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Abstract

Constraint-based offline reinforcement learning (RL) involves policy constraints or
imposing penalties on the value function to mitigate overestimation errors caused
by distributional shift. This paper focuses on a limitation in existing offline RL
methods with penalized value function, indicating the potential for underestimation
bias due to unnecessary bias introduced in the value function. To address this
concern, we propose Exclusively Penalized Q-learning (EPQ), which reduces
estimation bias in the value function by selectively penalizing states that are prone
to inducing estimation errors. Numerical results show that our method significantly
reduces underestimation bias and improves performance in various offline control
tasks compared to other offline RL methods.

1 Introduction

Reinforcement learning (RL) is gaining significant attention for solving complex Markov decision
process (MDP) tasks. Traditionally, online RL develops advanced decision-making strategies through
continuous interaction with environments [1, 2, 3, 4, 5, 6]. However, in real-world scenarios,
interacting with the environment can be costly, particularly in high-risk environments like disaster
situations, where obtaining sufficient data for learning is challenging [7, 8]. In such setups, the need
for exploration [9, 10, 11, 12] to discover optimal strategies often incurs additional costs, as agents
must try various actions, some of which may be inefficient or risky [13, 14]. This highlights the
significance of research on offline setups, where policies are learned using pre-collected data without
any direct interaction with the environment [15, 16]. In offline setups, policy actions not present in
the data may introduce extrapolation errors, disrupting accurate value estimation by causing a large
overestimation error in the value function, known as the distributional shift problem [17].

To address the distributional shift problem, Fujimoto et al. [17] proposes batch-constrainedQ-learning
(BCQ), assuming that policy actions are selected from the dataset only. Ensuring optimal convergence
of both the policy and value function under batch-constrained RL setups [17], BCQ demonstrates
stable learning in offline setups and outperforms behavior cloning (BC) techniques [18], which simply
mimic actions from the dataset. However, the policy constraint of BCQ strongly limits the policy
space, prompting further research to find improved policies by relaxing constraints based on the
support of the policy using metrics like maximum mean discrepancy (MMD) [19] or Kullback–Leibler
(KL) divergence [20]. While these methods moderately relax policy restrictions, the issue of limited
policies persists. Thus, instead of constraining the policy space directly, alternative offline RL
methods have been proposed to reduce overestimation bias based on penalized Q-functions [21, 22].
ConservativeQ-learning (CQL) [21], a representative offline RL algorithm usingQ-penalty, penalizes
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the Q-function for policy actions and provides a bonus to the Q-function for actions in the dataset.
Consequently, CQL selects more actions from the dataset, effectively reducing overestimation errors
without policy constraints.

While CQL has demonstrated outstanding performance across various offline tasks, we observed that
it introduces unnecessary estimation bias in the value function for states that do not contribute to
overestimation. This issue becomes more pronounced as the level of penalty increases, resulting in
performance degradation. To address this issue, this paper introduces a novel Exclusively Penalized
Q-learning (EPQ) method for efficient offline RL. EPQ imposes a threshold-based penalty on the
value function exclusively for states causing estimation errors to mitigate overestimation bias without
introducing unnecessary bias in offline learning. Experimental results demonstrate that our proposed
method effectively reduces both overestimation bias due to distributional shift and underestimation
bias due to the penalty, allowing a more accurate evaluation of the current policy compared to the
existing methods. Numerical results reveal that EPQ significantly outperforms other state-of-the-art
offline RL algorithms on various D4RL tasks [23].

2 Preliminaries

2.1 Markov Decision Process and Offline RL

We consider a Markov Decision Process (MDP) environment denoted as M := (S,A, P,R, γ),
where S is the state space, A is the action space, P represents the transition probability, γ is the
discount factor, and R is the bounded reward function. In offline RL, transition samples dt =
(st, at, rt, st+1) are generated by a behavior policy β and stored in the dataset D. We can empirically
estimate β as β̂(a|s) = N(s,a)

N(s) , where N represents the number of data points in D. We assume that
Es∼D,a∼β [f(s, a)] ≈ Es∼D,a∼β̂ [f(s, a)] = Es,a∼D[f(s, a)] for arbitrary function f . Utilizing only
the provided dataset without interacting with the environment, our objective is to find a target policy
π that maximizes the expected discounted return, denoted as J(π) := Es0,a0,s1,···∼π[G0], where
Gt =

∑∞
l=t γ

l−tR(sl, al) represents the discounted return.

2.2 Distributional Shift Problem in Offline RL

In online RL, the optimal policy that maximizes J(π) is found through iterative policy evalu-
ation and policy improvement [2, 3]. For policy evaluation, the action value function is de-
fined as Qπ(st, at) := Est,at,st+1,···∼π[

∑∞
l=t γ

l−tR(sl, al)|st, at]. Qπ can be estimated by it-
eratively applying the Bellman operator Bπ to an arbitrary Q-function, where (BπQ)(s, a) :=
R(s, a) + γEs′∼P (·|s,a), a′∼π(·|s′)[Q(s′, a′)]. The Q-function is updated to minimize the Bellman

error using the dataset D, given by Es,a∼D
[
(Q(s, a)− BπQ(s, a))

2
]
. In offline RL, samples are

generated by the behavior policy β only, resulting in estimation errors in the Q-function for policy ac-
tions not present in the dataset D. The policy π is updated to maximize the Q-function, incorporating
the estimation error in the policy improvement step. This process accumulates positive bias in the
Q-function as iterations progress [17].

2.3 Conservative Q-learning

To mitigate overestimation in offline RL, conservative Q-learning (CQL) [21] penalizes the Q-
function for the policy actions a ∼ π and increases the Q-function for the data actions a ∼ β̂ while
minimizing the Bellman error, where the Q-loss function of CQL is given by

1

2
Es,a,s′∼D

[
(Q(s, a)− BπQ(s, a))

2
]
+ αEs∼D[Ea∼π[Q(s, a)]− Ea∼β̂ [Q(s, a)]], (1)

where α ≥ 0 is a penalizing constant. From the value update in (1), the averageQ-value of data actions
Ea∼β̂ [Q(s, a)] becomes larger than the average Q-value of target policy actions Ea∼π[Q(s, a)] as
α increases. As a result, the policy will tend to choose the data actions more from the policy
improvement step, effectively reducing overestimation error in the Q-function [21].
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3 Methodology

3.1 Motivation: Necessity of Mitigating Unnecessary Estimation Bias

In this section, we focus on the penalization behavior of CQL, one of the most representative
penalty-based offline RL methods, and present an illustrative example to show that unnecessary
estimation bias can occur in the Q-function due to the penalization. As explained in Section 2.3, CQL
penalizes the Q-function for policy actions and increases the Q-function for data actions in (1). When
examining the Q-function for each state-action pair (s, a), the Q-value increases if π(a|s) > β̂(a|s);
otherwise, the Q-value decreases as the penalizing constant α becomes sufficiently large [21].

To visually demonstrate this, Fig. 1 depicts
histograms of the fixed policy π and the es-
timated behavior policy β̂ for various π and
β at the initial state s0 on the Pendulum task
with a single-dimensional action space in
OpenAI Gym tasks [24], as cases (a), (b),
and (c), along with the estimation bias in
the Q-function for CQL with various pe-
nalizing factors α. In this example, for all
states except the initial state, we consider
π = β = Unif(−2, 2). In each case, CQL
only updates theQ-function with its penalty
to evaluate π in an offline setup, as shown
in equation (1), and we plot the estimation
bias of CQL, which represents the average
difference between the learned Q-function
and the expected return G0.

Figure 1: Histograms of π and β̂ (left axis), and the
estimation bias of CQL with various α (right axis) at s0
for three cases: (a) β = Unif(−2, 2) and π = N(0, 0.2)
(b) β = 1

2N(−1, 0.3)+ 1
2N(1, 0.3) and π = N(1, 0.2)

(c) β = 1
2N(−1, 0.3)+ 1

2N(1, 0.3) and π = N(0, 0.2),
where Unif(−2, 2) represents a uniform distribution and
N(µ, σ) denotes a Gaussian distribution with mean µ
and standard deviation σ.

