
Model Predictive Task Sampling for Efficient and Robust Adaptation

Qi (Cheems) Wang1∗ Zehao Xiao2∗ Yixiu Mao1∗ Yun Qu1∗ Jiayi Shen2 Yiqin Lv1 Xiangyang Ji1†

1Department of Automation, Tsinghua University; 2Informatics Institute, University of Amsterdam
†Correspondence Author: xyji@tsinghua.edu.cn

Abstract

Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation
through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the
importance of challenging task prioritized sampling to enhance adaptation robustness under distribution
shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive
task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a
novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness
and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative
agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for
finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework
that bridges the task space and adaptation risk landscape, providing a theoretical foundation for robust
active task sampling. MPTS employs a generative model to characterize the episodic optimization process
and predicts task-specific adaptation risk via posterior inference. The resulting risk learner amortizes the
costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS
seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct
extensive experiments in pattern recognition using foundation models and sequential decision-making. Our
results demonstrate that MPTS significantly enhances adaptation robustness for tail or out-of-distribution
(OOD) tasks and improves learning efficiency compared to state-of-the-art (SOTA) methods. The code is
available at the project site https://github.com/thu-rllab/MPTS.

1 Introduction

Generalization across diverse scenarios remains a central challenge in artificial general intelligence. The rise of generative AI
offers a promising solution, driving the development of foundation models1–3. Unlike traditional task-specific models, which
might fail in new tasks, foundation models enable fast deployment across diverse scenarios without learning from scratch. Their
rapid problem-solving stems from widely adopted adaptation learning paradigms, including pretraining, meta-learning, and
supervised finetuning (SFT).

These paradigms train machine learners over a task distribution, consolidating past experience into problem-solving priors to
handle unseen but related tasks in zero-shot or few-shot settings1,4. Each iteration samples a task batch, e.g., from a uniform
distribution, and then executes the learning-to-adapt step (see Fig. 1/2b). Large language models (LLMs), for instance, treat
episodic corpus datasets as tasks and perform in-context learning for adaptation5. Similarly, in obtaining generalist robotic
policies, decision-making environments, such as Markov decision processes (MDPs), are randomized for robots to perform
policy optimization. These task distributions are typically determined by identifiers; e.g., in Fig. 2a, varying physics parameters
configure different MDPs as tasks for domain randomization (DR)6 and meta reinforcement learning (Meta-RL)7.

Research Motivations: Distribution shifts8,9 are prevalent in real-world scenarios, making task adaptation robustness at
test time increasingly critical10,11. In this context, task sampling strategies play a pivotal role, yet uniform sampling often
causes catastrophic failures in risk-sensitive scenarios due to the undersampling of critical tasks. Two real-world applications
highlight this case: (i) Tail tasks. In developing autonomous-driving systems, traffic accidents are rare in training datasets
but disproportionately important for testing robustness12. (ii) OOD tasks. Robots trained in controlled environments struggle
in unstructured real-world settings, e.g., leading to errors in navigation and object manipulation. To improve robustness,
challenging task prioritized sampling12–14 has gained traction, where assessing task difficulty is central to robust optimization.

Preliminary Work. ∗Equal Contributions.

ar
X

iv
:2

50
1.

11
03

9v
5

 [
cs

.L
G

]
 2

4
M

ar
 2

02
5

https://github.com/thu-rllab/MPTS

c. Amortized Inference and Risk Learner Architectures
(Lightweight Risk Predictive Model in Optimization)

b. Typical Robust Task Adaptation Optimization Pipelines (Monte Carlo Methods for CVaR)

d. Amortized Evaluation and Task Prioritization
(without Querying Task Dataset)

a. Incoporating Model Predictive Task Sampling into Adaptation Learning Pipelines (Pretrain/Meta-train/Fine-tune)

Conditional Prior

Predict Adaptation Risk
Task Distribution

Streaming VI

Instant Memory

Adaptation Risk Reconstruction Approximate Posterior

Historical Memory

Conditional Prior

Decoder

Encoder

Exact
Risk Batch

Candidate
Task Batch

Selected Batch

Top-

Exact
Risk Batch

Candidate
Task Batch

Selected Batch

Top-

 Sampling Simulation and Amortized Evaluation

R
is

k
Va

lu
es

Task Identifier

 Acquisition Score

1

 Active Selection2 3

Risk Mean Uncertainty

Evaluate

Online Optimization

Task Episodic Optimization

 Amortized
Evaluation

Random SamplerQuery Task Dataset

Rank-Filter

Predicted Results

Risk Learner

Selected Batch

Adaptive Machine Learner

Task Batch

Memory Buffer

Task Identifier Batch

Env.s AnnotatorsLarge Models

Figure 1: Framework of MPTS in Adaptation Learning. a. The left is the standard optimization pipeline in Meta-Learning, DR, or SFT,
with the machine learner a foundation model or an RL policy. The right is MPTS using a predict-then-optimize strategy, which integrates
posterior inference, adaptation outcome simulation, and challenging task subset selection. [Snow: frozen models; Fire: updated models] b.
With CVaRα for DR or Meta-RL as an example, each iteration resamples B̂ MDPs for adaptive policies to interact and evaluate and then
select Top-B worst MDP episodes for optimization. Dashed blue parts are what MPTS amortizes. c. The risk learner utilizes the risk history
H1∶t to train under a streaming VI framework. d. The risk learner simulates adaptation outcomes p(ℓ∣τ ,H1∶t;θt) for B̂ candidate identifiers,
computes acquisition scores, and selects the Top-B identifiers for the (t + 1)-th iteration.

2

These methods13–18 evaluate, rank, and prioritize difficult tasks for iterative optimization (see Fig. 1b). However, precisely
evaluating tasks—via losses, human annotations, or gradients—incurs high computational costs. For instance, in LLM
alignment, task evaluation through SFT requires extensive forward passes, while preference optimization consumes millions of
expert annotations19. Similarly, in DR and Meta-RL, agents must interact with numerous MDPs to collect post-adaptation
episodes and compute returns. These challenges uncover the urgent need for more efficient learning strategies when enhancing
robust adaptation, particularly when deploying foundation models or when environment interactions are costly.

Motivated by the above pressing demands, we dive into robust active task sampling, a paradigm that has the potential to
eliminate unnecessary costs associated with task construction, intensive annotations, or computational overhead during the
evaluation of a machine learner’s adaptation to tasks. In scenarios involving zero-shot learning, few-shot learning, or SFT, we
aim to develop a task sampling strategy that requires fewer learning resources but retains more deployment benefits such as
adaptation robustness in pattern recognition with foundation models and risk-averse sequential decision-making.

Developed Approach: Note that our brain is energy-efficient and simulates the outcome of decision-making in unencountered
scenarios from accumulated experience, without actual trials. This capability arises from mechanisms like implicit information
gating and active task selection20–22. Inspired by this, we propose a model-based optimization approach for adaptive learning,
dynamically adjusting task sampling strategies using predicted outcomes as feedback. This work explores the design of risk
predictive models, referred to as risk learners, for robust task sampling based on two key insights: (i) Adaptation risk is
probably predictable in episodic learning, providing a basis for task difficulty ranking and selection; (ii) Generative modeling of
adaptation risk captures risk landscapes with quantified uncertainty, aligning optimization with robustness principles.

To this end, we introduce Model Predictive Task Sampling (MPTS), a framework for risk-aware task selection. As shown
in Fig. 1a, MPTS leverages historical risk to train a lightweight risk learner, which forecasts adaptation risks across the task
space to guide the task sampler and optimize the adaptive machine learner. This way amortizes expensive tasks’ evaluation for
ranking their difficulty to select subset (see Fig. 1b). The risk learner in Fig. 1c adopts a variational autoencoder (VAE)23

structure, generating adaptation risk estimates via posterior inference24. Finally, the acquisition function in Fig. 1d integrates
worst-case performance and predictive uncertainty into the rule of subset selection.

MPTS also draws inspiration from active inference25, which operates through a loop of perception, action, and learning to
minimize uncertainty about the planning environment. Here, subset selection from the task batch can be viewed as online
planning to derive a robust machine learner. Technically, MPTS specifies or infers identifiers from the task distribution (see
examples in Fig. 2a) to establish mappings between identifiers and adaptation risk. It employs streaming variational inference
(VI) for risk learner training. Furthermore, by simulating adaptation outcomes in a larger identifier batch for subset selection,
MPTS balances exploration (uncertainty minimization) and exploitation (worst-case robustness) across the task space. In
primary, our proposed MPTS enjoys several benefits in practice:

1. Adaptation Robustness. The optimization pipeline of MPTS can advance the machine learner’s adaptation robustness
under severe task distribution shifts, such as tail or OOD task scenarios;

2. Learning Efficiency. Constructing the lightweight risk learner to amortize expensive evaluation, MPTS can diminish
computational overhead, avoid unnecessary annotations, and promote efficient exploration in the task space;

3. Framework Versatility. Learning from risk histories, MPTS serves as a plug-play module to rank the task difficulties
in optimization and allows seamlessly integration into robust zero-shot or few-shot learning and SFT.

This work evaluates MPTS across few-shot regression, image classification with foundation models, Meta-RL, robotic DR, and
prompt-tuning foundation models. Empirical results demonstrate MPTS’s outstanding adaptation robustness across diverse
scenarios. Compared to SOTA robust adaptation methods, MPTS significantly reduces computational overhead, memory usage,
and environment interactions while, in some cases, accelerating learning.

2 Adaptation and Robustness

Notations. We represent a task sample by τ ∼ p(τ), with T denoting the task space. Each task τ within the distribution is
specified by an identifier, a real-valued vector τ , as illustrated in Fig. 2a. The task-specific risk function ℓ ∶DS

τ ∪DQ
τ ×Θ↦ R

evaluates the adaptation performance of a machine learner θ on τ . For example, in regression, the support dataset DS
τ =

{[xi,yi]}Ki=1 enables rapid adaptation to obtain the model pθ(y∣DS
τ ,x); while the query dataset DQ

τ = {[xi,yi]}K+Ni=K+1 is used
for post-adaptation evaluation as risk ℓ = − 1

N ∑
N
i=1 lnpθ(yi∣DS

τ ,xi).

If ∣DS
τ ∣ = ∅, ℓ measures zero-shot adaptation; otherwise, it reflects few-shot adaptation risk. In SFT, each sample (x,y) ∈DSFT

is treated as a task. The episodic task batch history is defined as Ĥt = {θt, (τt,i,Dτt,i , ℓt,i)}
B

i=1, where B is the task batch size

and θt represents the machine learner’s parameter in t-th iteration. The tuple set {(τt,i,Dτt,i , ℓt,i)}
B

i=1 includes the sampled

3

support dataset

1 'bird' 2 'dog' 3 'piano'

query dataset

?? ?support dataset

...

training dataset

testing dataset (OOD)

...

...

Statistics on Adaptation Risk throughout
Task Space Given

Tail Tasks

Fr
eq

ue
nc

y
Task Concept and Explicit or Implicit Task Identifiers

Tail Task Risk and OOD Scenario in Domain Generalization Generative Model and Recognition Model for Episodic Learningb. c.

a.

N-way-K-shot image classification

Half-Cheetahs with various
masses and velocities

Meta-RL and DRsinusoid regression

Figure 2: Fundamental Concepts: Task Identifiers, Episodic Learning and Probabilistic Graphical Models. a. The task distribution is
uniform and defined over meaningful identifiers τ . For example, the amplitude and the phase [a, b] specifies a sinusoid curve to complete
with K-shot observed data points. Robots like Half-Cheetahs are trained to accomplish different locomotion tasks with varying masses and
velocities. Some multimodal pattern recognition tasks’ identifiers are implicit but can be described from a reference model, e.g., text encoders
in CLIP 1. b. The tail task generalization corresponds to CVaRα, i.e., the integral of tail task risk values in red. In OOD generalization, this
work prompt-tunes CLIP on ImageNet 26 to test on ImageNet-S 27. c. Here, the generative model includes grey units as observed variables
and white ones as unobservable. The solid directed lines describe the generative model 28. We use the dash-directed lines to indicate the
recognition model and approximate inference within autoencoding variational Bayes 23.

task identifier batch {τt,i}Bi=1, the support and query dataset {Dτt,i ∶= DS
τt,i ∪D

Q
τt,i}

B
i=1, and the evaluated adaptation risk

{ℓt,i}Bi=1. For simplicity, the risk history is expressed as Ht = {[τt,i, ℓt,i]}Bi=1, which depends on θt.

Adaptation Risk Function. The learning setup optimizes the machine learner within p(τ). Our analysis is interested in the
risk landscape in the task space as illustrated in Fig. 1d. Such a perspective emphasizes the interplay between the task identifier
τ , the task-specific dataset DS

τ ∪DQ
τ and the adaptation risk function ℓ conditioned on θ. Regarding adaptation performance,

we mainly examine zero-shot learning, few-shot learning, and SFT scenarios.

Zero-Shot Adaptation. During training, we evaluate ℓ on the query dataset DQ
τ conditioned on the machine learner θ, i.e.,

ℓ(DQ
τ ;θ). With robotic DR6 as an example, ℓ(DQ

τ ;θ) denotes the negative return of trajectories collected under the policy θ
in MDP τ . This setup is without support information.

Few-Shot Adaptation. The form of ℓ is specific to meta-learning methods. For instance, MAML29 implements a bi-level
optimization framework. In this case, ℓ(DQ

τ ,D
S
τ ;θ) is written as ℓ(DQ

τ ;θmeta − α∇θℓ(DS
τ ;θ)), where θmeta denotes the meta

initialization, and the inside-bracket term corresponds to finetuning θmeta tailored to τ with α the learning rate.

3 Results

This section reports primary findings in robust adaptation and analyzes the effect of MPTS. Prior to elaborating on the
experimental setups, we outline the predict-then-optimize workflow underpinning MPTS.

Optimization Outcome Prediction with Theoretical Guarantee & MPTS Guided Risk Minimization. First, we char-
acterize the optimization pipeline for a family of robust adaptation methods, i.e., the Monte Carlo strategy for CVaRα

minimization30:

⋯ updateÐÐÐ→ θt−1
evaluateÐÐÐ→ {[τ̂t−1,i, ℓ̂t−1,ß]}B̂i=1

Top-BÐÐÐ→Ht−1 ∶= {[τt−1,i, ℓt−1,i]}Bi=1
updateÐÐÐ→ θt

evaluateÐÐÐ→ {[τ̂t,i, ℓ̂t,i]}B̂i=1
Top-BÐÐÐ→ ⋯, (1)

4

which picks up the tail tasks to optimize in each iteration. Existing works to prioritize challenging tasks over iterations12–14,18

take the above steps yet suffer from: (i) learning efficiency issues, such as the need for extensive evaluation of the machine
learner across tasks for subset selection, and (ii) restricted batch sizes for evaluating or exploring the task space due to sample
or memory constraints. Notably, nearly all of these approaches fail to leverage the optimization outcomes H1∶t.

Let us predict what to optimize from the cumulated risk episodes. MPTS differs from prior works and reuses H1∶t to train
the risk learner. Coupling the identifier τ and adaptation risk ℓ(DQ

τ ,D
S
τ ;θ) forms a streaming database to online learn. In

Methods part, Theorem 1 provides a provable basis for ranking tasks from predicted outcomes, suggesting stable ranking
relation of task difficulties under perturbations in θ, e.g., a gradient update with a small learning rate. Thus, the candidate tasks
TB̂
t+1 at θt probabilistically preserve their relative difficulty rank at θt+1. Moreover, learning stochastic adaptation risk provides

a probabilistic risk landscape over iterations.

MPTS surrogates CVaR optimization with efficiency and exploration benefits. Learning p(ℓ∣τ ,H1∶t;θt) enables efficient
evaluation across infinite tasks with minimal computation, expanding the pseudo batch size B̂ for subset selection and fostering
exploration. For clarity, we treat MPTS as a risk minimization framework under specific acquisition criteria. As shown in Fig. 1
and Fig. 2c, its core workflow involves training the risk learner p(ℓ∣τ ,H1∶t;θt), evaluating task-specific adaptation risk via
posterior inference, and screening task subsets using the upper confidence bound (UCB) principle31 for (t + 1)-th optimization.
These operations are formalized in Eq. (2), where the Monte Carlo estimate of the risk learner yields the mean m(ℓ) and
standard deviation σ(ℓ) of task adaptation risk, while the acquisition function A(⋅) quantifies total subset risk.

