construction of the QP constraint matrices
dominates the complexity of this phase.

• Matrix Power and Affine Term Pre-computation: Calculating the powers of the state
matrix A up to AH requires O(H · s3) operations. The cumulative affine terms are subse-
quently computed in O(H · s2).

• Constraint Matrix Construction: The primary cost lies in constructing the matrices for the
full-horizon QP. The constraint matrix Gall has dimensions (Nc×Hu), where the number of
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constraints Nc ≤ mH . The vectorized right-hand-side matrices, Mh and vh, are constructed
with a complexity of approximately O(m ·H · s2).

The dominant term arises from the matrix power calculation, making the total complexity of the
pre-computation phase O(H · s3 +m ·H · s2). This cost is incurred only once per model update,
not at every control step.

Real-Time Solve Cost. The shield is executed at each timestep and is designed for high-frequency
operation. Its complexity is significantly lower due to the extensive pre-computation.

• State-Dependent Calculation: The only significant state-dependent computation is the
calculation of the right-hand-side vector hall. Leveraging the pre-computed matrices, this is
reduced to a single matrix-vector product, hall = Mhzk + vh, which has a complexity of
O(m ·H · s).

• Binary Search and QP Solution: The binary search for the largest feasible horizon performs
O(logH) iterations. Within each iteration, we update the QP’s bounds and solve it. The
‘update‘ operation is linear in the number of constraints, O(Nc). Crucially, the ‘solve‘ call
is warm-started from the previous iteration’s solution, making its average-case complexity,
which we denote Tqp warm, substantially lower than solving from scratch.

Therefore, the total real-time complexity of the adaptive horizon selection is approximately
O(m ·H · s+ log(H) ·Tqp warm). This low polynomial complexity ensures that the shield can
operate efficiently in real-time control loops.

A.2 PROOF OF THEOREM 2

We restate the theorem for convenience:
Theorem. Let ϵ1, . . . , ϵN be a set of i.i.d. sampled model errors from our learned model F̂ . Assume
that the probability of any two samples being equal is zero. Choose a quantile 0 < q < 1 and let ε be
the ⌈qN⌉’th smallest value among ϵ1, . . . , ϵN . Then

Pr[∥F (sk, uk)− F̂ (sk, uk)∥∞ > ε] ≤ 1− q +
1

(2N)1/3
+

1

4(21/3)N2/3
.

Proof. Let E be a random variable defining the errors in the learned model so that ϵ1, . . . , ϵN are
i.i.d. samples from E. Let ε be a conservative q-quantile of these errors (that is, ε = ϵ(⌈qN⌉) where
ϵ(i) is the i’th order statistic of the sampled errors). Define a random variable X such that

X =

{
1 E > ϵ

0 otherwise
.

Then X is a Bernoulli random variable with success probability P [E > ε] so that in particular
E[X] = P [E > ε] and Var[X] = P [E > ε] (1− P [E > ε]). We can now view our error samples
ϵ1, . . . , ϵn in terms of X . By construction, exactly ⌈qN⌉ of the error samples are less than or equal
to ε, so we compute the sample mean of X

µ̂X =
N − ⌈qN⌉

N
=
⌊N − qN⌋

N
≤ 1− q.

Applying Chebyshev’s inequality to µ̂X , we find that for any positive c

P [|µ̂X − P [E > ε]| ≥ c] ≤ P [E > ε] (1− P [E > ε])

Nc2

Notice that for all 0 ≤ p ≤ 1 we have p(1− p) ≤ 1/4 so that

P [|µ̂X − P [E > ε]| ≥ c] ≤ 1

4Nc2
=⇒ P [P [E < ε]− µ̂X ≥ c] ≤ 1

4Nc2
.