From the results in Fig. 1, we observe that CQL suffers from unnecessary estimation bias in the
Q-function for cases (a) and (b). In both cases, the histograms illustrate that policy actions are fully
contained in the dataset β̂, suggesting that the estimation error in the Bellman update is unlikely to
occur even without any penalty. However, CQL introduces a substantial negative bias for actions near
0 where π(0|s0) > β̂(0|s0) and a positive bias for other actions. Furthermore, the bias intensifies
as the penalty level α increases. In order to mitigate this bias, reducing the penalty level α to zero
may seem intuitive in cases like Fig. 1(a) and Fig. 1(b). However, such an approach would be
inadequate in cases like Fig. 1(c). In this case, because policy actions close to 0 are rare in the dataset,
penalization is necessary to address overestimation caused by estimation errors in offline learning.
Furthermore, this problem may become more severe in actual offline learning situations, as the policy
continues to change as learning progresses, compared to situations where a fixed policy is assumed.

3.2 Exclusively Penalized Q-learning

To address the issue outlined in Section 3.1, our goal is to selectively give a penalty to the Q-
function in cases like Fig. 1(c), where policy actions are insufficient in the dataset while minimizing
unnecessary bias due to the penalty in scenarios like Fig. 1(a) and Fig. 1(b), where policy actions are
sufficient in the dataset. To achieve this goal, we introduce a novel exclusive penalty Pτ defined by

Pτ := fπ,β̂τ (s)︸ ︷︷ ︸
penalty adaptation factor

·

(
π(a|s)
β̂(a|s)

− 1

)
︸ ︷︷ ︸

penalty term

, (2)

where fπ,β̂τ (s) = Ea∼π(·|s)[xβ̂τ ] is a penalty adaptation factor for a given β̂ and policy π. Here,
xβ̂τ = min(1.0, exp(−(log β̂(a|s)− τ))) represents the amount of adaptive penalty that is reduced
as log β̂ exceeds the threshold τ . Thus, the adaptation factor fπ,β̂τ indicates the average penalty that
policy actions should receive. If the probability of estimated behavior policy β̂ for policy actions
exceeds the threshold τ , i.e., policy actions are sufficiently present in the dataset, then xβ̂τ will be
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Figure 2: An illustration of our exclusive penalty: (a) The log-probability of β̂ and the thresholds
τ1 and τ2 according to the number of data samples N1 and N2, where N1 << N2. (b) The penalty
adaptation factor fπ,β̂τ which represents the amount of adaptive penalty, indicating how much log β̂
exceeds the threshold τ . Three different policies πi, i = 1, 2, 3, are considered.

smaller than 1 and reduce the amount of penalty as much as the amount by which β̂ exceeds the
threshold τ to avoid unnecessary bias introduced in Section 3.1. Otherwise, it will be 1 due to
min(1.0, ·) to maintain the penalty since policy actions are insufficient in the dataset. The latter
penalty term π(a|s)

β̂(a|s)
− 1, positive if π(a|s) > β̂(a|s) and otherwise negative, imposes a positive

penalty on the Q-function when π(a|s) > β̂(a|s), and otherwise, it increases the Q-function since
the penalty is negative, as the Q-penalization method considered in CQL [21].

To elaborate further on our proposed penalty, Fig. 2(a) depicts the log-probability of β̂ and the
thresholds τ used for penalty adaptation, with N representing the number of data points. In Fig. 2(a),
if the log-probability log β̂ of an action a ∈ A exceeds the threshold τ , this indicates that the action a
is sufficiently represented in the dataset. Thus, we reduce the penalty for such actions. Furthermore, as
shown in Fig. 2(a), when the number of actions increase fromN1 toN2, the threshold for determining
"enough data" decreases from τ1 to τ2, even if the data distribution remains unchanged.

Furthermore, to explain the role of the threshold τ in the proposed penalty Pτ , we consider two
thresholds, τ1 and τ2. In Fig. 2(b), which illustrates the proposed penalty adaptation factor fπ,β̂τ1 and
fπ,β̂τ2 for thresholds τ1 and τ2, xβ̂τ1 is larger than xβ̂τ2 because τ1 > τ2. As a result, in the case of τ1,
Pτ1 only reduces the penalty for π3. In other words, fπ1,β̂

τ1 = fπ2,β̂
τ1 = 1, and fπ3,β̂

τ1 < 1. On the
other hand, as the number of data samples increases from N1 to N2, more actions generated by the
behavior policy β will be stored in the dataset, so policy actions are more likely to be in the dataset.
In this case, the threshold should be lowered from τ1 to τ2. As a result, β̂ exceeds the threshold τ2
in the support of all policies πi, and Pτ2 reduces the penalty in the support of all policies πi, i.e.,
fπ3,β̂
τ2 < fπ1,β̂

τ2 < fπ2,β̂
τ2 < 1. Thus, even without knowing the exact number of data samples, the

proposed penalty Pτ allows adjusting the penalty level appropriately according to the given number
of data samples based on the threshold τ .

Now, we propose exclusively penalized Q-learning (EPQ), a novel offline RL method that minimizes
the Bellman error while imposing the proposed exclusive penalty Pτ on the Q-function as follows:

min
Q

Es,a,s′∼D
[
(Q(s, a)− {BπQ(s, a)− αPτ})2

]
. (3)

Then, we can prove that the final Q-function of EPQ underestimates the true value function Qπ in
offline RL if α is sufficiently large, as stated in the following theorem. This indicates that the proposed
EPQ can successfully reduce overestimation bias in offline RL, while simultaneously alleviating
unnecessary bias based on the proposed penalty Pτ .
Theorem 3.1. We denote the Q-function converged from the Q-update of EPQ using the proposed
penaltyPτ in (3) by Q̂π . Then, the expected value of Q̂π underestimates the expected true policy value,
i.e., Ea∼π[Q̂π(s, a)] ≤ Ea∼π[Qπ(s, a)],∀s ∈ D, with high probability 1− δ for some δ ∈ (0, 1), if
the penalizing factor α is sufficiently large. Furthermore, the proposed penalty reduces the average
penalty for policy actions compared to the average penalty of CQL.
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Figure 3: Histogram of β̂ (left axis), and
the corresponding fπ,β̂τ (s) with various
τ (right axis) for two cases: (a) β =
Unif(−2, 2) (b) β = 1

2N(−1, 0.3) +
1
2N(1, 0.3)

Figure 4: Histograms of π and β̂ (left axis), and the estima-
tion bias of CQL and EPQ with various τ (right axis) for
three cases: (a) β = Unif(−2, 2) and π = N(0, 0.2) (b)
β = 1

2N(−1, 0.3) + 1
2N(1, 0.3) and π = N(1, 0.2) (c)

β = 1
2N(−1, 0.3) + 1

2N(1, 0.3) and π = N(0, 0.2).

Proof) Proof of Theorem 3.1 is provided in Appendix A.

In order to demonstrate the Q-function convergence behavior of the proposed EPQ in more detail,
we revisit the previous Pendulum task in Fig. 1. Fig. 3 shows the histogram of β̂ and the penalty
adaptation factor fπ,β̂τ (s) for Gaussian policy π = N(µ, 0.2), where µ varies from −2 to 2, with
varying β. In Fig. 3(a), fπ,β̂τ (s) should be less than 1 for any policy mean µ since all policy actions
are sufficient in the dataset. In 3(b), fπ,β̂τ (s) is less than 1 only if the β̂ probability near the policy
mean µ is high, and otherwise, fπ,β̂τ (s) is 1, which indicates the lack of policy action in the dataset.
Thus, the result shows that fπ,β̂τ (s) reflects our motivation in Section 3.1 well. Moreover, Fig. 4
compares the estimation bias curves of CQL and EPQ with α = 10 in the scenarios presented in
Fig. 1. CQL exhibits unnecessary bias for situations in Fig. 4(a) and Fig. 4(b) where no penalty is
needed, as discussed in Section 3.1. Conversely, our proposed method effectively reduces estimation
bias in these cases while appropriately maintaining the penalty for the scenario in Fig. 4(c) where
penalization is required. This experiment demonstrates the effectiveness of our proposed approach,
and the subsequent numerical results in Section 4 will numerically show that our method significantly
reduces estimation bias in offline learning, resulting in improved performance.

3.3 Prioritized Dataset

Figure 5: An illustration of the prioritized dataset. As the policy focuses on actions with maximum
Q-values, the difference between β̂ and π becomes substantial, inducing large penalty: (a) The
change of data distribution from β̂ (w/o PD) to β̂Q (with PD) (b) The corresponding penalty graphs
for β̂ (w/o PD) and β̂Q (with PD).

