arXiv:2501.11039v6 [cs.LG] 19 Oct 2025

Model Predictive Task Sampling for Efficient and Robust Adaptation

Qi (Cheems) Wang'* Zehao Xiao?* Yixiu Mao'* Yun Qu'* Jiayi Shen? Yiqin Lv! Xiangyang Ji'
'Department of Automation, Tsinghua University; 2Informatics Institute, University of Amsterdam
"Correspondence Author: xyji@tsinghua.edu.cn

Abstract

Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation
through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the
importance of challenging task prioritized sampling to enhance adaptation robustness under distribution
shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive
task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a
novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness
and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative
agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for
finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework
that bridges the task space and adaptation risk distributions, providing a theoretical foundation for robust
active task sampling. MPTS employs a generative model to characterize the episodic optimization process and
predicts task-specific adaptation risk via posterior inference. The resulting risk predictive model amortizes the
costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS
seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct
extensive experiments in pattern recognition using foundation models and sequential decision-making. Our
results demonstrate that MPTS significantly enhances adaptation robustness for tail risk or out-of-distribution
(OOD) tasks and improves learning efficiency compared to state-of-the-art (SoTA) methods. The code is
available at the project site https://github.com/thu-rllab/MPTS.

1 Introduction

Generalization across diverse scenarios remains a central challenge in artificial general intelligence. The rise of generative Al
offers a promising solution, driving the development of foundation models ‘. Unlike traditional task-specific models, which
might fail in new tasks, foundation models enable fast deployment across diverse scenarios without learning from scratch. Their
rapid problem-solving stems from widely adopted adaptation learning paradigms, including pretraining, meta-learning, and
supervised finetuning (SFT).

These paradigms train machine learners over a task distribution, consolidating past experience into problem-solving priors to
handle unseen but related tasks in zero-shot or few-shot settings **. Each iteration samples a task batch, e.g., from a uniform
distribution, and then executes the learning-to-adapt step (see Fig. 1). Large language models (LLMs), for instance, treat
episodic corpus datasets as tasks and perform in-context learning for adaptation”’. Similarly, in obtaining generalist robotic
policies, decision-making environments, such as Markov decision processes (MDPs), are randomized for robots to perform
policy optimization. These task distributions are typically determined by identifiers; e.g., in Fig. 2a, varying physics parameters
configure different MDPs as tasks for domain randomization (DR)" and meta reinforcement learning (Meta-RL) ’.

Research Motivations: Distribution shifts”” are prevalent in real-world scenarios, making task adaptation robustness at
test time increasingly critical "' '. In this context, task sampling strategies play a pivotal role, yet uniform sampling often
causes catastrophic failures in risk-sensitive scenarios due to the undersampling of critical tasks. Two real-world applications
highlight this case: (i) Tail tasks. In developing autonomous-driving systems, traffic accidents are rare in training datasets
but disproportionately important for testing robustness ‘. (ii) OOD tasks. Robots trained in controlled environments struggle
in unstructured real-world settings, e.g., leading to errors in navigation and object manipulation. To improve robustness,
challenging task prioritized sampling “~ " has gained traction, where assessing task difficulty is central to robust optimization.

Preliminary Work. *Equal Contributions. Dr. Jiayi Shen is now working at Meta FAIR, France.

https://github.com/thu-rllab/MPTS
https://arxiv.org/abs/2501.11039v6

a. Incoporating Model Predictive Task Sampling into Adaptation Learning Pipelines (Pretrain/Meta-train/Fine-tune)

DRM (Evaluate-then-Optimize) Typical Task Adaptation Optimization Pipeline
Interaction/ Interaction/Annotation
p(‘r) Annotation &
Task Batch

f
Q) | s, up2ye

Models || Experts

% Selected Batch
g s

([, B}

B>B

f@@

Rank-Filter

Candidate Tasks

RPM IG
Random Sampler N Predicted Results
N 3 Adaptive
@3 {[Feir iy Ut,i]}?=1 Memory Buffer Machine Learner
H; =
NNg NNy, ¢) Update RPM {65 £} 20 () Task Episodic Optimization
NNg,

MPTS (Predict-then-Optimize)

b. Model Predictive Task Sampling Pipelines

’
1 A
! Candidate % = E
MPTS Modules : Task Pool E%
RPM;; — RPM; RPMr_;
T > I > = I > . Risk Predictive
1 1 Li 1 ~

1

G G
[}

1

1

1

0t—1 L

1
: / ‘ / ! ! ,"
E?—1 - 575;71

c. Amortized Inference and Risk Learner Architectures d. Amortized Evaluation and Task Prioritization
(Lightweight Risk Predictive Model in Optimization) (without Querying Task Dataset)

Risk Mean {Zt,i}? {Ut,i}?:l Uncertainty

01y Or

1
1
1
1
1
1
L
1
1

1

1

1

1

:

1

RPM; !
Model B>B :
'—I—‘ 1
1

1

1

1

1

1

1

1

1
1

e ——————— =

Decoder Predict Adaptation Risk @ Sampling Simulation and Amortized Evaluation

Task Distribution
pir—()
i=1,...,B NN,

Historical Memo —

Risk Values

q5(2e|He-1)

g (2| Hy) - Task Identifier

Cinstant Memory > O B Ao Ty T
Hy = {[r, bl o v
@ Acquisition Score @ Active Selection
Conditional Prior @ W e T . (0)1 T Ty - TB
—— fan o B, T g ,
Grugo (¥,) = B,z [Z Inpy fu\m,h)] — BDkr, [q¢(zt|H¢) I qq;(ztlHt—l)]
7%_1

Adaptation Risk Reconstruction Approximate Posterior arg T"Sgﬁ"‘l B T ¢’ Z"Yﬂm +71”)

RISk Mean Uncertainty

Figure 1: Framework of MPTS in Adaptation Learning. a. The left shows standard random sampling for generating candidate tasks.
The middle in blue denotes costly evaluation of B tasks (e.g., agent—environment interaction or foundation model forward pass) in DRM to
select Top-B worst ones. The middle in green depicts MPTS, which predicts task difficulty via a lightweight generative model, avoiding
expensive evaluation. The right illustrates the standard optimization pipeline in Meta-Learning, DR, or SFT (Snow: frozen models; Fire:
updated models). b. MPTS samples candidate tasks, ranks their difficulty via the risk predictive model’s predictions for subset selection, and
updates the learner, approximating CVaR,’s Monte Carlo optimization in a predictive manner. The gathered risk signals further update RPMs
online. ¢. The RPM utilizes the risk history H.; to train under a streaming VI framework. d. The RPM simulates adaptation outcomes
p(l|T, Hi; 0;) for B candidate identifiers, computes acquisition scores, and selects the Top-B identifiers for the (¢ + 1)-th iteration.

These methods '~~'° evaluate, rank, and prioritize difficult tasks for iterative optimization (see Fig. 1a). However, precisely
evaluating tasks via losses, human annotations, or gradients incurs high computational costs. For instance, in LLM alignment,
task evaluation through SFT requires extensive forward passes, while preference optimization consumes millions of expert
annotations . Similarly, in DR and Meta-RL, agents must interact with numerous MDPs to collect post-adaptation episodes
and compute returns. These challenges uncover the urgent need for more efficient learning strategies when enhancing robust
adaptation, particularly when deploying foundation models or when environment interactions are costly.

Motivated by the above pressing demands, we dive into robust active task sampling, a paradigm that has the potential to
eliminate unnecessary costs associated with task construction, intensive annotations, or computational overhead during the
evaluation of a machine learner’s adaptation to specific tasks. In scenarios involving zero-shot learning, few-shot learning, or
SFT, we aim to develop a task sampling strategy that requires fewer learning resources but retains more deployment benefits
such as adaptation robustness in pattern recognition with foundation models and risk-averse sequential decision-making.

Developed Approach: Note that our brain is energy-efficient and simulates the outcome of decision-making in unencountered
scenarios from accumulated experience, without actual trials. This capability arises from mechanisms like implicit information
gating and active task selection " ~"". Inspired by this, we propose a model-based optimization approach for adaptive learning,
dynamically adjusting task sampling strategies using predicted outcomes as feedback. This work explores the design of risk
predictive models (RPMs) for robust task sampling based on two key insights: (i) Adaptation risk is probably predictable in
episodic learning, providing a basis for task difficulty ranking and selection; (ii) Generative modeling of adaptation risk captures
risk distributions throughout the task space with quantified uncertainty, aligning optimization with robustness principles.

To this end, we introduce Model Predictive Task Sampling (MPTS), a framework for risk-aware task selection. As shown
in Fig. la-b, MPTS leverages historical risk to train a lightweight RPM, which forecasts adaptation risks across the task
space to guide the task sampler and optimize the adaptive machine learner. This way amortizes expensive task evaluation for
ranking their difficulty to select the worst subset (see the comparison in the middle block of Fig. 1a). The RPM in Fig. 1c
adopts a variational autoencoder (VAE) " structure, generating adaptation risk estimates via posterior inference . Finally, the
acquisition function in Fig. 1d integrates worst-case performance and predictive uncertainty into the rule of subset selection.

MPTS also draws inspiration from active inference ~’, which operates through a loop of perception, action, and learning to
minimize uncertainty about the planning environment. Here, subset selection from the task batch can be viewed as online
planning to derive a robust machine learner. Technically, MPTS specifies or infers identifiers from the task distribution (see
examples in Fig. 2a) to establish mappings between identifiers and adaptation risk. It employs streaming variational inference
(VI)*>’ for the RPM’s training. Furthermore, by simulating adaptation outcomes in a larger identifier pool for subset selection,
MPTS balances exploration (uncertainty minimization) and exploitation (worst-case robustness) across the task space. MPTS
is also theoretically grounded, where the optimization proceeds in the direction of robustness enhancement while assuring
convergence. As far as we know, this work is the first to examine the predictability of online task difficulty with generative
models. In primary, our proposed MPTS enjoys several benefits in practice:

1. Adaptation Robustness. The optimization pipeline of MPTS can advance the machine learner’s adaptation robustness
under severe task distribution shifts, such as tail risk or OOD task scenarios;

2. Learning Efficiency. Constructing the lightweight RPM to amortize expensive task evaluation, MPTS can diminish
computational overhead, avoid unnecessary annotations, and promote efficient exploration in the task space;

3. Framework Versatility. Learning from risk histories, MPTS serves as a plug-and-play module to rank the task
difficulties in optimization and allows seamlessly integration into robust zero-shot or few-shot learning and SFT.

This work evaluates MPTS across few-shot regression, image classification with foundation models, Meta-RL, robotic DR, and
prompt-tuning foundation models. Empirical results demonstrate MPTS’s outstanding adaptation robustness across diverse
scenarios. Compared to SoTA robust adaptation methods, MPTS significantly reduces computational overhead, memory usage,
and environment interactions while, in some cases, accelerating learning.

2 Adaptation and Robustness

Notations. We represent a task sample by 7 ~ p(7), with T denoting the task space. Each task 7 within the distribution is
specified by an identifier’', a real-valued vector T, as illustrated in Fig. 2a. The task-specific risk function £ : DS uDEP x O - R
evaluates the adaptation performance of a machine learner 6 on 7. For example, in regression, the support dataset D =
{[x:,y:]} X, enables rapid adaptation to obtain the model pg (y|D?,); while the query dataset DL = {[z;, y;]} X, is used
for post-adaptation evaluation as risk £ = -+ SEN npe(yi| DS, xy).

a. Task Concept and Explicit or Implicit Task Identifiers

sinusoid regression
T= [ll, b]

® support dataset
f(z) = asin(z — b)

Meta-RL and DR

7= [m,v]

Half-Cheetahs with various
masses and velocities

N-way-K-shot image classification

\
\
\

b. Tail Task Risk and OOD Scenario in Domain Generalization

on Adaptati

Risk thr

it

training dataset

\ Task Space Given 6; H [i EI"’!
1 2 - <

Frequency

) testing dataset (OOD)
[on! AN
a Tail Tasks & " (‘;”;__:

N

Figure 2: Fundamental Concepts: Task Identifiers, Episodic Learning and Probabilistic Graphical Models. a. The task distribution is
uniform and defined over meaningful identifiers 7. For example, the amplitude and the phase [a, b] specifies a sinusoid curve to complete
with K-shot observed data points. Robots like Half-Cheetahs are trained to accomplish different locomotion tasks with varying masses and
velocities. Some multimodal pattern recognition tasks’ identifiers are implicit but can be described from a reference model, e.g., text encoders
in CLIP . b. The tail task generalization corresponds to CVaR,, i.e., the integral of tail task risk values in red. In OOD generalization, this
work prompt-tunes CLIP on ImageNet ™ to test on ImageNet-S “". ¢. Here, the generative model includes grey units as observed variables
and white ones as unobservable. The solid directed lines describe the generative model . We use the dash-directed lines to indicate the
recognition model and approximate inference within autoencoding variational Bayes

If |®f | = @, £ measures zero-shot adaptation; otherwise, it reflects few-shot adaptation risk. In SFT, each sample (x,y) € Dspr
R B
is treated as a task. The episodic task batch history is defined as H; = {0y, {(Tt’i, Drpis ﬂm)}i: X }, where B is the task batch

size and 0, represents the machine learner’s parameter in t-th iteration. The tuple set {(Tm—, Dr, . ét’i)}i: L includes the
sampled task identifier batch {Tt7i}?=1, the support and query dataset {D, , := @ft ,U @g ; 2, and the evaluated adaptation
risk {Et,i}ir For simplicity, the risk history is expressed as Hy = {[7., et,i]}il: which depends on 6.

Adaptation Risk Function and Robustness Concept. The learning setup optimizes the machine learner within p(7). Our
analysis is interested in the adaptation risk in the task space as illustrated in Fig. 1d. Such a perspective emphasizes the
interplay between the task identifier 7, the task-specific dataset D U D? and the adaptation risk function ¢ conditioned on 8.
Regarding adaptation performance, we mainly examine zero-shot learning, few-shot learning, and SFT scenarios.

Zero-Shot Adaptation. During training, we evaluate ¢ on the query dataset Df? conditioned on the machine learner 6, i.e.,
¢(DY; 6). With robotic DR" as an example, £(D¥; @) denotes the negative return of trajectories collected under the policy 8
in MDP 7. This setup is without support information.

Few-Shot Adaptation. The form of / is specific to meta-learning methods. For instance, MAML "~ implements a bi-level
optimization framework. In this case, £(D2, D?; 0) is written as £/(DY; Opera — 1Vl (D7 0)), where Oy, denotes the meta
initialization, and the inside-bracket term corresponds to finetuning Oy, tailored to 7 with 7 the learning rate.

Supervised Finetuning. The machine learner adapts to a specific downstream task using a labeled dataset. Formally, given a
SFT dataset Dggr and a test dataset DY, the objective is £ (DQ; 60(Dspr, Oinit)), Where By is the pretrained initialization and @
denotes the finetuned parameter after adaptation. Unlike meta-learning, which optimizes over task distributions, SFT relies
solely on the labeled samples from a specific task.

Definition 1 (Conditional Value-at-Risk, CVaR ") Given the machine learner parameter 0, we denote the task specific
random variable by {; := é(ﬂ)gi, Dfi :0). Throughout the task space T, let the cumulative risk distribution and the quantile of

risk values respectively be F (£) and £* = ming{{|F(¢) > a}. Then the CVaR at a-robustness level can be estimated as:

CVaR,[(T:6)] = f CAFe(¢;6), 1)
where we define the normalized cumulative distribution of task risk values by:
o 0, <>

F (670) - {F(i;_@(z—a7 >0 2

And this induce the tail risk task density function denoted by p.(7;0).