Plugging in, µ̂X ≤ 1− q we find

P [P [E > ε] ≥ 1− q + c] ≤ 1

4Nc2
=⇒ P [E > ε] ≤ 1− q + c+

1

4Nc2
.
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Since this bound holds for any positive c, we set c = (2N)−1/3, which minimizes the value of the
right-hand side. Plugging in this value of c, we find the bound

P [E > ε] ≤ 1− q +
1

(2N)1/3
+

1

4(21/3)N2/3
.

A.3 ABLATIONS

A.3.1 EXPLORING THE EFFECT OF THE ROBUSTNESS TERM

(a) Hopper (b) Cheetah (c) Ant

Figure 2: The critical role of the robustness term in ensuring safety. This figure compares the
cumulative safety violations of the full RAMPS framework against a non-robust version that operates
without the error-aware tightening term. While the non-robust shield continuously accumulates
violations across all settings for the decay rate λ, the full RAMPS framework successfully learns to
operate safely, evidenced by the flattening of its violation curves.

To isolate the contribution of our robust formulation, we performed a critical ablation study, presented
in Figure 2. In this experiment, the shield operated without its error-aware tightening term. For direct
comparison, each plot includes the performance of the full RAMPS framework using both the learned
Koopman and a baseline Linear model.

While all non-robust configurations continuously accumulate safety violations, the full RAMPS
framework’s violation curve consistently flattens, demonstrating its ability to learn to operate safely.
This failure of the ablated models occurs because they operate on an overly optimistic view of
the dynamics; they consistently certify actions that are safe within their flawed model but lead to
catastrophic failures in the physical system. This result provides definitive evidence that while the
multi-step CBF is a necessary structure, the explicit robustness to model uncertainty is the essential
component that enables our framework to achieve strong safety guarantees.

Furthermore, the reward curves reveal that ineffective shielding directly harms task performance. The
most conservative non-robust setting (λ = 0.99), which also suffers from high violations, yields the
worst reward, often collapsing to negative values. This occurs because its overly strict constraints lead
to frequent QP infeasibility, forcing the agent to rely on a simple backup policy that is not designed
for task progression. In contrast, the full RAMPS framework not only achieves the best safety but
also learns the highest-performing reward policy. This demonstrates that the shield is not overly
aggressive; rather, by being robust and minimally invasive, it creates a stable learning environment
that allows the agent to safely explore and find a more optimal policy.
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(a) Hopper (b) Cheetah (c) Ant

Figure 3: The impact of CBF conservatism (λ) on safety and performance. Moderately conservative
decay rates (e.g., λ = 0.4, λ = 0.7) achieve the best balance of low safety violations and high task
reward. The most conservative setting (λ = 0.99) paradoxically performs the worst due to frequent
QP infeasibility.

A.3.2 THE EFFECT OF CBF λ CONSERVATISM

A key hyperparameter in our framework is the CBF decay rate λ, which dictates the conservatism of
the shield. Figure 3 explores this parameter’s effect on both safety and reward performance when
using the full, robust RAMPS framework. The results reveal a critical trade-off between constraint
strictness and the feasibility of the shielding problem, a trade-off that varies with the complexity of
the environment dynamics.

In the Hopper environment, the most conservative setting (λ = 0.99) results in a safe failure; the
lowest violation count but also near-zero reward. This occurs because the strict requirement to
preserve 99% of the safety margin makes the QP problem frequently infeasible, forcing the agent
to over-rely on a passive backup policy that prevents task progression. Conversely, a setting of
λ = 0.7 achieves the best performance in both safety and reward, indicating that the learned model is
sufficiently accurate to consistently find feasible solutions under this demanding safety requirement.

The Cheetah environment paints a similar but distinct picture. Here, the λ = 0.99 setting again
results in the worst performance, but leads to high violations and low reward, suggesting that when
the primary QP fails, the simple backup policy is insufficient to manage Cheetah’s unstable dynamics.
The best results are achieved with more permissive values (λ ∈ {0.05, 0.4}), suggesting that for more
complex systems, the shield requires greater flexibility to ensure the underlying optimization problem
remains feasible.