In Section 3.2, EPQ effectively controls the penalty in the scenarios depicted in Fig. 4. However, in
cases where the policy is highly concentrated on one side, as shown in Fig. 4, the estimation bias may
not be completely eliminated due to the latter penalty term π

β̂
− 1 in Pτ , as π significantly exceeds

β̂. This situation, detailed in Fig. 5, arises when there is a substantial difference in the Q-function
values among data actions. As the policy is updated to maximize the Q-function, the policy shifts
towards the data action with a larger Q, resulting in a more significant penalty for CQL. To further
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alleviate the penalty to reduce unnecessary bias in this situation, instead of applying a penalty based
on β̂, we introduce a penalty based on the prioritized dataset (PD) β̂Q ∝ β̂ exp(Q). As shown in
Fig. 5(a), which illustrates the difference between the original data distribution β̂ and the modified
data distribution β̂Q after applying PD, βQ prioritizes data actions with higher Q-values within the
support of β̂. According to Fig. 5(a), when the policy π focuses on specific actions, the penalty π

β̂
− 1

increases significantly, as depicted in Fig. 5(b). In contrast, by applying PD, β̂ is adjusted to approach
β̂Q ∝ β exp(Q), aligning the data distribution more closely with the policy π. Consequently, we
anticipate that the penalty will be significantly mitigated, as the difference between π and β̂Q is much
smaller than the difference between π and β̂. Following this intuition, we modify our penalty using
PD as Pτ, PD := fπ,β̂τ (s) ·

(
π(a|s)
β̂Q(a|s)

− 1
)

. It is important to note that the penalty adaptation factor

fπ,β̂τ (s) remains unchanged since we use all data samples in the dataset for Q updates. Additionally,
we consider the prioritized dataset for the Bellman update to focus more on data actions with higher
Q-function values for better performance as considered in [25]. Then, we can derive the final Q-loss
function of EPQ with PD as

L(Q) =
1

2
Es,s′∼D,a∼β̂Q

[
(Q− {BπQ− αPτ, PD})2

]
(4)

= Es,s′∼D,a∼β̂,a′∼π

[
wQs,a ·

{
1

2
(Q(s, a)− BπQ(s, a))

2
+ αfπ,β̂τ (s)(Q(s, a′)−Q(s, a))

}]
+ C,

where wQs,a = β̂Q(a|s)
β̂(a|s)

= exp(Q(s,a))
Ea′∼β̂(·|s)[exp(Q(s,a′))] is the importance sampling (IS) weight, C is the

remaining constant term, and the detailed derivation of (4) is provided in Appendix B.1. The ablation
study in Section 4.3 will show that EPQ performs better when prioritized dataset β̂Q is considered.

3.4 Practical Implementation and Algorithm

Now, we propose the implementation of EPQ based on the value loss function (4). Basically, our
implementation follows the setup of CQL [21]. For policy, we utilize the Gaussian policy with a
Tanh(·) layer proposed by Haarnoja et al. [4] and update the policy to maximize the Q-function with
its entropy. Then, the policy loss function is given by

L(π) = Es∼D, a∼π[−Q(s, a) + log π(a|s)]. (5)

Based on the Q-update in (4) and the policy loss function (5), we summarize the algorithm of EPQ as
Algorithm 1. More detailed implementation, including the calculation method of the IS weight wQs,a
and redefined loss functions for the parameterized Q and π, is provided in Appendix B.2.

Algorithm 1 Exclusively Penalized Q-learning

Require: Offline dataset D
1: Train the behavior policy β̂ based on behavior cloning (BC)
2: Initialize Q and π
3: for gradient step k = 0, 1, 2, 3, . . . do
4: Sample batch transitions {(s, a, r, s′)} from D.
5: Calculate the penalty adaptation factor fπ,β̂τ (s) and IS weight wQs,a
6: Compute losses L(Q) in Equation (4) and L(π) in Equation (5)
7: Update the policy π to minimize L(π)
8: Update the Q-function Q to minimize L(Q)
9: end for

4 Experiments

In this section, we evaluate our proposed EPQ against other state-of-the-art offline RL algorithms
using the D4RL benchmark [23], commonly used in the offline RL domain. Among various D4RL
tasks, we mainly consider Mujoco locomotion tasks, Adroit manipulation tasks, and AntMaze
navigation tasks, with scores normalized from 0 to 100, where 0 represents random performance and
100 represents expert performance.
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Table 1: Performance comparison: Normalized average return results

Task name BC 10% BC TD3+BC CQL (paper) CQL (reprod.) Onestep IQL MCQ MISA EPQ

halfcheetah-random 2.3 2.2 12.7 35.4 20.8 6.9 12.9 28.5 2.5 33.0±2.4
hopper-random 4.1 4.7 22.5 10.8 9.7 7.9 9.6 31.8 9.9 32.1±0.3
walker2d-random 1.7 2.3 7.2 7.0 7.1 6.2 6.9 17.0 9.0 23.0±0.7
halfcheetah-medium 42.6 42.5 48.3 44.4 44.0 48.4 47.4 64.3 47.4 67.3±0.5
hopper-medium 52.9 56.9 59.3 86.6 58.5 59.6 66.3 78.4 67.1 101.3±0.2
walker2d-medium 75.3 75.0 83.7 74.5 72.5 81.8 78.3 91.0 84.1 87.8±2.1

halfcheetah-medium-expert 55.2 92.9 90.7 62.4 91.6 93.4 86.7 87.5 94.7 95.7±0.3
hopper-medium-expert 52.5 110.9 98.0 111.0 105.4 103.3 91.5 111.2 109.8 108.8±5.2
walker2d-medium-expert 107.5 109.0 110.1 98.7 108.8 113.0 109.6 114.2 109.4 112.0±0.6

halfcheetah-expert 92.9 91.9 98.6 104.8 96.3 92.3 95.4 96.2 95.9 107.2±0.2
hopper-expert 111.2 109.6 111.7 109.9 110.8 112.3 112.4 111.4 111.9 112.4±0.5
walker2d-expert 108.5 109.1 110.3 121.6 110.0 111.0 110.1 107.2 109.3 109.8±1.0

halfcheetah-medium-replay 36.6 40.6 44.6 46.2 45.5 38.1 44.2 56.8 45.6 62.0±1.6
hopper-medium-replay 18.1 75.9 60.9 48.6 95.0 97.5 94.7 101.6 98.6 97.8±1.0
walker2d-medium-replay 26.0 62.5 81.8 32.6 77.2 49.5 73.9 91.3 86.2 85.3±1.0

halfcheetah-full-replay 62.4 68.7 75.9 - 76.9 80.0 73.3 82.3 74.8 85.3±0.7
hopper-full-replay 34.3 92.8 81.5 - 101.0 107.8 107.2 108.5 103.5 108.5±0.6
walker2d-full-replay 45.0 89.4 95.2 - 93.4 102.0 98.1 95.7 94.8 107.4±0.6

Mujoco Tasks Total 929.1 1236.9 1293.0 - 1325.8 1311.0 1318.5 1474.9 1354.5 1536.7

pen-human 63.9 -2.0 64.8 55.8 37.5 71.8 71.5 68.5 88.1 83.9±6.8
door-human 2.0 0.0 0.0 9.1 9.9 5.4 4.3 2.3 5.2 13.2±2.4
hammer-human 1.2 0.0 1.8 2.1 4.4 1.2 1.4 0.3 8.1 3.9±5.0
relocate-human 0.1 0.0 0.1 0.4 0.2 1.9 0.1 0.1 0.1 0.3±0.2

pen-cloned 37.0 0.0 49 40.3 39.2 60.0 37.3 49.4 58.6 91.8±4.7
door-cloned 0.0 0.0 0.0 3.5 0.4 0.4 1.6 1.3 0.5 5.8±2.8
hammer-cloned 0.6 0.0 0.2 5.7 2.1 2.1 2.1 1.4 2.2 22.8±15.3
relocate-cloned -0.3 0.0 -0.2 -0.1 -0.1 -0.1 -0.2 0.0 -0.1 0.1±0.1