As illustrated in Fig. 2b, the robustness metric CVaR,, in Definition 1 is commonly used for measuring the expected risk in
the worse scenarios, i.e., 1 — « proportional tailed cases, with « € (0, 1) a specific confidence level. The induced normalized
distribution can be interpreted as a form of distributional shift. Beyond this notion, other robustness concepts exist, such as
resilience to label noise "’”, with representative approaches including ExcessMTL "~ that explicitly address such scenarios.

3 Results

This section reports primary findings in robust adaptation and analyzes the effect of MPTS. Prior to elaborating on the
experimental setups, we outline the predict-then-optimize workflow underpinning MPTS. In other words, we propose a novel
solution to robust adaptation: a computation- and annotation-efficient framework, as formalized in Definition 2.

Definition 2 (Model Predictive Task Sampling) 7o amortize the expensive online task evaluation, MPTS reuses the risk
history Hy. = {{(7; ;, gi,j)}jjé1}§:1 to construct the risk predictive model py, (£|7;, H1.; 0;) that guides the active selection of

the task subset T® from a larger task pool B Jor (t + 1)-th optimization step:

Thi=arg max A(T,L7),
TBcTE :|TB|=B

where LP = {Zﬂl,i}?;l denotes the predicted risk quantity of a larger task pool to roughly score task difficulties without
exact evaluation at (t + 1)-th iteration. And A(-) specifies certain subset acquisition rules, e.g., prioritizing tasks with worse
adaptation losses for the purpose of robust optimization.

Optimization Outcome Prediction with Theoretical Guarantee and MPTS Guided Risk Minimization. First, we
characterize the optimization pipeline for a typical family of robust adaptation methods, i.e., the Monte Carlo estimate for
CVaR, minimization

update luat ~ A 5 Top-B q update aluat ~ A 5 Top-B
. 6, {[Frorir ber]y oy —— Hey = {[Teo1i beo1i)}y — 6, O [Feir b NP, —— -, B)

which picks up the tail tasks to optimize in each iteration. Existing works to prioritize challenging tasks over iterations

take the above steps yet suffer from: (i) learning efficiency issues, such as the need for extensive evaluation of the machine
learner across numerous tasks for subset selection, and (ii) restricted batch sizes for evaluating or exploring the task space due
to sample or memory constraints. Notably, nearly all of these approaches fail to leverage the optimization outcomes H1.;.

Let us predict what to optimize from the cumulated risk episodes. MPTS differs from prior works and reuses H;.; to train the
RPM. Coupling the identifier 7 and adaptation risk £(D?, D?; §) forms a streaming database to online learn. In Methods,
Theorem 1 provides a provable basis for ranking tasks from predicted outcomes, suggesting stable ranking relation of task

difficulties under perturbations in 0, e.g., a gradient update with a small learning rate. Thus, the candidate tasks ‘Iﬁl at 6,
probabilistically preserve their relative difficulty rank at 8;,,. Theorem 2 further validates the convergence of the optimization
pipeline. Moreover, learning adaptation risk provides a risk distribution over the task space.

MPTS surrogates CVaR,, optimization with efficiency and exploration benefits. Learning p(¢|T, Hy.; ;) enables efficient
evaluation across infinite tasks with minimal computation, expanding the pseudo batch size B for subset selection and fostering
exploration. As shown in Lemma 3, MPTS introduces external approximation bias into the gradient. For clarity, we treat
MPTS as a risk minimization framework under specific acquisition criteria. As shown in Fig. 1 and Fig. 2c, its core workflow
involves training the RPM p(¢|7, Hy.:; 8,), evaluating task-specific adaptation risk via posterior inference, and screening task
subsets using the upper confidence bound (UCB) principle ° for (¢ + 1)-th optimization. These operations are formalized in Eq.
(4), where the Monte Carlo estimate of the RPM yields the mean m (£) and standard deviation o (¢) of adaptation risk, while
the acquisition function A(-) quantifies total task subset risk.

Approximate Post-Adaptation Results in Histories : rgza‘i(Ly () = Inpy (Hy|Hy-1) (4a)
€

Monte Carlo Estimates
T

Amortized Evaluation with RPMs : py, (¢|7;, Hi.4; 0,) {m(£;), a(&;)}il (4b)

Active Subset Selection under the UCB Principle : ‘J'E’rl = arg max .A(’J'B; b,) (4c)
TBcTP ||TB|=B

Approximating optimization outcome relies on streaming VI~"~', with the RPM a lightweight model. Selecting a portion of
challenging tasks to optimize, MPTS can be viewed as a biased surrogate of CVaR,_j /B minimization while circumventing
extra computations, annotations, or environment interactions. This design not only enhances learning efficiency but also aligns
with the overarching goals of robust adaptation. Repeating the boxed steps of MPTS until convergence brings a robust adaptive
machine learner, and the implementation details are attached in Methods and Algorithm 1.

Algorithm 1: Model Predictive Task Sampling

Input :Task distribution p(7); Task batch size B; Candidate batch size B; Latest updated {), ¢}; Latest history Hy_1;
Iteration number K; Learning rate .
Output : Selected identifier batch {7 ;} 7.
// Train the Risk Predictive Model via Stochastic Gradient Variational Bayes
fori=1to K do
Perform gradient updates given H;_1:

¢ < ¢+ A2V 9ELBO (Y, @) in Eq. (17b);

P < + AaVy GeLBo (¥, @) in Eq. (17b);
end
// Simulate Zero-shot, Few-shot Adaptation and SFT Results with Trained RPMs

Randomly sample {ﬂ,i}?:l from p(7);

Run amortized evaluation on candidate tasks {J; := vom(£;) + fyla(éi)}?il in Eq. (19);
// Active Subset Selection from Predicted Results

Rank {4;}2, and screen Top-B values;
Return the screened identifier subset {7 ;} 2.

Adaptation Learning Benchmark. The experimental design considers the benchmark typicality and the practical challenges.
Downstream tasks span pattern recognition and sequential decision-making, with certain experiments involving multimodal
foundation models. These experiments mainly examine few-shot adaptation and include (1) K-shot sinusoid regression -, (2)
N-way K-shot image classification”’>”° with CLIP ' models, and (3) Meta-RL "~. Additionally, MPTS validates scenarios like
(4) robotic DR for zero-shot adaptation and (5) SFT CLIP models towards image classification.

Backbones and Task Robust Baselines. This study primarily compares MPTS with risk minimization principles and focuses
on robustness improvement. While these methods, including MPTS, are agnostic to zero-shot, few-shot learning, or finetuning
techniques, we adopt SOTA backbones for experiments. For sinusoid regression and Meta-RL, we use MAML "~ as default. As
CLIP has strong zero-shot performance, we extend it with MaPLe "’ for N-way K-shot image classification. For robotic DR
in Ergo-Reacher and Lunar-Lander ™, we employ TD3 "' due to its stability. In SFT, we again use MaPLe for prompt-tuning in
image classification.

Baselines include Empirical Risk Minimization (ERM) ", Distributionally Robust Risk Minimization (DRM) "> """ 'and
Group Distributionally Robust Risk Minimization (GDRM)”~"'. Meanwhile, for certain scenarios, we further include some
robust optimization methods such as Difficulty-Aware Task Sampler (DATS)"°, Online Hard Task Mining Sampler (OHTM) ",
and Task Difficulty Prioritized Sampler (TDPS) " for comparison. Accordingly, adaptation robustness is evaluated via CVaR,,
across validation/testing tasks with o = {0.9,0.7,0.5}, including some OOD results. We also compare computational cost,
memory usage, and sample efficiency. For fairness, all baselines share the same task batch B in optimization, excluding pruned
easier tasks. ERM, GDRM, DATS, TDPS, and OHTM use batch size B, while DRM samples B = 2B, filtering half for stable
optimization. See Supplementary Notes F/G for details.

Meta Learning Backbone: MAML

?-2 Validation Curves g-c Validation Curves (CVaRg.9) €. Meta-Testing Performance d. Ablation on yi1/yo €. Ablation on Pseudo Batch
—_ 14{ EEN ERM EEE DRM LO11 — Average —— CVaR,; 035
1.0 —_ 25 1| ™= GDRM TDPS —— CVaRgps =~ =—— CVaRog'{
_— 5 W DATS mmE OHTM 0.8 I—-I_I' 1 0.30
08 TDPS < 1.01 mmm MPTS (Ours) ’
u —— DATS 220 Hos Aoe @ 025
z 06 "\ —— OHTM £ \ =06 = =0
‘ —— MPTS (Ours) | W15 \ :
= X 0.4 0.4 0.20
0.4
1.0 0.2
0.2 H———a—— o
0.2 0.0
5000 10000 15000 20000 5000 10000 15000 20000 Average CVaRgs CVaRo; CVaRos 01 3 6 9 +o 1x 2x 4x 8x
Iteration Iteration Yi/Yo
f. idati 9. i h. i i i. Task Selection Process
Validation PCC Values 01 Correlation Runtime Complexity
18 , _—
30.8 MPTS (Ours) " ® ERM [) Loss Surface Predicted by Risk Learner Acquisition Score
b e g16| @ GDRM
o z, 0.12 F © oHTM ®y
o 5 MPTS (Ours) s
] g 000 é e @ TOPS °3
2
5% 50067 ¢ o ® DATS 42
=4 > @
o o 5121 @ DRM 23
302 & 0.03{ 4 © 23
b= - [0 <
S 0.00{ & “ 3 ’
o %, 2
0.0 L0 & o ¢ 05 10 15 20 25 30 ©% 05 10 15 20 25 30
0 5000 10000 15000 20000 00 02 04 06 08 10 % Phase % Phase
Iteration Exact MSEs « candidate task identifiers * selected task identifiers
Meta Learning Backbone: Reptile
J- Validation Curves "(‘-c Validation Curves (CVaRg.9) B Meta-Testing Performance T; Validation PCC Values n. Runtime Complexity
14 —— ERM 2.5{ BB ERM mEE DRM 306 —— MPTS (Ours) | 15| @ ERM
—— DRM 35 = GDRM TDPS [g @® GDRM
12 —— GDRM = 2.01 mmm DATS mmm OHTM Sos E16/ ® OHTM
TDPS & B MPTS (Ours) % * 71 @ MPTS (Ours)
w © 3.0 wis 0 0.4]
»n 1.0 ~—— DATS 3 0 o 2 TDPS
g OHTM o = 503 Qe DATS
w25 1.0 S % [J
0.8 —— MPTS (Ours) | =] = DRM °
2 B2 5., @
4 T
0.6 2.0 05 501 &
0.0 Uoc e @ o @
5000 10000 15000 20000 5000 10000 15000 20000 Average CVaRps CVaRo; CVaRpg) 5000 10000 15000 20000

Iteration Iteration Iteration

Figure 3: K-shot Sinusoid Regression Results (10 Runs). Note that a-h are results with MAML as the backbone, while i-1 reports the
results with Reptile as the backbone. a. Shown are curves of averaged MSEs on the validation task set during meta-training for all methods. b.
Curves illustrate the CVaRg.9 MSEs on the validation task set during the meta-training process. ¢. The meta-trained machine learners are
tested on a fixed task set, reporting the average MSEs and CVaR values. d. Displayed are meta-testing results with MPTS machine learners
trained by various 1 / 7o ratios. e. Displayed are meta-testing results with MPTS machine learners trained in various pseudo batch sizes, i.e.,
B = {1B,2B,4B,8B}. f. The PCC values are tracked during meta-training. g. At a specific iteration, the statistical correlation between
predicted and exact adaptation risk values of the task batch is visualized with overall p; , = 0.669. h. The required relative run-time is
computed for all methods during meta-training with ERM as the anchor. i. At some meta-training time-step, we visualize the subset selection
from the pseudo batch under the RPM. j. We illustrate the curves of averaged MSEs on the validation task set during Reptile meta-training
for all relevant baselines. k. We track the corresponding CVaR(.9 MSEs on the validation task set throughout the Reptile meta-training. 1.
Reported are the tested average MSEs and CVaR values of the meta-trained machine learners on a fixed task set. m. The PCC values are
tracked for MPTS during Reptile meta-training. n. We compute the relative run-time for all methods during meta-training with ERM as the
anchor.

3.1 Demonstration of the MPTS’s role in K-shot sinusoid regression

In K-shot sinusoid regression **, the function family { f(x) = a; sin(z - b;)|(a;, b;) € [0.1,5.0] x [0.0, 7]} is specified by the
identifier T = [a, b]. This serves as a toy case to illustrate MPTS and the role of the RPM.

The RPM allows for roughly scoring the task difficulty over iterations. In MPTS, for the screened subset at
(t + 1)-th iteration, we track the predicted Top-B risk values {f;41; ~ Eq¢(zt|Ht)[p1,b(€|Tt+1,i7Hl:t)]};{1 and cor-
responding exact evaluations {EHM}?’:l from 6;.; to compute the Pearson correlation coefficient (PCC) Pie =
Z?;l([t+1,i—Meaﬂ[{Et+l,.}])(£t+1,i—Mean[{et+l,.}])
VEE T i-Mean[{Zr1, 31)2\/S 2, (bre1,i-Mean[{£11, }])?
tion effect of ranking in a batch. The RPM amortizes the exact evaluation £(D%, D?;0;) V7 € T and 0; € © using risk
histories, roughly scoring adaptation difficulty for next iteration. Only if the RPM approximately ranks tasks, MPTS can trust
amortized evaluations for worst subset selection.

For continuous risk values, PCC reasonably quantifies the correla-

As shown in Fig. 3f, p7 , remains between 0.4-0.8 across iterations, validating the reliability of the RPM in predicting adaptation
difficulty. However, PCC declines over time—a trend also observed across experiments—Ilikely due to model 6;’s convergence.

This reduces task diversity, negatively affecting the RPM’s training after local task space overoptimization. Fig. 3g shows the
statistical correlation between predicted and exact adaptation risk at a specific iteration. Scattered points demonstrate strong
overall alignment, despite varying value scales between iterations. Notably, difficult tasks with high mean square errors (MSEs)
are well identified and clustered around or above the correlation slope along the z-axis.

MPTS accelerates the learning process and improves comprehensive adaptation performance under active sampling.
In Fig. 3a-b, MPTS converges faster in average and CVaRy 9 MSEs and reaches performance comparable to other baselines
with less iterations, e.g., 15K steps, due to its uncertainty-guided worst-case acquisition. DRM processes 2B tasks to filter
half per iteration, raising 0.7x computational overhead over ERM (see Fig. 3h). In contrast, MPTS incurs only 0.14x runtime
increase, a marginal overhead. To illustrate active task sampling, Fig. 3i visualizes predicted risk values over the task space.
Selected tasks favor regions with high deviations, clustering in high-risk areas.

In meta-testing, Fig. 3c shows that MPTS, OHTM, and DRM achieve the lowest average and CVaR, MSEs, with their
advantage over other baselines increasing at ae. DATS and TDPS require more computational resources to achieve slight gains
in robustness metrics. Prior work™ confirms that DRM’s efficiency is sacrificed for robustness, relying on intensive task
evaluation. Using MAML, gradient-based inner-loop adaptation further increases overhead, whereas MPTS bypasses it via
probabilistic prediction, reducing computational cost.

The appropriate hyper-parameter setup secures performance and efficiency. We first analyze the acquisition function
A(TE; ¢,) by varying trade-off parameters {7o,v;} in Fig. 1d and Eq. (19). Meta-testing machine learners trained with
={1.0,3.0,6.0,9.0}, 7o = 0.0 and ~y; = 0.0 shows that higher uncertainty weights lower average MSEs (Fig. 3d). However,

removmg worst-case considerations (y = 0.0) weakens performance. We further examine the impact of pseudo batch size

B in Fig. 3e. Increasing B reduces average MSEs, but excessively large values (e.g., B =8x B) degrade performance. This
occurs because an enlarged identifier set under worst-case selection might over-optimize local task regions, hindering global

generalization. Thus, MPTS configuration follows two principles: (i) B should be moderate to encourage exploration while
preventing excessive local optimization. (ii) Since adaptation robustness is the priority, we consistently set vy € R, as the
default in all experiments.