Approximate Optimization Outcome after Adaptation ∶ max
ψ∈Ψ

LML(ψ) ∶= lnpψ(Ht∣H1∶t−1) (2a)

Amortized Evaluation with Risk Learners ∶ pψ(ℓ∣τi,H1∶t;θt)
Monte Carlo EstimatesÐÐÐÐÐÐÐÐÐÐ→ {m(ℓi), σ(ℓi)}B̂i=1 (2b)

Active Subset Selection under the UCB Principle ∶ TB
t+1 = arg max

TB⊆TB̂
t+1∶∣TB∣=B

A(TB;ϕ,ψ) (2c)

Approximating optimization outcome relies on streaming VI32,33, with the risk learner a lightweight model. Selecting a portion
of challenging tasks to optimize, MPTS can be viewed as a surrogate of CVaR1−B/B̂ minimization while circumventing extra
computations, annotations, or environment interactions. This design not only enhances learning efficiency but also aligns with
the overarching goals of robust adaptation. Repeating the boxed steps of MPTS until convergence brings a robust adaptive
machine learner, and the implementation details are attached in Methods.

Adaptation Learning Benchmark. The experimental design considers the benchmark typicality and the practical chal-
lenges. Downstream tasks span across pattern recognition and sequential decision-making, with certain experiments involving
multimodal foundation models. These experiments mainly examine few-shot adaptation and include (1) K-shot sinusoid
regression29, (2) N-way K-shot image classification34 with CLIP models and (3) Meta-RL29. Additionally, MPTS validates
scenarios like (4) robotic DR35 for zero-shot adaptation and (5) SFT CLIP models towards image classification.

Backbones and Task Robust Baselines. This study primarily compares MPTS with risk minimization principles and
focuses on robustness improvement. While these methods—including MPTS—are agnostic to zero-shot, few-shot learning, or
finetuning techniques, we adopt SOTA backbones for experiments. For sinusoid regression and Meta-RL, we use MAML29. As
CLIP1 has strong zero-shot performance, we extend it with MaPLe36 for N-way K-shot image classification. For robotic DR
in Ergo-Reacher and Lunar-Lander35, we employ TD337 due to its stability. In SFT, we again use MaPLe for prompt-tuning in
image classification.

Baselines include Expected/Empirical Risk Minimization (ERM)38, Distributionally Robust Risk Minimization
(DRM)14,16,17,39,40, and Group Distributionally Robust Risk Minimization (GDRM)41–43. Accordingly, adaptation robust-
ness is evaluated via CVaRα across validation/testing tasks with α = {0.9,0.7,0.5}, including some OOD results. We also
compare computational cost, memory usage, and sample efficiency. For fairness, all baselines share the same task batch B in
optimization, excluding pruned easier tasks. ERM and GDRM use batch size B, while DRM samples B̂ = 2B, filtering half for
stable optimization. See Supplementary Notes F/G for details.

3.1 Demonstration of the MPTS’s role in K-shot sinusoid regression

In K-shot sinusoid regression29, the function family {f(x) = ai sin(x − bi)∣(ai, bi) ∈ [0.1,5.0] × [0.0, π]} is specified by the
identifier τ = [a, b]. This serves as a toy case to illustrate MPTS and the role of the risk learner.

5

a. b. c. d.

e. f. g. Runtime Complexity h. Task Selection Process

Figure 3: K-shot Sinusoid Regression Results (7 Runs). a. Shown are curves of averaged MSEs on the validation task set during
meta-training for all methods . b. The meta-trained machine learners are tested on a fixed task set, reporting the average MSEs and CVaR
values. c. Displayed are meta-testing results with MPTS machine learners trained by various γ1/ γ0 ratios. d. Displayed are meta-testing
results with MPTS machine learners trained in various pseudo batch sizes, i.e., B̂ = {1B,2B,4B,8B}. e. The PCC values are tracked during
meta-training. f. At a specific iteration, the statistical correlation between predicted and exact adaptation risk values of the task batch is
visualized with overall ρℓ̄,ℓ = 0.669. g. The required relative run-time is computed for all methods during meta-training with ERM as the
anchor. h. At some meta-training time-step, we visualize the subset selection from the pseudo batch under the risk learner.

The risk learner allows for roughly scoring the task difficulty over iterations. In MPTS, for the screened sub-
set at (t + 1)-th iteration, we track the predicted risk values {ℓ̄t+1,i ∶≈ Eqϕ(zt∣Ht)[pψ(ℓ∣τt+1,i,H1∶t)]}Bi=1 and cor-
responding exact evaluations {ℓt+1,i}Bi=1 from θt+1 to compute the Pearson correlation coefficient (PCC) ρℓ̄,ℓ ∶=

∑B
i=1(ℓ̄t+1,i−Mean[{ℓ̄t+1,.}])(ℓt+1,i−Mean[{ℓt+1,.}])√

∑B
i=1(ℓ̄t+1,i−Mean[{ℓ̄t+1,.}])2

√
∑B

i=1(ℓt+1,i−Mean[{ℓt+1,.}])2
. For continuous risk values, PCC reasonably quantifies the effect of

ranking in a batch. The risk learner amortizes the exact evaluation ℓ(DQ
τ ,D

S
τ ;θt) ∀τ ∈ T and θt ∈ Θ using risk histories,

indirectly reflecting adaptation difficulty. Only if the risk learner approximately ranks tasks, MPTS can trust amortized
evaluations for worst subset selection.

As shown in Fig. 3e, ρℓ̄,ℓ remains between 0.4–0.8 across iterations, validating the reliability of the risk learner in predicting
adaptation outcomes. However, PCC declines over time—a trend also observed across experiments—likely due to θt model
convergence. This reduces task diversity, negatively affecting the risk learner’s training after local task space overoptimization.
Fig. 3f shows the statistical correlation between predicted and exact adaptation risk at a specific iteration. Scattered points
demonstrate strong overall alignment, despite varying value scales between iterations. Notably, difficult tasks with high MSEs
are well identified and clustered around or above the correlation slope along the x-axis.

MPTS accelerates the learning process and improves comprehensive adaptation performance under active sampling.
In Fig. 3a, MPTS converges faster, completing optimization in 15K iterations, compared to 20K for ERM and GDRM, due to
its uncertainty-guided worst-case acquisition. DRM processes 2B tasks to filter half per iteration, raising 0.7× computational
overhead over ERM (Fig. 3g). In contrast, MPTS incurs only 0.14× runtime increase, a marginal overhead. To illustrate active
task sampling, Fig. 3h visualizes predicted risk values over the task space. Selected tasks favor regions with high deviations,
clustering in high-risk areas.

In meta-testing, Fig. 3b shows MPTS and DRM achieve the lowest average and CVaRα mean-square errors (MSEs), with their
advantage over GDRM and ERM increasing at higher confidence levels α. Prior work40 confirms DRM’s efficiency sacrifice
for robustness, relying on intensive task evaluation. Using MAML, gradient-based inner-loop adaptation further increases
overhead, whereas MPTS bypasses it via probabilistic prediction, reducing computational cost.

6

The appropriate hyper-parameter setup secures performance and efficiency. We first analyze the acquisition function
A(TB;ϕ,ψ) by varying trade-off parameters {γ0, γ1} in Fig. 1d/Eq. (17). Meta-testing machine learners trained with
γ1

γ0
= {1.0,3.0,6.0,9.0}, γ0 = 0.0 and γ1 = 0.0 (Fig. 3c) shows that higher uncertainty weights lower average MSEs. However,

removing worst-case considerations (γ0 = 0.0) weakens performance. We further examine the impact of pseudo batch size
B̂ in Fig. 3d. Increasing B̂ reduces average MSEs, but excessively large values (e.g., B̂ = 8 ×B) degrade performance. This
occurs because an enlarged identifier set under worst-case selection might over-optimize local task regions, hindering global
generalization. Thus, MPTS configuration follows two principles: (i) B̂ should be moderate to encourage exploration while
preventing excessive local optimization. (ii) Since adaptation robustness is the priority, we consistently set γ0 ∈ R+ as the
default in all experiments.

 Rutime/Memory Coste.

 CVaR0.9 Accuracies a. CVaR0.7 Accuracies b.

 CVaR0.5 Accuracies c. Average Accuracies d.

Figure 4: 5-way 1-shot Meta-testing Classification Results (3 Runs in Average). a-d. Shown are testing CVaR0.9, CVaR0.7, CVaR0.5

and average accuracies with meta-trained machine learners on different datasets. e. With experiments on ImageNet-A as an example, we
report the memory cost and clock time relative to ERM during meta-training for all methods.

3.2 Few-Shot adaptation benefits from MPTS in robustness and learning efficiency

Result analysis in N-way K-shot image classification. We perform 5-way 1-shot image classification using MaPLe,
with six meta-training datasets from ImageNet-CG44, ImageNet-CI44, ImageNet-CS44, ImageNet-A45, ImageNet-S27 and
ImageNet-R46. Fig. 4e compares computational time and memory usage across methods during meta-training. The overhead
from optimizing risk learners in MPTS is negligible, whereas DRM incurs 1.3× computational time and 1.6× memory usage
relative to ERM.

In meta-testing, MPTS achieves the highest average accuracy across all six datasets in Fig. 4a-d and Supplementary Notes
Table 4. Robustness evaluation illustrates comprehensive accuracy increases in CVaR0.5, CVaR0.7 and CVaR0.9 for both MPTS
and DRM. Performance trends remain consistent across datasets, with all robust methods outperforming ERM. Among them,

7

MPTS and DRM lead in all metrics, though DRM exchanges more computational resources for CVaRα accuracies. Overall,
this benchmark result witnesses the comprehensive merits of prioritizing challenging tasks.

Result analysis in Meta-RL. We first analyze meta-training results in Fig. 5a-b. MPTS achieves the highest CVaR0.9

validation returns on most benchmarks. DRM sacrifices average returns on HalfCheetahMassVel, HalfCheetahVel, and
Walker2dVel, whereas MPTS maintains average performance comparable to ERM on HalfCheetahMassVel and Walker2dVel.
GDRM behaves intermediate performance, while DRM balances average and CVaR0.9 returns, excelling on ReacherPos. Fig.
5c witnesses the risk learner’s strong task difficulty discrimination capability, measured by ρℓ̄,ℓ. In Fig. 5d, DRM consumes
1.5x runtime on Walker2dVel due to extra environment interactions, while MPTS avoids this inefficiency.

Meta-testing results in Fig. 5e-f highlight MPTS’s robustness, with return gains increasing at higher α values. In extreme
cases (CVaR0.9), MPTS surpasses ERM by over 20% on all benchmarks. Average performance varies: Walker2dMassVel and
Walker2dVel show minor differences, while HalfCheetahMassVel favors MPTS with slightly higher variance. HalfCheetah
marginally benefits GDRM and ERM, whereas ReacherPos favors MPTS and DRM with reduced variance. Overall, MPTS is
close to ERM in average performance while offering superior adaptation robustness and computational efficiency compared to
DRM. Methods often trade off worst-case and average performance in Meta-RL, as implied in work17.

3.3 MPTS retains multi-faced advantages beyond robustness in zero-shot continuous control

MPTS dominates the overall performance in DR training. In Fig. 6a Ergo-Reacher, distinguished from Meta-RL
conclusion, MPTS and DRM improve both average and CVaRα performance. This likely stems from MPTS’s broader task
exploration via larger B̂. Meanwhile, ρℓ̄,ℓ fluctuates near 0.4 throughout training. In Fig. 6b Lunar-Lander, MPTS maintains
the leading trend in average and CVaRα returns. In contrast, DRM and GDRM not only underperform in average returns
but also achieve the lowest CVaR0.9 values, failing in robust optimization. Simple worst-case selection or reweighting tends
to degrade performance when unsolvable tasks are frequently sampled. MPTS mitigates this by balancing worst-case and
uncertainty-guided selection, preventing over-optimization on a finite set of difficult MDPs. Here, ρℓ̄,ℓ peaks above 0.6 before
stabilizing near 0.3, consistent with prior findings that task selection converges, reducing task difficulty discrimination. MPTS’s
runtime in Lunar-Lander is comparable to ERM and GDRM in Fig. 6e. In Lunar-Lander, the identifier τ ∈ R+ represents the
main engine strength. Fig. 6f shows task sampling frequency, where MPTS favors lower-engine-strength MDPs while still
exploring all engine-strengths early in training.

MPTS facilitates policy adaptation in the worst-case and OOD MDPs. For DR-trained policies, Fig. 6c-d confirm
MPTS and DRM’s superior CVaRα returns in Ergo-Reacher, while ERM exhibits a minor dip in average returns. In Lunar-
Lander, MPTS attains the highest CVaRα returns, remaining stable even as α increases—outperforming ERM by over 20%.
Additionally, MPTS and ERM yield top average returns with minimal variance. For OOD generalization, we shift τ ’s range
from training interval τ ∈ [4.0,20.0] to testing interval τ ∈ [1.0,4.0) ∪ (20.0,23.0]. All methods struggle in hard OOD tasks
(Fig. 6g left), but MPTS dominates in difficult cases, demonstrating strong adaptation. DRM exhibits high variability and weak
generalization, even for easier tasks (Fig. 6g right).

3.4 MPTS also reserves the potential of robust SFT

In SFT, each labeled example in the dataset can be viewed as a task. We apply prompt tuning to adapt pretrained models
using SFT datasets. Following MaPLe, we execute prompt tuning on ImageNet26 and conduct standard evaluation. To assess
post-SFT robustness, we test on four OOD datasets—ImageNet-A45, ImageNet-S27, ImageNet-R46, and ImageNet-V47 for
capturing diverse domain shifts.

Fig. 7a-d shows MPTS consistently outperforms baselines in average and CVaRCVaRCVaR accuracies on ID and OOD
datasets. MPTS achieves 0.82–3.11% higher CVaR0.9, CVaR0.7 and CVaR0.5 scores over ERM (Supplementary Notes Table
5), with greater OOD advantages than on ImageNet. On 4/5 datasets, DRM ranks second to MPTS in CVaRα but matches
ERM in average accuracy. GDRM’s performance varies with α, showing only marginal gains over ERM. Still, DRM sacrifices
efficiency for robustness in Fig. 7e. While MPTS shares DRM’s optimization goal, its risk predictive module and larger-batch
simulation enable better task exploration at minimal computational cost, yielding a more robust machine learner.

4 Discussion

Rapid adaptation to novel scenarios is a cornerstone of artificial general intelligence. However, challenges such as safety,
limited annotations, and computational constraints necessitate robust and efficient adaptation mechanisms. This study explores
learn-to-adapt optimization via generative modeling and introduces MPTS, a versatile framework for robust active task sampling.

8

b. Validation Average Task Returns during Meta-Training

c. Tracked PCC Values in Task Batches during Meta-Training d. Runtime Complexity

e. CVaR Task Returns during Meta-Testing

f. Average Task Returns during Meta-Testing

a. Validation CVaR0.9 Task Returns during Meta-Training

Figure 5: Meta-RL Results on Five Mujoco Environments (7 Runs). a. The cumulative returns with standard error of means (SEMs)
belonging to CVaR0.9 validation MDPs are displayed during meta-training. b. We compute the average cumulative returns with SEMs on
validation MDPs during meta-training. c. Tracked are the risk learner’s PCC values with SEMs over training iterations. d. The relative clock
time quantifies the computational complexity for all methods on Walker2dVel, where ERM’s runtime works as the anchor. e. We report
CVaRα returns of meta-testing MDPs. f. The box-plot reports results averaged over meta-testing MDPs.

9

Validation Task Returns and Tracked PCC Values during DR-Training on Ergo-Reacher

b. Validation Task Returns and Tracked PCC Values during DR-Training on Lunar-Lander

a.

c. CVaR Task Returns during DR-Testing d. Average Task Returns during DR-Testing

e. Runtime Complexity f. Task Statistics on Lunar-Lander g. ID and OOD Task Returns during DR-Testing on Lundar-Lander

Figure 6: DR Results on Ergo-Reacher and Lunar-Lander (7 Runs). a. In Ergo-Reacher, the CVaR0.9, CVaR0.7, CVaR0.5 and average
cumulative returns on validation MDPs are reported together with the risk learner’s PCC curve during DR training. b. In Lunar-Lander, the
cumulative returns on validation MDPs are illustrated together with the risk learner’s PCC curve during DR training. c. We test the DR-trained
policies on the fixed MDP set and report the CVaRα cumulative returns. d. The returns averaged over DR-testing MDPs are illustrated. e.
The required runtime is computed for all methods on Lunar-Lander. f. In Lunar-Lander, shown are frequencies of sampled identifiers using
MPTS during DR training. g. In Lunar-Lander, we test the trained policies in both in-distribution (ID) domains and out-of-distribution (OOD)
domains to report each task’s average returns.