This trend is further emphasized in the highly unstable Ant environment. As with Cheetah, the
λ = 0.99 setting is catastrophically poor in both safety and reward. A setting of λ = 0.7 is also
too restrictive, hampering the agent’s ability to learn. The best overall performance is achieved
with λ = 0.4, which provides a strong safety guarantee while allowing enough flexibility for the
agent to learn a high-reward policy. A highly permissive setting like λ = 0.05 enables good policy
learning but at the cost of higher safety violations. Ultimately, these results show that λ is a critical
tuning parameter, with the optimal value becoming more permissive as the inherent instability of the
environment increases.
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(a) Hopper (b) Cheetah (c) Ant

Figure 4: The trade-off between foresight and model reliability for the prediction horizon H . A
moderate horizon (H = 5) achieves the best balance of low violations and high reward, avoiding
both the myopic failures of a short horizon (H = 2) and the unreliable predictions of a long horizon
(H = 20).

A.3.3 THE EFFECT OF PREDICTION HORIZON

The selection of the prediction horizon H presents a critical trade-off between predictive foresight
and the reliability of the learned dynamics model. Figure 4 explores this trade-off, revealing that the
optimal choice for H is environment-dependent but follows a clear pattern.

A long horizon (H = 20) consistently leads to poor performance in both safety and reward. This
occurs because the multi-step predictions of the Koopman model become increasingly inaccurate
as errors compound over the extended rollout. The shield is forced to make decisions based on this
unreliable information, leading to suboptimal or unsafe interventions.

Conversely, a short horizon (H = 2) is also suboptimal. While the model is accurate over this brief
window, the limited lookahead is insufficient to resolve the high relative-degree traps present in the
dynamics, a core challenge this paper aims to address. The shield becomes myopic, failing to prevent
safety violations that are inevitable several steps in the future.

The results show that a moderate horizon (H = 5) provides the optimal balance. It is long enough to
provide the necessary foresight to handle control delays and traps, yet short enough that the learned
model’s predictions remain reliable. This empirical finding validates our choice of H = 5 for the
main experiments presented in this paper.

A.3.4 THE EFFECT OF ERROR BOUND CONFIDENCE

The robust tightening term in our framework is calibrated using an error bound, ϵ, derived from a
hold-out validation set. The confidence of this bound is a critical bhyperparameter, which we control
by taking a percentile of the absolute one-step prediction errors. Figure 5 explores the impact of this
choice on safety and reward.

The results show a clear and direct correlation between the confidence of the error bound and the
safety of the resulting shield. A lower percentile (e.g., 25 or 50) provides an error bound that is too
optimistic; it underestimates the true model error, leading to a high number of safety violations. As
the confidence increases, the shield becomes more conservative and effective, with the 99th percentile
(99) achieving the best safety performance by a significant margin.

Crucially, this improved safety directly enables better reward performance. By providing a more
reliable and stable training environment, the 99th percentile configuration allows the RL agent to
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(a) Hopper (b) Cheetah (c) Ant

Figure 5: The impact of error bound confidence (percentile) on performance. A higher percentile
(99), corresponding to a more conservative error bound, achieves the best safety (lowest violations)
and enables the agent to learn a higher-reward policy.

explore more effectively and learn a higher-reward policy. Less confident settings, while seemingly
more permissive, lead to catastrophic failures that terminate episodes, ultimately harming the agent’s
ability to learn the task. This demonstrates that a sufficiently conservative, high-confidence error
bound is not a hindrance to performance but is in fact a prerequisite for achieving both safety and
high reward in complex environments.

A.3.5 SUMMARY OF ABLATION STUDIES

Taken together, our ablation studies validate the core design principles of the RAMPS framework and
illuminate the critical trade-offs inherent in learning-based predictive safety. The results consistently
demonstrate that achieving robust safety is not a matter of maximizing any single parameter, but of
finding a carefully calibrated balance between competing factors.