Adroit Tasks Total 104.5 -2 115.7 116.8 93.6 142.7 118.1 123.3 162.7 221.8

umaze 54.6 62.8 78.6 74.0 80.4 72.5 87.5 98.3 92.3 99.4±1.0
umaze-diverse 45.6 50.2 71.4 84.0 56.3 75.0 62.2 80.0 89.1 78.3±5.0
medium-play 0.0 5.4 10.6 61.2 67.5 5.0 71.2 52.5 63.0 85.0±11.2
medium-diverse 0.0 9.8 3.0 53.7 62.5 5.0 70.0 37.5 62.8 86.7±18.9
large-play 0.0 0.0 0.2 15.8 35.0 2.5 39.6 2.5 17.5 40.0±8.2
large-diverse 0.0 6.0 0.0 14.9 13.3 2.5 47.5 7.5 23.4 36.7±4.7

AntMaze Tasks Total 100.2 134.2 163.8 303.6 315.0 162.5 378.0 278.3 348.1 426.1

Mujoco Locomotion Tasks: The D4RL dataset comprises offline datasets obtained from Mujoco
tasks [26] like HalfCheetah, Hopper, and Walker2d. Each task has ‘random’, ‘medium’, and ‘expert’
datasets, obtained by a random policy, the medium policy with performance of 50 to 100 points, and
the expert policy with performance of 100 points, respectively. Additionally, there are ‘medium-expert’
dataset that contains both ‘medium’ and ‘expert’ data, ‘medium-replay’ and ‘full-replay’ datasets that
contain the buffers generated while the medium and expert policies are trained, respectively.
Adroit Manipulation Tasks: Adroit provides four complex manipulation tasks: Pen, Hammer, Door,
and Relocate, utilizing motion-captured human data with associated rewards. Each task has two
datasets: ‘human’ dataset derived from human motion-capture data, and ‘cloned’ dataset comprising
samples from both the cloned behavior policy using BC and the original motion-capture data.
AntMaze Navigation Tasks: AntMaze is composed of six navigation tasks including ‘umaze’,
‘umaze-diverse’, ‘medium-play’, ‘medium-diverse’, ‘large-play’, and ‘large-diverse’ where robot ant
agent is trained to reach a goal within the maze. While ‘play’ dataset is acquired under a fixed set of
goal locations and a fixed set of starting locations, the ‘diverse’ dataset is acquired under a random
goal locations and random starting locations setting.

4.1 Performance Comparisons

We compare our algorithm with various constraint-based offline RL methods, including CQL baselines
[21] on which our algorithm is based on. For other baseline methods, we consider behavior cloning
(BC) and 10% BC, where the latter only utilizes only the top 10% of demonstrations with high
returns, TD3+BC [27] that simply combines BC with TD3 [3], Onestep RL [28] that performs a
single policy iteration based on the dataset, implicit Q-learning (IQL) [29] that seeks the optimal
value function for the dataset through expectile regression, mildly conservative Q-learning (MCQ)
[30] that reduces overestimation by using pseudo Q values for out-of-distribution actions, and MISA
[31] that considers the policy constraint based on mutual information. To assess baseline algorithm
performance, we utilize results directly from the original papers for CQL (paper) [21] and MCQ
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(a) Squared value of estimation bias

(b) Normalized average return

Figure 6: Analysis of proposed method

[30], as well as reported results from other baseline algorithms according to Ma et al. [31]. For
CQL, reproducing its performance is challenging, so we also include reproduced CQL performance
labeled as CQL (reprod.) from Ma et al. [31]. Any missing experimental results have been filled in
by re-implementing each baseline algorithm. For our algorithm, we explored various penalty control
thresholds τ ∈ {c · ρ, c ∈ [0, 10]}, where ρ represents the log-density of Unif(A). For Mujoco tasks,
the EPQ penalizing constant is fixed at α = 20.0, and for Adroit tasks, we consider either α = 5.0
or α = 20.0. To ensure robustness, we run our algorithm with four different seeds for each task.
Table 1 displays the average normalized returns and corresponding standard deviations for compared
algorithms. The performance of EPQ is based on the best hyperparameter setup, with additional
results presented in the ablation study in Section 4.3. Further details on the hyperparameter setup are
provided in Appendix C.

The results in Table 1 shows that our algorithm significantly outperforms the other constraint-based
offline RL algorithms in all considered tasks. In particular, in challenging tasks such as Adroit
tasks and AntMaze tasks, where rewards are sparse or intermittent, EPQ demonstrates remarkable
performance improvements compared to recent offline RL methods. This is because EPQ can impose
appropriate penalty on each state, even if the policy and behavior policy varies depending on the
timestep as demonstrated in Section 3.2. Also, we observe that our proposed algorithm shows a
large increase in performance in the ‘Hopper-random’, ‘Hopper-medium’, and ‘Halfcheetah-medium’
environments compared to CQL, so we will further analyze the causes of the performance increase in
these tasks in the following section. For adroit tasks, the performance of CQL (reprod.) is too low
compared to CQL (paper), so we provide the enhanced version of CQL in Appendix E, but the result
in Appendix E shows that EPQ still performs better than the enhanced version of CQL.

4.2 The Analysis of Estimation Bias

In Section 4.1, EPQ outperforms CQL baselines significantly across various D4RL tasks based on
our proposed penalty in Section 3. To analyze the impact of our overestimation reduction method on
performance enhancement, we compare the estimation bias for EPQ and CQL baselines with various
penalizing constants α ∈ {0, 1, 5, 10, 20} on ‘Hopper-random’, ‘Hopper-medium’, and ‘Halfcheetah-
medium’ tasks. In Fig. 6(a), we depict the squared value of estimation bias, obtained from the
difference between the Q-value and the empirical average return for sample trajectories generated by
the policy, to show both overestimation bias and underestimation bias. In the experiment shown in
Fig. 6(a), the estimation bias in CQL with α = 0 became excessively large, causing the gradients to
explode and resulting in forced termination of the training. Fig. 6(b) illustrates the corresponding
normalized average returns, emphasizing learning progress after 200k gradient steps.
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(a) Component evaluation

(b) Penalty control thresholds τ ∈ [0.2ρ, 0.5ρ, 1.0ρ, 2.0ρ, 5.0ρ, 10.0ρ]

Figure 7: Additional ablation studies on the Hopper-random, Hopper-medium, and Halfcheetah-
medium tasks are presented. The best hyperparameter in the paper is denoted by the orange curve.

In Fig. 6(a), we observe an increase in estimation bias for CQL as the penalizing constant α rises,
attributed to unnecessary bias highlighted in Fig. 1. Reducing α to nearly 0 in CQL, however, fails
to effectively mitigate overestimation error, leading to a divergence of the Q-function in tasks such
as ‘Hopper-random’ and ‘Hopper-medium’, as shown in Fig. 1. Conversely, EPQ demonstrates
superior reduction of estimation bias in the Q-function compared to CQL baselines for all tasks in
Fig. 6(a), indicating its capability to mitigate both overestimation and underestimation bias based
on the proposed penalty. As a result, Fig. 6(b) shows that EPQ significantly outperforms all CQL
variants on ‘Hopper-random’, ‘Hopper-medium’, and ‘Halfcheetah-medium’ tasks.

4.3 Ablation Study

To understand the impact of EPQ’s components and hyperparameters, we conduct ablation studies
to evaluate each component and the penalty control threshold τ on the ‘Hopper-random’, ‘Hopper-
medium’, and ‘HalfCheetah-medium’ tasks where our proposed method showed a significant perfor-
mance improvement compared to the baseline CQL.

Component Evaluation: In Section 3, we introduced two variants of the EPQ algorithm: EPQ
(w/o PD), which does not incorporate a prioritized dataset as in equation (3), and EPQ (with PD),
which leverages a prioritized dataset based on β̂Q as in equation (4). In Fig. 7(a), we compare the
performance of EPQ (w/o PD), EPQ (with PD), and the CQL baseline to analyze the impact of
each component. EPQ (w/o PD) still outperforms CQL, demonstrating that the proposed penalty
Pτ in Section 3.2 enhances performance by efficiently reducing overestimation without introducing
unnecessary estimation bias, as discussed in Section 3.2. Additionally, Fig. 7(a) shows that EPQ
(with PD) outperforms EPQ (w/o PD) significantly in the HalfCheetah-medium task, indicating that
the proposed prioritized dataset contributes to improved performance, as anticipated in Section 3.3.