10

 Rutime/Memory Coste.

 CVaR0.9 Accuracies a. CVaR0.7 Accuracies b.

 CVaR0.5 Accuracies c. Average Accuracies d.

Figure 7: Testing Classification Results after Prompt-Tuning on ImageNet (3 Runs in Average). a-d. Shown are testing CVaR0.9,
CVaR0.7, CVaR0.5 and average accuracies with the prompt-tuned machine learner on ID and OOD datasets. e. During prompt-tuning
ImageNet, we report the memory cost and clock time relative to ERM for all methods.

Experiments demonstrate the feasibility of predicting optimization outcomes for active task selection. Meanwhile, MPTS
enhances adaptation robustness across diverse scenarios in an efficient manner. These results highlight MPTS’s potential
to scale CVaRα principles for foundation model development and large-scale decision-making, without additional learning
resources.

5 Methods

In alignment with the realistic necessities, this work focuses on robust adaptation while securing learning efficiency, such
as circumventing partial expensive evaluation. Such a purpose facilitates the birth of MPTS. As previously mentioned, the
framework is agnostic to adaptation learning methods; hence, we leave out zero-shot learning, few-shot learning, and SFT
details.

In Fig. 1a, several roles are involved in the optimization: (1) the adaptive machine learner, e.g., foundation models or
generalist policies, learns to adapt given some optimizers; (2) the risk learner as a critic evaluates and forecasts the task-specific
adaptation risk; (3) the task sampler as an actor works for screening the task subset for next iteration. These components
participate in episodic learning until convergence.

Technically, this work recasts task episodic learning to sequence generation and presents MPTS as the task sampling strategy to
balance exploration and exploitation. At first, we introduce the foundation of risk predictive models for ranking task difficulty.
To reconcile theory and practice, we introduce a tractable optimization approach to enable functional posterior inference towards
adaptation risk. Then, we devise the acquisition function informed by the captured risk landscapes. Finally, an understanding
concerning the optimization pipeline is attached to conclude the Methods part.

11

5.1 Theoretical Feasibility of Constructing Risk Predictive Models

We begin by introducing Assumptions 1/2/3, which characterize the smoothness and boundedness conditions essential to the
optimization framework. Specifically, under a fixed machine learner θ, it is reasonable to expect that similar tasks, represented
by τ , will exhibit sufficiently close adaptation risk values. CVaRα in Definition 1 is commonly used for measuring the expected
risk in the worst-case scenarios, i.e., 1 − α proportional tail cases, with α a specific confidence level.

Definition 1 (Conditional Value-at-Risk (CVaR)30) Given the machine learner parameter θ, we denote the task specific
random variable by ℓi ∶= ℓ(DQ

τi ,D
S
τi ;θ). Throughout the task space T, let the cumulative risk distribution and the quantile of

risk values respectively be F (ℓ) and ℓα =minℓ{ℓ∣F (ℓ) ≥ α}. Then the CVaR at α-robustness level can be estimated as:

CVaRα[ℓ(T;θ)] = ∫ ℓdFα(ℓ;θ), (3)

where we define the normalized cumulative distribution of task risk values by:

Fα(ℓ;θ) = {0, l < ℓα
F (ℓ;θ)−α

1−α , l ≥ ℓα. (4)

And this induce the tail risk task distribution denoted by pα(τ ;θ).

Assumption 1 (Lipschitz Continuity) We assume the adaptation risk function ℓ(⋅;θ) reserves the Lipschitz continuity w.r.t.
θ and τ , i.e.,

∣ℓ(DQ
τ ,D

S
τ ;θ) − ℓ(DQ

τ ,D
S
τ ;θ

′)∣ ≤ β1∣∣θ − θ′∣∣ and ∣ℓ(DQ
τ ,D

S
τ ;θ) − ℓ(DQ

τ ′ ,D
S
τ ′ ;θ)∣ ≤ β2∣∣τ − τ ′∣∣, (5)

where ∀{θ,θ′} ∈Θ and ∀{τ ,τ ′} ∈ T with Lipschitz constants β1 and β2.

Assumption 2 (Bounded Sample Gradient) We assume the norm of the adaptation risk function’s gradient ∇ℓ(⋅;θt) is
bounded:

sup
τ∈T
∣∣∇θℓ(DQ

τ ,D
S
τ ;θt)∣∣2 < Gt, (6)

where Gt is a positive constant.

Assumption 3 (Sub-Gaussian Stochastic Gradient) The stochastic gradient g̃ ∶= g + ϵ for the machine learner’s adaptation
at t-th iteration is σ-sub-Gaussian, which means:

E [exp (ηvT ϵ)] ≤ exp(η
2σ2∣∣v∣∣22

2
) ∀η ∈ R and v ∈ Rd, (7)

where E[g̃] = g, E[∣∣g̃ − g∣∣22] ≤ σ2 and σ ∈ R+.

Under the aforementioned assumptions, we derive Theorem 1. Specifically, we define a random variable as the sign of the
adaptation risk difference and analyze its evolution following gradient updates across a population. Our theoretical analysis
demonstrates that, under a sufficiently small learning rate for the machine learner update, a significant proportion of these sign
variables remain largely unchanged in a probabilistic sense. This result establishes a rigorous foundation for evaluating relative
task difficulty on θt+1 based on posterior inference outcomes derived from θt and further guides amortizing the sample average
Monte Carlo of CVaRα optimization objective (see Fig. 1a-b).

Theorem 1 (Provably Approximately Invariant Task Difficulties) Given arbitrary K data points {(τi, ℓ(DQ
τi ,D

S
τi ;θt)}

K
i=1,

the adaptation gradient ∇θL(θt) as a σ-sub-Gaussian random variable and θt+1 = θt − η∇θL(θt), we denote the relative
difficulty via the difference ∆ij(θt+1) = ℓ(DQ

τi ,D
S
τi ;θt+1)−ℓ(D

Q
τj ,D

S
τj ;θt+1) and ∆ij(θt) = ℓ(DQ

τi ,D
S
τi ;θt)−ℓ(D

Q
τj ,D

S
τj ;θt)

between t-th and (t + 1)-th iterations, and the gradient difference as vij ∶= ∇θℓ(DQ
τi ,D

S
τi ;θt) −∇θℓ(D

Q
τj ,D

S
τj ;θt).

Under Assumption 1/2/3, the set of rank-preserving variable Eij ∶= 1 [sign(∆ij(θt+1)) = sign(∆ij(θt))] satisfies the proba-
bility inequality:

P(⋂
i<j

Eij) ≥ 1 − ξ,

when η ≤ δt

2GtMt+
√

8σ2G2
t ln(K(K−1)

2ξ)
with Gt in Assumption 2, δt ∶= mini≠j ∣ℓ(DQ

τi ,D
S
τi ;θt) − ℓ(D

Q
τj ,D

S
τj ;θt)∣ ∈ R

+, the

stochastic gradient norm Mt ∶= ∣∣∇θL(θt)∣∣2.

12

5.2 Generative Modeling Risk Functions and Posterior Inference

Here, we design the sampling strategy through the lens of risk landscapes and pay more attention to datasets of learning
optimization outcome {Ht}Tt=1. To characterize the adaptation risk during batch optimization, we introduce the latent variable
zt to summarize episodic information and present a versatile deep generative model as:

p(H0∶T ,z0∶T ∣θ0∶T) = p(z0)
T

∏
t=0

pψ(Ht∣zt;θt)
T−1
∏
t=0

p(zt+1∣zt). (8)

Within a Bayesian framework, we approximate the underlying function distribution with the latent variable, and the posterior
p(zt∣Ht) summarizes the historical risk information and accounts for uncertainty in distributions. The following writes the
form of p(zt∣Ht) according to the Bayes rule48:

p(zt∣Ht) =
p(Ht∣zt)p(zt∣H1∶t−1)

∫ p(Ht∣zt)p(zt∣H1∶t−1)dzt
, (9)

where p(zt∣H1∶t−1) encodes the past evaluation results as the conditional prior. Moreover, p(Ht∣zt) conveys the likelihood of
producing observations of the task batch risk values in the t-th iteration. Notably, the exact computation w.r.t. the posterior is
intractable due to the complicated integral in the denominator.

Generative Process. As illustrated in Fig. 2c, risk values of the task batch ℓ are correlated with the machine learner’s
parameters θ. In specific, the factorization of the sequential optimization relevant variables arrives at:

pψ(Ht∣H1∶t−1) = ∫ pψ(Ht∣zt)p(zt∣H1∶t−1)dzt = ∫ [
B

∏
i=1

pψ(ℓt,i∣τt,i,zt;θt)]p(zt∣H1∶t−1)dzt, (10)

where zt in the probabilistic graphical model constitutes the distribution over risk functions (For the sake of simplicity, we
skip over other variables less relevant to our learning purposes). Here, we assume the conditional independence between
task-specific risk values given z and the machine learner’s parameter θ in Eq. (10). And the primary optimization objective is
to maxψ∈Ψ lnpψ(Ht∣H1∶t−1) for the optimization outcome prediction.

Inference Process. The manner of episodic training, where the task batch and its evaluation arrive sequentially, inspires us
to predict adaptation risk values online to actively sample tasks in a batch. However, the exact inference w.r.t. p(zt∣Ht) is
infeasible as there is no structural information regarding posteriors. In each iteration, the risk function distribution relies on the
updated machine learner θ; hence, such non-stationarity in the risk function distributions prompts us to involve the streaming
VI32,33 to derive the approximate posterior.

To do so, we handle the streaming task batches and update the posterior in a recursive way:

p(zt∣Ht)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Updated Posterior

∝ p(Ht∣zt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Likelihood

p(zt∣H1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Functional Prior

(11)

where p(zt∣H1∶t−1) represents the conditional prior using the last time updated posterior as the proxy. The role of the estimated
functional posterior is to provide uncertainty-aware prediction and serves the task sampling strategy design, which will be
detailed in Section 5.3.

As a result, we can formulate the evidence lower bound (ELBO) as a tractable optimization objective in Eq. (12) from
approximate inference.

max
ψ∈Ψ,ϕ∈Φ

ĜELBO(ψ,ϕ) ∶= Eqϕ(zt∣Ht) [
B

∑
i=1

lnpψ(ℓt,i∣τt,i,zt)] −DKL[qϕ(zt∣Ht) ∥ p(zt∣H1∶t−1)] (12)

For implementation convenience, we adopt the parameterized Gaussian distribution with diagonal covariance matrices as
variational distributions similar to vanilla VAEs23,49 and neural processes (NPs)50. In other words, these distribution parameters
are approximated with neural networks, e.g., qϕ(zt∣Ht) = N(zt;µϕ(Ht),Σϕ(Ht)), and the reparameterization trick23 is used
for stochastic gradient estimate.

Definition 2 (Permutation Invariant Function) With an n-element permutation group Sn, the operator g ∈ Sn maps the
order set to itself:

g ∶ [1,2, . . . , n]↦ [g1, g2, . . . , gn]. (13)
Then the function Φ is called permutation invariant if for any set of data points x1, . . . ,xn, the following condition holds:

Φ(g ○ [x1, . . . ,xn]) = Φ([xg1 , . . . ,xgn]) = Φ([x1, . . . ,xn]) ∀g ∈ Sn. (14)

13

As for the neural architecture, we employ the DeepSet encoding module51 to process the set dataset Ht, which corresponds to
the permutation invariant function family in Definition 2. Also, in the context of streaming VI, qϕ(zt∣Ht−1) mostly works as
the proxy for the conditional prior as default. Consequently, we can modify the exact ELBO in Eq. (12) and further translate
the practical optimization process with the Lagrange multiplier β into:

max
ψ∈Ψ,ϕ∈Φ

Eqϕ(zt∣Ht) [
B

∑
i=1

lnpψ(ℓt,i∣τt,i,zt)] s.t. DKL[qϕ(zt∣Ht) ∥ qϕ̄(zt∣Ht−1)] ≤ ϵ⇔ (15a)

max
ψ∈Ψ,ϕ∈Φ

GELBO(ψ,ϕ) ∶= Eqϕ(zt∣Ht) [
B

∑
i=1

lnpψ(ℓt,i∣τt,i,zt)] − βDKL[qϕ(zt∣Ht) ∥ qϕ̄(zt∣Ht−1)], (15b)

where ϕ̄ indicates no gradients computed through ϕ in the term, and {β ∈ R+, ϵ ∈ R+} constrains the machine learner’s
parameter search in next iteration.

5.3 Task Sampling Strategy Design

In robust active task sampling, existing strategies evaluate task batches to rank their difficulties in adaptation and then prioritize
challenging subsets for optimization14,16,17,39,40. Besides the expensive evaluation cost, these strategies are weak in the efficient
exploration of the task space.

As Theorem 1 has established the theoretical foundation of approximately rank task difficulty, this necessitates the development
of the risk learner from cumulated risk histories. With the model predictive results as amortized evaluation, specific rules can
be incorporated into the acquisition function for active sampling. Meanwhile, it is fascinating for the risk learner to evaluate
the machine learner’s adaptation to arbitrarily many tasks with minimal computational cost. Hence, we can easily enlarge the
pseudo batch size B̂ for more selection candidates and exploit the epistemic uncertainty from the risk learner, encouraging
more exploration in the task space.

Evaluating Adaptation Performance through Stochastic Forward Passes. The risk learner and estimated functional
posteriors in Eq. (10)/(12) work as tools for the active selection of the task batch. Specifically, the predictive distribution can be
depicted as:

pψ(ℓ∣τ ,H1∶t) = ∫ pψ(ℓ∣τ ,zt)p(zt∣H1∶t)dzt △= ∫ pψ(ℓ∣τ ,zt)qϕ(zt∣Ht)dzt

≈ 1

K

K

∑
k=1

pψ(ℓ∣τ ,z(k)t), with z(k)t ∼ qϕ(zt∣Ht) ∀τ ∼ p(τ).
(16)

The above predictive distribution pψ(ℓ∣τ ,H1∶t) benefits from the Bayesian modeling and provides a tractable way to roughly
assess difficulties of tasks throughout the whole task space.

Rank-Flitering the Next Task Batch to Episodically Train. After obtaining pψ(ℓ∣τ ,H1∶t), we draw up a batch sampling
strategy on the basis of its quantified statistics. The criteria resembles the acquisition function in classical Bayesian optimization
(BO), which includes a collection of available evaluation principles, such as expected improvement52, output information
theoretical index53 or UCB31.

However, it is also necessary to clarify that the search space is on the sequential task batch instead of machine learners’
parameters, which differs from the ultimate purpose in BO. Central to our approach is the principle of optimism in the face of
uncertainty54. We consider the difficult task’s prioritization for robustness and the epistemic uncertainty as pivotal elements in
developing acquisition functions. The grounds behind this idea are that (i) the subset with the worst performance deserves
extra attention in optimization for adaptation robustness, and (ii) task regions with high predictive uncertainty tend to be
underexplored in the last few iterations.

As a result, we present the acquisition function built on the UCB principle31:

A(TB;ϕ,ψ) =
B

∑
i=1

a(τi) =
B

∑
i=1

γ0

Risk Mean
³¹¹¹¹·¹¹¹¹µ
m(ℓi) +γ1

Epistemic Uncertainty
³¹¹·¹µ
σ(ℓi) , where τi ∼ p(τ)

with m(ℓi) = Eqϕ(zt∣Ht)[pψ(ℓ∣τi,zt)] and σ(ℓi) = V
1
2

qϕ(zt∣Ht)[pψ(ℓ∣τi,zt)],

(17)

where m(ℓi) and σ(ℓi) are, respectively, the adaptation risk mean and standard deviations, which can be estimated from
multiple stochastic forward passes zt ∼ p(zt∣H1∶t) and ℓ ∼ pψ(ℓ∣τi,zt) using the risk generative model. And {γ0, γ1} are
hyperparameters to balance considerations.