The most crucial finding is that explicit robustness to model error is the essential component for
safety. As shown in Figure 2, removing the error-aware tightening term is catastrophic; the shield
becomes overly optimistic and fails to prevent a continuous accumulation of violations, regardless
of other hyperparameter settings. This confirms that the ability to reason about its own model’s
uncertainty is a prerequisite for the shield’s success.

Building upon this robust foundation, the remaining hyperparameters tune the balance between safety
and performance. The prediction horizon H must balance foresight against model reliability; a
moderate horizon (Figure 4) is optimal, as short horizons are too myopic to handle control delays,
while long horizons suffer from compounding prediction errors. Similarly, the CBF decay rate λ
must balance constraint strictness against QP feasibility (Figure 3), where an overly conservative
setting can paradoxically harm both safety and reward by causing frequent reliance on a simple
backup policy. Finally, our analysis of the error bound confidence (Figure 5) resolves a key trade-off,
showing that a more conservative, high-confidence error bound (99th percentile) does not hamper
performance but instead enables it by creating a more stable learning environment. Collectively, these
results show that RAMPS is a co-designed system where each component is critical for achieving
both high performance and strong safety guarantees.

A.4 ACTIVE RECOVERY BACKUP POLICY

In the rare event that the primary multi-step QP is infeasible, a deterministic backup policy is invoked.
The use of such a policy is a standard practice in model-predictive shielding to ensure the agent
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can always take an action. The active recovery approach detailed here is therefore not a novel
contribution of this work, but rather follows a common pattern established in prior literature.
Similar geometric recovery strategies are employed in other prominent shielding frameworks, such as
SPICE Anderson et al. (2023), DMPS Banerjee et al. (2024), and MASE Wachi et al. (2023). For
completeness, we describe our specific implementation of this widely-used technique below.

The policy, detailed in Algorithm 2, identifies the single most critical safety constraint, which is the
one the agent is closest to violating; and solves a secondary, lightweight QP. The objective of this
QP is to find a control action that maximally steers the system away from that constraint’s boundary,
leveraging the inward-pointing normal vector of the safe set.

Algorithm 2 Active Recovery Backup Policy (following e.g., Anderson et al. (2023); Banerjee et al.
(2024))

1: Input: Current latent state z
2: Initialize: Minimum barrier value hmin ←∞, critical normal vector p∗ ← null
3: for all polyhedron face (pi, bi) in the definition of the safe set C do
4: Compute barrier value hi(z)← −(p⊤i z + bi)
5: if hi(z) < hmin then
6: hmin ← hi(z)
7: p∗ ← pi
8: end if
9: end for

10: if p∗ is null then
11: {This occurs only if the state is not within any defined polyhedron.}
12: return 0
13: end if
14: Define QP cost vector q ← (p∗)⊤B
15: Solve the following QP for the recovery action ubackup:

min
u

q⊤u

s.t. u ∈ U (action bounds)

16: return ubackup if QP is solved, else return 0.

Limitations of Backup Policy. This recovery strategy is designed for computational efficiency,
which necessitates several trade-offs common to such backup controllers. First, it is non-robust,
relying on the nominal dynamics matrix B without accounting for model error. Second, it is myopic,
operating as a one-step greedy controller without the foresight of a multi-step planner. Third, it
focuses on the single most critical constraint, which may be insufficient when multiple constraints
are nearly violated. Despite these inherent limitations, it provides a more principled fallback than a
simple passive policy.

A.5 EXPERIMENTAL DETAILS

We evaluate our approach on five distinct environments, ranging from classic control tasks to more
complex locomotion challenges, to demonstrate its efficacy across varying dimensionalities and
dynamics.

Pendulum In this classic control benchmark, the goal is to swing up and stabilize an inverted
pendulum. The environment has a 2-dimensional state space (encoding the pendulum’s angle and
angular velocity) and a 1-dimensional action space (torque). A state is considered unsafe if the
pendulum’s angle |θ| exceeds 0.4 radians. We allow all baselines 200000 environment interactions.