Penalty Control Threshold τ : As discussed in Section 3.2, EPQ can dynamically control the
penalty amount based on the penalty control threshold τ , as illustrated in Fig. 2, even in the absence
of knowledge about the exact number of data samples. Fig. 7(b) demonstrates the performance
of EPQ with various penalty control thresholds τ ∈ [0.2ρ, 0.5ρ, 1.0ρ, 2.0ρ, 5.0ρ, 10.0ρ], where ρ
represents the log-density of Unif(A). Note that ρ is negative, so τ = 10.0ρ is the lowest threshold
while τ = 0.2ρ is the highest. The results indicate that in tasks like Hopper-medium, where a
variety of actions are not sufficiently sampled, a higher threshold performs better. Conversely,
in tasks like Hopper-random, where a broad range of actions is sampled, a lower threshold is
more effective. An exception is the HalfCheetah-medium task, which, despite having fewer action
variations, visits a diverse range of states. This may result in lower overestimation errors for OOD
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actions, benefiting from a lower threshold. Furthermore, the performance on the considered tasks
appears to be surprisingly less sensitive to changes in τ . We initially expect that performance might
be sensitive to τ since it reflects the fixed number of data samples, but the results indicate that the
performance is not significantly affected by variations in τ . Moreover, EPQ algorithms with different
τ consistently outperform the CQL baseline, highlighting the superiority of the proposed method.

5 Related Works

5.1 Constraint-based Offline RL

In order to reduce the overestimation in offline learning, several constraint-based offline RL methods
have been studied. Fujimoto et al. [17] propose a batch-constrained policy to minimize the extrapola-
tion error, and Kumar et al. [19], Wu et al. [20] limits the distribution based on the distance of the
distribution, rather than directly constraining the policy. Fujimoto and Gu [27] restricts the policy
actions to batch data based on the online algorithm TD3 [3]. Furthermore, Kumar et al. [21], Yu
et al. [32] aims to minimize the probability of out-of-distribution actions using the lower bound of
the true value. By predicting a more optimistic cost for tuples within the batch data, Xu et al. [22]
provides stable training for offline-based safe RL tasks. On the other hand, Ma et al. [31] utilizes
mutual information to constrain the policy.

5.2 Offline Learning based on Data Optimality

In offline learning setup, the optimality of the dataset greatly impacts the performance [25]. Simply
using n-% BC, or applying weighted experiences, [33, 34] which utilize only a portion of the data
based on the evaluation results of the given data, fails to exploit the distribution of the data. Based on
Haarnoja et al. [35], Reddy et al. [36], Garg et al. [37] uses the Boltzmann distribution for offline
learning, training the policy to follow actions with higher value in the imitation learning domain
[38, 39]. Kostrikov et al. [29] and Xiao et al. [40] argue that the optimality of data can be improved by
using expectile regression and in-sample SoftMax, respectively. Additionally, methods that learn the
value function from the return of the data in a supervised manner have been proposed [41, 28, 42, 43].

5.3 Value Function Shaping

In offline RL, imposing constraints on the policy can decrease the performance, thus Kumar et al.
[21], Lyu et al. [44] impose penalties on out-of-distribution actions by structuring the learned value
function as a lower bound to the actual values. Additionally, Fakoor et al. [45] addresses the issue by
imposing a policy constraint based on divergence and suppressing overly optimistic estimations on
the value function, thereby preventing excessive expansion of the value function. Moreover, Wu et al.
[46] predicts the instability of actions through the variance of the value function, imposing penalties
on the out-of-distribution actions, while Lyu et al. [30] replaces the Q values for out-of-distribution
actions with pseudo Q-values and Agarwal et al. [47], An et al. [48], Bai et al. [49], Lee et al. [50]
mitigates the instability of learning the value function by applying ensemble techniques. In addition,
Ghosh et al. [51] interprets the changes in MDP from a Bayesian perspective through the value
function, thereby conducting adaptive policy learning.

6 Conclusion

To mitigate overestimation error in offline RL, this paper focuses on exclusive penalty control,
which selectivelys gives the penalty for states where policy actions are insufficient in the dataset.
Furthermore, we propose a prioritized dataset to enhance the efficiency of reducing unnecessary bias
due to the penalty. As a result, our proposed method, EPQ, successfully reduces the overestimation
error arising from distributional shift, while avoiding underestimation error due to the penalty.
This significantly reduces estimation bias in offline learning, resulting in substantial performance
improvements across various D4RL tasks.
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A Proof

Theorem 3.1 We denote the Q-function converged from the Q-update of EPQ using the proposed
penaltyPτ in (3) by Q̂π . Then, the expected value of Q̂π underestimates the expected true policy value,
i.e., Ea∼π[Q̂π(s, a)] ≤ Ea∼π[Qπ(s, a)],∀s ∈ D, with high probability 1− δ for some δ ∈ (0, 1), if
the penalizing factor α is sufficiently large. Furthermore, the proposed penalty reduces the average
penalty for policy actions compared to the average penalty of CQL.

A.1 Proof of Theorem 3.1

Proof of Theorem 3.1 basically follows the proof of Theorem 3.2 in Kumar et al. [21] since Pτ
multiplies the penalty control factor fπ,β̂τ (s) to the penalty of CQL. At each k-th iteration, Q-function
is updated by equation (4), then

Qk+1(s, a)← B̂πQk(s, a)− αPτ , ∀s, a, (A.1)

where B̂π is the estimation of the true Bellman operator Bπ based on data samples. It is known that
the error between the estimated Bellman operator B̂π and the true Bellman operator is bounded with
high probability of 1 − δ for some δ ∈ (0, 1) as |(BπQ)(s, a) − (B̂πQ)(s, a)| ≤ ξδ(s, a), ∀s, a,
where ξδ is a positive constant related to the given dataset D, the discount factor γ, and the transition
probability P [21]. Then, with high probability 1− δ,

Qk+1(s, a)← BπQk(s, a)− αPτ + ξδ(s, a), ∀s, a, (A.2)

Now, with the state value function V (s) := Ea∼π(·|s)[Q(s, a)]

Vk+1(s) = Ea∼π(·|s)[Qk(s, a)] = BπVk − αEa∼π[Pτ ] + ξδ(s, a)

= BπVk(s)− αEa∼π

[
fπ,β̂τ (s) ·

(
π(a|s)
β̂(a|s)

− 1

)
+ Ea∼π[ξδ(s, a)]

]
= BπVk(s)− α∆π

EPQ(s) + Ea∼π[ξδ(s, a)] (A.3)

Upon repeated iteration, Vk+1 converges to V∞(s) = V π(s) + (I − γPπ)−1 · {−α∆π
EPQ(s) +

Ea∼π[ξδ(s, a)]} based on the fixed point theorem, where ∆π
EPQ(s) := Ea∼π[Pτ ] is the average

penalty for policy π, I is the identity matrix, and Pπ is the state transition matrix where the policy π
is given. Here, we can show that the average penalty ∆π

EPQ(s) is positive as follows:

∆π
EPQ(s) = Ea∼π

[
fπ,β̂τ (s) ·

(
π(a|s)
β(a|s)

− 1

)]

= fπ,β̂τ (s)


∑
a∈A

π(a|s)

(
π(a|s)
β̂(a|s)

− 1

)
−
∑
a∈A

β̂(a|s)

(
π(a|s)
β̂(a|s)

− 1

)
︸ ︷︷ ︸

=0


= fπ,β̂τ (s) ·

∑
a∈A

(π(a|s)− β̂(a|s))2

β̂(a|s)
≥ 0, (A.4)

where the equality in (A.4) satisfies when π = β̂ or fπ,β̂τ = 0. Given that Vk+1 converges to
V∞ = V π(s) + (I − γPπ)−1 · {−α∆π

EPQ(s) + Ea∼π[ξδ(s, a)]}, choosing the penalizing constant
α that satisfies α ≥ maxs,a∈D[ξ

δ(s, a)] ·maxs∈D(∆
π
EPQ(s))

−1 will satisfy,

− α ·∆π
EPQ(s) + Ea∼π[ξδ(s, a)]

≤ − max
s,a∈D

[ξδ(s, a)] ·max
s∈D

(∆π
EPQ(s))