14

Then, the Simulate-Rank-Filter operation in Eq. (2)c arrives at the task batch for (t + 1)-th iteration, i.e., TB
t+1 =

argmax
TB⊆TB̂

t+1∶∣TB∣=BA(TB;ϕ,ψ). This characterizes the step of the active subset selection from TB̂
t+1, the randomly

sampled identifier candidate set with ∣TB̂
t+1∣ = B̂. In an implementation, we still perform random sampling from p(τ) and

forecast the task-wise acquisition score a(⋅) from the risk learner. Candidates in Top-B acquisition scores are screened to
formulate the task batch TB

t+1 for episodic optimization, as illustrated in Fig. 1d. These steps approximately solve Eq. (2)c and
obtain TB

t+1 in a heuristic way.

5.4 Sequentially Optimize the Adaptive Machine Learner

Given the screened Tt+1, we execute optimization to update the machine learner’s parameters. The task-specific adaptation
risk in (t + 1)-th iteration is written as ℓt+1,i(θ) for the selected task τi. The developed MPTS is agnostic to any-shot learning
methods, and the following includes the standard update rule for zero-shot, few-shot, and SFT scenarios.

Machine Learner Updates in Zero-Shot Adaptation: The zero-shot setup does not require the support dataset to identify
the task. Hence, taking the vanilla DR55 as an instantiation, we can obtain the update rule as:

θt+1 = θt −
λ

B

B

∑
i=1
∇θℓ(DQ

τt+1,i ;θt), (18)

where θ denotes the zero-shot learning model parameter with λ the learning rate.

Machine Learner Updates in Few-Shot Adaptation: Still, we take the typical optimization-based method MAML29 as an
instantiation and provide the update rule as follows:

ℓt+1,i(θ) = ℓ(DQ
τt+1,i ;θ

meta
t − λ1,1∇θℓ(DS

τt+1,i)) (19a)

θmeta
t+1 = θmeta

t − λ1,2

B

B

∑
i=1
∇θℓt+1,i(θ), ∀i ∈ {1, . . . ,B} (19b)

where θmeta denotes the meta initialization, and λ1,1 and λ1,2 are, respectively, learning rates in the inner and outer loops.

Machine Learner Updates in SFT: Here, we take finetuning pretrained models to downstream tasks56 as an instantiation. In
this case, each data point [x,y] can be viewed as a task with either its embedding τ or x as the task identifier. Then the model
update rule can be:

θt+1 = θt −
λ

B

B

∑
i=1
∇θℓ([xt+1,i,yt+1,i];θt), (20)

where {[xt+1,i,yt+1,i]}Bi=1 denote the sampled task batch for the (t + 1)-the iteration.

5.5 Overall Algorithm and Interpretation

Implementation Pipelines. Here, we write the general form of MPTS in Algorithm 1, where the past risk episodes are
reused to train risk learner and serve the active subset selection. We also provide some implementation examples by putting all
the ingredients and optimization recipes together in the zero-shot, few-shot, and SFT scenarios. See Supplementary Notes in
Algorithm 2-7 for details. Since the first iteration in Algorithm 2/4/6 does not involve active sampling, due to no latest history,
and the task batch follows the standard random sampling setup.

15

Algorithm 1: Model Predictive Task Sampling

Input :Task distribution p(τ); Task batch size B; Candidate batch size B̂; Latest updated {ψ,ϕ}; Latest history Ht−1;
Iteration number K; Learning rate λ2.

Output :Selected identifier batch {τt,i}Bi=1.
// Posterior Inference via Stochastic Gradient Variational Bayes
for i = 1 to K do

Perform gradient updates given Ht−1:
ϕ← ϕ + λ2∇ϕGELBO(ψ,ϕ) in Eq. (15b);
ψ ← ψ + λ2∇ψGELBO(ψ,ϕ) in Eq. (15b);

end
// Simulating Zero-shot, Few-shot, Adaptation and SFT Results
Randomly sample {τ̂t,i}B̂i=1 from p(τ);
Run amortized evaluation on candidate tasks {δi ∶= γ0m(ℓi) + γ1σ(ℓi)}B̂i=1 in Eq. (17);
// Active Subset Selection from Predicted Results
Rank {δi}B̂i=1 and screen Top-B values;
Return the screened identifier subset {τt,i}Bi=1.

Connection with Sequential Decision-making and Control. Intuitively, MPTS resembles model predictive control (MPC)57

when treating task sampling under some criteria as an optimal planning problem. In this case, the episodic learning process
specifies an underlying dynamical system for MPTS to predict with only one future time step in the simulation to assess
the influence of selecting the task batch, and the feedback as exact adaptation risk information further helps improve the
episodic risk prediction system. In addition, through the lens of sequential decision-making, we can interpret the optimization
pipeline of MPTS from the actor-critic framework in RL58. In detail, the risk learner works as the critic that predicts adaptation
performance in the task τ given a fixed machine learner. Accordingly, the actor plays the role of selecting the task batch from
the acquisition function and then executing the machine learner’s optimization. These two roles are entangled in the MPTS
pipeline to achieve robust yet efficient adaptation.

Acknowledgments and Disclosure of Funding

This work is funded by National Natural Science Foundation of China (NSFC) projects with Numbers # 62306326 and #
62495091.

16

References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda

Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748–8763. PMLR, 2021.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023.

[3] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in
neural information processing systems, 35:23716–23736, 2022.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[6] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias
Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113,
2019.

[7] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast reinforcement learning
via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

[8] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu,
Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In
International conference on machine learning, pages 5637–5664. PMLR, 2021.

[9] Anurag Ajay, Abhishek Gupta, Dibya Ghosh, Sergey Levine, and Pulkit Agrawal. Distributionally adaptive meta
reinforcement learning. Advances in Neural Information Processing Systems, 35:25856–25869, 2022.

[10] Jiuding Sun, Chantal Shaib, and Byron C Wallace. Evaluating the zero-shot robustness of instruction-tuned language
models. In International Conference on Learning Representations. ICLR, 2024.

[11] Lexin Zhou, Wout Schellaert, Fernando Martínez-Plumed, Yael Moros-Daval, Cèsar Ferri, and José Hernández-Orallo.
Larger and more instructable language models become less reliable. Nature, pages 1–8, 2024.

[12] Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja Fidler, and Or Litany. Generating useful accident-prone driving
scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17305–17315, 2022.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur,
Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[14] Qi Wang, Yiqin Lv, Zheng Xie, Jincai Huang, et al. A simple yet effective strategy to robustify the meta learning paradigm.
Advances in Neural Information Processing Systems, 36, 2024.

[15] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling laws: beating
power law scaling via data pruning. Advances in Neural Information Processing Systems, 35:19523–19536, 2022.

[16] Talfan Evans, Shreya Pathak, Hamza Merzic, Jonathan Schwarz, Ryutaro Tanno, and Olivier J Henaff. Bad students make
great teachers: Active learning accelerates large-scale visual understanding. arXiv preprint arXiv:2312.05328, 2023.

[17] Ido Greenberg, Shie Mannor, Gal Chechik, and Eli Meirom. Train hard, fight easy: Robust meta reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

[18] Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, and Olivier J Henaff. Data curation via joint example selection further
accelerates multimodal learning. arXiv preprint arXiv:2406.17711, 2024.

[19] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730–27744, 2022.

[20] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Demis Hassabis,
and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement learning system. Nature neuroscience, 21(6):860–868,
2018.

17

[21] Wei-Long Zheng, Zhongxuan Wu, Ali Hummos, Guangyu Robert Yang, and Michael M Halassa. Rapid context inference
in a thalamocortical model using recurrent neural networks. Nature Communications, 15(1):8275, 2024.

[22] Naomi P Friedman and Trevor W Robbins. The role of prefrontal cortex in cognitive control and executive function.
Neuropsychopharmacology, 47(1):72–89, 2022.

[23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[24] Mandt Stephan, Matthew D Hoffman, David M Blei, et al. Stochastic gradient descent as approximate bayesian inference.
Journal of Machine Learning Research, 18(134):1–35, 2017.

[25] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, Giovanni Pezzulo, et al. Active inference and
learning. Neuroscience & Biobehavioral Reviews, 68:862–879, 2016.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, 2015.

[27] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing local
predictive power. Advances in Neural Information Processing Systems, 32, 2019.

[28] Jakub M Tomczak. Deep Generative Modeling. Springer Cham, 2024.

[29] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pages 1126–1135. PMLR, 2017.

[30] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal of risk, 2:21–42, 2000.

[31] P Auer. Finite-time analysis of the multiarmed bandit problem, 2002.

[32] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. Streaming variational bayes.
Advances in neural information processing systems, 26, 2013.

[33] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. arXiv preprint
arXiv:1710.10628, 2017.

[34] Muhammad Waleed Gondal, Jochen Gast, Inigo Alonso Ruiz, Richard Droste, Tommaso Macri, Suren Kumar, and
Luitpold Staudigl. Domain aligned clip for few-shot classification. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 5721–5730, 2024.

[35] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain randomization. In
Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

[36] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz Khan. Maple:
Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19113–19122, 2023.

[37] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In
International conference on machine learning, pages 1587–1596. PMLR, 2018.

[38] Vladimir Naumovich Vapnik, Vlamimir Vapnik, et al. Statistical learning theory. 1998.

[39] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning robust neural network
policies using model ensembles. In International Conference on Learning Representations, 2022.

[40] Yiqin Lv, Cheems Wang, Dong Liang, and Zheng Xie. Theoretical investigations and practical enhancements on tail task
risk minimization in meta learning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=McrzOo0hwr.

[41] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks. In
International Conference on Learning Representations, 2019.

[42] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le, Tengyu
Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining. Advances in Neural
Information Processing Systems, 36, 2024.

[43] Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl Pertsch, and Dorsa Sadigh. Remix: Optimizing data mixtures for
large scale imitation learning. In 8th Annual Conference on Robot Learning, 2024.

[44] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturba-
tions. In ICLR, 2019.

[45] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 15262–15271, 2021.

18

https://openreview.net/forum?id=McrzOo0hwr

[46] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization. ICCV, 2021.

[47] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to
imagenet? In ICML, 2019.

[48] Stephen M Stigler. Thomas bayes’s bayesian inference. Journal of the Royal Statistical Society: Series A (General), 145
(2):250–258, 1982.

[49] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. In International conference on machine learning, pages 1278–1286. PMLR, 2014.

[50] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and Yee Whye Teh.
Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[51] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J Smola.
Deep sets. Advances in neural information processing systems, 30, 2017.

[52] J Mockus, V Tiesis, and A Zilinskas. The application of bayesian methods for seeking the extremum, vol. 2. L Dixon and
G Szego. Toward Global Optimization, 2, 1978.

[53] Binxin Ru, Michael A Osborne, Mark McLeod, and Diego Granziol. Fast information-theoretic bayesian optimisation. In
International Conference on Machine Learning, pages 4384–4392. PMLR, 2018.

[54] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3
(Nov):397–422, 2002.

[55] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[56] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min
Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence, 5(3):220–235, 2023.

[57] Manfred Morari and Jay H Lee. Model predictive control: past, present and future. Computers & chemical engineering,
23(4-5):667–682, 1999.

[58] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing systems, 12, 1999.

[59] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding important examples
early in training. Advances in neural information processing systems, 34:20596–20607, 2021.

[60] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation
metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

[61] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine learning models.
In International Conference on Machine Learning, pages 6950–6960. PMLR, 2020.

[62] Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable learning: Coresets for data-efficient deep learning.
In International Conference on Machine Learning, pages 39314–39330. PMLR, 2023.

[63] Siddharth Joshi and Baharan Mirzasoleiman. Data-efficient contrastive self-supervised learning: Most beneficial examples
for supervised learning contribute the least. In International conference on machine learning, pages 15356–15370. PMLR,
2023.

[64] Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence and statistics, pages 207–215.
PMLR, 2013.

[65] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25, 2012.

[66] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for bayesian optimization. Advances
in neural information processing systems, 31, 2018.

[67] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

[68] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3):1–34, 2020.

[69] Qi Wang, Yanghe Feng, Jincai Huang, Yiqin Lv, Zheng Xie, and Xiaoshan Gao. Large-scale generative simulation
artificial intelligence: The next hotspot. The Innovation, 4(6), 2023.

19

[70] Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. Attribute prototype network for any-shot
learning. International Journal of Computer Vision, 130(7):1735–1753, 2022.

[71] Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Generalized zero-shot learning with deep calibration
network. Advances in neural information processing systems, 31, 2018.

[72] Aoxue Li, Zhiwu Lu, Jiechao Guan, Tao Xiang, Liwei Wang, and Ji-Rong Wen. Transferrable feature and projection
learning with class hierarchy for zero-shot learning. International Journal of Computer Vision, 128:2810–2827, 2020.

[73] Rohit Keshari, Richa Singh, and Mayank Vatsa. Generalized zero-shot learning via over-complete distribution. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13300–13308, 2020.

[74] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating networks for zero-shot learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5542–5551, 2018.

[75] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor Darrell, and Zeynep Akata. Generalized zero-and few-shot
learning via aligned variational autoencoders. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8247–8255, 2019.

[76] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169, 2021.

[77] Qi Wang, Marco Federici, and Herke van Hoof. Bridge the inference gaps of neural processes via expectation maximization.
In The Eleventh International Conference on Learning Representations, 2022.

[78] Muhammad Waleed Gondal, Shruti Joshi, Nasim Rahaman, Stefan Bauer, Manuel Wuthrich, and Bernhard Schölkopf.
Function contrastive learning of transferable meta-representations. In International Conference on Machine Learning,
pages 3755–3765. PMLR, 2021.

[79] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye
Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In International conference on machine learning,
pages 1704–1713. PMLR, 2018.

[80] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. Advances in neural information
processing systems, 31, 2018.

[81] Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-aware model-agnostic
meta learning. In International conference on machine learning, pages 10–32. PMLR, 2022.

[82] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit gradients. Advances
in neural information processing systems, 32, 2019.

[83] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in neural
information processing systems, 30, 2017.

[84] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum. Infinite mixture prototypes for few-shot learning. In
International conference on machine learning, pages 232–241. PMLR, 2019.

[85] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.
[86] Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, and Przemysław Spurek. Hy-

pershot: Few-shot learning by kernel hypernetworks. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 2469–2478, 2023.

[87] Yonatan Oren, Shiori Sagawa, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust language modeling. arXiv
preprint arXiv:1909.02060, 2019.

[88] Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning. Advances in Neural
Information Processing Systems, 33:18860–18871, 2020.

[89] Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and Richard E Turner.
Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556, 2019.

[90] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, and Yee Whye
Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

[91] Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard Turner. Meta-learning
stationary stochastic process prediction with convolutional neural processes. Advances in Neural Information Processing
Systems, 33:8284–8295, 2020.

[92] Qi Wang and Herke Van Hoof. Learning expressive meta-representations with mixture of expert neural processes.
Advances in neural information processing systems, 35:26242–26255, 2022.

[93] Philippe Rigollet and Jan-Christian Hütter. High-dimensional statistics. arXiv preprint arXiv:2310.19244, 2023.

20

[94] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models.
International Journal of Computer Vision, 130(9):2337–2348, 2022.

[95] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-language
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 16816–16825,
2022.

[96] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012.

[97] Erin Catto. Box2d: A 2d physics engine for games, 2007. URL http://box2d.org.
[98] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer. Sim-to-real transfer with neural-augmented

robot simulation. In Conference on Robot Learning, pages 817–828. PMLR, 2018.
[99] Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, page 1. 2015.