SafeHopper To test our method on more complex dynamics, we use the SafeHopper environment.
This task involves controlling a two-legged robot, presenting a higher-dimensional challenge with
an 11-dimensional state space and a 3-dimensional action space. Safety is defined by constraints on
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the robot’s velocity (−0.37315 ≤ v ≤ 0.37315.) to ensure stable hopping. We allow all baselines
300000 environment interactions.

SafeCheetah The SafeCheetah environment is another complex benchmark. The agent must control
a planar cheetah-like robot to run forward. This environment features a 17-dimensional state space
and a 6-dimensional action space. Similar to SafeHopper, the safety specifications impose constraints
on the robot’s velocity (−2.8795 ≤ v ≤ 2.8795.) to prevent unstable or dangerous movements. We
allow all baselines 300000 environment interactions.

SafeAnt We further increase the complexity with the SafeAnt environment, which involves control-
ling a quadrupedal robot. The agent must learn to walk forward in a high-dimensional state space of
105 dimensions, with an 8-dimensional action space. Safety is defined by constraints on the robot’s
velocity (−2.3475 ≤ v ≤ 2.3475.) We allow all baselines 1000000 environment interactions.

SafeHumanoid We also test RAMPS on SafeHumanoid, a highly challenging benchmark with a
348-dimensional state space and 17-dimensional action space. The agent must learn to coordinate
full-body locomotion while remaining within prescribed safety limits, defined by velocity constraints
(−2.3475 ≤ v ≤ 2.3475). As with the other environments, each baseline receives 1000000 environ-
ment interactions. Due to its dimensionality and instability, SafeHumanoid is known to be difficult
for safe-RL algorithms, making it a strong stress test for both the learned dynamics and the shielding
mechanism.

Figure 6: Safety violations (top) and episodic reward (bottom) for Pendulum.

Pendulum is a low-dimensional, easy-to-control system where safety constraints and dynamics pose
minimal difficulty. As expected, all methods achieve near-perfect safety and high reward. We include
the results here for completeness; the main paper focuses on higher-dimensional domains where
RAMPS’ multi-step shielding and scalable model-based prediction are essential.

A.5.1 DEEP KOOPMAN OPERATOR IMPLEMENTATION

For all experiments involving a learned latent dynamics model (RAMPS + K and SPICE + K), we use
the Deep Koopman Operator framework introduced by Shi & Meng Shi & Meng (2022). The central
idea of this approach is to represent the nonlinear system dynamics with a linear model in a suitably
constructed higher-dimensional lifted space. This is achieved by augmenting the original state with
learned features that allow the dynamics to evolve linearly in the expanded coordinate system.

Lifted State Representation. Let xk denote the original system state at time k. A deep encoder
network gθ(·) generates additional latent coordinates, producing the lifted state

zk =

[
xk

gθ(xk)

]
.

In this lifted space, the system evolution is modeled by a linear dynamical system:

zk+1 = Azk +Buk,

where uk is the control input and the matrices A and B are learned jointly with the encoder.
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Network Architecture. The encoder is realized as a three-layer multilayer perceptron (MLP) with
two hidden layers of 256 units each. Hidden layers use SiLU activations and the final layer uses a
Tanh activation. The dimensionality of the lifted latent features is environment-specific, chosen to
balance model accuracy and computational tractability: we use 2 for Pendulum, 22 for SafeHopper,
34 for SafeCheetah, and 100 for both SafeAnt and SafeHumanoid. These dimensions were selected
empirically based on prediction accuracy and shield feasibility profiles.

Training Objective. The Koopman model is trained end-to-end using the loss function proposed
by Shi & Meng Shi & Meng (2022), consisting of two complementary components:

1. State Prediction Loss: Measures the discrepancy between the true next state xk+1 and the
predicted next state extracted from z′k+1 = Azk +Buk. This encourages accurate one-step
predictions in the original state space.