−1 ·∆π
EPQ(s)︸ ︷︷ ︸

≥1

+Ea∼π[ξδ(s, a)]

≤ − max
s,a∈D

[ξδ(s, a)] + Ea∼π[ξδ(s, a)] ≤ 0, ∀s, (A.5)
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Since I − γPπ is non-singular M -matrix and the inverse of non-singular M -matrix is non-
negative, i.e., all elements of (I − γPπ)−1 are non-negative, V∞(s) = V π(s) + (I − γPπ)−1 ·
{−α∆π

EPQ(s) + Ea∼π[ξδ(s, a)]} ≤ V π(s), ∀s. Therefore, V∞ underestimates the true value func-
tion V π if the penalizing constant α satisfies α ≥ maxs,a∈D[ξ

δ(s, a)] ·maxs∈D(∆
π
EPQ(s))

−1. In
addition, according to [21], the average penalty of CQL for policy actions can be represented as
∆π
CQL(s) = Ea∼π[πβ̂−1]. Thus, ∆π

EPQ(s) = fπ,β̂τ (s)∆π
CQL(s) and fπ,β̂τ (s) ≤ 1 from the definition

in (2), so 0 ≤ ∆π
EPQ(s) ≤ ∆π

CQL(s). In addition, if π = β̂, then 0 = ∆β̂
EPQ(s) = ∆β̂

CQL(s) from
the equality condition in (A.4), which indicates that the average penalty for data actions is 0 for both
EPQ and CQL. ■
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B Implementation Details

In this section, we provide the implementation details of the proposed EPQ. First of all, we provide
a detailed derivation of the final Q-loss function(4) of EPQ in Section B.1. Next, we introduce a
practical implementation of EPQ to compute the loss functions for the parameterized policy and
Q-function in Section B.2. In addition, to calculate loss functions in Section B.2, we provide the
additional implementation details in Appendices B.3, B.4, and B.5. We conduct our experiments on a
single server equipped with an Intel Xeon Gold 6336Y CPU and one NVIDIA RTX A5000 GPU, and
we compare the running time of EPQ with other baseline algorithms in Section B.6. For additional
hyperparameters in the practical implementation of EPQ, we provide detailed hyperparameter setup
and additional ablation studies in Appendix C and Appendix D, respectively.

B.1 Detailed Derivation of Q-Loss Function

In Section 3.3, the finalQ-loss function with the proposed penalty Pτ,PD = fπ,β̂τ ( π
β̂Q
−1) is given by

L(Q) = 1
2Es,s′∼D,a∼β̂Q

[
(Q− {BπQ− αPτ, PD})2

]
. In this section, we provide a more detailed

calculation of L(Q) to obtain (4) as follows:

L(Q) =
1

2
Es,s′∼D,a∼β̂Q

[
(Q− {BπQ− αPτ, PD})2

]
=

1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D,a∼β̂Q [Pτ, PD ·Q] + C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D,a∼β̂Q

[
fπ,β̂τ

(
π

β̂Q
− 1

)
Q

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[∫
a∈A

β̂Qfπ,β̂τ

(
π

β̂Q
− 1

)
Qda

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[∫
a∈A

fπ,β̂τ

(
π − β̂Q

)
Qda

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[∫
a′∈A

πfπ,β̂τ Qda′ −
∫
a∈A

β̂Qfπ,β̂τ Qda

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[
Ea′∼π

[
fπ,β̂τ Q

]
− Ea∼β̂Q

[
fπ,β̂τ Q

]]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D,a∼β̂Q

[
Ea′∼π

[
fπ,β̂τ Q

]
− fπ,β̂τ Q

]
+ C

=
(∗)

Es,s′∼D,a∼β̂

[
β̂Q

β̂
·
{
1

2
(Q− BπQ)

2
+ αfπ,β̂τ · (Ea′∼π [Q]−Q)

}]
+ C

= Es,s′∼D,a∼β̂,a′∼π

[
wQs,a ·

{
1

2
(Q(s, a)− BπQ(s, a))

2
+ αfπ,β̂τ (s)(Q(s, a′)−Q(s, a))

}]
+ C,

where C is the remaining constant term that can be ignored for the Q-update since BπQ is the fixed
target value. For (∗), we apply the IS technique, which states that Ex∼p[f(x)] = Ex∼q

[
p(x)
q(x)f(x)

]
for any probability distributions p and q, and arbitrary function f , and wQs,a = β̂Q(a|s)

β̂(a|s)
=

exp(Q(s,a))
Ea′∼β̂(·|s)[exp(Q(s,a′))] is the importance sampling (IS) ratio between β̂Q and β̂.
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B.2 Practical Implementation for EPQ

Our implementation basically follows the setup of CQL [21]. We use the Gaussian policy π with a
Tanh(·) layer proposed by Haarnoja et al. [4], and parameterize the policy π and Q-function using
neural network parameters ϕ and θ, respectively. Then, we update the policy to maximize Qθ with
its entropy H(πϕ) = Eπϕ [− log πϕ], following the maximum entropy principle [4] as explained in
Section 3.3, to account for stochastic policies. Then, we can redefine the policy loss function L(π)
defined in (5) as the policy loss function Lπ(ϕ) for policy parameter ϕ, given by

Lπ(ϕ) = Es∼D, a∼πϕ [−Qθ(s, a) + log πϕ(a|s)]. (B.1)

For theQ-loss function in (4), we use the IS ratio wQs,a in (4) to account for prioritized sampling based
on β̂Q. However, β̂Q discards samples with low IS weights, which can reduce sample efficiency. To
address this, we utilize the clipped IS weight max(cmin, w

Q
s,a), where cmin ∈ (0, 1] is the IS clipping

constant. This clipped IS weight is multiplied only to the term (Q(s, a) − BπQ(s, a))2 in (4) to
ensure that we can exploit all data samples for Q-learning while preserving the proposed penalty. The
detailed analysis for cmin is provided in Appendix D. In addition, the optimal policy that maximizes
(B.1) follows the Boltzmann distribution, proportional to exp(Qθ(s, ·)). It has been proven in Kumar
et al. [21] that the optimal policy satisfies Ea∼π[Qθ(s, a)]+H(π) = log

∑
a∼A expQθ(s, a), so we

can replace the Ea′∼π[Qθ(s, a′)] term in (4) with log
∑
a′∼A expQθ(s, a

′), given that H(π) does
not depend on the Q-function. The Bellman operator Bπ can be estimated by samples in the dataset
as BπQθ ≈ r(s, a) + Ea′∼πγQθ̄(s′, a′), where θ̄ is the parameter of the target Q-function. The
target network is updated using exponential moving average (EMA) with temperature ηθ̄ = 0.005,
as proposed in the deep Q-network (DQN) [52]. Finally, by applying IS clipping and log

∑
a expQ

to the Q-loss function (4) and redefining it as the value loss function for the value parameter θ, we
obtain the following refined value loss function LQ(θ) as follows:

LQ(θ) =
1

2
Es,a,s′∼D

[
max(cmin, w

Q
s,a) · (r(s, a) + Ea′∼πγQθ̄(s′, a′)−Qθ(s, a))

2 ] (B.2)

+ αEs,a∼D

[
wQs,af

π,β̂
τ (s)

(
log

∑
a′∈A

Qθ(s, a
′)−Qθ(s, a)

)]
,

where β̂ is pre-trained by behavior cloning (BC) [18, 53] to compute fπ,β̂τ . The parameters ϕ and θ are
updated to minimize their loss functions Lπ(ϕ) and LQ(θ) with learning rate ηϕ and ηθ, respectively.
Detailed implementations for estimating the behavior policy β̂, the IS weight wQs,a, and log

∑
a expQ

are provided in Appendices B.3, B.4, and B.5, respectively.