21

http://box2d.org

Contents

1 Introduction 1

2 Adaptation and Robustness 3

3 Results 4

3.1 Demonstration of the MPTS’s role in K-shot sinusoid regression . 5

3.2 Few-Shot adaptation benefits from MPTS in robustness and learning efficiency 7

3.3 MPTS retains multi-faced advantages beyond robustness in zero-shot continuous control 8

3.4 MPTS also reserves the potential of robust SFT . 8

4 Discussion 8

5 Methods 11

5.1 Theoretical Feasibility of Constructing Risk Predictive Models . 12

5.2 Generative Modeling Risk Functions and Posterior Inference . 13

5.3 Task Sampling Strategy Design . 14

5.4 Sequentially Optimize the Adaptive Machine Learner . 15

5.5 Overall Algorithm and Interpretation . 15

A Quick Guideline to MPTS 25

B Research Background 27

B.1 Adaptation Learning for Cross-Task Generalization . 27

B.2 Dataset Curation and Task-Level Robustness . 27

B.3 Risk Minimization Principles as Baselines . 27

C Task Construction and Identifiers 28

C.1 Tasks with Explicit Identifiers . 29

C.2 Tasks with Implicit Identifiers . 29

D Auto-Encoding Adaptation Risk through Streaming VI 30

D.1 Neural Modules to Parameterize Distributions . 30

D.2 Formulation of ELBO & Stochastic Gradient Estimates . 30

D.3 Theoretical Guarantee for Task Difficulties’ Scoring with Posterior Inference 31

E Prompt-based Few-shot Image Classification 33

F Backbone Methods & Experimental Details in Any-Shot Learning 34

F.1 MAML . 34

F.2 DR . 34

F.3 Multi-Modal Prompt Learning . 34

22

G Experimental Setups & Implementation Details 35

G.1 Sinusoid Regression . 35

G.2 N-way K-shot Image Classification . 36

G.3 Meta-RL . 36

G.4 Robotic DR . 36

G.5 Prompt-Tuning Multimodal Foundation Models . 37

H Computational Tools & Platforms & Data Availability 37

I Competing Interests & Author Contributions 38

23

Supplementary Notes for Model Predictive Task Sampling

Algorithm 2: MPTS for DR (Zero-Shot Scenarios)
Input :Task distribution p(τ); Task batch size B;

Learning rate λ1.
Output :Adapted machine learner θ.
Set the initial iteration number t = 1;
Randomly initialize machine learner θ;
Randomly initialize risk learner {ψ,ϕ};
while not converged do

Execute Algorithm 3 to access the batch {τt,i}Bi=1 and
induced {DQ

τt,i}
B
i=1;

// Eval Adaptation Performance
Compute the task specific adaptation risk
{ℓt,i ∶= ℓ(DQ

τt,i ;θt)}
B
i=1;

Return Ht = {[τt,i, ℓt,i]}Bi=1 as the Input to
Algorithm 3;
// Update Machine Learner
Perform batch gradient updates:
θt+1 ← θt − λ1

B ∑
B
i=1∇θℓt,i;

Update the iteration number: t← t + 1;
end

Algorithm 3: Model Predictive Task Sampling
Input :Task distribution p(τ); Task batch size B;

Candidate batch size B̂; Latest updated {ψ,ϕ};
Latest history Ht−1; Iteration number K;
Learning rate λ2.

Output :Task identifier batch {τt,i}Bi=1.
// Functional Posterior Inference
for i = 1 to K do

Perform gradient updates given Ht−1:
ϕ← ϕ + λ2∇ϕGELBO(ψ,ϕ) in Eq. (15b);
ψ ← ψ + λ2∇ψGELBO(ψ,ϕ) in Eq. (15b);

end
// Simulating Adaptation Results
Randomly sample {τ̂t,i}B̂i=1 from p(τ);
Run amortized evaluation on candidate tasks
{δi ∶= γ0m(ℓi) + γ1σ(ℓi)}B̂i=1 in Eq. (17);

// Active Subset Selection from Predicted
Results

Rank {δi}B̂i=1 and screen Top-B values;
Return the screened task batch {τt,i}Bi=1.

Algorithm 4: MPTS for Model Agnostic Meta Learning
(Few-Shot Scenarios)
Input :Task distribution p(τ); Task batch size B;

Learning rates: {λ1,1, λ1,2}.
Output :Meta-trained initialization θmeta.
Set the initial iteration number t = 1;
Randomly initialize meta learner θmeta;
Randomly initialize risk learner {ψ,ϕ};
while not converged do

Execute Algorithm 5 to access the batch {τt,i}Bi=1 and
{DS

τt,i ∪D
Q
τt,i}

B
i=1;

// Inner Loop to Fast Adapt
for i = 1 to K do

Compute the task-specific gradient:
∇θℓ(DS

τt,i ;θ);
Perform gradient updates as fast adaptation:
θit ← θmeta

t − λ1,1∇θℓ(DS
τi ;θ);

end
// Outer Loop to Meta-train
Evaluate fast adaptation performance
{ℓt,i ∶= ℓ(DQ

τt,i ;θ
i
t)}Bi=1;

Return Ht = {[τt,i, ℓt,i]}Bi=1 as the Input to
Algorithm 5;

Perform meta initialization updates:
θmeta
t+1 ← θmeta

t − λ1,2

B ∑
B
i=1∇θℓt,i;

Update the iteration number: t← t + 1;
end

Algorithm 5: Model Predictive Task Sampling
Input :Task distribution p(τ); Task batch size B;

Candidate batch size B̂; Latest updated {ψ,ϕ};
Latest history Ht−1; Iteration number K;
Learning rate λ2.

Output :Task identifier batch {τt,i}Bi=1.
// Functional Posterior Inference
for i = 1 to K do

Perform gradient updates given Ht−1:
ϕ← ϕ + λ2∇ϕGELBO(ψ,ϕ) in Eq. (15b);
ψ ← ψ + λ2∇ψGELBO(ψ,ϕ) in Eq. (15b);

end
// Simulating Adaptation Results
Randomly sample {τ̂t,i}B̂i=1 from p(τ);
Run amortized evaluation on candidate tasks
{δi ∶= γ0m(ℓi) + γ1σ(ℓi)}B̂i=1 in Eq. (17);

// Active Subset Selection from Predicted
Results

Rank {δi}B̂i=1 and screen Top-B values;
Return the screened task batch {τt,i}Bi=1.

24

Algorithm 6: MPTS for Pretrained Model Finetuning
Input :Task distribution p(x); Task batch size B;

Learning rate λ1.
Output :Fine-tuned machine learner θ.
Set the initial iteration number t = 1;
Randomly initialize machine learner θ;
Randomly initialize risk learner {ψ,ϕ};
while not converged do

Execute Algorithm 7 to access the batch {τt,i}Bi=1 and
{[xt,i,yt,i]}Bi=1;

// Eval Adaptation Performance
Compute the instance-specific adaptation risk
{ℓt,i ∶= ℓ([xt,i,yt,i];θt)}Bi=1;

Return Ht = {[τt,i, ℓt,i]}Bi=1 as the Input to
Algorithm 7;
// Update Machine Learner
Perform batch gradient updates:
θt+1 ← θt − λ1

B ∑
B
i=1∇θℓt,i;

Update the iteration number: t← t + 1;
end

Algorithm 7: Model Predictive Task Sampling
Input :Offline processed τ dataset; Task batch size B;

Candidate batch size B̂; Latest updated {ψ,ϕ};
Latest history Ht−1; Iteration number K;
Learning rate λ2.

Output :Task identifier batch {τt,i}Bi=1.
// Functional Posterior Inference
for i = 1 to K do

Perform gradient updates given Ht−1:
ϕ← ϕ + λ2∇ϕGELBO(ψ,ϕ) in Eq. (15b);
ψ ← ψ + λ2∇ψGELBO(ψ,ϕ) in Eq. (15b);

end
// Simulating Adaptation Results
Randomly sample {τ̂t,i}B̂i=1 from p(τ);
Run amortized evaluation on candidate tasks
{δi ∶= γ0m(ℓi) + γ1σ(ℓi)}B̂i=1 in Eq. (17);

Rank {δi}B̂i=1 and screen Top-B values;
// Exact Evaluation or Active Annotations
Return the screened batch {[xt,i,yt,i]}Bi=1.

A Quick Guideline to MPTS

Task episodic learning serves as a cornerstone in developing adaptive models by structuring diverse, context-rich learning
experiences. One of the pivotal insights underpinning this process is the neural scaling law, which establishes a relationship
between task volume, model complexity, and computational resources, offering a principled insight into training foundation
models at a certain budget. Recent viewpoints have also shed light on the importance of task quality15,16,18,59–63, prompting
innovative data curation strategies to refine datasets for pretraining, meta-training, and post-training. Evidence suggests that
carefully curated data can significantly reduce task sampling complexity, decrease computational demands, and enhance
robustness against distributional shifts—sometimes achieving these goals simultaneously. Despite these advancements, a
practical operation such as Evaluate-Rank-Filter still faces challenges associated with costly evaluations from intensive task
queries, computational overhead, and massive annotations. Addressing these bottlenecks remains essential to fully realize the
potential of task episodic learning in robust efficient foundation model training.

Computational Complexity Analysis. The involvement of the risk learner inevitably brings extra computational overhead in
optimization. However, the risk learner used in this work is lightweight with the model complexity O(∣ϕ∣ + ∣ψ∣) << O(∣θ∣).
We can roughly estimate these extra computations that arise from the predictive model as O((∣ϕ∣ + ∣ψ∣)TMPTS) throughout the
training phase. Moreover, the computational and task evaluation complexities of different methods are estimated in Table 1.
Compared with DRM, MPTS retains more computational and task efficiency when the filtering ratio α̂ is high, and the machine
learner θ is largely given similar convergence iteration steps.

Table 1: Computational Complexities using Different Methods. Here, we drop out the ranking or reweighting computational complexity as
the model complexity of the machine learner considered in this analysis is major, such as the multimodal foundation models. T refers to the
required iteration steps until the convergence for separate methods.

ERM DRM GDRM MPTS (Ours)

computation O(∣θ∣TERM) O(1
1−α̂ ∣θ∣TDRM) O(∣θ∣TGDRM) O((∣ϕ∣ + ∣ψ∣ + ∣θ∣)TMPTS)

task eval O(BTERM) O(B
1−α̂TDRM) O(BTGDRM) O(BTMPTS)

Choice of Surrogate Models. Among MPTS’s core components, the risk learner works to predict the adaptation risk values
based on historical information and further serves the calculation of acquisition functions. Importantly, this work investigates
the feasibility and effectiveness of risk predictive strategies and does not impose rigid constraints on the form of the risk learner
p(ℓ∣τ ,H1∶t) too much in modeling. The design of this risk learner p(ℓ∣τ ,H1∶t) must meet several criteria: it is tractable in
optimization, can process historical risk information, and offers uncertainty in prediction.

25

Top-Eval

Predict

O
pt

Figure 8: Risk Predictive Module in MPTS for Active Subset Selection. MPTS adopts a predict-then-optimize strategy and uses a predictive
module in green to obtain the preferred task subset. While the traditional method in blue exhausts B̂ tasks in construction and evaluation to
filter preferred subset.

A series of candidate probabilistic models exist that probably apply to adaptation risk modeling. One alternative choice can be
the Gaussian process64, which provides an analytical form of the predictive distribution. However, its implementation (i) is
less scalable in the case of relatively higher dimensional task identifiers, (ii) holds the cubic runtime complexity in obtaining
the predictive covariance matrix, (iii) is sensitive to kernel selection, coupled with limited expressiveness of the Gaussian
distribution in learned risk functions. Hence, for simplicity and computational efficiency, we adopt the basic VAE-like model
and execute a handful of gradient updates to train the risk learner. We leave more advanced risk learner modeling for future
exploration.

Bayesian Optimization for Black-box Functions. This work relates to active sampling and Bayesian optimization. The
purpose of BO65 is to sequentially find a global optimum of a black-box function f(x) expensive to evaluate in S, namely
x∗ = argmaxx∈S⊂Rd f(x).
In each iteration t = 1, . . . , T , the BO method actively queries xt to evaluate f(xt), yeilding an output ℓt = f(xt) + ϵ with a
white noise ϵ ∼ N(0, σ2). Due to the high cost of function evaluation, the key to BO is constructing a surrogate model to guide
the data point to query. The resulting acquisition function66 works as an active sampling objective to maximize and obtain
the candidate xt based on the previous sequence. BO requires limited function evaluations as observations and exploits the
correlations in queried data points. These properties make it more theoretically data efficient than random or grid search in
seeking the optimal solution67. This work differs from standard BO as task episodic learning is not the optimal parameter
search problem.

Specific Pseudo Algorithms in Considered Scenarios. The main paper provides the workflow of MPTS in Algorithm 1.
For separate scenarios, we attach detailed pseudo algorithms as follows. These illustrated Algorithms are in the context of
supervised learning. Regarding RL scenarios, such as meta RL and DR, there is a slight modification for MPTS. As simply
picking up worst-case MDPs restricts the task subspace in optimization17, we adopt the mixture of the identifier subset from
the random sampler and the identifier subset from the MPTS sampler. For example, in meta RL, with the pseudo batch size
B̂ = 1.5B, there 1.5B identifier candidates from the random sampler. We retain 0.5B random ones and execute standard MPTS
amortized evaluation and acquisition rule to obtain another 0.5B ones from the rest random B identifiers, formulating the
mixed B task batch for RL training. Such an operation makes RL over the MDP distribution stable in optimization. See the
open-source code for more RL details.

26

B Research Background

B.1 Adaptation Learning for Cross-Task Generalization

Learning from zero-shot or few-shot examples has been identified as a crucial adaptation capability of the machine learner
nowadays68,69. In SFT, this work treats the individual example as each task to meet MPTS setup. As SFT techniques have been
widely discussed in the field56, we skip this part in the background introduction.

Zero-Shot Adaptation. This assesses the machine learner’s generalization capability when directly deploying in unseen
scenarios without the help of a support dataset. Such a cross-task generalization is commonly studied in computer vision70, and
the core of the relevant methods is effective semantic representation either from embedding-based methods71–73 or generative-
based methods74,75. In the era of the foundation models, the pretraining mechanism between multimodality also sometimes
empowers the machine learner, such as CLIP1, with zero-shot capability. When it comes to sequential decision-making, a
commonly seen method is DR35,55, which places a distribution over environments for the agent to interact.

Few-Shot Adaptation. This examines the machine learner’s capability of resolving unseen tasks from some annotated
examples as hints. Meta-learning, as the typical learning paradigm, has gained popularity over the past decade. It achieves
few-shot adaptation by leveraging past experience and distilling knowledge to unseen but similar scenarios in a few-shot
way76. In brief, we categorize commonly seen methods into context-based, optimization-based, geometric-based, and others.
(i) Formulated in an encoder-decoder structure, the context-based method resembles variational autoencoders and encodes
the few-shot information into latent variables or embeddings. Typical ones are neural process families50,77–79, which aim
to constitute exchangeable deep stochastic processes with neural networks. (ii) The optimization-based methods, with their
versatile nature and ability to enable cross-task skill transfer, have piqued the interest and engagement of researchers in the field.
For example, MAML29,80–82 reduces meta-learning to a bi-level optimization in the parameter space, and its extensions have
been widely investigated in the field. (iii) The deep metric-based methods83,84 attempt to embed tasks into the latent space
and are more suitable for few-shot image classification tasks. Besides, there are other families, such as hyper-networks85,86,
recurrent meta-learning7, etc.

B.2 Dataset Curation and Task-Level Robustness

Task Curation in Robust Adaptation Learning Pipelines. Recent works15,16 demonstrate the effectiveness of challenging
task prioritization over uniform sampling in improving cross-task generalization and adaptation robustness, particularly when
the learning dataset is sufficiently large. Many methods13–18,39 adopt an Evaluate-Rank-Filter step for iterative model updates,
introducing a batch filtering ratio α̂ = 1 − B

B̂
∈ [0,1) to quantify the fraction of discarded tasks in a sample batch. This

prioritization of "difficult" tasks aligns with minimizing CVaRα
30, a robustness metric for tail-case performance. Alternatively,

other methods41–43 focus on constructing uncertainty sets and reweighting tasks within the batch to achieve robust adaptation.
Additionally, coreset methods61–63 aim to select a small subset of tasks that effectively represent the utility of the full dataset,
often through gradient approximation in optimization. These approaches address a subproblem of data efficiency, with the
acquisition strategy in MPTS serving as an episodic coreset selection mechanism tailored for robustness.

Task Distributional Robustness. The CVaRα or expected shortfall30 is a statistical measure to assess the proportional
worst-case performance of some models at certain levels. This is widely adopted in risk-averse applications. As implied in
Definition 1, CVaRα describes the expected risk under the normalized (1 − α) proportional tail risk task distribution, and this
work specifies the distribution in the task space. Meanwhile, the normalized tail task distribution pα(τ ;θ) can be viewed as a
shifted result from the initial task distribution p(τ); hence, such a measure provides robustness quantification in the presence of
task distribution shifts14,17,40.