MPTS is plug-and-play and agnostic to the backbone. We further conduct experiments using another SOTA meta-optimizer
Reptile’" as the backbone. From Fig. 3j-k, the convergence trends of most algorithms are similar to those observed under
MAML in Fig. 3a-b. OHTM lags slightly behind MPTS, and the overall MSEs are higher. This observation is corroborated
by the meta-testing results in Fig. 31, where the secondary method OHTM outperforms the remaining baselines with a lower
computational cost. MPTS continues to exhibit a positive correlation between predicted and exactly evaluated adaptation results
(Fig. 3m). The order of computational complexity across all methods remains the same as under MAML, though the relative
scale in Fig. 3n varies slightly.

3.2 Few-Shot adaptation benefits from MPTS in robustness and learning efficiency

Result analysis in N-way K-shot image classification. We perform 5-way 1-shot image classification using MaPLe,
with six meta-training datasets from ImageNet-CG’~, ImageNet-CI -, ImageNet-CS’~, ImageNet-A ", ImageNet-S~ and
ImageNet-R . The efficiency row in Table 1 compares computational time and memory usage across methods during meta-
training. The overhead from optimizing RPMs in MPTS is negligible, whereas DRM incurs 1.3x computational time and 1.6x
memory usage relative to ERM. DATS and TDPS also significantly suffer from more computational complexity issues due to
the additional gradient computations required to derive task-specific weights. As a memory retrieval strategy, OHTM occupies
2.54x memory to prioritize difficult tasks during optimization.

In Table 1, MPTS consistently surpasses risk-aware baselines and achieves significant performance gains, i.e., 0.36-2.32%
accuracy increase, over ERM across all benchmark datasets. The improvement is particularly prominent under the stringent
CVaRy g metric, e.g., +2.32% on ImageNet-CS and +2.3% on ImageNet-S compared to ERM. In contrast, DRM provides
moderate improvements after sacrificing more computations during meta-training. There is no evident runner-up. OHTM,
DATS, and TDPS, suffer from diminishing average and CVaR accuracies on ImageNet-CI while mostly beating ERM in
other cases. Overall, this benchmark result demonstrates the comprehensive merits of prioritizing challenging tasks, such as
optimizing worst-case performance, which surprisingly improves the average results. This contradicts the following conclusion
in Meta-RL yet is consistent with the consequence of prioritizing complex tasks during LLM pretraining

Result analysis in Meta-RL. We first analyze meta-training results in Fig. 4a-b. MPTS achieves the highest CVaRy o
validation returns on most benchmarks. DRM sacrifices average returns on HalfCheetahMassVel, HalfCheetahVel, and
Walker2dVel, whereas MPTS maintains average performance comparable to ERM on HalfCheetahMass Vel and Walker2dVel.
GDRM, OHTM, DATS, and TDPS are entangled in learning curves and behave intermediate performance, while DRM balances

a. Validation CVaR g Task Returns during Meta-Training

—— MPTS (Ours) —— ERM —— GDRM —— DRM TDPS —— DATS —— OHTM
HalfCheetahMassVel HalfCheetahVel 20 Walker2dMassVel Walker2dVel _20 ReacherPos
0
-200 -180 ~ e
3 % —40 -20 e
< _220 - ~200 e o ¢,~4: 2 //‘/:5\"-‘ —40
> - Ao - S~
2 a0 AT 220 //""/ ﬁ 7 J/é/_/
I /ey - -80 ~60 -60
2 /—, / -80
2 -260 -240 -100
-80
-100
-280 -260 -120
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 0 100 200
Iteration Iteration Iteration Iteration Iteration
b. Validation Average Task Returns during Meta-Training
—— MPTS (Ours) —— ERM —— GDRM —— DRM TDPS —— DATS —— OHTM
HalfCheetahMassVel 100 HalfCheetahVel 75 Walker2dMassVel Walker2dVel ReacherPos
-125 1 = — 75 -—
-125 /‘—— 50 e —
—1%0 B 4/ e 50 o
c ~150 25
2-1s -175 / »
9] , o 0
& -200 -200 I ’
, I -2 -25
-225 -225 I I
I =50 [f -50 |-/
-250 -250
0 200 400 0 200 400 0 200 400 0 200 400 0 100 200
Iteration Iteration Iteration Iteration Iteration
c. Tracked PCC Values in Task Batches during Meta-Training d. Runtime Complexity
2 10 HalfCheetahMassVel 10 HalfCheetahVel 10 Walker2dMassVel 10 Walker2dVel 08 ReacherPos 135 ® v o
g LN 7~ TN /- e &1301 @ MPTS (Ours)
O 08 0.8 0.8 0.8 T~
£ = R R l ~_ °° £ © GDRM
S o6 N 0.6 0.6 0.6 / ¥l @ OHTM
3
S o4 S TaskDiff
= 0.4 0.4 0.4 0.4 o 11
F] / e @ DATS
2 02 0.2 0.2 0.2 02 = [)
S &
0.0 0.0 0.0 0.0 0.0
0 200 400 o 200 400 0 200 400 0 200 400 0 100 200
Iteration Iteration Iteration Iteration Iteration

e. CVaR Task Returns during Meta-Testing

—e— MPTS (Ours) —e— ERM —e— GDRM —e— DRM TDPS —e— DATS —e— OHTM
HalfCheetahMassVel HalfCheetahVel Walker2dMassVel Walker2dVel ReacherPos
-140 -140 40 40
-20
- 20 ~
160 -160 20 -30
£ 0
2 -180 -180 0 _a0
[
o _20 -20
—200 —200 -50
_a0 -40
-220 —220 _60 -60
CVaRos CVaRo CVaRoo CVaRgs CVaRo; CVaRps CVaRgs CVaRo; CVaRos CVaRgs CVaRo CVaRoo CVaRgs CVaRo; CVaRo,o
f. Average Task Returns during Meta-Testing
BN MPTS (Ours) WM ERM @WEE GDRM W DRM TDPS W DATS B OHTM
HalfCheetahMassVel _80 HalfCheetahVel Walker2dMassVel Walker2dVel o ReacherPos
-100 T 100 100 T s
B -100 T T 80
€ -120 i 1 | 75 || = —10 T
2 . ~120 i i 0 " 60 1 -15 l L
o _140 + 1 40 _20
+ + | —140 25 . % +
~160 o - -2
-160 0 + -30

g. Compatible with Other Meta Learning Backbones (e.g., PEARL)
—— MPTS (Ours) —— ERM (PEARL) —— RoML
HalfCheetahBody (Average) HalfCheetahBody (CVaRo.os) HalfCheetahMass (Average) HalfCheetahMass (CVaRg gs) HalfCheetahMass Meta-Test
1000 1800 1300

1600
— L~ —== 1200 —~
= 900 s 1600 = 1600
. p=ad i A
1400 - 1100 =
£ VAP et / e
] 7 800 1400 1000 / 1400
@ 1200 i / V
o
/ / 900 /
700 1200
1000 , / 800 / 1200
800 600 1000 700
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 Average 05 0.7 0.9 0.95
Iteration Iteration Iteration Iteration CVaR

Figure 4: Meta-RL Results on Mujoco Environments (10 Runs). a. The cumulative returns with standard error of means (SEMs) belonging
to CVaRg 9 validation MDPs are displayed during meta-training. b. We compute the average cumulative returns with SEMs on validation
MDPs during meta-training. ¢. Tracked are the RPM’s PCC values with SEMs over training iterations. d. The relative clock time quantifies
the computational complexity for all methods on Walker2dVel, where ERM’s runtime works as the anchor. e. We report CVaR,, returns of
meta-testing MDPs. f. The box-plot reports results averaged over meta-testing MDPs. g. With PEARL ™ as the Meta-RL backbone, we
illustrate the learning curves and meta-testing results on HalfCheetahBody and HalfCheetahMass from RoML’* baseline.

9

Table 1: 5-Way 1-Shot Meta-Testing Classification Results on Various Datasets and Efficiency Comparison (10 Runs). We report
testing CVaRg .9, CVaRg.7, CVaRy.5 and average accuracies with corresponding SEMs evaluated by the meta-trained machine learner on ID
and OOD datasets. The best results are in bold with the runner-up underlined, and MPTS’s performance gains over ERM A 1 are marked in
blue. With experiments on ImageNet-A as an example, we report the memory cost and runtime relative to ERM during meta-training.

\ Dataset | Metrics | ERM | DRM | GDRM | OHTM | DATS | TDPS | MPTS (Ours) At

ImageNet-CG CVaRg g 76.87+031 77.47+024 | 77.56+0.19 | 76.52+0.14 | 77.55+021 77.28+0.17 78.16+0.25 +1.29
CVaRg 7 82.04+021 82.47+020 | 82.62+020 | 81.34+0.17 82.31+0.18 82.33+0.24 82.95+0.26 +0.91
CVaR 5 84.62+0.24 84.99+0.17 85.16+022 | 84.06+0.29 85.19+0.14 | 85.29+0.23 85.33+0.26 +0.71

Avg 89.22+022 | 89.54x0.16 | 89.49+0.18 | 88.59+0.7 | 89.45+0.2 | 89.69x0.11 89.86-+0.14 +0.64
ImageNet-CI CVaR g 80.40+0.18 80.49+0.22 | 80.26+0.19 | 77.08+0.18 | 78.86+0.15 | 78.07+0.19 80.94+0.19 +0.54
CVaR 7 84.98+0.17 85.05+0.19 84.90+0.22 81.60+0.11 83.66+0.22 83.16=+0.11 85.70-+0.24 +0.72

CVaR 5 87.01+0.20 87.47+026 | 87.04+0.18 84.14+022 | 86.08+0.16 | 85.75+0.13 87.74+0.15 +0.73
Avg 91.20+023 | 91.40+018 | 91.21+017 | 88.81+023 | 90.97x0.13 | 90.67+0.18 91.56=+0.12 +0.36

ImageNet-CS CVaRg 9 76.15+0.20 77.78+0.24 76.25+0.15 77.84+0.23 77.77+0.16 77.47+0.16 78.47+0.23 +2.32
CVaRg 7 81.55+0.19 82.64+0.16 | 81.42+0.17 82.59+020 | 82.81x0.19 82.31+0.17 83.13+0.16 +1.58
CVaRy 5 84.44+0.19 85.16+0.25 84.19+0.15 85.23+0.18 84.67+0.20 84.84+0.13 85.87+0.22 +1.43

Avg 89.30+020 | 89.80+021 | 89.11+0.17 | 89.87+025 | 89.60x0.16 | 89.82+0.20 90.28=+0.11 +0.98

ImageNet-A CVaRg 9 76.71+022 | 77.36+026 | 77.45+022 | 76.81+0.18 | 77.63+021 77.12+020 77.96+0.11 +1.25
CVaRg 7 82.03+0.25 82.5240.27 82.37+020 | 82.72+0.10 | 82.69+020 | 82.04+0.23 83.43+0.18 +1.40
CVaR 5 84.50+0.22 85.15+0.19 | 85.34+0.25 85.20+0.23 85.77+0.19 84.92+0.20 86.74+0.24 +2.24

Avg 89.38+021 | 90.31x0.17 | 90.29+0.17 | 90.68+020 | 90.58+0.18 | 90.03+0.23 91.10=+0.21 +1.72

ImageNet-S CVaR 9 82.58+0.21 83.87+0.10 | 83.18+022 | 82.23+0.18 83.60+0.19 83.93+0.15 84.88-+0.14 +2.30
CVaRg 7 87.23+0.23 88.45+0.21 87.32+0.14 | 87.08+0.13 88.32+0.19 88.06+0.16 89.27+0.12 +2.04
CVaRg 5 89.56+0.19 89.96+022 | 90.06+0.18 | 90.01+022 | 91.16+022 | 90.65+0.20 91.52+0.19 +1.96

Avg 93.52+0.13 | 94.28x0.10 | 94.13x011 | 94.19x015 | 94.15x0.13 | 94.18x0.14 94.84+0.08 +1.32

ImageNet-R CVaR g 88.28+0.13 88.89+0.15 87.33+0.27 88.73+0.16 | 89.20+0.21 88.52+0.20 89.78+0.16 +1.50
CVaRg 7 91.47+0.13 91.95+0.16 | 91.11+0.16 | 91.41+0.19 | 91.95+023 | 90.89+0.20 93.27+0.19 +1.80
CVaRy 5 93.42+0.12 | 93.87+0.17 | 93.20+020 | 92.75+0.15 | 93.27+021 92.48+0.18 94.69+0.18 +1.27

Avg 96.02+0.14 | 96.39+0.16 | 95.90+0.18 | 95.32+0.17 | 95.85x0.16 | 95.64+0.17 96.91:+0.12 +0.89

Efficiency Runtime 1.00 1.33 1.00 1.09 1.68 1.68 1.01
Memory 1.00 1.61 1.00 2.54 1.99 1.99 1.01

average and CVaR ¢ returns, excelling on ReacherPos. Fig. 4c witnesses the RPM’s strong task difficulty discrimination
capability, measured by pg ,. In Fig. 4d, DRM consumes 1.35x runtime on Walker2d Vel due to extra environment interactions,
while MPTS avoids this inefficiency.

Meta-testing results in Fig. 4e-f highlight MPTS’s robustness, with more return gains at higher « values. With increase of « in
CVaR,, performance difference across methods grows significant. In extreme cases, i.e., CVaRg. 9, MPTS surpasses ERM by
over 20% on all benchmarks, and DRM mostly dominates other baselines. Average performance varies: Walker2dMassVel and
Walker2dVel show minor differences, while HalfCheetahMassVel favors MPTS with slightly higher variance. HalfCheetah
marginally benefits GDRM and ERM, whereas ReacherPos favors MPTS and DRM with reduced variance. Overall, methods
except DRM are mostly entangled in average performance, while DRM tends to sacrifice computational efficiency for adaptation
robustness increase. The primary goal of robust optimization is to enhance performance in tail risk or OOD tasks. Hence,
methods often trade off worst-case and average performance in Meta-RL, as implied in work

Moreover, Fig. 4g reports the performance of MPTS with PEARL ™ on environments and configurations adopted from
RoML "', a representative robust Meta-RL algorithm. The learning curves verify the trade-off between average and worst-case
performance in ERM and RoML. In contrast, MPTS maintains average returns while substantially outperforming RoML in
CVaRy g5, a behavior distinct from the MAML backbone results. The meta-testing results on HalfCheetahMass corroborate this
trend, consistent with the meta-training phase, where MPTS outperforms ERM by over 9% in CVaR g5 and exceeds RoML in
average return by approximately 10%.