B.3 Behavior Policy Estimation Based on Variational Auto-Encoder

In Section B.2, we estimate the behavior policy β that generates the data samples in D necessary
for calculating the penalty adaptation factor fπ,β̂τ in equation (2). To estimate the behavior policy β̂,
we employ the variational auto-encoder (VAE), one of the most representative variational inference
methods, to approximate the underlying distribution of a large dataset based on the variational lower
bound [53]. In the context of VAE, we define an encoder model pψ(z|s, a) and a decoder model
qψ(a|z, s) parameterized by ψ, where z is the latent variable whose prior distribution p(z) follows
the multivariate normal distribution, i.e., p(z) ∼ N(0, I). Assuming independence among all data
samples, we can derive the variational lower bound for the likelihood of β as proposed by Kingma
and Welling [53]:

log β(a|s) ≥ Ez∼pψ(·|s,a)[log qψ(a|z, s)]−DKL(pψ(z|s, a)||p(z))︸ ︷︷ ︸
the variational lower bound

, ∀s, a ∈ D (B.3)

where DKL(p||q) = Ep[log p − log q] is the Kullback-Leibler (KL) divergence between two
distributions p and q. In this paper, since we consider the deterministic decoder qψ(z, s), the
formal term Ez∼pψ(·|s,a)[log qψ(a|z, s)] can be replaced with the mean square error (MSE) as
Ez∼pψ(·|s,a)[log qψ(a|z, s)] ≈ Ez∼pψ(·|s,a)[(qψ(z, s) − a)2]. At each k-th iteration, we update
the parameter ψ of VAE to maximize the lower bound in equation (B.3). The log β can be estimated
using the variational lower-bound in (B.3) to obtain fπ,β̂τ . The hyperparameter setup for the VAE is
provided in Table 2.
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Table 2: Hyperparameter setup for VAE

VAE Hyperparameters

z dimension 2· state dimension
Hidden activation function ReLU Layer

Encoder network pψ
(512, 2 · z dim.)
(512,512)
(state dim. + action dim., 512)

Decoder network qψ
(512, action dim.)
(512,512)
(z dim. + state dim., 512)

B.4 Implementation of IS Weight wQs,a

In order to consider the prioritized data distribution β̂Q proposed in Section 3.3, we use the importance
sampling (IS) weight defined by

wQs,a =
β̂Q(a|s)
β̂(a|s)

=
exp(Q(s, a))

Ea′∼β̂(·|s)[exp(Q(s, a′))]
, ∀s, a ∈ D. (B.4)

Since the computation of Ea′∼β̂(·|s) makes it difficult to know the exact possible action set for state s,
we approximately estimate the IS weight based on clustering as follows:

wQs,a =
exp(Q(s, a))

Ea′∼β̂(·|s)[exp(Q(s, a′))]
≈ exp(Q(s, a))

1
|Cs,a|

∑
(s′,a′)∈Cs,a exp(Q(s′, a′))

, ∀s, a ∈ D. (B.5)

Here, Cs,a is the cluster that contains data samples adjacent to (s, a), defined by

Cs,a = {(s′, a′) ∈ D | ||s− s′||2 ≤ ϵ · d̄closest}, (B.6)

where the cluster Cs,a can be directly obtained using the nearest neighbor (NN) algorithm [54]
provided in the Python library. ϵ · d̄closest is the radius of the cluster, and d̄closest is the average distance
between the closest states from each task. In our implementation, we control the radius parameter
ϵ > 0 to adjust the number of adjacent samples for the estimation of IS WeightwQs,a. In addition, using
the Q-function in the IS weight term makes the learning unstable since the Q-function continuously
changes as the learning progresses. Thus, instead of the Q-function, we use the regularized empirical
return Gt/ζ for each state-action pair obtained by the trajectories stored in D, where ζ > 0 is the
regularizing temperature. Upon the increase of ζ, the returned difference between adjacent samples
in the cluster decreases, so the effect of prioritization can be reduced. The detailed analysis for ϵ and
ζ is provided in Appendix D.

19



B.5 Implementation of Q-loss Function

In equation (B.2), the final Q-loss function of proposed EPQ is given by

LQ(θ) =
1

2
Es,a,s′∼D

[
max(cmin, w

Q
s,a) (r(s, a) + Ea′∼πγQθ̄(s′, a′)−Qθ(s, a))

2 ]
+ αEs,a∼D

[
wQs,af

π,β̂
τ (s)

(
log

∑
a′∈A

expQθ(s, a
′)−Qθ(s, a)

)]
.

Here, we can estimate log
∑
a expQ(s, a) based on the method proposed in CQL [21] as follows:

log
∑
a

expQ(s, a) = log

(
1

2

∑
a

π(a|s){exp(Q(s, a)− log π(a|s))}+ 1

2

∑
a

ρd{exp(Q(s, a)− log ρd)}

)

≈ log

 1

2Na

Na∑
an∼π

(exp(Q(s, an)− log π(an|s))) +
1

2Na

Na∑
an∼Unif(A)

(exp(Q(s, an)− log ρd)))

 ,

(B.7)

where Na is the number of action sampling, Unif(A) is a Uniform distribution on A, and ρd is the
density of uniform distribution.

B.6 Time comparison with other offline RL methods

In this sectrion, we compare the runtime of EPQ with other baseline algorithms: CQL, Onestep,
IQL, MCQ, and MISA in Table 3 below. For a fair comparison across all algorithms, we conducted
experiments on the Hopper-medium task, which is a popular dataset for comparing computational
costs [48, 55], on a single server equipped with an Intel Xeon Gold 6336Y CPU and one NVIDIA
RTX A5000 GPU. We measured both epoch runtime during 1,000 gradient steps and score runtime
that each algorithm takes to achieve certain normalized scores.

From the epoch runtime results in Table 3, we can observe that EPQ takes approximately 2-30%
more runtime per gradient step compared to the CQL baseline. Note that Onestep RL may seem to
have very short execution time compared to other algorithms, but one must consider the significantly
longer pretraining time required to learn the Q-function of behavior policy accurately. Additionally,
compared to faster offline RL algorithms such as IQL and MISA, EPQ requires more runtime per
step and exhibits a similar runtime to MCQ, another conservative Q-learning algorithm. However,
according to the score runtime results in Table 3, we can observe that only proposed EPQ achieves
a score of 100 points, while all other algorithms fail to reach this score. Particularly, compared to
MCQ, which also considers CQL as a baseline, EPQ achieves the same score with significantly less
runtime. Therefore, while EPQ may consume slightly more runtime per gradient step compared
to other algorithms, we can conclude that proposed EPQ offers substantial advantages in terms of
convergence performance over other algorithms.

Table 3: Runtime comparison: Epoch runtime and Score runtime

epoch runtime(s) CQL Onestep IQL MCQ MISA EPQ
1,000 gradient steps 43.1 12.6 13.8 58.1 23.5 54.8

score runtime(s) CQL Onestep IQL MCQ MISA EPQ
Normalized average return
60 3540.0 252.5 1600.2 31,143.4 4,632.7 3,232.2
80 - 568.4 - 49,359.7 - 21,920.0
100 - - - - - 30,633.2
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C Hyperparameter Setup

The implementation of proposed EPQ basically follows the implementation of the CQL algorithm
[21]. First, we provide the details of the shared algorithm hyperparameters in Table 4. In Table 4, we
compare the shared algorithm hyperparameters of CQL, the revised version of CQL (revised), and
proposed EPQ. CQL (revised) considers the same hyperparameter setup with our algorithm for Adroit
tasks since the reproduced performance of CQL (reprod.) using the author-provided hyperparameter
setup significantly underperforms compared to the result of CQL (paper) in Table 1.

For the coefficient of entropy term in the policy update (B.1), CQL automatically controls the entropy
coefficient so that the entropy of π goes to the target entropy, as proposed in Haarnoja et al. [56].
We observe that while the automatic control of policy entropy proves effective for Mujoco tasks,
it adversely affects the performance in Adroit tasks since a policy with low entropy can lead to
significant overestimation errors in Adroit tasks. Thus, we considered fixed entropy coefficient for
Adroit tasks as in Table 4. In addition, CQL controls the penalizing constant α based on Lagrangian
method [21] for Adroit tasks, but we also observe that the automatic control of α destabilizes training,
leading to poor performance. Therefore, we considered fixed penalizing constant for Adroit tasks in
Table 4 for stable learning.

In addition, in Table 5, we provide the details of the task hyperparameters regarding our contributions
in the proposed EPQ: the penalty control threshold τ and the IS clipping factor cmin in the Q-loss
implementation in (B.2), and the cluster radius ϵ and regularizing temperature ζ for the practical
implementation of IS clipping factor wQs,a in Section B.4. Note that ρ in Table 5 represents the log-
density of uniform distribution. For the task hyperparameters, we consider various hyperparameter
setups and provide the best hyperparameter setup for all considered tasks in Table 5. The results are
based on the ablations studies provided in Section 4.3 and Appendix D.