Another indicator to evaluate the machine learner’s robustness is the performance in OOD tasks. This refers to the case when
the training and the testing task distributions are different. Particularly, in DR and prompt-tuning scenarios, we also use the
OOD tasks that never appear in the training task distribution to test the trained policy, and this setup corresponds to domain
generalization, a type of substantial distribution shift8.

B.3 Risk Minimization Principles as Baselines

The risk minimization principles are entangled with task sampling and robust optimization.

27

Expected/Empirical Risk Minimization (ERM). With the fixed p(τ), the principle follows the statistical learning theory38

and minimizes the expectation of adaptation risk over the task space. As a result, we can have:

min
θ∈Θ

Ep(τ)[ℓ(DQ
τ ,D

S
τ ;θ)]. (21)

It draws batches with a random task sampler to optimize iteratively.

Distributionally Robust Risk Minimization (DRM)14,16,17,39,40. We retain the notation of task robust work14, which terms
the tail task risk minimization as DRM. It aims to improve the robustness of adaptation to the tail tasks over iteration. No
explicit form exists as the tail task distribution is θ-dependent. The optimization objective is derived as the CVaRα(θ)30:

min
θ∈Θ

CVaRα(θ) ∶= Epα(τ ;θ)[ℓ(DQ
τ ,D

S
τ ;θ)], (22)

where we write pα(τ ;θ) to express the (1 − α) proportional worst case for easier formulation. In other words,
Epα(τ ;θ)[ℓ(DQ

τ ,D
S
τ ;θ)] also relates to the task distribution with constraints. Also note that when α approaches 1, the

problem degenerates to the worst-case risk minimization.

This work retains the setup in work14 and picks up the Top-B in optimization, which corresponds to sample average Monte
Carlo of CVaRα. This implies that the actual task batch to evaluate is B

1−α . And for fair comparison with MPTS and light
computations, we retain the Monte Carlo estimator for the risk quantile in implementation. To ensure stable training, in
all benchmarks, we keep the actual task batch B̂ = 2B to evaluate and discard the easiest half before the machine learner’s
optimization.

Group Distributionally Robust Risk Minimization (GDRM)41. This can be interpreted as a min-max optimization problem.
Such a principle41 effectively improves robustness in distribution shifts and has shown positive effects on training foundation
models42,43. It constructs a collection of uncertainty sets over tasks and results in the optimization objective as follows:

min
θ∈Θ

sup
g∈G

Epg(τ)[ℓ(DQ
τ ,D

S
τ ;θ)], (23)

where G are groups of uncertainty sets, and pg(τ) indicates the probability measure over the task group. The operation inside
Eq. (23) prioritizes the worst group to optimize in a soft way.

GDRM increases the machine learner’s robustness by assigning more probability mass to worst cases in a reweighted manner.
That means in each iteration with the best selected pĝ(τ), the optimization problem is reduced to

min
θ∈Θ

Epĝ(τ)[ℓ(D
Q
τ ,D

S
τ ;θ)] = Ep(τ) [

pĝ(τ)
p(τ) ℓ(D

Q
τ ,D

S
τ ;θ)] , (24)

where we use ω(τ) = pĝ(τ)
p(τ) to denote the weight.

Given a fixed number of tasks, GDRM will heuristically or dynamically group them into clusters and then perform a reweighting
mechanism according to the evaluated risk. In task episodic learning, there is no task grouping operation as the task batch

is reset after each iteration. And the default computation of task-specific weights is ω(τi) =
exp(ηℓ(DQ

τi
,DS

τi
;θ))

∑B
b=1 exp(ηℓ(DQ

τb
,DS

τb
;θ)) , where

η is the temperature parameter and {τb}Bb=1 is the identifier of the task batch. The implementation detail can be found in
https://github.com/kohpangwei/group_DRO.

As revealed in works14,87,88, the heuristic operation as the Evaluate-Rank-Filter or reweighting mechanism in GDRM is
widely adopted for approximate optimization. For example, in task robust meta-learning scenarios, the prerequisite step in
DR-MAML14 is to execute gradient updates in the inner loop for all candidate tasks and then screen the tail task subset to
meta-optimize according to the evaluation results.

C Task Construction and Identifiers

Here we refer to the variables that sufficiently configure a task as the task identifier τ . In other literature work, these task
identifiers can be viewed as the task representations in a lower dimensional space. To clarify these concepts, we provide more
explanations in specific scenarios.

28

https://github.com/kohpangwei/group_DRO

C.1 Tasks with Explicit Identifiers

K-shot Sinusoid Regression. In this setup29, meta learners aim at quickly adapting the model to an unseen function
f(x) = a sin(x − b) with the help of K data points randomly sampled from the function. This case treats the amplitude and
phase variables (a, b) as the task identifier to configure the task. And the task distribution is induced by the uniform distribution
over the task identifier.

Meta Reinforcement Learning. Here, we take the ReacherPos task as an example. The goal of the robot arm is to reach an
unobserved target location [x1, x2]. The end-effector position of the robot arm is initialized randomly, and the step-wise reward
corresponds to the feedback to the agent after each move based on its distance to the target location. As the task distribution is
specified by a uniform distribution over the target location, τ = [x1, x2] can be viewed as the task identifier. Similarly, we vary
physics parameters in simulators to generate diverse MDPs. This constitutes different meta RL benchmarks.

Domain Randomization. DR is a promising paradigm to achieve zero-shot adaptation in unseen scenarios, which is widely
adopted in robotics35 and computer vision55. The basic idea is to train the machine learner in a distribution over environments
and then directly apply the learned model to new ones.

Table 2: Benchmarks with Explicit Task Identifiers. Here, we list the detail information about the task identifier to induce the task
distribution.

Benchmarks Identifier Meaning Identifier Range
K-shot sinusoid regression amplitude and phase (a, b) [0.1,5.0] × [0, π]

Meta-RL: HalfCheetahMassVel mass and velocity (m,v) [0.75,1.25] × [0,2.0]
Meta-RL: HalfCheetahVel velocity v [0,2.0]

Meta-RL: ReacherPos goal location (x1, x2) [−0.2,0.2] × [−0.2,0.2]
Meta-RL: Walker2dMassVel mass and velocity (m,v) [0.75,1.25] × [0,2.0]

Meta-RL: Walker2dVel velocity v [0,2.0]
DR: LunarLander main engine strength s [4,20]
DR: ErgoReacher joint damping d and max torque t (×4 joints) [0.1,2.0] × [2,20]

As noted in the main paper, we suppose that the task identifier contains semantics that reflects the difficulty of tasks to resolve
and the adaptation risk function is smooth with respect to the identifier. In total, we summarize these bechmarks with explicit
task identifiers in Table 2.

C.2 Tasks with Implicit Identifiers

As previously mentioned, we assume the existence of a statistical correlation between task identifiers and adaptation risk
values given a specific adaptive machine learner. This implies that the task identifier preserves precise semantics about the task
information. These provide the basis for establishing the risk learner from the coupled dataset {[τi, ℓi]}Bi=1.

Nevertheless, in several scenarios, it is intractable to access the explicit task identifier. For example, in few-shot image
classification, the task information is just the coupled support and query dataset Dτ =DS

τ ∪DQ
τ . Similarly, in SFT for LLMs,

the task can be in the form of the QA pair Dτ = DQ
τ . There is no explicit representation method, such as τ , for these tasks,

which brings difficulty in building up the risk learner. Retaining the prior notation, the episodic task batch can be written as
Ĥt = {θt, (τt,i,Dτt,i , ℓt,i)}

B

i=1, where τ of our interest is unobservable. Some experiments in this work, such as few-shot
image classification and SFT, encounter such circumstance.

Task Representation through Identifier Inference. To scale our approach under these circumstances, we propose an
alternative candidate schema as the complementary. The probabilistic relationship between variables is depicted in Fig. 2.
We consider obtaining the implicit identifier through inference from the task dataset. To do so, we include additional module
fξ with ξ ∈ Ξ to embed DS

τ and DQ
τ and further induce a vector τ = fξ(DS

τ ,D
Q
τ) as the approximate task identifier. These

operations imply seeking the appropriate inference module directly influences the risk learner’s performance.

Fortunately, there exist pretrained models that enable the task representation to be generalizable to downstream tasks. For
example, in the N-way K-shot image classification, the task is in the form of support image-label pairs and the query images
and the goal is to assign labels to the query images from the support dataset. With the help of CLIP models1, for a fixed task in
the form of Dτ , we can access a N vectors {zi}Ni=1 by inputing the set of text-form classes {Ci}Ni=1 extracted from the support
dataset DS

τ , i.e., CLIP({Ci}Ni=1) = [CLIPtext(C1), . . . ,CLIPtext(CK)] ∶= τ . As a result, we can obtain Ht = {[τt,i, ℓt,i]}Bi=1

29

conditioned on θt for feasible task risk functional prosterior inference. This helps our approach to circumvent the unavailability
of exact task identifiers. And it is plausible for the risk predictive model to optimize in learning p(ℓ∣τ ,H1∶t). It is worth noting
that this case still prefers lightweight models for identifier inference, and the text encoder of CLIP well satisfies this requirement
and can be used in the N-way K-shot image classification. Details on specific task identifier inference modules can be found
in Section E and F.

D Auto-Encoding Adaptation Risk through Streaming VI

Note that the basis of MPTS is to establish the bridge between the task identifier and the adaptation risk value over the course
of the machine learner’s optimization. In other words, we are seeking a lightweight stochastic risk function in Definition 3 to
approximate the posterior p(ℓ∣τ ,H1∶t) in the task space.

Definition 3 (Stochastic Risk Function) Let X denote the index set’s Cartesian product with the task identifier’s dimension
τ ∈ Nd. For any k ∈ N and finite index sequence τ1, . . . ,τk ∈ X, we write some probability measure over Rk as ν(τ1,...,τk). By
introducing the probability space (Ωτ ,Fθ,P) and ∀θ ∈ Θ, we can induce a stochastic function Fθ ∶ T × Ωτ ↦ Rk, so that
ν(τ1,...,τk)(C1 × ⋅ ⋅ ⋅ ×Ck) = P(Fθ(τ1) ∈ C1, . . . ,Fθ(τk) ∈ Ck) ∀τi ∈ X and Ci ∈ R.

This section details steps in auto-encoding historical task risk information, parameterizing variational distributions, deriving the
approximate optimization objective, and estimating the stochastic gradients of parameters.

D.1 Neural Modules to Parameterize Distributions

Here, we detail the neural modules to parameterize the distributions of interest. For the approximate posterior qϕ(zt∣Ht) and
conditional prior p(zt∣H1∶t−1), the inputs of the module are a set of task risk pairs. The neural module requires the permutation
invariance w.r.t. the order of the data points in the set Ht or H1∶t−1 in Definition 2. Hence, we adopt the DeepSet style neural
network51 to process the collected Ht or H1∶t−1.

For example, we denote the neural network parameters by ϕ = {ϕ1,ϕ2,1,ϕ2,2} together with a mean pooling operator ⊕, we
can have:

ri = hϕ1(τk,i, ℓk,i) ∀i ∈ {1, . . . ,B}, r̄ = ⊕B
i=1ri, µϕ = hϕ2,1(r̄) and Σϕ = hϕ2,2(r̄), (25)

where the output corresponds to qϕ(zt∣Ht) = N(µϕ,Σϕ) (see Fig. 9 for details).

Regarding the task risk functional posterior inference module, this work has a close connection with the NP family50,77,79,89–92.
Both handle the set data points in probabilistic inference.

D.2 Formulation of ELBO & Stochastic Gradient Estimates

...

...

...

Dense

10 Units 10 Units 10 Units

Dense Dense...

...

...

...

Dense

10 Units 10 Units 10 Units

Dense DenseDense

Encoder Network Decoder Network

conditional prior

approximate
posterior

Figure 9: The Encoder-Decoder Neural Network to Paramterize the Risk Learner.

Unlike previous risk minimization principles in task episodic learning, ours include an additional risk predictive module, which
guides the task batch sampling. Importantly, we use the latent variable to summarize the historical information information and

30

quantify uncertainty in predicting task-specific adaptation risk. The following details the steps.

LML(ψ) ∶= lnpψ(Ht∣H1∶t−1) = ln [∫ pψ(Ht∣zt)p(zt∣H1∶t−1)dzt] (26a)

= ln [∫ qϕ(zt∣Ht)
p(zt∣H1∶t−1)
qϕ(zt∣Ht)

pψ(Ht∣zt)dzt] (26b)

≥ Eqϕ(zt∣Ht)[lnpψ(Ht∣zt)] −DKL[qϕ(zt∣Ht) ∥ p(zt∣H1∶t−1)] ∶= GELBO(ψ,ϕ) (26c)

Then, we can rewrite the ELBO with the help of reparameterization trick23 in Eq. (27).

ĜELBO(ψ,ϕ) = Eqϕ(zt∣Ht)[lnpψ(Ht∣zt)] −DKL[qϕ(zt∣Ht) ∥ p(zt∣H1∶t−1)] (27a)

= Ep(ϵ)[lnpψ(Ht∣gϕ(ϵ,Ht))] −DKL[qϕ(zt∣Ht) ∥ p(zt∣H1∶t−1)] (27b)

≈ lnpψ(Ht∣gϕ(ϵ,Ht)) −DKL[qϕ(zt∣Ht) ∥ p(zt∣H1∶t−1)], with ϵ ∼ N(0,Id) (27c)

Moreover, we estimate the stochastic gradients w.r.t. all model parameters based on the reparameterized latent variable
distribution.

∇ϕGELBO(ψ,ϕ) ≈ ∇ϕ lnpψ(Ht∣gϕ(ϵ,Ht)) −
1

2
∇ϕ(Tr(Σ̂−1Σϕ) + (µ̂ −µϕ)T Σ̂(µ̂ −µϕ) − ln(detΣϕ)) (28a)

with qϕ(zt∣Ht) = N(µϕ,Σϕ) and p(zt∣H1∶t−1) = N(µ̂, Σ̂) (28b)
∇ψGELBO(ψ,ϕ) ≈ ∇ψ lnpψ(Ht∣gϕ(ϵ,Ht)) (28c)

As illustrated in Eq. (28), one stochastic forward pass is required for gradient estimates in the training process. For flexible
implementation, we adopt a β-VAE strategy to turn Eq. (27) into

max
ψ∈Ψ,ϕ∈Φ

GELBO(ψ,ϕ) ∶= Eqϕ(zt∣Ht) [
B

∑
i=1

lnpψ(ℓt,i∣τt,i,zt)] − βDKL[qϕ(zt∣Ht) ∥ qϕ̄(zt∣Ht−1)] (29)

D.3 Theoretical Guarantee for Task Difficulties’ Scoring with Posterior Inference

Assumption 1 (Lipschitz Continuity) We assume the adaptation risk function ℓ(⋅;θ) reserves the Lipschitz continuity w.r.t. θ
and τ , i.e.,

∣ℓ(DQ
τ ,D

S
τ ;θ) − ℓ(DQ

τ ,D
S
τ ;θ

′)∣ ≤ β1∣∣θ − θ′∣∣ and ∣ℓ(DQ
τ ,D

S
τ ;θ) − ℓ(DQ

τ ′ ,D
S
τ ′ ;θ)∣ ≤ β2∣∣τ − τ ′∣∣, (30)

where ∀{θ,θ′} ∈Θ and ∀{τ ,τ ′} ∈ T with Lipschitz constants β1 and β2.

Assumption 2 (Bounded Sample Gradient) We assume the norm of the adaptation risk function’s gradient ∇ℓ(⋅;θt) is
bounded:

sup
τ∈T
∣∣∇θℓ(DQ

τ ,D
S
τ ;θt)∣∣2 < Gt, (31)

where Gt is a positive constant.

Assumption 3 (Sub-Gaussian Stochastic Gradient) The stochastic gradient g̃ ∶= g + ϵ for the machine learner’s adaptation
at t-th iteration is σ-sub-Gaussian, which means:

E [exp (ηvT ϵ)] ≤ exp(η
2σ2∣∣v∣∣22

2
) ∀η ∈ R and v ∈ Rd, (32)

where E[g̃] = g, E[∣∣g̃ − g∣∣22] ≤ σ2 and σ ∈ R+.