3.3 MPTS retains multi-faced advantages beyond robustness in zero-shot continuous control

MPTS dominates the overall performance in DR training. In Fig. 5a Ergo-Reacher, distinguished from Meta-RL finding,
MPTS and DRM improve both average and CVaR,, performance. This likely stems from MPTS’s broader task exploration
via larger B. Meanwhile, pi,¢ fluctuates near 0.4 throughout training. In Fig. 5b Lunar-Lander, MPTS maintains the leading
trend in average and CVaR,, returns, followed by OHTM. In contrast, DRM and GDRM not only underperform in average
returns but also achieve the lowest CVaR g values, failing in robust optimization. Naively worst-case selection or reweighting

10

a. Validation Task Returns and Tracked PCC Values during DR-Training on Ergo-Reacher

—— MPTS (Ours) — ERM — DRM — GDRM — OHTM
CVaR0.9 Return CVaR0.7 Return CVaR0.5 Return Average Return 05 MPTS Return Correlation
\ st | 85 i | 90 '
70 P ! o / R | L MM
) W 0 y 5 I
0.3
60 1 75 80 I
0.2
70 75 l
50 0.1
0 05 5 20 %0 05 15 20 %0 05 5 20 %0 05 15 20 0 05 5 2.0
Agent Steps (x10°) Agent Steps (x10°) Agent Steps (x10°) Agent Steps (x106) Agent Steps (x10°)

b. Validation Task Returns and Tracked PCC Values during DR-Training on Lunar-Lander

—— MPTS (Ours) — ERM — DRM — GDRM — OHTM
300 CVaR0.9 Return 300 CVaR0.7 Return 300 CVaR0.5 Return 300 Average Return MPTS Return Correlation
L7 ﬁ P‘ﬁ 0.6
200 200 200 200
100 100 w4 100 4 100 e
// / / / % v 7 03 v\
0 A 0 fﬂaf 0 / 0
—1005""05 15 20 %% o5 15 20 %% o5 15 20 %% o5 15 20 %% o5 15 20
Agent Steps (x10°) Agent Steps (x10°) Agent Steps (x10°) Agent Steps (x10°) Agent Steps (x10°)
c. CVaR Task Returns during DR-Testing d. Average Task Returns during DR-Testing
—— MPTS (Ours) —— ERM —— DRM —— GDRM —— OHTM
Ergo Reacher Lunar Lander 9 Ergo Reacher Lunar Lander
85 _ 300
250
’\.\ 90 i == % i ? %
250
o oo L, "o it
2 2 2 2
&75 g0 &6 : & 200 .
100 84- 150
70
CVaR0.5 CVaR0.7 CVaR0.9 Riaros CVaR0.7 CVaR0.9 82°1iPTS ERM DRM GDRM OHTM MPTS ERM DRM GDRM OHTM

e. Runtime Complexity f. Task Statistics on Lunar-Lander g. ID and OOD Task Returns during DR-Testing on Lundar-Lander

Sampling Frequency over Time (LL) —— MPTS (Ours) —— ERM —— DRM —— GDRM —+— OHTM

" L4 g 2M Steps Performance (LL) Performance (LL) Performance (LL)
4} 250 1.5M Steps 300
E 13 =N 1M Steps Lane> 3001
> ,.200 = 0.5M Steps 200 A Pt
S § mEm 0.3M Steps c £200 <280
512 150 5 / / E El
v £ 100 / = & g 260
B %./ 100 20
3 50 o & /!
220
0@ @ & @ ol - - % 2 3 5 0 15 20 20 21 22 23
ERM GDRMOHTMMPTS DRM Main Engine Strength Main Engine Strength (OOD) Main Engine Strength (ID) Main Engine Strength (OOD)

Figure 5: DR Results on Ergo-Reacher and Lunar-Lander (10 Runs). a. In Ergo-Reacher, the CVaRg 9, CVaRg.7, CVaRo.5 and average
cumulative returns on validation MDPs are reported together with the RPM’s PCC curve during DR training. b. In Lunar-Lander, the
cumulative returns on validation MDPs are illustrated together with the RPM’s PCC curve during DR training. c. We test the DR-trained
policies on the fixed MDP set and report the CVaR,, cumulative returns. d. The returns averaged over DR-testing MDPs are illustrated. e.
The required runtime is computed for all methods on Lunar-Lander. f. In Lunar-Lander, shown are frequencies of sampled identifiers using
MPTS during DR training. g. In Lunar-Lander, we test the trained policies in both in-distribution (ID) domains and out-of-distribution (OOD)

domains to report each task’s average returns.

11

tends to degrade performance when unsolvable tasks are frequently sampled. MPTS mitigates this by balancing worst-case and
uncertainty-guided selection, preventing over-optimization on a finite set of difficult MDPs. Here, p7 , peaks above 0.6 before
stabilizing near 0.3, consistent with prior findings that task selection converges, reducing task difficulty discrimination. MPTS’s
runtime in Lunar-Lander is comparable to ERM and GDRM in Fig. 5Se. In Lunar-Lander, the identifier 7 € R, represents the
main engine strength. Fig. 5f shows task sampling frequency, where MPTS favors lower-engine-strength MDPs while still
exploring all engine-strengths early in training.

MPTS facilitates policy adaptation in the worst-case and OOD MDPs. For DR-trained policies, Fig. 5c-d confirm
MPTS and DRM’s superior CVaR,, returns in Ergo-Reacher, while ERM exhibits a minor dip in average returns. In Lunar-
Lander, MPTS attains the highest CVaR,, returns, remaining stable even as « increases—outperforming ERM by over 20%.
Additionally, MPTS, OHTM and ERM yield top average returns with minimal variance. For OOD generalization, we shift 7’s
range from training interval 7 € [4.0,20.0] to testing interval T € [1.0,4.0) u (20.0, 23.0]. All methods struggle in hard OOD
tasks (Fig. 5g left), but MPTS dominates in difficult cases, demonstrating strong adaptation. DRM exhibits high variability and
weak generalization, even for easier tasks (Fig. 5g right).

3.4 MPTS also reserves the potential of robust SFT

Table 2: Testing Classification Results after Prompt-Tuning on ImageNet and Efficiency Comparison (10 Runs). We report testing
CVaRy.9, CVaRy.7, CVaRy 5 and average accuracies together with corresponding SEMs evaluated by the prompt-tuned machine learner on
ID and OOD datasets. Evaluation on OOD datasets corresponds to the domain generalization setting. The best results are in bold with the
runner-up underlined, and MPTS’s performance gains over ERM A 1 are marked in blue. During prompt-tuning ImageNet, we report the
memory cost and runtime relative to ERM for all methods.

\ Dataset | Metrics | ERM | DRM | GDRM | OHTM | MPTS (Ours) At |
ImageNet CVaRy g 31.70+0.12 | 32.23+0.15 | 31.37+018 | 31.53+021 32.52+0.16 +0.82
(ID) CVaRy 7 42.87+0.14 | 44.10x0.14 | 42.97+018 | 43.28+0.18 44.28+0.14 +1.41

CVaRgp5 | 51.43x010 | 52.61x0.1 | 51.75+019 | 51.96x0.16 52.72+015 +1.29
Avg 70.80+0.08 | 70.90+0.10 | 71.00+0.08 | 70.80=+0.10 71.20+0.09 +0.40

ImageNet-A CVaRy g 15.35+0.21 15.50+0.25 15.62+0.22 15.44+0.25 18.38+0.22 +3.03
(O0OD) CVaRg 7 22.8240.23 23.05+0.21 23.13+0.19 23.00+0.23 24.05+0.20 +1.23
CVaRy 5 30.05+0.21 29.53+0.18 | 30.25+020 | 29.96+0.23 31.26+0.20 +1.21
Avg 49.88+0.18 | 48.42+025 | 49.53z0.14 | 49.70+025 51.10+0.18 +1.22

ImageNet-R CVaRy g 26.20+0.11 28.01+0.13 26.01+0.10 | 27.87+0.14 28.21+0.12 +2.01

(O0OD) CVaRg 7 43.55+0.12 | 45.25+0.11 43.95+0.11 44.89+0.15 45.50+0.10 +1.95
CVaRg 5 56.70+0.11 58.25+0.12 | 57.36%0.11 58.03+0.12 58.77+0.12 +2.07

Avg 76.91+008 | 77.40+010 | 77.30x0.10 | 77.12+0.11 77.60+0.09 +0.69

ImageNet-S CVaRg g 12.24+0.20 13.18+0.20 12.20+0.19 12.73+0.19 13.61+0.17 +1.37
(O0OD) CVaR 7 20.01+0.18 21.10+0.22 20.44+0.20 20.65+0.25 21.46+0.21 +1.45

CVaRy 5 26.70+020 | 27.44+020 | 27.42+025 | 27.40+0.26 27.98+0.20 +1.28
Avg 48.85+023 | 48.89+021 | 48.91x023 | 49.12+0.20 49.62+0.22 +0.77

ImageNet-V CVaRy g 24.65+027 | 25.52+020 | 24.17+0.18 | 24.82+0.17 25.95+0.23 +1.30
(O0D) CVaRy 7 | 34.72+020 | 35.70+0.17 | 35.00+023 | 35.32+0.25 35.86=+0.16 +1.14
CVaRy 5 | 43.49+024 | 44.20+0.19 | 43.60+022 | 43.95+0.18 44.60+0.20 +1.11
Avg 64.02+022 | 63.87+0.19 | 64.10+020 | 64.10+0.17 64.55+0.16 +0.53

Efficiency Runtime 1.00 1.10 1.00 1.09 1.03
Memory 1.00 1.50 1.00 2.08 1.01

In SFT, each labeled example in the dataset can be viewed as a task. Following MaPLe, we execute prompt tuning on
ImageNet " and conduct standard evaluation. To assess post-SFT robustness, we test on four OOD datasets—ImageNet-A ™,
ImageNet-S -, ImageNet-R ™, and ImageNet-V ' for capturing diverse domain shifts.

Table 2 shows MPTS consistently outperforms baselines in average and CVaR accuracies on ID and OOD datasets. MPTS
achieves 0.82-3.03% higher CVaR 9, CVaRq 7 and CVaR 5 scores over ERM, with greater OOD advantages than on ImageNet.
On 4/5 datasets, DRM ranks second to MPTS in CVaR,, but matches ERM in average accuracy. GDRM’s performance varies
with «, showing only marginal gains over ERM. OHTM slightly boosts ERM’s CVaR,, and mean accuracy in most settings,
while consuming more memory during tuning processes. Still, DRM sacrifices both memory and computational efficiency for
robustness in the bottom of Table 2. While MPTS shares DRM’s optimization goal, its risk predictive module and larger-batch
simulation enable better task exploration at minimal computational cost, yielding a more robust machine learner.

12

4 Discussion

Rapid adaptation to novel scenarios is a cornerstone of artificial general intelligence. However, challenges such as safety,
limited annotations, and computational constraints necessitate robust and efficient adaptation mechanisms. This study explores
learn-to-adapt optimization via generative modeling and introduces MPTS, a versatile framework for robust active task sampling.

Experiments demonstrate the feasibility of predicting optimization outcomes for active task selection. Meanwhile, MPTS
enhances adaptation robustness across diverse scenarios in an efficient manner. These results highlight MPTS’s potential
to scale CVaR,, principles for foundation model development and large-scale decision-making, without additional learning
resources.

5 Methods

In alignment with the realistic necessities, this work focuses on robust adaptation while securing learning efficiency, such
as circumventing partial expensive evaluation. Such a purpose facilitates the birth of MPTS. As previously mentioned, the
framework is agnostic to adaptation learning methods; hence, we leave out zero-shot learning, few-shot learning, and SFT
details.

In Fig. la, several roles are involved in the optimization: (1) the adaptive machine learner, e.g., foundation models or
generalist policies, learns to adapt given some optimizers; (2) the risk predictive model as a critic evaluates and forecasts the
task-specific adaptation risk; (3) the task sampler as an actor works for screening the task subset for next iteration. These
components participate in episodic learning until convergence.

Technically, this work recasts task episodic learning to sequence generation and presents MPTS as the task sampling strategy to
balance exploration and exploitation. At first, we introduce the foundation of RPMs for ranking task difficulty. To reconcile
theory and practice, we introduce a tractable optimization approach to enable functional posterior inference towards adaptation
risk. Then, we devise the acquisition function informed by the captured risk landscapes. Finally, an understanding concerning
the optimization pipeline is attached to conclude the Methods part.

5.1 Theoretical Feasibility of Constructing RPMs

Predictive Foundation. MPTS in Definition 2 leverages the risk history and generalization results under 6 to approximately
score the difficulty of task samples for the (¢ + 1)-th iteration. An unbiased Monte Carlo estimate of CVaR, 4 /B would require
fully evaluation of the (¢ + 1)-th adaptation risks across B tasks in order to identify the Top-B subset, which is computationally
prohibitive. Instead, MPTS circumvents this costly evaluation by utilizing the risk batch {&ﬂ-}il from iteration ¢, together
with historical information H;.;—1, to train a generative model to rank difficulty of B tasks for the (¢ + 1)-th subset selection.
This design inevitably introduces the look-ahead bias (see Theorem 1 and Lemma 1-2) while avoiding direct access to the
expensive evaluations of {£t+17i}33=1-

We begin by introducing Assumptions 1/2/3/4, which characterize the smoothness, boundedness and margin conditions essential

to the optimization framework. Specifically, under a fixed machine learner 0, it is reasonable to expect that similar tasks,
represented by 7, will exhibit sufficiently close adaptation risk values.

Assumption 1 (Lipschitz Continuity) We assume the adaptation risk function ((-; 0) reserves the Lipschitz continuity w.r.t.
Oand T, ie.,

(D2, DS:0) - (D2, DE:0)| < 310 -] and (D, D;6) - (D

2. D2:0)| < ol - 7, o)
where V{0,0"} € © and ¥Y{T, 7'} € T with Lipschitz constants 31 and [s.
Assumption 2 (Bounded Sample Gradient) We assume the norm of the adaptation risk function’s gradient VL(-;0;) is
bounded:

sup||Vel(DP,DF;6:)||2 < Gy and sup |[Vel(DF,DF;6:)|lz < G, ©)

TeT TeT,teNy
where G is a positive constant and G is a overall bound.

Assumption 3 (Sub-Gaussian Stochastic Gradient) The stochastic gradient g = g + € for the machine learner’s adaptation
at t-th iteration is o-sub-Gaussian, which means:

il

E [exp (nUTe)] < exp (5

) VneRandve]Rd7 @)

13

where E[g] = g, E[||g - g||3] < 02 and o € R,.

Assumption 4 (Margin Anti-Concentration) We assume A;;(6;) = (D9, DS :6,) - E(Df?j , Df], ;0.) has a density uni-
formly bounded by p in a neighborhood of zero. That is, Ve > 0, the probability inequality holds:

P(|A;(0:)] <€) < pe. ®)

Under the aforementioned assumptions, we derive Theorem 1. Specifically, we define a random variable A;;(6,) as the sign of
the adaptation risk difference and analyze its evolution following gradient updates across a population. Our theoretical analysis
demonstrates that, under a sufficiently small learning rate for the machine learner update, a significant proportion of these sign
variables remain largely unchanged in a probabilistic sense. This result establishes a rigorous foundation for evaluating relative
task difficulty on 6,1 based on posterior inference outcomes derived from 6, and further guides amortizing the sample average
Monte Carlo of CVaR,, optimization objective (see Fig. 1a-b).

Theorem 1 (Provably Approximately Invariant Task Difficulties) Given arbitrary K data points {(7;, (D%, D% ;6,)} 5,
the adaptation gradient Vo/£(0;) as a o-sub-Gaussian random variable and 0,1 = 0, — 1,V 9L (0;), we denote the relative
difficulty via the difference A;j(0y.1) = (D%, DY ; 9t+1)—€(®9j , ij ;0p01) and A;;(0;) = (DS, DY ; Ot)—ﬁ(ﬂgj , @fj ;04)
between t-th and (t + 1)-th iterations, and the gradient difference as v;; := Vol(D%, D3 :0,) - Vef(in?j , ij :0y).