Table 4: Algorithm hyperparameter setup of CQL, CQL (revised), and EPQ (ours) algorithms

Hyperparameters CQL CQL (revised)
(for Adroit) EPQ

Policy learning rate ηϕ 1e-4 1e-4 1e-4

Value function learning rate ηθ 3e-4 3e-4 3e-4

Soft target update coefficient ηθ̄ 0.005 0.005 0.005

Batch size 256 256 256

The number of sampling Na 10 10 10

Initial behavior cloning steps 10000 10000 10000

Gradient steps for training 3m (0.3m for Adroit) 0.3m 3m (0.3m for Adroit)

Entropy coefficient ηθ Auto 0.5 Auto (0.5 for Adroit)

Penalizing constant α Auto (10 for MuJoCo) 5 or 20
20 for MuJoCo

5 or 20 for Adroit
5 or Auto for AntMaze

Discount factor γ 0.99 0.9 or 0.95 0.99 (0.9 or 0.95 for Adroit)
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Table 5: Task hyperparameter setup for Mujoco tasks and Adroit tasks

Mujoco Tasks τ/ρ cmin ϵ ζ

halfcheetah-random 10 0.2 2 2
hopper-random 2 0.1 0.5 2
walker2d-random 1 0.2 2 0.5

halfcheetah-medium 10 0.2 0.5 2
hopper-medium 0.2 0.5 2 5
walker2d-medium 1 0.5 2 2

halfcheetah-medium-expert 1.0 0.2 0.5 2
hopper-medium-expert 1 0.2 0.5 2
walker2d-medium-expert 1.0 0.2 0.5 2

halfcheetah-expert 1 0.2 0.5 2
hopper-expert 1 0.2 0.5 2
walker2d-expert 0.5 0.2 2.0 2

halfcheetah-medium-replay 2 0.2 0.5 2
hopper-medium-replay 2 0.2 0.5 2
walker2d-medium-replay 0.2 0.5 1.0 2

halfcheetah-full-replay 1.5 0.2 0.5 2
hopper-full-replay 2.0 0.2 1.0 2
walker2d-full-replay 1.0 0.2 0.5 2

Adroit Tasks τ/ρ cmin ϵ ζ

pen-human 0.05 0.5 1.0 200
door-human 0.05 0.5 0.5 200
hammer-human 0.1 0.2 5 100
relocate-human 0.2 0.2 2 10

pen-cloned 0.2 0.2 5 50
door-cloned 0.2 0.5 1 10
hammer-cloned 0.2 0.2 5 100
relocate-cloned 0.2 0.2 5 10

AntMaze Tasks τ/ρ cmin ϵ ζ

umaze 10 0.2 2 2
umaze-diverse 10 0.2 2 2
medium-play 0.1 0.2 1 2
medium-diverse 0.1 0.2 1 2
large-play 0.1 0.2 1 2
large-diverse 0.1 0.2 1 2

22



D Additional Ablation Studies Related to wQ
s,a Estimation

In this section, we provide additional ablation studies related to IS weightwQs,a estimation in Appendix
B. For analysis, Fig. 8 shows the performance plot when the IS clipping factor cmin, the cluster
radius ϵ, and the temperature ζ change.

(a) IS clipping factor cmin (b) Cluster radius ϵ (c) Temperature ζ

Figure 8: Additional ablation studies on Hopper-medium task

IS Clipping Factor cmin: In the EPQ implementation, the IS clipping factor cmin is employed to clip
the IS weight wQs,a to prevent the exclusion of data samples with relatively low wQs,a. When cmin = 0,
low-quality samples with low wQs,a are not utilized at all based on the prioritization in Section 3.3.
However, as cmin increases, these low-quality samples are increasingly exploited. Fig. 7(c) illustrates
the performance of EPQ with varying cmin, and EPQ achieves the best performance when cmin = 0.5.
This result suggests that it is more beneficial to use low-quality samples with proper priority rather
than discarding them entirely.

Cluster Radius ϵ: As explained in Appendix B.4, we can control the number of adjacent samples
in the cluster based on the radius ϵ. From the results illustrated in Fig. 8(a), we can observe that
EPQ with d = 2.0 performs best, and a decrease or an increase in ϵ can significantly affect the
performance indicating that ϵ must be chosen properly for each task to find the cluster that contains
adjacent samples appropriately. If ϵ is too small, the cluster will hardly contain adjacent samples, and
if ϵ is too large, samples that should be distinguished will aggregate in the same cluster, adversely
affecting the performance.

Temperature ζ: As proposed in Section 3.3, samples in the dataset are prioritized according to
the definition of wQs,a. Since the samples with higher Q values are more likely to be selected for
the update of the Q-function, temperature ζ controls the amount of prioritization, as explained in
Appendix B.4. Increasing ζ reduces the difference in the Q-function between the samples, putting
less emphasis on prioritization. Fig. 8(b) shows the performance change according to the change in ζ ,
where the results state that the performance does not heavily depend on ζ. From the ablation study,
we can conclude that the radius ϵ has a greater influence on the performance of Hopper-medium task
compared to the temperature ζ.
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E Additional Performance Comparison on Adroit Tasks

For adroit tasks, the performance of CQL (reprod.) is too low compared to CQL (paper) in Table 1, so
we additionally provide the performance result of the revised version of CQL provided in Section C.
We also compare the performance of EPQ with the performance of CQL (revised) on various adroit
tasks, and Table 6 shows the corresponding comparison results. From the result, we can see that CQL
(revised) greatly enhances the performance of CQL on adroit tasks, but EPQ still outperforms CQL
(revised), which demonstrates the intact advantage of the proposed exclusive penalty and prioritized
dataset well on the adroit tasks.

Table 6: Performance comparison of CQL (paper), CQL (revised), and EPQ (ours) on Adroit tasks.

Task CQL (paper) CQL (revised) EPQ

pen-human 55.8 82.0±6.2 83.9±6.8
door-human 9.1 7.8±0.5 13.2 ± 2.4
hammer-human 2.1 6.4±5.4 3.9±5.0
relocate-human 0.4 0.1±0.2 0.3±0.2
pen-cloned 40.3 90.7±4.8 91.8±4.7
door-cloned 3.5 1.3±2.2 5.8±2.8
hammer-cloned 5.7 2.0±1.3 22.8±15.3
relocate-cloned -0.1 0.0±0.0 0.1±0.1

Adroit Tasks Total 116.8 190.3 221.8

F Limitations

The proposed EPQ significantly improves performance over the existing CQL baseline on various
D4RL tasks, but there are many hyperparamaters that need to be optimized. We newly consider
the penalty control threshold τ , IS clipping factor cmin, the cluster radius ϵ, and the regularizing
temperature ζ. Therefore, in order for the proposed EPQ to perform well, it is necessary to find
the optimal performance by considering various hyperparameter setup, which may require some
interaction with the environment.

G Broader Impact

Nevertheless, in real-world situations, engaging with the environment can be costly. Particularly
in high-risk contexts such as disaster scenarios, acquiring adequate data for learning can be quite
challenging. Our research is primarily focused on offline settings and we present a novel method,
EPQ, holds the potential for practical applications in real-life situations where the interaction is
not available, and exhibits promise in addressing the challenges posed by offline RL algorithms.
Consequently, our work carries several potential societal implications, although we believe that none
require specific emphasis in this context.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introductions are well reflected in Section
3 Methodology and Section 4 Experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations are addressed in the Appendix F Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the detailed proofs and assumptions are provided in
Appendix A Proof and Appendix B Implementation Details.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The specific environment descriptions and experimental setups including the
hyperparameters can be found in Section 4 Experiments and Appendix C Hyperparameter
Setup.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data and code for reproducing the main experimental results are included
in supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The specific experimental setups including the hyperparameters can be found
in Section 4 Experiments and Appendix C Hyperparameter Setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The graphs included in the paper such as Figure 6 and Figure 7 in Section 4
Experiments well demonstrate the statistical significance of the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on computation resources are provided in Appendix B Imple-
mentation Details.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms the NeurlIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts of the proposed paper is included in appendix G Broader
Impacts section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The proposed paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The baseline code and experimental data are cited both in-text and in the
References section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The proposed paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The proposed paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31