Given the Assumption 3 and the Chernoff bound93, we can have the concentration inequality as:

P(∣∣g̃ − g∣∣2 ≥ t) ≤ 2 exp (−
t2

2σ2
) ∀t ∈ R. (33)

31

Theorem 1 (Provably Approximately Invariant Task Difficulties) Given arbitrary K data points {(τi, ℓ(DQ
τi ,D

S
τi ;θt)}

K
i=1,

the adaptation gradient ∇θL(θt) as a σ-sub-Gaussian random variable and θt+1 = θt − η∇θL(θt), we denote the relative
difficulty via the difference ∆ij(θt+1) = ℓ(DQ

τi ,D
S
τi ;θt+1)−ℓ(D

Q
τj ,D

S
τj ;θt+1) and ∆ij(θt) = ℓ(DQ

τi ,D
S
τi ;θt)−ℓ(D

Q
τj ,D

S
τj ;θt)

between t-th and (t + 1)-th iterations, and the gradient difference as vij ∶= ∇θℓ(DQ
τi ,D

S
τi ;θt) −∇θℓ(D

Q
τj ,D

S
τj ;θt).

Under Assumption 1/2/3, the set of rank-preserving variable Eij ∶= 1 [sign(∆ij(θt+1)) = sign(∆ij(θt))] satisfies the proba-
bility inequality:

P(⋂
i<j

Eij) ≥ 1 − ξ,

when η ≤ δt

2GtMt+
√

8σ2G2
t ln(K(K−1)

2ξ)
with Gt in Assumption 2, δt ∶= mini≠j ∣ℓ(DQ

τi ,D
S
τi ;θt) − ℓ(D

Q
τj ,D

S
τj ;θt)∣ ∈ R

+, the

stochastic gradient norm Mt ∶= ∣∣∇θL(θt)∣∣2.

The purpose of this part is to uncover the mechanism of the risk learner in amortized evaluation of adaptation risk values
and scoring the difficulty of tasks. The function of the risk learner relies on Assumptions 1/2/3 and the posterior inference
p(ℓ∣τ,H1∶t;θt) from the historical risk information H1∶t. The foundation of predicting the outcome of optimization in a rough
granularity lies in the Theorem 1, and we detail the proof of such a theorem as below.

1⃝. Any-Shot Adaptation After One-step Gradient Descent.

Here, we consider a set of data points for the risk learner {(τi, ℓ(DQ
τi ,D

S
τi ;θt)}

K
i=1 under an arbitrary fixed machine learner θt,

where tasks in the set {τi}Ki=1 are randomly sampled from p(τ). Without loss of generality, we can assume that the adaptation
risk values satisfy a rank ordering:

ℓ(DQ
τ1 ,D

S
τ1 ;θt) ≥ ℓ(D

Q
τ2 ,D

S
τ2 ;θt) ≥ ⋯ ≥ ℓ(D

Q
τK

,DS
τK

;θt). (34)

The gradient descent as fast adaptation is denoted by:

θt+1 = θt − η∇θL(θt). (35)

After the above operator, we can obtain another set of data points for the updated risk learner {(τi, ℓ(DQ
τi ,D

S
τi ;θt+1)}

K
i=1.

2⃝. Changes of Adaptation Risk Values and Pairwise Ranks.

Based on the Assumption 1, we can perform local approximation over ℓ(DQ
τi ,D

S
τi ;θ)with the help of first-order Talor expansion

w.r.t. the θt:

ℓ(DQ
τi ,D

S
τi ;θt+1) = ℓ(D

Q
τi ,D

S
τi ;θt) − η∇θℓ(D

Q
τi ,D

S
τi ;θt)

TL(θt) +O(η2∣∣∇θL(θt)∣∣22) (36a)

ℓ(DQ
τi ,D

S
τi ;θt+1) ≈ ℓ(D

Q
τi ,D

S
τi ;θt) −∇θℓ(D

Q
τi ,D

S
τi ;θt)

TL(θt) ∀i ∈ {1,2, . . . ,K}. (36b)

One straightforward way to assess the task difficulty is to compare arbitrary paired tasks {τi,τj}’s adaptation risk values
{ℓ(DQ

τi ,D
S
τi ;θt), ℓ(D

Q
τj ,D

S
τj ;θt)} with i < j. Then, we can estimate the relative difficulty via the difference as:

∆ij(θt+1) ≈∆ij(θt) − η (∇θℓ(DQ
τi ,D

S
τi ;θt) −∇θℓ(D

Q
τj ,D

S
τj ;θt))

T ∇θL(θt), (37)

where we denote the relative difficulty via the difference as ∆ij(θt+1) = ℓ(DQ
τi ,D

S
τi ;θt+1) − ℓ(D

Q
τj ,D

S
τj ;θt+1) and ∆ij(θt) =

ℓ(DQ
τi ,D

S
τi ;θt) − ℓ(D

Q
τj ,D

S
τj ;θt) between t-th and (t + 1)-th iterations. As ∆ij(θt) is positive, one feasible condition for

∆ij(θt+1) ∈ R+ is:

∆ij(θt+1) ≈∆ij(θt) − η (∇θℓ(DQ
τi ,D

S
τi ;θt) −∇θℓ(D

Q
τj ,D

S
τj ;θt))

T ∇θL(θt) (38a)

≥∆ij(θt) − 2ηGtM > 0, ⇒ η < ∆ij(θt)
2GtMt

with Mt ∶= ∣∣∇θL(θt)∣∣2. (38b)

The above implies that when the learning rate η in gradient step is smaller enough, the relative difficulty between the task i and
j can be preserved after the machine learner’s update with the Assumption 2.

3⃝. Probabilistic Inequality with a Nearly Invariant Ranking Guarantee.

In practice, the stochastic gradient descent is performed, which means the gradient is a random variable ∇θL(θt) = gt + ϵ with
E[ϵ] = 0,E[∣∣ϵ∣∣22] < σ2 and gt = E [∇θL(θt)]. Meanwhile, we denote the gradient difference by vij ∶= ∇θℓ(DQ

τi ,D
S
τi ;θt) −

∇θℓ(DQ
τj ,D

S
τj ;θt), which leads to:

∣∣vij ∣∣2 ≤ 2 sup
τ∈T
∣∣∇θℓ(DQ

τ ,D
S
τ ;θ)∣∣2 < 2Gt, (39)

32

according to the Assumption 2. Another variable is introduced as the minimum separation between arbitrary paired adaptation
risk values:

δt ∶=min
i≠j
∣ℓ(DQ

τi ,D
S
τi ;θt) − ℓ(D

Q
τj ,D

S
τj ;θt)∣ ∈ R

+. (40)

Still, to make sure the invariant rank, one necessary condition can be:

∆ij(θt) − ηvTijgt ≥ 0 (41)

And the above inequality reasonably holds when ηvTijgt < δt. Here, we define the random event Eij ∶=
1 [sign(∆ij(θt+1)) = sign(∆ij(θt))] from the task pair together with Ec

ij ∶= 1 [sign(∆ij(θt+1)) ≠ sign(∆ij(θt))]. With the
help of σ-sub-Gaussain property in Assumption 3, we can bound the case of the rank flipping as (note some critical conditions
that vTijgt ∈ R+ and ηvTijgt < δt as the learning rate η can be typically smaller enough):

P(Ec
ij) = P(ηvTij∇θL(θt) ≥ δt) ≤ exp(−

(δt − ηvTijgt)2

2η2σ2∣∣vij ∣∣22
) < exp(−(δt − 2ηGtMt)2

8η2σ2G2
t

) (42a)

P(⋃
i<j

Ec
ij) ≤∑

i<j
P(Ec

ij) ≤
K(K − 1)

2
exp(−(δt − 2ηGtMt)2

8η2σ2G2
t

) (42b)

P(⋂
i<j

Eij) = 1 − P(⋃
i<j

Ec
ij) ≥ 1 −

K(K − 1)
2

exp(−(δt − 2ηGtMt)2
8η2σ2G2

t

) ≥ 1 − ξ. (42c)

The condition for the above inequality holds is η ≤ δt

2GtMt+
√

8σ2G2
t ln(K(K−1)

2ξ)
. With the above steps 1⃝- 3⃝ and corresponding

conditions, we complete the proof.

E Prompt-based Few-shot Image Classification

We adopt the standard few-shot image classification setting29,83, where tasks are constructed using the N-way K-shot paradigm
for both meta-training and meta-testing. Each task comprises support and query sets. The support set contains K examples for
each of the N classes, while the query set includes 15 examples per class. During meta-training, labels for both support and
query data are accessible to the adaptive machine learner. During meta-testing, the query dataset’s labels are to be predicted
given the labeled support dataset. The class categories of task datasets in the meta-training and meta-testing do not overlap. In
experiments, we specifically consider a 5-way 1-shot image classificationconfiguration. During meta-training, we set the
task batch for ERM and DRM as B = 4 (For implementation simplicity, the data loader samples 8 tasks and then randomly
keeps half without ranking to optimize). The task batch for DRM is B = 8 before the filtering operation; DRM filters half to
optimization. Similarly, that for MPTS is B = 8 and only 4 tasks are screened to optimize.

To enable few-shot learning by prompt-tuning, we integrate the multimodal prompt learning methods MaPLe36 and prototypical
network (ProtoNet)83. MaPLe operates on the CLIP model1, capturing multimodal prompts to refine both visual and textual
feature representations with frozen CLIP’s parameters. These refined textual features serve as classifiers for predicting refined
image features. In parallel, ProtoNet is utilized to derive class-specific visual embeddings from the support set, which assist in
distinguishing query samples.

To utilize both MaPLe and ProtoNet, we construct classifiers based on both textual features and visual embeddings. Predictions
for query samples are generated by combining the classifiers through a weighted sum. This combination strategy is employed
during meta-training to optimize the multimodal prompts. Meanwhile, the CLIP model’s parameters remain frozen throughout
optimization. During meta-testing, these trained prompts are adopted to create textual and visual classifiers and process
query image features. Final predictions for each query sample are made using the same weighted combination approach as in
meta-training.

In mathematics, we can characterize the mentioned pipeline as:

Textual Classifier from the Textual Features: tk = fθt(lk,u), (43)

Prototypical Classifier from the Support Image: ck =
1

∣Sk ∣
∑

(xi,yi)∈Sk

fθi(xi,u), (44)

Classification Likelihood from the Query Dataset:

pθ(y = k∣x,u) = λ1
exp(−d(fθi(x,u),ck))
∑k′ exp(−d(fθi(x,u),ck′))

+ λ2
exp(−d(fθi(x,u), tk))
∑k′ exp(−d(fθi(x,u), tk′))

,
(45)

33

where θt and θi denote the textual and visual encoders of the CLIP model, respectively. lk and u respectively denote the
textual descriptions of category k and the multimodal prompts. (xi, yi) ∈ Sk denotes the images and labels of category k in the
support dataset DS

τ . Once the textual classifier t and support visual classifier c are obtained, we predict the query sample x by
the classifiers with hyperparameters λ1 = 0.25 and λ2 = 1.0.

F Backbone Methods & Experimental Details in Any-Shot Learning

F.1 MAML

In sinusoid regression and Meta-RL, MAML is used as the backbone algorithm. As previously discussed, MAML is widely
applied in solving few-shot learning tasks. In mathematics, its optimization objective can be characterized as:

min
θ∈Θ

Ep(τ) [ℓ(DQ
τ ;θ − λ∇θℓ(DS

τ ;θ))] , (46)

where the term inside the bracket specifies the adaptation risk ℓ(DQ
τ ,D

S
τ ;θ), and θ−λ∇θℓ(DS

τ ;θ) denotes the gradient update
with the learning rate λ as fast adaptation to the task τ . After meta-training, we can access the meta initialization θ that
generalizes across the task space.

When it comes to reinforcement learning scenarios, Dτ corresponds to episodic returns collected from MDPs with either the
meta policy or the fast adapted policy. To ensure enough coverage of task space, we adopt a mixture strategy of MPTS and
random sampling as an empirical regularizer in all RL scenarios, which is similar to work17.

F.2 DR

Robotic DR refers to the setup that trains the agent in a collection of environments to obtain a generalizable policy. The diversity
of environments tends to increase the robustness of policies in deployment. Such a setup does not require few-shot episodes in
unseen but similar environments. In mathematics, we can express the optimization objective as:

max
θ∈Θ

J(θ) ∶= Eπθ
Ep(τ) [

H

∑
t=0

γtrt] (47)

where p(τ) defines the distribution over MDPs, and {rt}Ht=0 is the episodic stepwise reward after interacting with a specific
MDP with H as the horizon. Once finishing the optimization of Eq. (47), we can access the policy πθ as the zero-shot
decision-maker in new environments. In this case, the adaptation risk can be in the form ℓ(DQ

τ ,D
S
τ ;θ) = −∑H

t=0 γ
trt.

Remember that MDP distribution p(τ) is mostly induced by physical parameters, e.g., mass, gravity, friction, etc., or the reward
functions. In each training iteration, the machine learner resamples a batch of MDPs and gets the shared policy to interact with
them to collect episodes. Consequently, the query dataset contains the episodes collected with no support dataset. Overall,
policy optimization follows the standard TD3 algorithm37 due to its sample efficiency and stability.

F.3 Multi-Modal Prompt Learning

Multi-modal prompt learning is based on the backbone of the prompt tuning method MaPLe36, which we use on both few-shot
and SFT for image classifications.

Few-shot classification. The few-shot prompt learning refers to the common few-shot classification setting29,83. We integrate
the MaPLe backbone with the ProtoNet83 to fully utilize the support sets in few-shot learning. As illustrated in Section E, we
generate the model prediction using both the textual classifiers from the CLIP textual encoder and the visual classifiers from the
support set. By freezing the CLIP model parameters, only the prompts are optimized during meta-training. In mathematics, the
optimization objective can be formulated as:

max
u

Ep(τ)Ex∼DQ
τ
[log pθ(y∣x,u)] , (48)

where u denotes the learnable multi-modal prompts. θ = (θt,θi) contains the parameters of the CLIP textual and visual
encoders, which are frozen during training. The prediction of each query image x from task τ is calculated by Eq. (45).
Loglikelihood maximization is implemented by minimizing the classification cross-entropy loss.

34

SFT for image classification. The prompt learning setting refers to the 16-shot classification task proposed in work94,95.
Based on the MaPLe backbone36, we again freeze the CLIP model parameters and tune multi-modal prompts. The prompts are
optimized on a selected ImageNet subset, with 16 samples from each category.

Note that in the SFT setting, we do not have pre-defined N-way K-shot tasks, either the splits of support and query sets in
each task. Therefore, we replace the “tasks” in the meta-learning setting with training samples. Model predictive task sampling
is then achieved through data sampling. In mathematics, the objective can be formulated as:

max
u

Ex∼D [log pθ(y∣x,u)] , (49)

where u and θ denote the prompts and frozen CLIP parameters as in the few-shot prompt learning setting, respec-
tively. x are training samples from the entire training set D. The prediction of each image pθ(y∣x,u) is calculated by

exp(−d(fθi(x,u),tk))
∑k′ exp(−d(fθi(x,u),tk′))

with the textual classifiers t, obtained similarly to Eq. (43).

G Experimental Setups & Implementation Details

Practical Learning Efficiency and Robustness. Widely recognized in reinforcement learning is the high sample complexity
in policy evaluation, which demands massive interactions with environments, while policy optimization over the MDP
distribution makes this even more severe. In N-way K-shot image classification, we can create K-shot classification task
from an arbitrary combination of N classes; then the task space complexity O(CN

M) grows with the number of categories M in
image datasets. Meanwhile, challenges arise when gradient updates of foundation models consume substantial computational
power and memory with a large batch size. Similar circumstance also occurs in robust finetuning foundation models.

Table 3: A Summary of the Considered Benchmarks. Here, we list the primary expensive part in task episodic learning for each scenario
together with backbone methods. Also note that N-way K-shot image classification and SFT requires implicit task identifiers while others
can directly access explicit task identifiers as the lower dimensional task representation.

Benchmarks Adaptation Backbone Expensive Part
K-shot sinusoid regression few-shot MAML computations

N-way K-shot image classification few-shot MaPLe computation/memory
Meta-RL few-shot MAML interactions

Robotic DR zero-shot TD3 interactions

SFT many-shot MaPLe computation/memory

Neural architecture of the risk learner. As mentioned in the main paper, the risk learner is in an encoder-decoder
structure. For generality sake, we keep the neural architecture same for all benchmarks, including regression, classification and
reinforcement learning. The encoder includes an embedding network with 4 hidden layers of size 128 (for Image Classification
and Prompt-Tuning) or 10 (for Sinusoid Regression, Meta-RL, and Robotic DR) with the Rectified Linear Unit (ReLU)
nonlinear activation units to encode {[τt,i, ℓt,i]} batch for mean pooling and then maps to [µ,Σ] with an output layer. The
decoder is a network with 3 hidden layers with nonlinear activation units to map [z,τ] to ℓ ∈ R. For further details, please refer
to our code.