2. Linearity Loss: Enforces consistency between the learned feature representation and linear
evolution under the Koopman operator. Specifically, it penalizes the difference between the
predicted lifted features gθ(x′

k+1) and the lifted features of the true next state gθ(xk+1).

Together, these losses encourage gθ to discover a set of basis functions that linearize the system
dynamics, effectively serving as a global regularizer and promoting long-horizon predictive stability.

Constraint Handling in the Lifted Space. Safety constraints are defined in the original state space
via polyhedral sets. Rather than imposing constraints directly on the learned latent coordinates, we
preserve the original safety specifications by zero-padding the additional Koopman features. That
is, the lifted constraint set is constructed by embedding the original constraint polytope into the
higher-dimensional space as:

Clifted = C × {0}dlatent .

This approach ensures that safety checks and subsequent CBF/QP computations remain well-defined
without introducing arbitrary or unverified restrictions on the latent variables. While conservative,
this choice has two benefits: (i) it guarantees compatibility with the underlying safety definitions,
and (ii) it avoids imposing structural constraints on the learned features whose semantics are not
directly interpretable. Investigating learned or data-driven safety projections in the latent space is an
interesting direction for future work.

Summary. In combination, these design choices allow the Deep Koopman Operator to model high-
dimensional, nonlinear systems with a compact linear approximation in the lifted space, enabling fast
multi-step predictions and efficient computation of safety certificates needed for RAMPS and SPICE.
Despite its simplicity, the model is sufficiently expressive for the complex locomotion domains we
consider, while maintaining the computational tractability required for real-time shielding.

A.5.2 ERROR BOUND CALIBRATION

The dynamics model and its corresponding error bound, ϵ, are periodically recalibrated throughout
training to adapt to newly collected data. An initial model is trained after the first 10,000 environment
steps. Subsequently, the model is fine-tuned at progressively doubling intervals (e.g., at 20,000,
40,000, and 80,000 steps). At each training stage, the error bound is calibrated using a hold-out
validation set comprising 20% of all collected experience. To maintain computational efficiency, the
size of this validation set is capped at a maximum of 100,000 samples.

A.5.3 ANALYSIS OF BASELINE FAILURES

As noted in Table 1, the SPICE+L baseline failed on all high-dimensional locomotion tasks
(SafeHopper, SafeCheetah, and SafeAnt). This is attributable to the representational limits of a
simple linear model in capturing the complex, nonlinear dynamics of these environments. The result-
ing model exhibited large prediction errors, which, within SPICE’s one-step shielding formulation,
rendered the safety QP persistently infeasible. This forced the agent to over-rely on its backup policy,
preventing it from learning the task.

More critically, SPICE+K also failed on the most complex environment, SafeAnt. This failure
occurred even when using the exact same pre-trained Deep Koopman Operator that was successful for
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our method, RAMPS +K. This finding isolates the failure to SPICE’s underlying shielding technique.
Its myopic, one-step approach is not sufficiently robust to the larger, yet unavoidable, prediction
errors of a learned model in such a high-dimensional space. In contrast, our multi-step formulation is
explicitly designed to tolerate these errors, explaining the significant performance difference.

We note explicitly that DMPS (Banerjee et al., 2024), VELM (Wang & Zhu, 2024) and MASE (Wachi
et al., 2023) are model-predictive shielding (MPS) techniques which operate using a safety predicate
or safe/unsafe-state specification rather than relying on dense cost or reward shaping. As such they
are directly related to SPICE and RAMPS in design intent: all attempt to find safe actions via online
planning under a safety specification. Despite operating with this stronger safety interface, the publicly
available implementations of DMPS and VELM, and our re-implementation of MASE (Wachi et al.,
2023), exhibited rapid violation growth and frequent infeasible/timeout planner returns on the MuJoCo
locomotion benchmarks (Hopper, Cheetah, Ant), accumulating >1000 violations in the first 20–30k
environment interactions. We also tested the Conservative Safety Critics approach (Bharadhwaj
et al., 2021a), which similarly failed to train stably in these setting. Because these failure modes
made them impractical and unstable as baselines for our main comparisons, we exclude them from
the final baseline table. For transparency and validation, we will release all code and scripts for these
baselines along with our framework implementation.