Under Assumption 1/2/3, the set of rank-preserving variable E;j := 1 [sign(A;;(0y41)) = sign(A;;(6,))] satisfies the proba-

bility inequality:
P(me) >1 _57
1<J
when 1, < o with Gy in Assumption 2, §; ‘= min;.; |€(@g,®i;0t) - K(D%,@%;Otﬂ e R,, the

2GtJV[t+\/802G§ In(£52)
stochastic gradient norm My :=||VoL(6;)||2-

Lemma 1 (Misranked Subset Quantity) In the presence of adaptation risk value, let Ny be the number of order flipped

cross-pairs between the ground-truth Top-B subset TP and the remainder of the candidate tasks TC := ‘If;l N TP when the
machine learner’s parameter changes from 0 to 0,.1. We denote the number of tasks that change Top-B membership by
Myl = |‘J't3 A Tﬁl , where ‘Jﬁl is the ground-truth Top-B task subset under 0.1. Then the inequality holds: m,1 < 2Nj.

Lemma 2 (Rank-Preserving Bound in Expectation) With the risk difference notation A;;(6;) = E(Dg , Dfi :0y) —
é(@?j,@%;@t) and A;j(0p41) = E(Dg, @i;0t+1) - E(@%,D%;Otﬂ), when the (i,7) cross-pair flips its order from 0,
to 0;,1, we conclude that ‘Al](et)| < |Aij(0t+1) - A”(Ot)|

Note that the rank of adaptation difficulty in a fixed task set might flip due to the model update. Lemma 1 and 2 provides a

bound for the theoretically misranked tasks in the next-iteration selected subset and the adaptation risk difference over iteration.
Starting from the updated model parameter 6;,1, the subsequent one-step gradient update can be written as

010=011-1111 VGL(0t+1) (%92)
—_———
Perturbed Gradient After Rank-Flipping
VGL(9t+1) = gi+1 + Agii1 s (9b)
—— ——

Unbiased Average Gradient Gradient Difference

where the perturbed gradient reflects the average task gradient after rank-flipping. We estimate the unbiased average gradient
gt+1 from the ground-truth Top-B subset under 6;,1, i.e., 71&%1- The result of rank-flipping tasks after model update contributes

e (27553\7311 (DY, D73 011) = Tregn 55 (DY, DY 0t+1)). These terms serve
the convergence analysis Vt € N, in the following contents.

to the gradient difference as Ag;,1 =

Lemma 3 (Misranking Acute-Angle) Let g, and Ag; respectively denote the unbiased Monte Carlo estimate of CVaR and
the gradient difference between it and the biased gradient V£ (8;). For a given c € (0,1) and arbitrary small €, > 0, there
exists T such that ¥t > T, the following dichotomy holds: either (i) ||gi||2 < €, or (i) ||Agt||2 < c||g]|o-

Theorem 2 (Convergence with Diminishing Rank Flipping) Suppose there exists c € (0,1) and T > 0 such that V't > T, the
inequality holds: ||Agi|2 < c||gt||o- Given the Assumptions 1/2/3/4, and the appropriate construction of the step sizes {n}
from Theorem 1, we conclude that: lim;_, . E[||VeL(0:)||2] = 0. Hence, the iteration converges to first-order stationary points
in expectation.

14

Theorem 2 provides a convergence guarantee of using noisy Top-B task subset for robust optimization. It is worth noting that,
provided the RPM possesses sufficient expressiveness, the accumulated optimization history can theoretically drive down the
generalization error arising from function approximation, as supported by statistical learning theory. We leave more detailed
discussions and MPTS relevant proof in Supplementary Notes E.

5.2 Generative Modeling Risk Functions and Posterior Inference

Here, we design the sampling strategy through the lens of risk landscapes and pay more attention to datasets of learning
optimization outcome { H;}._;. To characterize the adaptation risk during batch optimization, we introduce the latent variable
z; to summarize episodic information and present a versatile deep generative model as:

T T-1
p(Ho:r, zo:r|00:r) = p(20) [[Py (Helz:00) T[] p(241]20)- (10)
=0 =0

Within a Bayesian framework, we approximate the underlying function distribution with the latent variable, and the posterior
p(z¢|H;) summarizes the historical risk information and accounts for uncertainty in distributions. The following writes the
form of p(z¢|H;) according to the Bayes rule

p(Hi|ze)p(ze|Hr:t-1)
Hy) = 11
Pt =) p (e Hue Yot (1

where p(z;|H1.-1) encodes the past evaluation results as the conditional prior. Moreover, p(Hy|z;) conveys the likelihood of
producing observations of the task batch risk values in the ¢-th iteration. Notably, the exact computation w.r¢. the posterior is
intractable due to the complicated integral in the denominator.

Generative Process. As illustrated in Fig. 2c, risk values of the task batch ¢ are correlated with the machine learner’s
parameters 6. In specific, the factorization of the sequential optimization relevant variables arrives at:

B
pz/:(Ht|H1:t—1):fp¢(Ht|Zt)p(Zt|H1:t—1)dzt:f[Hp¢(€t,i|7't,i,Zt;et)]p(zt|H1:t—1)dzt7 (12)
=1

where z; in the probabilistic graphical model constitutes the distribution over risk functions (For the sake of simplicity, we
skip over other variables less relevant to our learning purposes). Here, we assume the conditional independence between
task-specific risk values given z and the machine learner’s parameter @ in Eq. (12). And the primary optimization objective is
t0 maXypew I py, (H¢|Hi:4-1) for the optimization outcome prediction.

Inference Process. The manner of episodic training, where the task batch and its evaluation arrive sequentially, inspires us
to predict adaptation risk values online to actively sample tasks in a batch. However, the exact inference w.r.t. p(z¢|H;) is
infeasible as there is no structural information regarding posteriors. In each iteration, the risk function distribution relies on the
updated machine learner 8; hence, such non-stationarity in the risk function distributions prompts us to involve the streaming
VI“"' to derive the approximate posterior.

To do so, we handle the streaming task batches and update the posterior in a recursive way:

p(ze|Hy) o< p(Hilzt) p(2¢|Hix-1)
Updated Posterior Likelihood Functional Prior

where p(z¢|H1:t—1) represents the conditional prior using the last time updated posterior as the proxy. The role of the estimated
functional posterior is to provide uncertainty-aware prediction and serves the task sampling strategy design, which will be
detailed in Section 5.3.

As a result, we can formulate the evidence lower bound (ELBO) as a tractable optimization objective in Eq. (14) from
approximate inference.

B
plmax 9eLBO (Y, @) = Eq (2, 111,) ; In pay (e |74 4, Zt)] - DKL[Q¢(Zt|Ht) I p(zt|H1:t—1)] (14)

For implementation convenience, we adopt the parameterized Gaussian distribution with diagonal covariance matrices as
variational distributions similar to vanilla VAEs """ and neural processes (NPs)”". In other words, these distribution parameters
are approximated with neural networks, e.g., gp(2¢|H:) = N(2z¢; o (Hy), X (Hy)), and the reparameterization trick ~ is used
for stochastic gradient estimate.

15

Definition 3 (Permutation Invariant Function) With an n-element permutation group 8,, the operator g € S,, maps the
order set to itself:

g:[1,27-“,”]"’[917927“-797@]- (]5)
Then the function ® is called permutation invariant if for any set of data points x1, . . . , ., the following condition holds:
P(go[xi,...,xn]) = P([Tg,,...,xg,]) = P([@1,...,2n]) VgeS,. (16)

As for the neural architecture, we employ the DeepSet encoding module” to process the set dataset H;, which corresponds to
the permutation invariant function family in Definition 3. Also, in the context of streaming VI, ¢g (z¢|H¢-1) mostly works as
the proxy for the conditional prior as default. Consequently, we can modify the exact ELBO in Eq. (14) and further translate
the practical optimization process with the Lagrange multiplier 3 into:

B
we%ife@]Eqd’(zt‘Ht) I:; 1np¢(€t,i|7't,i,zt):| S.t. DKLI:Qd)(zt‘Ht) || qq;(zt|Ht_1)] <e= (17&)
B
pmex SeLBo (Y, @) = B, (z41H,) [Z I py (Ll 72,15 Zt)] - ﬂDKL[Q¢(Zt|Ht) | qu(zt|Ht—1)], (17b)
e¥,pe i=1

where ¢ indicates no gradients computed through ¢ in the term, and {3 € R,,e € R,} constrains the machine learner’s
parameter search in next iteration.

5.3 Task Sampling Strategy Design

In robust active task sampling, existing strategies evaluate task batches to rank their difficulties in adaptation and then prioritize
challenging subsets for optimization ™ ™", Besides the expensive evaluation cost, these strategies are weak in the efficient
exploration of the task space.

As Theorem 1 has established the theoretical foundation of approximately rank task difficulty, this necessitates the development
of the RPM from cumulated risk histories. With the model predictive results as amortized evaluation, specific rules can be
incorporated into the acquisition function for active sampling. Meanwhile, it is fascinating for the RPM to evaluate the machine
learner’s adaptation to arbitrarily many tasks with minimal computational cost. Hence, we can easily enlarge the pseudo batch
size B for more selection candidates and exploit the epistemic uncertainty from the RPM, encouraging more exploration in the
task space.

Evaluating Adaptation Performance through Stochastic Forward Passes. The RPM and estimated functional posteriors in
Eq. (12)/(14) work as tools for the active selection of the task batch. Specifically, the predictive distribution can be depicted as:

py (U7, Hyt) = /p¢(€|T,zt)p(Zt|H1;t)dzt = /Pw(€|7'azt)(1¢(zt|Ht)dZt

1 &)y ieh o (F) 1%
~ I Z py (U7, 2,"7), with ;" ~ qg(z¢|Hy) V7T ~ p(T).
k=1

The above predictive distribution py, (¢|7, Hy.¢) benefits from the Bayesian modeling and provides a tractable way to roughly
assess difficulties of tasks throughout the whole task space.

Rank-Flitering the Next Task Batch to Episodically Train. After obtaining p,, (¢|7, H1.;), we draw up a batch sampling
strategy on the basis of its quantified statistics. The criteria resembles the acquisition function in classical Bayesian optimization
(BO), which includes a collection of available evaluation principles, such as expected improvement’~, output information
theoretical index " or UCB

However, it is also necessary to clarify that the search space is on the sequential task batch instead of machine learners’
parameters, which differs from the ultimate purpose in BO. Central to our approach is the principle of optimism in the face of
uncertainty **. We consider the difficult task’s prioritization for robustness and the epistemic uncertainty as pivotal elements in
developing acquisition functions. The grounds behind this idea are that (i) the subset with the worst performance deserves
extra attention in optimization for adaptation robustness, and (ii) task regions with high predictive uncertainty tend to be
underexplored in the last few iterations.

As a result, we present the acquisition function built on the UCB principle

Risk Mean Epistemic Uncertainty
B B — —
‘A(TB§ ,P) = Za(Ti) = E'YO m(l;) +m a(t;) , where 7; ~ p(T) (19)
i=1 i=1

with m(6:) = By, (z, 1) [Py (U7, 20) | and o (6) = VE 0 Tog (Ui, 20)],

16

where m(¢;) and o(¢;) are, respectively, the adaptation risk mean and standard deviations, which can be estimated from

multiple stochastic forward passes z; ~ p(z|H1:¢) and £ ~ py, (¢|7;, 2¢) using the risk generative model. And {~o,v1} are

hyperparameters to balance considerations.

Then, the Simulate-Rank-Filter operation in Eq. (4)c arrives at the task batch for (¢ + 1)-th iteration, i.e., T2, =

AGMAX g5 g5 |- A(TE; ¢,4). This characterizes the step of the active subset selection from T2, the randomly
TUt+1” -

sampled identifier candidate set with [T | = B. In an implementation, we still perform random sampling from p(7) and
forecast the task-wise acquisition score a(-) from the RPM. Candidates in Top-B acquisition scores are screened to formulate

the task batch T2, for episodic optimization, as illustrated in Fig. 1d. These steps approximately solve Eq. (4)c and obtain
T2, in a heuristic way.

5.4 Sequentially Optimize the Adaptive Machine Learner

Given the screened T;.1, we execute optimization to update the machine learner’s parameters. The task-specific adaptation
risk in (¢ + 1)-th iteration is written as £;,1 ;(@) for the selected task 7;. The developed MPTS is agnostic to any-shot learning
methods, and the following includes the standard update rule for zero-shot, few-shot, and SFT scenarios.

Machine Learner Updates in Zero-Shot Adaptation: The zero-shot setup does not require the support dataset to identify
the task. Hence, taking the vanilla DR"’ as an instantiation, we can obtain the update rule as:

A B
01 =0:~ 2 3 Vol(DT, 16y), (20)

Tt+1,i;
B =1

where 0 denotes the zero-shot learning model parameter with A the learning rate.

Machine Learner Updates in Few-Shot Adaptation: Still, we take the typical optimization-based method MAML "~ as an
instantiation and provide the update rule as follows:

Cre1i(0) = L(DE | 07 =\ 1Vol(DF |) (21a)
A B

P =6 - S Y Voli1a(6), Vie{l,..., B} (21b)
=1

where ™ denotes the meta initialization, and A1 ; and A1 o are, respectively, learning rates in the inner and outer loops.

Machine Learner Updates in SFT: Here, we take finetuning pretrained models to downstream tasks "’ as an instantiation. In
this case, each data point [, y] can be viewed as a task with either its embedding 7 or x as the task identifier. Then the model
update rule can be:

A B
01 =0, - @ Z Vﬂg(["nﬂl,ia yt+1,z‘]§ et)a (22)
i=1

where {[@/+1,, yt+17i]}£1 denote the sampled task batch for the (¢ + 1)-th iteration.

5.5 Overall Algorithm and Interpretation

Implementation Pipelines. Here, we write the general form of MPTS in Algorithm 1, where the past risk episodes are
reused to train the RPM and serve the active subset selection. We also provide some implementation examples by putting all
the ingredients and optimization recipes together in the zero-shot, few-shot, and SFT scenarios. See Supplementary Notes in
Algorithm 2-7 for details. Since the first iteration in Algorithm 2/4/6 does not involve active sampling, due to no latest history,
and the task batch follows the standard random sampling setup.

Connection with Sequential Decision-making and Control. Intuitively, MPTS resembles model predictive control (MPC)

when treating task sampling under some criteria as an optimal planning problem. In this case, the episodic learning process
specifies an underlying dynamical system for MPTS to predict with only one future time step in the simulation to assess the
influence of selecting the task batch, and the feedback as exact adaptation risk information further helps improve the episodic
risk prediction system. In addition, through the lens of sequential decision-making, we can interpret the optimization pipeline
of MPTS from the actor-critic framework in RL"°. In detail, the RPM works as the critic that predicts adaptation performance

17

in the task 7 given a fixed machine learner. Accordingly, the actor plays the role of selecting the task batch from the acquisition
function and then executing the machine learner’s optimization. These two roles are entangled in the MPTS pipeline to achieve
robust yet efficient adaptation.

Data Availability

Here, we declare that the source of data used in experiments is from open-source dataset repositories or widely adopted
simulators. The sinusoid simulator is from work"~. The six few-shot image classification datasets are from ImageNet-
CG”7, ImageNet-CI’~, ImageNet-CS ’~, ImageNet-A ", ImageNet-S -~ and ImageNet-R . The image dataset for SFT is from
ImageNet ° and four OOD datasets-ImageNet-A ’~, ImageNet-S =, ImageNet-R ', and ImageNet-V~'. The Meta RL simulators
are based on the Mujoco robotic software with configurations reported in our code. The DR environments Ergo-Reacher and
Lunar-Lander are from work

As for the data of experimental results, it is reflected in the Tables and Figures, which can be found in the attached manuscript
file.

Code Availability

The code of Model Predictive Task Sampling and demonstration is accessible at https://github.com/thu-rllab/MPTS.

Acknowledgments and Disclosure of Funding

This work is funded by National Natural Science Foundation of China (NSFC) projects with Numbers # 62306326 and #
62495091.