Visualized Results during Training Phases. Note that the active selection and the random sampler with different batches
affect the reflection of the machine learner’s performance. Hence, learning curves in sinusoid regression (Fig. 3.a), Meta-RL
(Fig. 5.a-b), and DR (Fig. 6.a-b) are actually evaluated in a uniformly sampled validation task dataset for fair comparison.
Details on these validation task dataset are attached in the opensourced code.

G.1 Sinusoid Regression

Task setup. For sinusoid regression, we retain the setup in MAML29, where the few-shot machine learner tries to complete a
wave function with the support dataset. In specific, sampling the amplitude a and the phase b configures the wave function, and
10 data points are uniformly sampled from the interval [−5.0,5.0] coupled with y = a sin(x − b) to obtain the support dataset.
This formulates the 10 − shot sinusoid regression task.

Meta training process and neural architectures. The machine learner is a neural network with 2 hidden layers of size
40 with two nonlinear activation units. The task batch for ERM and GDRM is 16, and that for DRM is 32 as default. The

35

temperature parameter in GDRM is η = 0.001. The learning rates for the inner loop and the outer loop are 0.001. The following
is about extra optimization details or setups in MPTS. The task identifier’s dimension is 2 with the latent variable is z ∈ Rx. The
batch size of the identifier in training is 32, the Lagrange multiplier is set as 1, and we use the Adam optimizer with the learning
rate 3e − 4 to update the risk learner for 20000 step. In sinusoid regression and Meta-RL, we use the standard repository in
MAML29.

G.2 N-way K-shot Image Classification

Task Setup. This is a commonly seen benchmark in few-shot learning. It learns a model that can classify images from
N distinct classes with support of K labeled examples for each class. The support dataset as reference is in the form
DS

τ = {{[xi,k, yi,k = i]}Kk=1}Ni=1. And the query dataset corresponds to the image information for the model to classify. Hence,

for a large image dataset with M classes, the complexity of the task space is O(CN
M). Here, we include ImageNet-CG44,

ImageNet-CI44, ImageNet-CS44, ImageNet-A45, ImageNet-S27 and ImageNet-R46 as the dataset in evaluation.

Meta training process and neural architectures. Explicit τ are unavailable to specify the task; however, it can be
approximately resolved by describing the identifier through a small reference model. Specifically, we leverage CLIP’s text
encoder to obtain τ ≈ [CLIPtext(C1), . . . ,CLIPtext(CK)] with the tokenizations of K class texts C1∶K from DS

τ . The machine
learner utilizes a prompt learning backbone following MaPLe, with the frozen CLIP model. The task batch for ERM and
GDRM is 4, and that for DRM is 8 as default. The temperature parameter in GDRM is 0.001. The learning rate for the
outer loop is 0.01. The learning rate for the inner loop follows that in MaPLe36. The following is about extra optimization
details or setups in MPTS. The task identifier is generated by the frozen CLIP text encoder using the input class names, with a
dimensionality of 512. The batch size of the identifier in training is 8, the Lagrange multiplier is set as β, and we use the Adam
optimizer with the learning rate 0.01 to update the risk learner.

G.3 Meta-RL

Task Setup. We construct MDP distributions based on Mujoco physics engines96. These include HalfCheetahVel, HalfChee-
tahMassVel, Walker2dVel, Walker2dMassVel, and ReacherPos. The HalfCheetahVel and Walker2dVel tasks involve training
the cheetah or walker robot to achieve a target velocity. These tasks define the reward function as the negative absolute
difference between the robot’s current velocity and the target velocity, supplemented by a control penalty and an alive bonus to
facilitate the learning process. The goals and rewards of HalfCheetahMassVel and Walker2dMassVel are the same as those of
the corresponding velocity-related tasks, with the additional identifier of varying mass for the cheetah or walker robot. The
ReacherPos task tries to move a two-jointed robot arm’s end effector close to a target position, and its reward function is defined
as the negative L-1 distance between the robot arm’s position and the target position, supplemented by a control cost to ensure
robustness.

Meta training process and neural architectures. The machine learner is a neural network with 2 hidden layers of size 64
with the Rectified Linear Unit (ReLU) nonlinear activation units. The task batch for ERM and GDRM is 20, and that for DRM
is 40 as default. The temperature parameter in GDRM is 0.001. The learning rates for the inner loop and the outer loop are
0.1. The following is about extra optimization details or setups in MPTS. The task identifier is encoded into the latent variable
z ∈ Rx. The batch size of the identifier in training is 30, the Lagrange multiplier is set as β = 0.0001, and we use the Adam
optimizer with the learning rate 0.005 to update the risk learner.

G.4 Robotic DR

Task Setup. We conduct experiments on LunarLander-v2 and ErgoReacher-v0 environments35. LunarLander is a 2 degrees
of freedom (DoF) environment in which the agent has to land a spacecraft on a designated landing pad without crashing,
implemented using Box2D97. The reward function of LunarLander awards positive rewards for successful landings, negative
rewards for crashes, and additional penalties for fuel consumption and deviation from the landing pad, encouraging efficient
and controlled landings. ErgoReacher is a 4 DoF arm environment from98 in which the arm has to touch a goal with its end
effector, implemented in the Bullet Physics Engine99. The reward function of ErgoReacher includes the negative distance
between the end effector’s position and the target, along with other control costs to promote efficient and safe movements.
In LunarLander, we randomize the engine strength, while in ErgoReacher, we randomize the joint damping and maximum
torque for each of the 4 joints, resulting in a total of 8 parameters. The detailed ranges of the randomized parameters for each
environment are provided in Table 2.

DR training process and neural architectures. The machine learner is a neural network with 2 hidden layers of size 10 with
the Rectified Linear Unit (ReLU) nonlinear activation units. The task batch for ERM, and GDRM is 10, and that for DRM is 20

36

as default. The temperature parameter in GDRM is 0.01. The learning rates for actor and critic are 3e-4. The following is about
extra optimization details or setups in MPTS. The task identifier is encoded into the latent variable z. The batch size of the
identifier in training is 25 for LunarLander and 250 for ErgoReacher. The Lagrange multiplier is set as β = 1.0, and we use the
Adam optimizer with the learning rate 0.005 to update the risk learner.

G.5 Prompt-Tuning Multimodal Foundation Models

Task Setup of Prompt-tuning. We refer the reader to MaPLe’s implementation in https://github.com/muzairkhattak/
multimodal-prompt-learning. For all baselines, we retain the MaPLe’s task construction in prompt-tuning.

Prompt-tuning process and neural architectures. The machine learner follows the prompt learning method MaPLe36

based on the frozen CLIP model (ViT/B-16). The task batch for ERM and GDRM is 4, and that for DRM is 8 as default. The
temperature parameter in GDRM is 0.001. The learning rate for the outer loop is 0.005. The learning rate for the inner loop
follows that in MaPLe36. The following is about extra optimization details or setups in MPTS. As for the neural architecture of
the risk learner, the encoder is a neural network with 5 hidden layers with 4 ReLU nonlinear activation units, and the decoder is
a neural network with 4 hidden layers with 3 nonlinear activation units. The task identifier’s dimension is 512 with the latent
embedding from CLIP encoders. The batch size of the identifier in training is 8, the Lagrange multiplier is set as β, and we use
the Adam optimizer with the learning rate 0.005 to update the risk learner for 8000 steps. During prompt-tuning, we set the
task batch for ERM and DRM as B = 4 (For implementation simplicity, the data loader samples 8 tasks and then randomly
keeps half without ranking to optimize). The task batch for DRM is B = 8 before the filtering operation; DRM filters half to
optimization. Similarly, that for MPTS is B = 8 and only 4 tasks are screened to optimize.

Table 4: Testing Classification Results after 5-way 1-shot Meta-Training on Various Datasets. We report testing CVaR0.9, CVaR0.7,
CVaR0.5 and average accuracies with the meta-trained machine learner on ID and OOD datasets. This table complements the radar part of
Fig. 4a-d. Best results are in bold, and MPTS’s performance gains over ERM are marked in blue.

Dataset Metrics ERM DRM GDRM MPTS (Ours)

ImageNet-CG44 CVaR0.9 77.02 77.76 77.61 78.04 +1.02
CVaR0.7 82.00 82.47 82.62 82.87 +0.87
CVaR0.5 84.77 85.03 85.16 85.45 +0.68
Average 89.04 89.46 89.51 89.87 +0.83

ImageNet-CI44 CVaR0.9 80.24 80.47 80.15 80.97 +0.73
CVaR0.7 84.77 85.17 84.78 85.66 +0.98
CVaR0.5 87.03 87.52 87.09 87.78 +0.75
Average 91.12 91.46 91.15 91.60 +0.48

ImageNet-CS44 CVaR0.9 76.63 77.71 76.18 78.4 +1.77
CVaR0.7 81.58 82.53 81.40 83.27 +1.69
CVaR0.5 84.40 85.08 84.23 85.83 +1.43
Average 89.24 89.87 89.13 90.26 +1.02

ImageNet-A45 CVaR0.9 76.69 77.39 77.40 77.95 +1.26
CVaR0.7 81.90 82.57 82.50 83.41 +1.51
CVaR0.5 84.58 85.43 85.33 86.30 +1.72
Average 89.25 90.26 90.21 91.06 +1.81

ImageNet-S27 CVaR0.9 82.63 83.67 83.11 84.82 +2.21
CVaR0.7 87.26 88.38 87.26 89.27 +2.01
CVaR0.5 89.56 90.02 90.08 91.54 +1.98
Average 93.53 94.27 94.12 94.78 +1.25

ImageNet-R46 CVaR0.9 88.31 88.84 87.71 89.79 +1.48
CVaR0.7 91.46 92.03 91.18 93.16 +1.7
CVaR0.5 93.36 93.80 93.21 94.65 +1.29
Average 96.05 96.33 95.98 96.86 +0.81

H Computational Tools & Platforms & Data Availability

In this research project, we use the Pytorch as the package to implement all methods to run all deep learning epxeriments.

37

https://github.com/muzairkhattak/multimodal-prompt-learning
https://github.com/muzairkhattak/multimodal-prompt-learning

Table 5: Testing Classification Results after Prompt-Tuning on ImageNet. We report testing CVaR0.9, CVaR0.7, CVaR0.5 and average
accuracies with the prompt-tuned machine learner on ID and OOD datasets. Evaluation on OOD datasets corresponds to the domain
generalization setting. This table complements the radar part of Fig. 7a-d. Best results are in bold, and MPTS’s performance gains over ERM
are marked in blue.

Dataset Metrics ERM DRM GDRM MPTS (Ours)

ImageNet26 (ID) CVaR0.9 31.68 32.46 31.38 32.5 +0.82
CVaR0.7 42.87 44.07 42.97 44.22 +1.35
CVaR0.5 51.45 52.59 51.71 52.72 +1.27
Average 70.8 70.8 71.0 71.20 +0.4

ImageNet-A45 (OOD) CVaR0.9 15.33 15.46 15.6 18.44 +3.11
CVaR0.7 22.8 23.02 23.13 24.06 +1.22
CVaR0.5 30.08 29.54 30.26 31.25 +1.17
Average 49.8 48.4 49.5 51.10 +1.3

ImageNet-R46 (OOD) CVaR0.9 26 28.06 25.9 28.19 +2.19
CVaR0.7 43.58 45.23 43.91 45.49 +1.91
CVaR0.5 56.67 58.21 57.38 58.77 +2.1
Average 76.9 77.4 77.3 77.63 +0.73

ImageNet-S27 (OOD) CVaR0.9 12.24 13.16 12.22 13.63 +1.39
CVaR0.7 20.02 21.08 20.43 21.46 +1.44
CVaR0.5 26.69 27.44 27.4 27.97 +1.28
Average 48.9 48.8 48.9 49.63 +0.73

ImageNet-V47 (OOD) CVaR0.9 24.6 25.5 24.2 25.90 +1.3
CVaR0.7 34.7 35.73 35.07 35.80 +1.1
CVaR0.5 43.45 44.14 43.53 44.56 +1.11
Average 64.0 63.8 64.1 64.53 +0.53

I Competing Interests & Author Contributions

The author list is Qi Cheems Wang (Q.C.W.), Zehao Xiao (Z.X.), Yixiu Mao (Y.M.), Yun Qu (Y.Q.), Jiayi Shen (J.S.), Yiqin Lv
(Y.L.), and Xiangyang Ji (X.J.). The authors declare no competing interests in this work. X.J. launched and sponsored this
research on the reliable and efficient adaptation learning project. Z.X. and J.S. from the University of Amsterdam attended this
project, and this work was done during their remote visiting the Tsinghua University Intelligent Decision-Making Lab from
April 2024 to August 2024. J.S. is now working at Facebook AI Research. The authors confirm their contributions to this work
as follows:

Under the supervision of professor X.J., Q.C.W. conceptualized the idea of MPTS, designed the computational framework,
formulated the mathematical part, and wrote the draft. Z.X. and J.S. implemented MPTS in sinusoid regression, prompt-
based few-shot image classification, and SFT image classification, collected experimental results to visualize, and added
implementation details in Supplementary Material. Y.M., Y.Q., and Y.L. implemented MPTS in sinusoid regression, Meta-RL
and robotic DR, collected experimental results to visualize, and added implementation details in Supplementary Material. X.J.
supervised the progress of MPTS, organized technical discussions, reviewed and revised the original draft. All authors have
read the manuscript and approved the public version.

First Author Biography: Qi Wang received Ph.D. degree under supervision of Professor Max Welling and Associate
Professor Herke van Hoof in 2022. He is now under supervision of Prof. Xiangyang Ji and works as a research assistant at
Tsinghua University. His research focus is on generative modeling and intelligent decision-making. He has published several
papers on top-tier conferences such as ICML/NeurIPS/ICLR and was awarded 2023 China Multi-Agent System Outstanding
Doctoral Thesis Award.

Correspondence Author Biography: Xiangyang Ji received the B.S. degree in materials science and the M.S. degree in
computer science from the Harbin Institute of Technology, Harbin, China, in 1999 and 2001, respectively, and the Ph.D. degree
in computer science from the Institute of Computing Technology, Chinese Academy of Sciences, in 2008. He joined Tsinghua
University, Beijing, in 2008, where he is currently a Professor with the Department of Automation, School of Information
Science and Technology. He has authored more than 100 refereed conference and journal papers. His current research interests
include signal processing, computer vision, computational photography, and intelligent decision-making.

38

	Introduction
	Adaptation and Robustness
	Results
	Demonstration of the MPTS's role in K-shot sinusoid regression
	Few-Shot adaptation benefits from MPTS in robustness and learning efficiency
	MPTS retains multi-faced advantages beyond robustness in zero-shot continuous control
	MPTS also reserves the potential of robust SFT

	Discussion
	Methods
	Theoretical Feasibility of Constructing Risk Predictive Models
	Generative Modeling Risk Functions and Posterior Inference
	Task Sampling Strategy Design
	Sequentially Optimize the Adaptive Machine Learner
	Overall Algorithm and Interpretation

	Quick Guideline to MPTS
	Research Background
	Adaptation Learning for Cross-Task Generalization
	Dataset Curation and Task-Level Robustness
	Risk Minimization Principles as Baselines

	Task Construction and Identifiers
	Tasks with Explicit Identifiers
	Tasks with Implicit Identifiers

	Auto-Encoding Adaptation Risk through Streaming VI
	Neural Modules to Parameterize Distributions
	Formulation of ELBO & Stochastic Gradient Estimates
	Theoretical Guarantee for Task Difficulties' Scoring with Posterior Inference

	Prompt-based Few-shot Image Classification
	Backbone Methods & Experimental Details in Any-Shot Learning
	MAML
	DR
	Multi-Modal Prompt Learning

	Experimental Setups & Implementation Details
	Sinusoid Regression
	N-way K-shot Image Classification
	Meta-RL
	Robotic DR
	Prompt-Tuning Multimodal Foundation Models

	Computational Tools & Platforms & Data Availability
	Competing Interests & Author Contributions