A.5.4 ANALYSIS OF COMPUTATIONAL EFFICIENCY

ENVIRONMENT RAMPS SPICE

PENDULUM 0.2289± 0.01 0.4061± 0.0063
HOPPER 0.2822± 0.04 0.5996± 0.0624
CHEETAH 0.3234± 0.03 0.5244± 0.0418
ANT 0.4038± 0.08 2.4820± 1.8329
HUMANOID 0.5061± 0.02 3.7105± 1.2512

Table 2: Shield Computation Time Analysis. This table shows the mean and standard deviation
of the per-step execution time of the safety shield (Policy action proposal, state space lifting via
Koopman, constraint assembly and QP solving) across all training episodes for each environment.
The consistently low average times (all under 0.5 ms) confirm the real-time feasibility of the RAMPS
framework.

The primary design goal of the RAMPS framework is to make predictive shielding computationally
tractable for real-time applications. The timing results in Table 2 confirm the success of this approach.
Across all tested environments, the mean per-step computation time for the shield is remarkably low,
remaining well under half a millisecond.

Notably, the computation time scales gracefully with the complexity of the environment. For the
simple Pendulum environment, the mean solve time is just 0.2289 ms. For the high-dimensional and
dynamically complex Ant environment, this time increases to only 0.4038 ms. This sub-millisecond
performance demonstrates that the extensive pre-computation phase is effective, leaving the online
QP solve lightweight and suitable for high-frequency control loops. Furthermore, the low standard
deviation across all environments indicates that the solver’s performance is consistent and predictable,
a critical feature for reliable real-time systems. We use OSQP Stellato et al. (2020) for solving the
QP.

A.5.5 ANALYSIS OF ACTION TYPE DISTRIBUTION

Table 3 details the ratio of actions selected by the primary shield, the original RL agent’s policy
(Neural), and the fallback backup policy. This analysis reveals how the shield’s behavior adapts to
the complexity of the environment.

The shield is the dominant actor in all environments, indicating its critical role in maintaining safety.
This is most pronounced in the highly unstable Ant environment, where the shield intervenes in over
96% of steps, indicating that the RL agent rarely proposes a provably safe action on its own. It is
critical to note that this high intervention rate does not prevent the agent from learning a high-reward
policy. This is a direct result of the shield’s minimally invasive objective function, which finds the
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ENVIRONMENT SHIELD RATIO (%) NEURAL RATIO (%) BACKUP RATIO (%)

PENDULUM 74.72± 31.48 25.28± 31.48 0.00± 0.00
HOPPER 82.06± 4.11 17.08± 3.79 0.86± 0.93
CHEETAH 81.13± 4.55 17.27± 4.25 1.60± 0.59
ANT 96.50± 1.39 2.45± 1.25 1.05± 0.81
HUMANOID 96.28± 1.39 3.81± 0.81 0.00± 0.00

Table 3: This table shows the per-episode average ratio of actions selected by the Shield, the original
RL agent (Neural), and the Backup policy for results in Figure 1 and Table 1. The results show that
the shield is highly active but allows the agent more freedom in less complex environments. The
extremely low reliance on the Backup policy across all environments confirms the robustness and
high feasibility rate of the primary multi-step QP shield.

closest possible safe action to the agent’s original proposal. Consequently, many interventions are
slight corrections that nudge the agent back towards safety without fundamentally disrupting its
learned behavior.

In the moderately complex Cheetah and Hopper environments, the shield remains the primary actor
but is significantly less invasive, allowing the agent’s neural policy to act directly approximately 17%
of the time. This suggests that for these dynamics, the RL agent is better able to learn a policy that
aligns with the safety constraints. The Pendulum environment shows the most interesting behavior;
while the shield is active for 75% of the steps on average, the extremely high standard deviation
(31.48%) suggests a bimodal behavior where the agent learns to operate safely for long periods before
requiring periods of heavy intervention.