18

https://github.com/thu-rllab/MPTS

References

[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748-8763. PMLR, 2021.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023.

[3] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015-4026, 2023.

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in
neural information processing systems, 35:23716-23736, 2022.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[6] Tlge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias
Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113,
2019.

[7] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, [lya Sutskever, and Pieter Abbeel. R12: Fast reinforcement learning
via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

[8] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu,
Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In
International conference on machine learning, pages 5637-5664. PMLR, 2021.

[9] Anurag Ajay, Abhishek Gupta, Dibya Ghosh, Sergey Levine, and Pulkit Agrawal. Distributionally adaptive meta
reinforcement learning. Advances in Neural Information Processing Systems, 35:25856-25869, 2022.

[10] Jiuding Sun, Chantal Shaib, and Byron C Wallace. Evaluating the zero-shot robustness of instruction-tuned language
models. In International Conference on Learning Representations. ICLR, 2024.

[11] Lexin Zhou, Wout Schellaert, Fernando Martinez-Plumed, Yael Moros-Daval, Cesar Ferri, and José Hernandez-Orallo.
Larger and more instructable language models become less reliable. Nature, pages 1-8, 2024.

[12] Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja Fidler, and Or Litany. Generating useful accident-prone driving
scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17305-17315, 2022.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

[14] Qi Wang, Yiqin Lv, Zheng Xie, Jincai Huang, et al. A simple yet effective strategy to robustify the meta learning
paradigm. Advances in Neural Information Processing Systems, 36, 2024.

[15] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling laws: beating
power law scaling via data pruning. Advances in Neural Information Processing Systems, 35:19523-19536, 2022.

[16] Talfan Evans, Shreya Pathak, Hamza Merzic, Jonathan Schwarz, Ryutaro Tanno, and Olivier J Henaff. Bad students
make great teachers: Active learning accelerates large-scale visual understanding. arXiv preprint arXiv:2312.05328,
2023.

[17] Ido Greenberg, Shie Mannor, Gal Chechik, and Eli Meirom. Train hard, fight easy: Robust meta reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

[18] Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, and Olivier J Henaff. Data curation via joint example selection
further accelerates multimodal learning. arXiv preprint arXiv:2406.17711, 2024.

[19] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

[20] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Demis Hassabis,
and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement learning system. Nature neuroscience, 21(6):860-868,
2018.

19

[21] Wei-Long Zheng, Zhongxuan Wu, Ali Hummos, Guangyu Robert Yang, and Michael M Halassa. Rapid context inference
in a thalamocortical model using recurrent neural networks. Nature Communications, 15(1):8275, 2024.

[22] Naomi P Friedman and Trevor W Robbins. The role of prefrontal cortex in cognitive control and executive function.
Neuropsychopharmacology, 47(1):72-89, 2022.

[23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,2013.

[24] Mandt Stephan, Matthew D Hoffman, David M Blei, et al. Stochastic gradient descent as approximate bayesian inference.
Journal of Machine Learning Research, 18(134):1-35, 2017.

[25] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, Giovanni Pezzulo, et al. Active inference
and learning. Neuroscience & Biobehavioral Reviews, 68:862—-879, 2016.

[26] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. Streaming variational bayes.
Advances in neural information processing systems, 26, 2013.

[27] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. arXiv preprint
arXiv:1710.10628, 2017.

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, 2015.

[29] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing
local predictive power. Advances in Neural Information Processing Systems, 32, 2019.

[30] Jakub M Tomczak. Deep Generative Modeling. Springer Cham, 2024.

[31] Jean Kaddour, Steindér Semundsson, et al. Probabilistic active meta-learning. Advances in Neural Information
Processing Systems, 33:20813-20822, 2020.

[32] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pages 1126-1135. PMLR, 2017.

[33] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal of risk, 2:21-42, 2000.

[34] Huaxiu Yao, Yu Wang, Ying Wei, Peilin Zhao, Mehrdad Mahdavi, Defu Lian, and Chelsea Finn. Meta-learning with an
adaptive task scheduler. Advances in Neural Information Processing Systems, 34:7497-7509, 2021.

[35] Yifei He, Shiji Zhou, Guojun Zhang, Hyokun Yun, Yi Xu, Belinda Zeng, Trishul Chilimbi, and Han Zhao. Robust
multi-task learning with excess risks. In International Conference on Machine Learning, pages 18094—18114. PMLR,
2024.

[36] P Auer. Finite-time analysis of the multiarmed bandit problem, 2002.

[37] Chenghao Liu, Zhihao Wang, Doyen Sahoo, Yuan Fang, Kun Zhang, and Steven CH Hoi. Adaptive task sampling for
meta-learning. In European Conference on Computer Vision, pages 752-769. Springer, 2020.

[38] Muhammad Waleed Gondal, Jochen Gast, Inigo Alonso Ruiz, Richard Droste, Tommaso Macri, Suren Kumar, and
Luitpold Staudigl. Domain aligned clip for few-shot classification. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 5721-5730, 2024.

[39] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain randomization. In
Conference on Robot Learning, pages 1162-1176. PMLR, 2020.

[40] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz Khan. Maple:
Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19113-19122, 2023.

[41] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In
International conference on machine learning, pages 1587-1596. PMLR, 2018.

[42] Vladimir Naumovich Vapnik, Vlamimir Vapnik, et al. Statistical learning theory. 1998.

[43] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning robust neural network
policies using model ensembles. In International Conference on Learning Representations, 2022.

[44] Yiqin Lv, Cheems Wang, Dong Liang, and Zheng Xie. Theoretical investigations and practical enhancements on tail task
risk minimization in meta learning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=Mcrz0oOhwr.

[45] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks. In
International Conference on Learning Representations, 2019.

20

https://openreview.net/forum?id=McrzOo0hwr

[46] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le, Tengyu Ma,
and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining. Advances in Neural
Information Processing Systems, 36, 2024.

[47] Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl Pertsch, and Dorsa Sadigh. Remix: Optimizing data mixtures
for large scale imitation learning. In 8th Annual Conference on Robot Learning, 2024.

[48] Maryam Toloubidokhti, Yubo Ye, Ryan Missel, Xiajun Jiang, Nilesh Kumar, Ruby Shrestha, and Linwei Wang. Dats:
Difficulty-aware task sampler for meta-learning physics-informed neural networks. In The Twelfth International
Conference on Learning Representations, 2023.

[49] Ramnath Kumar, Tristan Deleu, and Yoshua Bengio. The effect of diversity in meta-learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 8396-8404, 2023.

[50] Jingyao Wang, Wenwen Qiang, Xingzhe Su, Changwen Zheng, Fuchun Sun, and Hui Xiong. Towards task sampler
learning for meta-learning. International Journal of Computer Vision, 132(12):5534-5564, 2024.

[51] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[52] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturba-
tions. In ICLR, 2019.

[53] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 15262-15271, 2021.

[54] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization. /CCV, 2021.

[55] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In International conference on machine learning, pages 5331-5340. PMLR,
2019.

[56] Ido Greenberg, Shie Mannor, Gal Chechik, and Eli Meirom. Train hard, fight easy: Robust meta reinforcement learning.
Advances in Neural Information Processing Systems, 36:68276—68299, 2023.

[57] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to
imagenet? In ICML, 2019.

[58] Stephen M Stigler. Thomas bayes’s bayesian inference. Journal of the Royal Statistical Society: Series A (General), 145
(2):250-258, 1982.

[59] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In International conference on machine learning, pages 1278-1286. PMLR, 2014.

[60] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and Yee Whye Teh.
Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[61] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J Smola.
Deep sets. Advances in neural information processing systems, 30, 2017.

[62] J Mockus, V Tiesis, and A Zilinskas. The application of bayesian methods for seeking the extremum, vol. 2. L Dixon
and G Szego. Toward Global Optimization, 2, 1978.

[63] Binxin Ru, Michael A Osborne, Mark McLeod, and Diego Granziol. Fast information-theoretic bayesian optimisation.
In International Conference on Machine Learning, pages 4384-4392. PMLR, 2018.

[64] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3
(Nov):397-422, 2002.

[65] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 23-30. IEEE, 2017.

[66] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min
Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence, 5(3):220-235, 2023.

[67] Manfred Morari and Jay H Lee. Model predictive control: past, present and future. Computers & chemical engineering,
23(4-5):667-682, 1999.

[68] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing systems, 12, 1999.

21

[69] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding important
examples early in training. Advances in neural information processing systems, 34:20596-20607, 2021.

[70] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation
metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

[71] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine learning models.
In International Conference on Machine Learning, pages 6950-6960. PMLR, 2020.

[72] Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable learning: Coresets for data-efficient deep learning.
In International Conference on Machine Learning, pages 39314-39330. PMLR, 2023.

[73] Siddharth Joshi and Baharan Mirzasoleiman. Data-efficient contrastive self-supervised learning: Most beneficial

examples for supervised learning contribute the least. In International conference on machine learning, pages 15356—
15370. PMLR, 2023.

[74] Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence and statistics, pages
207-215. PMLR, 2013.

[75] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25, 2012.

[76] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for bayesian optimization.
Advances in neural information processing systems, 31, 2018.

[77] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

[78] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples: A survey on
few-shot learning. ACM computing surveys (csur), 53(3):1-34, 2020.

[79] Qi Wang, Yanghe Feng, Jincai Huang, Yigin Lv, Zheng Xie, and Xiaoshan Gao. Large-scale generative simulation
artificial intelligence: The next hotspot. The Innovation, 4(6), 2023.

[80] Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. Attribute prototype network for any-shot
learning. International Journal of Computer Vision, 130(7):1735-1753, 2022.

[81] Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Generalized zero-shot learning with deep
calibration network. Advances in neural information processing systems, 31, 2018.

[82] Aoxue Li, Zhiwu Lu, Jiechao Guan, Tao Xiang, Liwei Wang, and Ji-Rong Wen. Transferrable feature and projection
learning with class hierarchy for zero-shot learning. International Journal of Computer Vision, 128:2810-2827, 2020.

[83] Rohit Keshari, Richa Singh, and Mayank Vatsa. Generalized zero-shot learning via over-complete distribution. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13300—13308, 2020.

[84] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating networks for zero-shot learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5542-5551, 2018.

[85] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor Darrell, and Zeynep Akata. Generalized zero-and few-shot
learning via aligned variational autoencoders. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8247-8255, 2019.

[86] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 44(9):5149-5169, 2021.

[87] Qi Wang, Marco Federici, and Herke van Hoof. Bridge the inference gaps of neural processes via expectation
maximization. In The Eleventh International Conference on Learning Representations, 2022.

[88] Muhammad Waleed Gondal, Shruti Joshi, Nasim Rahaman, Stefan Bauer, Manuel Wuthrich, and Bernhard Scholkopf.
Function contrastive learning of transferable meta-representations. In International Conference on Machine Learning,
pages 3755-3765. PMLR, 2021.

[89] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye

Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In International conference on machine
learning, pages 1704—1713. PMLR, 2018.

[90] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. Advances in neural information
processing systems, 31, 2018.

[91] Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-aware model-agnostic
meta learning. In International conference on machine learning, pages 10-32. PMLR, 2022.

[92] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit gradients.
Advances in neural information processing systems, 32, 2019.

22

[93] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in neural
information processing systems, 30, 2017.

[94] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum. Infinite mixture prototypes for few-shot learning.
In International conference on machine learning, pages 232-241. PMLR, 2019.
[95] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

[96] Marcin Sendera, Marcin Przewigzlikowski, Konrad Karanowski, Maciej Zigba, Jacek Tabor, and Przemystaw Spurek.
Hypershot: Few-shot learning by kernel hypernetworks. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 2469-2478, 2023.

[97] Yonatan Oren, Shiori Sagawa, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust language modeling.
arXiv preprint arXiv:1909.02060, 2019.

[98] Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning. Advances in Neural
Information Processing Systems, 33:18860-18871, 2020.

[99] Yun Qu, Qi Wang, Yixiu Mao, Vincent Tao Hu, Bjorn Ommer, and Xiangyang Ji. Can prompt difficulty be online
predicted for accelerating rl finetuning of reasoning models? arXiv preprint arXiv:2507.04632, 2025.

[100] Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and Richard E Turner.
Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556, 2019.

[101] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, and
Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

[102] Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard Turner. Meta-learning
stationary stochastic process prediction with convolutional neural processes. Advances in Neural Information Processing
Systems, 33:8284-8295, 2020.

[103] Qi Wang and Herke Van Hoof. Learning expressive meta-representations with mixture of expert neural processes.
Advances in neural information processing systems, 35:26242-26255, 2022.

[104] Philippe Rigollet and Jan-Christian Hiitter. High-dimensional statistics. arXiv preprint arXiv:2310.19244, 2023.

[105] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models.
International Journal of Computer Vision, 130(9):2337-2348, 2022.

[106] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-language
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 16816—16825,
2022.

[107] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems, pages 5026-5033. IEEE, 2012.

[108] Erin Catto. Box2d: A 2d physics engine for games, 2007. URL http://box2d.org.

[109] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer. Sim-to-real transfer with neural-
augmented robot simulation. In Conference on Robot Learning, pages 817-828. PMLR, 2018.

[110] Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, page 1. 2015.

23

http://box2d.org

Contents
1 Introduction
2 Adaptation and Robustness

3 Results
3.1 Demonstration of the MPTS’s role in K-shot sinusoid regression
3.2 Few-Shot adaptation benefits from MPTS in robustness and learning efficiency
3.3 MPTS retains multi-faced advantages beyond robustness in zero-shot continuous control

3.4 MPTS also reserves the potential of robust SFT
4 Discussion

5 Methods
5.1 Theoretical Feasibility of Constructing RPMs
5.2 Generative Modeling Risk Functions and Posterior Inference
5.3 Task Sampling Strategy Design
5.4 Sequentially Optimize the Adaptive Machine Learner
5.5 Overall Algorithm and Interpretation e

A Quick Guideline to MPTS

B Research Background
B.1 Adaptation Learning for Cross-Task Generalization
B.2 Dataset Curation and Task-Level Robustness

B.3 Risk Minimization Principles and Prioritized Sampling L o o o

C Task Construction and Identifiers
C.1 Tasks with Explicit Identifiers e e
C.2 Tasks with Implicit Identifiers e
C.3 Scalability with Large Reasoning Models e

D Auto-Encoding Adaptation Risk through Streaming VI
D.1 Neural Modules to Parameterize Distributions 0
D.2 Formulation of ELBO & Stochastic Gradient Estimates

D.3 Theoretical Guarantee for Task Difficulties’ Scoring with Posterior Inference
E Convergence Analysis

F Backbone Methods & Experimental Details in Any-Shot Learning
F.1 MAML, Reptile and PEARL e
F2 Domain Randomization e

F3 Multi-Modal Prompt Learning L e

10
12

13

13
13
15
16
17
17

27

29
29
29
30

32
32
32
33

33
34
34
35

37

G Experimental Setups & Implementation Details

G.1 Sinusoid Regression
G.2 N-way K-shot Image Classification
G.3 Prompt-based Few-shot Image Classification . .
G4 Meta-RL o o
G.S RoboticDR

G.6 Prompt-Tuning Multimodal Foundation Models
H Computational Tools & Platforms & Model Design

I Competing Interests & Author Contributions

25

42
42
43
43
44
44
45

45

45

Supplementary Notes: Model Predictive Task Sampling for Efficient and Robust Adaptation

Algorithm 2: MPTS for DR (Zero-Shot Scenarios)

Algorithm 3: Model Predictive Task Sampling

Input :Task distribution p(7); Task batch size B;
Learning rate \;.

Output : Adapted machine learner 6.