Finally, a crucial indicator of the primary shield’s robustness is the extremely low reliance on the
backup policy. For all locomotion tasks, the backup policy is invoked only 1% of the time, and
for Pendulum, it is never used at all. This demonstrates that the multi-step, adaptive-horizon QP
is consistently able to find a feasible, provably safe solution, rarely needing to resort to its simpler
fallback mechanism.

A.6 ANALYSIS OF SHIELD INTERVENTION

To better understand the trade-off between reward maximization and safety interventions, we analyze
the average per-step action deviation (∥ushielded − uagent∥) during training in the Cheetah environment
(Fig. 7).

We observe that RAMPS+L (linear model) produces consistently higher action deviations, indicating
that the shield intervenes more aggressively to maintain safety. This stronger intervention translates
into more reliable shielding performance, but it also limits the agent’s ability to explore freely,
resulting in lower asymptotic reward.

By contrast, RAMPS+K (Koopman model) exhibits substantially smaller action deviations throughout
training. This reduced level of intervention reflects the shield’s greater invasiveness efficiency:
the agent is allowed to execute its intended actions more faithfully, leading to improved reward
performance while still respecting safety constraints. In other words, RAMPS+K achieves a better
balance between enforcing safety and preserving the agent’s autonomy.

A.7 ANALYSIS OF MULTI-DIMENSIONAL CONSTRAINTS ON HUMANOID

To evaluate RAMPS under realistic multi-dimensional safety conditions, we conducted an additional
experiment on SAFEHUMANOID with a 348-dimensional state space and imposed a 21-dimensional
polyhedral safety constraint set. Specifically, we constrained all coordinate velocities (state indices
23–25) to lie in [−2.3475, 2.3475] and all angular velocities (state indices 28–45) to lie in [−20, 20].
Figure 8b shows that RAMPS+SAC achieves high reward (approximately 5000) and continues
improving throughout training, while CMDP baselines (P3O, CUP, PPO-Saute) plateau early and fail
to make progress.
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Figure 7: Average per-step action deviation (∥ushielded − uagent∥) during training on the Cheetah
environment. Both variants show increasing intervention early in training as the agent explores unsafe
behaviors, with RAMPS+K consistently yielding smaller deviations (less invasive interventions) and
decaying sooner as the policy and model improve.

(a) Cumulative safety violations . (b) Episode reward .

Figure 8: RAMPS evaluation on Humanoid with constraints on 21 dimensions (3 coordinate velocity
constraints and 18 angular velocity constraints): (a) cumulative safety violations over training; (b)
episode reward over training.

Figure 8a also demonstrates the safety behavior: RAMPS accumulates only about 256 cumulative
violations over 500,000 steps, and reducing violations to 0 after 400,000 steps. CMDP baselines
never learn to be safe, as evidenced by their increasing violation curves. These results confirm that
RAMPS scales effectively to high-dimensional, coupled safety constraints and maintains both strong
safety and high performance in settings where CMDP methods fail completely.

A.8 LIMITATIONS AND FUTURE WORK

Our framework operates under a common assumption in online learning: no a priori model of the
environment is available. Consequently, the initial policy, π0, begins exploring without any prior
knowledge of the environment, which can lead to safety violations while the dynamics model is being
learned. These have also been reported in SPICE Anderson et al. (2023), VELM Wang & Zhu (2024)
and DMPS Banerjee et al. (2024). A promising direction for future work is to mitigate these cold
start violations by pre-training the Koopman model on relevant offline datasets, thereby enabling a
safer initial policy. Furthermore, while our method provides a high-confidence probabilistic safety
certificate, it does not offer a hard, worst-case guarantee on the number of violations. Future research
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could focus on bridging this gap by employing formal verification techniques, such as abstract
interpretation, to compute a rigorous upper bound on the number of potential safety violations
throughout the learning process.
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