Set the initial iteration number ¢ = 1;

Randomly initialize machine learner 6;

Randomly initialize RPM {1, ¢};

while not converged do

Execute Algorithm 3 to access the batch {7;;}2, and
induced {DC }7;

// Eval Adaptation Performance

Compute the task specific adaptation risk
{lri=0(DE ;0,)}E1;

Return H; = {[7¢, Et,i]}zl as the Input to
Algorithm 3;

// Update Machine Learner

Perform batch gradient updates:

0,1 <0, - % 221 Vol

Update the iteration number: ¢ < ¢ + 1;

end

Input :Task distribution p(7); Task batch size B;

Candidate batch size B; Latest updated {t, ¢};
Latest history H;_1; Iteration number K;
Learning rate .
Output : Task identifier batch {1, ;}2,.
// Functional Posterior Inference
for:=1to K do
Perform gradient updates given Hy_q:
@ < @+ X2V TeLBO(Y, @) in Eq. (17b);
Y < 1+ A2VyGrLeo (Y, @) in Eq. (17b);
end
// Simulating Adaptation Results
Randomly sample {'f't,i}il from p(7);
Run amortized evaluation on_candidate tasks
{0i = vom(:) + via(4:)} 2, in Eq. (19);
// Active Subset Selection from Predicted
Results
Rank {4;}2, and screen Top-B values;
Return the screened task batch {7 ;} 7 .

Algorithm 4: MPTS for Model Agnostic Meta Learning
(Few-Shot Scenarios)

Input :Task distribution p(7); Task batch size B;
Learning rates: {A1,1,A1,2}.
Output : Meta-trained initialization 6™,
Set the initial iteration number ¢ = 1;
Randomly initialize meta learner 6™,
Randomly initialize RPM {1, ¢};
while not converged do
Execute Algorithm 5 to access the batch {7; ;} 2, and
{'Di U Dg,i}il;
// Inner Loop to Fast Adapt
fori:=1to K do
Compute the task-specific gradient:
Vol(D3:0);
Perform gradient updates as fast adaptation:
0} < gt —)\mveﬁ(ini;O);
end
// Outer Loop to Meta-train
Evaluate fast adaptation performance
[t = (D2 0D} s
Return Hy; = {[7¢, 6,571-]}21 as the Input to
Algorithm 5;
Perform meta initialization updates:

t ta _ A2 B .
0?‘1:3121 P 0?13 a _ 5 Zi:l ngt’i,

Update the iteration number: ¢ < ¢ + 1;

end

26

Algorithm 5: Model Predictive Task Sampling

Input :Task distribution p(7); Task batch size B;

Candidate batch size B; Latest updated {1, ¢};
Latest history H;_1; Iteration number K;
Learning rate \s.
Output : Task identifier batch {1, ,}2,.
// Functional Posterior Inference
fori=1to K do
Perform gradient updates given Hy_q:
¢ < ¢+ A2V 9ELBO (Y, @) in Eq. (17b);
P < P + XAaVy GeLBo (¥, @) in Eq. (17b);
end
// Simulating Adaptation Results
Randomly sample {#; ;} 2, from p(7);
Run amortized evaluation on_candidate tasks
{6; = vom(£;) +v10(£:)} 2, in Eq. (19);
// Active Subset Selection from Predicted
Results

Rank {51-}311 and screen Top-B values;
Return the screened task batch {7 ;} 7.

Algorithm 6: MPTS for Pretrained Model Finetuning

Algorithm 7: Model Predictive Task Sampling

Input :Task distribution p(x); Task batch size B;
Learning rate \;.

Output : Fine-tuned machine learner 6.

Set the initial iteration number ¢ = 1;

Randomly initialize machine learner 6;

Randomly initialize RPM {1, ¢};

while not converged do

Execute Algorithm 7 to access the batch {7;;}2, and
{[-’Bt,i7 yt,i]};le;

// Eval Adaptation Performance

Compute the instance-specific adaptation risk
{lri = 0([@03,9041;00) 105

Return H; = {[74,;,£::]}2, as the Input to
Algorithm 7;

// Update Machine Learner

Perform batch gradient updates:

01 < 0, - 3L Sit1 Vel

Update the iteration number: ¢ < ¢ + 1;

end

A Quick Guideline to MPTS

Input :Offline processed T dataset; Task batch size B;
Candidate batch size B; Latest updated {1, ¢};
Latest history H;_1; Iteration number K;
Learning rate \s.
Output : Task identifier batch {1, ;}2,.
// Functional Posterior Inference
for: =1to K do
Perform gradient updates given H;_1:
@ < @+ X2V 9eLBO(Y, @) in Eq. (17b);
¥ < P+ A2V Griso(¥, @) in Eq. (17b);
end
// Simulating Adaptation Results

Randomly sample {#;;}2, from p(7);
Run amortized evaluation on_candidate tasks
{6i :=nom(£:) + 1o (£:)} 2, in Eq. (19);
Rank {4;}2, and screen Top-B values;
// Exact Evaluation or Active Annotations
Return the screened batch {[z ;,y:.:]} 2.

Task episodic learning serves as a cornerstone in developing adaptive models by structuring diverse, context-rich learning
experiences. One of the pivotal insights underpinning this process is the neural scaling law, which establishes a relationship
between task volume, model complexity, and computational resources, offering a principled insight into training foundation
models at a certain budget. Recent viewpoints have also shed light on the importance of task quality , prompting
innovative data curation strategies to refine datasets for pretraining, meta-training, and post-training. Evidence suggests that
carefully curated data can significantly reduce task sampling complexity, decrease computational demands, and enhance
robustness against distributional shifts—sometimes achieving these goals simultaneously. Despite these advancements, a
practical operation such as Evaluate-Rank-Filter still faces challenges associated with costly evaluations from intensive task
queries, computational overhead, and massive annotations. Addressing these bottlenecks remains essential to fully realize the
potential of task episodic learning in robust efficient foundation model training.

Opt

{032,

Figure 6: Risk Predictive Module in MPTS for Active Subset Selection. MPTS adopts a predict-then-optimize strategy and uses a predictive
module in green to approximately score the task subset difficulty and obtain the preferred task subset. While the traditional method in blue

exhausts B tasks in construction and evaluation to filter preferred subset.

Computational Complexity Analysis. The involvement of the RPM inevitably brings extra computational overhead in
optimization. However, the RPM used in this work is lightweight with the model complexity O(|¢| + [1)]) << O(]@]). We can

27

|

—_—> Fixed _— Fixed —_—
Task Task
IDs IDs

- s

(a) Traditional Multi-Task Learning: Fixed Task IDs and Resampled Episodes

Resampled
Task
IDs

(b) Traditional Meta Learning or DR: Resampled Task IDs and Episodes

Figure 7: Comparison between Traditional Multi-Task Learning and Meta Learning and Domain Randomization. Traditional
multi-task learning aims to exploit the correlation between heterogeneous tasks, and task IDs in a batch do not change . In comparison, meta
learning and domain randomization typically consider the homogeneous task family and resample task IDs in a batch to optimize. The latter
is our studied scenario, referred to as task episodic optimization. [Same types of colors mean the homogeneous tasks with depth to denote the
various episode.]

roughly estimate these extra computations that arise from the predictive model as O((|| + [4|)Tprs) throughout the training
phase. Moreover, the computational and task evaluation complexities of different methods are estimated in Table 3. Compared
with DRM, MPTS retains more computational and task efficiency when the filtering ratio ¢ is high, and the machine learner 8
is largely given similar convergence iteration steps. OHTM ™ uses the risk buffer to store historical difficult tasks and mixes it
into the instant evaluated ones, hence, there is no additional computational cost. As for DATS ™ and TDPS ", they rely on
additional gradient updates to compute the weights and raises more computational cost.

Table 3: Computational Complexities using Different Methods. Here, we drop out the ranking or reweighting computational complexity as
the model complexity of the machine learner considered in this analysis is major, such as the multimodal foundation models. 1" refers to the
required iteration steps until the convergence for separate methods.

‘ ‘ ERM ‘ DRM | GDRM | OHTM | MPTS (Ours) ‘
6|Torm) | O(10Taprm) | O(10|Tourm) | O((|¢] + 4] +6]) Taers) |
‘ task eval ‘ O (%TERM) ‘ O (%TDRM) ‘ O (%TGDRM) ‘ O (BTOHTM) ‘ O (3TMPTS) ‘

‘ computation ‘ O(|8|Term) ‘ O(ﬁ

Choice of Surrogate Models. Among MPTS’s core components, the RPM works to predict the adaptation risk values
based on historical information and further serves the calculation of acquisition functions. Importantly, this work investigates
the feasibility and effectiveness of risk predictive strategies and does not impose rigid constraints on the form of the RPM
p(¢|T, Hy.t; @) too much in modeling. The design of this RPM p(¢|7, H1.+; @) must meet several criteria: it is tractable in
optimization, can process historical risk information, and offers uncertainty in prediction.

A series of candidate probabilistic models exist that probably apply to adaptation risk modeling. One alternative choice can be
the Gaussian process '*, which provides an analytical form of the predictive distribution. However, its implementation (i) is
less scalable in the case of relatively higher dimensional task identifiers, (ii) holds the cubic runtime complexity in obtaining
the predictive covariance matrix, (iii) is sensitive to kernel selection, coupled with limited expressiveness of the Gaussian
distribution in learned risk functions. Hence, for simplicity and computational efficiency, we adopt the basic VAE-like model
and execute a handful of gradient updates to train the RPM. We leave more advanced RPM modeling for future exploration.

Bayesian Optimization for Black-box Functions. This work relates to active sampling and Bayesian optimization. The

purpose of BO 7 is to sequentially find a global optimum of a black-box function f(x) expensive to evaluate in 8, namely
Ly = ATZMAXpegcRe f(:]])

28

In each iteration ¢t = 1, ..., T, the BO method actively queries x; to evaluate f(a;), yeilding an output ¢, = f(x;) + € with a
white noise € ~ N(0,02). Due to the high cost of function evaluation, the key to BO is constructing a surrogate model to guide
the data point to query. The resulting acquisition function ' works as an active sampling objective to maximize and obtain
the candidate x; based on the previous sequence. BO requires limited function evaluations as observations and exploits the
correlations in queried data points. These properties make it more theoretically data efficient than random or grid search in
seeking the optimal solution'’. This work differs from standard BO as task episodic learning is not the optimal parameter
search problem.

Specific Pseudo Algorithms in Considered Scenarios. The main paper provides the workflow of MPTS in Algorithm 1.
For separate scenarios, we attach detailed pseudo algorithms as follows. These illustrated Algorithms are in the context of
supervised learning. Regarding RL scenarios, such as meta RL and DR, there is a slight modification for MPTS. As simply
picking up worst-case MDPs restricts the task subspace in optimization ', we adopt the mixture of the identifier subset from
the random sampler and the identifier subset from the MPTS sampler. For example, in meta RL, with the pseudo batch size

B =1.5B, there 1.5B identifier candidates from the random sampler. We retain 0.5B random ones and execute standard MPTS
amortized evaluation and acquisition rule to obtain another 0.5B ones from the rest random B identifiers, formulating the
mixed B task batch for RL training. Such an operation makes RL over the MDP distribution stable in optimization. See the
open-source code for more RL details.

Application Scope. MPTS considers the task distribution to conduct robust optimization, where tasks are homogeneous
in implementations. The entire optimization pipeline adheres to task-episodic training, which means that a batch of tasks is
resampled to train in each iteration. However, for classical multi-task learning scenarios, when tasks are fixed and heterogeneous,
the task identity of the batch is not changed over iterations. Such a difference can be illustrated in Fig. ??. Hence, vanilla
MPTS might encounter the applicability issue. We leave developing model predictive strategies to balance the weight of tasks
for robust optimization as future work.

B Research Background

B.1 Adaptation Learning for Cross-Task Generalization

Learning from zero-shot or few-shot examples has been identified as a crucial adaptation capability of the machine learner
nowadays '*'”. In SFT, this work treats the individual example as each task to meet MPTS setup. As SFT techniques have been
widely discussed in the field"", we skip this part in the background introduction.

Zero-Shot Adaptation. This assesses the machine learner’s generalization capability when directly deploying in unseen
scenarios without the help of a support dataset. Such a cross-task generalization is commonly studied in computer vision®", and
the core of the relevant methods is effective semantic representation either from embedding-based methods® ~ or generative-
based methods “"*”. In the era of the foundation models, the pretraining mechanism between multimodality also sometimes
empowers the machine learner, such as CLIP ', with zero-shot capability. When it comes to sequential decision-making, a
commonly seen method is DR """, which places a distribution over environments for the agent to interact.

Few-Shot Adaptation. This examines the machine learner’s capability of resolving unseen tasks from some annotated
examples as hints. Meta-learning, as the typical learning paradigm, has gained popularity over the past decade. It achieves
few-shot adaptation by leveraging past experience and distilling knowledge to unseen but similar scenarios in a few-shot
way . In brief, we categorize commonly seen methods into context-based, optimization-based, geometric-based, and others.
(i) Formulated in an encoder-decoder structure, the context-based method resembles variational autoencoders and encodes
the few-shot information into latent variables or embeddings. Typical ones are neural process families”°'~”, which aim
to constitute exchangeable deep stochastic processes with neural networks. (ii) The optimization-based methods, with their
versatile nature and ability to enable cross-task skill transfer, have piqued the interest and engagement of researchers in the field.
For example, MAML "~~~ reduces meta-learning to a bi-level optimization in the parameter space, and its extensions have
been widely investigated in the field. (iii) The deep metric-based methods > attempt to embed tasks into the latent space
and are more suitable for few-shot image classification tasks. Besides, there are other families, such as hyper-networks 7>"",
recurrent meta-learning ', etc.

B.2 Dataset Curation and Task-Level Robustness
Task Curation in Robust Adaptation Learning Pipelines. Recent works ' demonstrate the effectiveness of challenging

task prioritization over uniform sampling in improving cross-task generalization and adaptation robustness, particularly when
the learning dataset is sufficiently large. Many methods ~~ °~ adopt an Evaluate-Rank-Filter step for iterative model updates,

29

introducing a batch filtering ratio & = 1 — % € [0,1) to quantify the fraction of discarded tasks in a sample batch. This
prioritization of "difficult" tasks aligns with minimizing CVaR,, ", a robustness metric for tail-case performance. Alternatively,
other methods ”~"' focus on constructing uncertainty sets and reweighting tasks within the batch to achieve robust adaptation.
Additionally, coreset methods ' ~'~ aim to select a small subset of tasks that effectively represent the utility of the full dataset,
often through gradient approximation in optimization. These approaches address a subproblem of data efficiency, with the
acquisition strategy in MPTS serving as an episodic coreset selection mechanism tailored for robustness.

Task Distributional Robustness. The CVaR,, or expected shortfall - is a statistical measure to assess the proportional
worst-case performance of some models at certain levels. This is widely adopted in risk-averse applications. As implied in
Definition 1, CVaR,, describes the expected risk under the normalized (1 — «) proportional tail risk task distribution, and this
work specifies the distribution in the task space. Meanwhile, the normalized tail task distribution p,,(7; @) can be viewed as a
shifted result from the initial task distribution p(7); hence, such a measure provides robustness quantification in the presence of
task distribution shifts

Another indicator to evaluate the machine learner’s robustness is the performance in OOD tasks. This refers to the case when
the training and the testing task distributions are different. Particularly, in DR and prompt-tuning scenarios, we also use the
OOD tasks that never appear in the training task distribution to test the trained policy, and this setup corresponds to domain
generalization, a type of substantial distribution shift®.

Similar to the setup ', let (2, F,, P,) be a probability space over tasks, where F is a o-algebra on subsets of €2,. Consider
(R,B) with B the Borel o-algebra, defining a probability measure for the adaptation risk function £(D;0). For 0 € ©, the
adaptive optimization operator is Mg : 7 — £(D; 0).

Thus £(-) acts as a random variable to induce the risk distribution p(¢). The corresponding cumulative distribution is
Fi(4;0) =P({{(D,;0) < ;7 € Q,, L eR}). Note that F'(¢;0) depends on 6 and generally lacks a closed form. The resulting
probability density function and the following explanation can be found in the main paper Definition 1.

Sample Average Approximation of CVaR. Note that the vanilla optimization objective of CVaR can be expressed in the
form of dual representation, which corresponds to:

. 1 s
o0 CVaR,(8) i=C+ 1By [[((DF, D7:0) - '] 23)

where the signed function means [£(D2,D?:0) - (]* = max{{(D2,D?:0) — ¢,0}. With the help of sample average
approximation in Monte Carlo, this can be further written as:

B
min _CVaR,, (0 [¢((DE,DI;0) - (] (24)
o, CVaR(8) = €+ a) ool)- (]
Since the optimality for the auxiliary variable holds at the condition ¢ = VaR, (@), selecting the Top-B element in the set
{4;1¢; =¢ (DQ DS ;0)}2, is an unbiased Monte Carlo estimate of CVaR. The gradient of Eq. (24) is the steepest direction in
gradient optlmlzatlon and executing gradient descent decreases the CVaR value. In addition, the adaptation risk in this work
l (DQ ZDS ;0), e.g., classification accuracies or MSEs, is typically bounded. With the monotonic improvement and bounded

risk functlon values, optimizing the Monte Carlo CVaR (MC-CVaR) leads to convergence. Such a robust optimization method
corresponds to the baseline DRM ' in this work.

B.3 Risk Minimization Principles and Prioritized Sampling

The risk minimization principles are entangled with task sampling and robust optimization.

Expected/Empirical Risk Minimization (ERM). With the fixed p(7), the principle follows the statistical learning theory
and minimizes the expectation of adaptation risk over the task space. As a result, we can have:

gnnE,,(T)[E(DQ, DS 0)]. 25)

It draws batches with a random task sampler to optimize iteratively.

Distributionally Robust Risk Minimization (DRM) "*»'%" ">, 'We retain the notation of task robust work ', which terms
the tail task risk minimization as DRM. It aims to improve the robustness of adaptation to the tail tasks over iteration. No
explicit form exists as the tail task distribution is 8-dependent. The optimization objective is derived as the CVaR,,(0)

: o Q ¢mS.
min CVaR, (6) = B, (r0) [E(DT , DS, a)]7 (26)

30

where we write po(7;0) to express the (1 — «) proportional worst case for easier formulation. In other words,
Epa(ﬂg)[é(@f?, DI, 0)] also relates to the task distribution with constraints. Also note that when « approaches 1, the
problem degenerates to the worst-case risk minimization.

This work retains the setup in work * and picks up the Top-B in optimization, which corresponds to sample average Monte
Carlo of CVaR,,. This implies that the actual task batch to evaluate is %. And for fair comparison with MPTS and light
computations, we retain the Monte Carlo estimator for the risk quantile in implementation. To ensure stable training, in
all benchmarks, we keep the actual task batch B = 2B to evaluate and discard the easiest half before the machine learner’s
optimization.

Group Distributionally Robust Risk Minimization (GDRM) ™. This can be interpreted as a min-max optimization problem.
Such a principle ™ effectively improves robustness in distribution shifts and has shown positive effects on training foundation
models "' It constructs a collection of uncertainty sets over tasks and results in the optimization objective as follows:

. Q mS.
g, o (02,550 @

where G are groups of uncertainty sets, and py(7) indicates the probability measure over the task group. The operation inside
Eq. (27) prioritizes the worst group to optimize in a soft way.

GDRM increases the machine learner’s robustness by assigning more probability mass to worst cases in a reweighted manner.
That means in each iteration with the best selected p; (7), the optimization problem is reduced to

. o (T
ggglEpg(T)[ﬁ(ﬁg,Df;G)] =Epr) [%(S))E(QQ,DE;G)] , (28)

where we use w(7) = p}f((:)) to denote the weight.

Given a fixed number of tasks, GDRM will heuristically or dynamically group them into clusters and then perform a reweighting
mechanism according to the evaluated risk. In task episodic learning, there is no task grouping operation as the task batch
exp(nf(Dfﬂ ,Dfi;G))
T, exp(nl(DE ;DS :0))’
7 is the temperature parameter and {Tb}szl is the identifier of the task batch. The implementation detail can be found in

https://github.com/kohpangwei/group_DRO.

is reset after each iteration. And the default computation of task-specific weights is w(7;) = where

As revealed in works ”/’°, the heuristic operation as the Evaluate-Rank-Filter or reweighting mechanism in GDRM is
widely adopted for approximate optimization. For example, in task robust meta-learning scenarios, the prerequisite step in
DR-MAML ' is to execute gradient updates in the inner loop for all candidate tasks and then screen the tail task subset to
meta-optimize according to the evaluation results.

Difficulty-Aware Task Sampler (DATS)"°. Such a baseline is originally developed for few-shot learning problems of
physics-informed neural networks (PINNs). Here, we modify it to satisfy the studied benchmarks in few-shot learning scenarios.
The basic idea of scoring task difficulty is to compute the inner product of the task-specific gradient on the support dataset

gi.i = Vol(DZ ;) and the task-average gradient on the query dataset of all tasks gy := % Zfil Vel(DE 0,) in the batch.

Tt,i’ Tt,j

In implementation, it computes the gradient inner product s;; =< g;;,g: > and then perform normalization as w(7;) =
exp(nst.i)
T exp(nse,)
gradient update direction to reduce the validation loss across all tasks, while lower s; ; probably encounter the conflicting
gradient issue. Hence, DATS places higher weight on higher s; ;. And the vanilla implementation involves the coefficient over

the exponential term, and the default is % for all tasks, i.e., the uniform-KL regularization.

The explanation for such a task weighting mechanism lies in the fact that higher s, ; reveals a more consistent

Online Hard Task Mining Sampler (OHTM) ™. The OHTM strategy selects the most challenging tasks from the set of tasks
already encountered. To adapt OHTM for meta-learning, Kumar et al. " implements a hybrid scheme: half of each meta-batch
is drawn using the OHTM sampler, while the other half is chosen uniformly at random. This design ensures diversity by
including a broad range of tasks rather than limiting training to previously observed ones.

Task difficulty Prioritized Sampler (TDPS)"". The vanilla Adaptive Sampler”’ is primarily designed to improve the overall
generalization of meta-learning methods, identifying task difficulty, task diversity, and task entropy as key factors for acquiring
high-quality tasks. It integrates multiple prioritized sampling criteria into a combined metric. To align with the objective of
robust optimization and achieve fair comparison, we adopt only the difficulty-prioritized module of TDPS as our baseline and

31

https://github.com/kohpangwei/group_DRO

use the difficulty-aware module. The core idea is to compute gradients on both the support and query sets and quantify their
discrepancy, where the gradient inconsistency within D, serves as a proxy for task difficulty in optimization.

Other Representative Sampling Strategies. Beyond the baselines adopted in this study, other domain-specific task sampling
strategies have been proposed with distinct optimization objectives. For instance, Liu et al. "’ introduce greedy class-pair
(GCP) sampling, which emphasizes class-based adaptive sampling for few-shot image classification by actively constructing
challenging tasks for meta-learning. In contrast, our setting operates at the instance level without altering the task construction
pipeline. Another representative method, probabilistic active meta-learning (PAML) ', aims to improve data efficiency by
inferring task embeddings to quantify informativeness. However, PAML is not designed for robust optimization and is more
suitable for robotic system identification problems. Adaptive task scheduler ™ also adopts the gradient inner product between
the query and support dataset to reweigh task losses, and DATS and TDPS share a similar motivation. Given this, we include
the previously mentioned baselines in comparison.

C Task Construction and Identifiers

Here we refer to the variables that sufficiently configure a task as the task identifier 7. In other literature work, these task
identifiers can be viewed as the task representations in a lower dimensional space. To clarify these concepts, we provide more
explanations in specific scenarios.

C.1 Tasks with Explicit Identifiers

K-shot Sinusoid Regression. In this setup’~, meta learners aim at quickly adapting the model to an unseen function
f(z) = asin(z — b) with the help of K data points randomly sampled from the function. This case treats the amplitude and
phase variables (a, b) as the task identifier to configure the task. And the task distribution is induced by the uniform distribution
over the task identifier.

Meta Reinforcement Learning. Here, we take the ReacherPos task as an example. The goal of the robot arm is to reach an
unobserved target location [z, 2]. The end-effector position of the robot arm is initialized randomly, and the step-wise reward
corresponds to the feedback to the agent after each move based on its distance to the target location. As the task distribution is
specified by a uniform distribution over the target location, T = [x1, 22] can be viewed as the task identifier. Similarly, we vary
physics parameters in simulators to generate diverse MDPs. This constitutes different meta RL benchmarks.

Domain Randomization. DR is a promising paradigm to achieve zero-shot adaptation in unseen scenarios, which is widely
adopted in robotics*~ and computer vision . The basic idea is to train the machine learner in a distribution over environments
and then directly apply the learned model to new ones.

Table 4: Benchmarks with Explicit Task Identifiers. Here, we list the detail information about the task identifier to induce the task
distribution.

\ Benchmarks \ Identifier Meaning \ Identifier Range \
\ K-shot sinusoid regression \ amplitude and phase (a,b) \ [0.1,5.0] x [0, 7] \
Meta-RL: HalfCheetahMass Vel mass and velocity (m, v) [0.75,1.25] x [0,2.0]
Meta-RL: HalfCheetah Vel velocity v [0,2.0]
Meta-RL: ReacherPos goal location (z1,x2) [-0.2,0.2] x [-0.2,0.2]
Meta-RL: Walker2dMass Vel mass and velocity (m,v) [0. 75 1.25] x [0,2.0]
Meta-RL: Walker2d Vel velocity v [0,2.0]
DR: LunarLander main engine strength s [4,20]
DR: ErgoReacher joint damping d and max torque ¢ (x4 joints) [0.1,2.0] x [2,20]

As noted in the main paper, we suppose that the task identifier contains semantics that reflects the difficulty of tasks to resolve
and the adaptation risk function is smooth with respect to the identifier. In total, we summarize these bechmarks with explicit
task identifiers in Table 4.

C.2 Tasks with Implicit Identifiers
As previously mentioned, we assume the existence of a statistical correlation between task identifiers and adaptation risk

values given a specific adaptive machine learner. This implies that the task identifier preserves precise semantics about the task
information. These provide the basis for establishing the RPM from the coupled dataset {[7;, £;]} 2 ;.

32

Nevertheless, in several scenarios, it is intractable to access the explicit task identifier. For example, in few-shot image
classification, the task information is just the coupled support and query dataset D, = D U @9. Similarly, in SFT for
LLMs, the task can be in the form of the QA pair D, = D?. There is no explicit representation method, such as 7, for these
tasks, which brings difficulty in building up the RPM. Retaining the prior notation, the episodic task batch can be written as

~ B
H; = {Bt, (Tt,i, D, wft,i)}i, " where T of our interest is unobservable. Some experiments in this work, such as few-shot
image classification and SFT, encounter such circumstance.

Task Representation through Identifier Inference. To scale our approach under these circumstances, we propose an
alternative candidate schema as the complementary. The probabilistic relationship between variables is depicted in Fig. 2.
We consider obtaining the implicit identifier through inference from the task dataset. To do so, we include additional module
fe with € € = to embed D? and D? and further induce a vector T = f¢(D?, D?) as the approximate task identifier. These
operations imply seeking the appropriate inference module directly influences the RPM’s performance.

Fortunately, there exist pretrained models that enable the task representation to be generalizable to downstream tasks. For
example, in the N-way K-shot image classification, the task is in the form of support image-label pairs and the query images
and the goal is to assign labels to the query images from the support dataset. With the help of CLIP models ', for a fixed task in
the form of D., we can access a N vectors {z;}1v, by inputing the set of text-form classes {€; } ¥, extracted from the support
dataset D2, i.e., CLIP({C;}¥,) = [CLIPiex((C1), . ..,CLIPx(Cx)] := 7. As a result, we can obtain H; = {[7:, 0]} 24
conditioned on 6; for feasible task risk functional prosterior inference. This helps our approach to circumvent the unavailability
of exact task identifiers. And it is plausible for the RPM to optimize in learning p(¢|7, H1.;). It is worth noting that this case
still prefers lightweight models for identifier inference, and the text encoder of CLIP well satisfies this requirement and can be
used in the N-way K-shot image classification. Details on specific task identifier inference modules can be found in Section
G.3andF.

C.3 Scalability with Large Reasoning Models

The rise of large reasoning models (LRMs) this year makes MPTS even more critical in cutting off policy evaluation cost, i.e.,
expensive agent-environment interactions.

Finite tasks and unobservable variables. The optimization of large reasoning models (LRMs) often requires massive
rollouts to validate outcomes, such as in mathematical problem-solving, particularly under the reinforcement learning from
verified reward (RLVR) paradigm. In this setting, the prompt in RLVR corresponds to the task in our framework, yet the task
dataset is typically finite and lacks explicit identifiers during RL-based finetuning. A common workflow involves sampling a
batch of prompts, generating multiple rollouts per prompt, and extracting informative signals for optimization. For instance, in
verifiable mathematical problem-solving, the average success rate estimated from multiple rollouts constitutes an unobservable
variable for MPTS to predict, as it reflects task difficulty. The model predictive prompt selection (MoPPS) ", a variant of MPTS
tailored for LRMs, casts each prompt as a bandit problem. It leverages the 0—1 signals from rollout histories to perform online
Bayesian inference over the success rate of each prompt. The inferred distribution then serves as a predictive prior for active
prompt selection, avoiding direct interactions with the underlying LRM.

Compatibility with curriculum task selection. In the context of RL finetuning for LRMs, MoPPS and related approaches
demonstrate that curriculum task selection can be more effective than naively prioritizing task difficulty. Incorporating
curriculum criteria accelerates finetuning and highlights the versatility of MPTS, which can be seamlessly integrated with
loss-oriented task samplers.

D Auto-Encoding Adaptation Risk through Streaming VI

Note that the basis of MPTS is to establish the bridge between the task identifier and the adaptation risk value over the course
of the machine learner’s optimization. In other words, we are seeking a lightweight stochastic risk function in Definition 4 to
approximate the posterior p(¢|7, Hy.;) in the task space.

Definition 4 (Stochastic Risk Function) Ler X denote the index set’s Cartesian product with the task identifier’s dimension
7 e N, For any k € N and finite index sequence T1, . .., T}, € X, we write some probability measure over R* as V(ri,...m) BY

introducing the probability space (2, Fg,P) and Y0 € ©, we can induce a stochastic function Fg : T x Q; = R¥, so that
Vir,r) (C1x - x Cy) = P(Fo(T1) € C1,..., To(h) € C) VT € Xand C; e R

This section details steps in auto-encoding historical task risk information, parameterizing variational distributions, deriving the
approximate optimization objective, and estimating the stochastic gradients of parameters.

33

D.1 Neural Modules to Parameterize Distributions

Here, we detail the neural modules to parameterize the distributions of interest. For the approximate posterior ¢ (z:|H;) and
conditional prior p(z¢|H1:¢-1), the inputs of the module are a set of task risk pairs. The neural module requires the permutation
invariance w.r.t. the order of the data points in the set H; or H1.;—; in Definition 3. Hence, we adopt the DeepSet style neural
network”" to process the collected H; or Hy.t—1.

For example, we denote the neural network parameters by ¢ = {¢1, @21, P2 2} together with a mean pooling operator &, we
can have:

T; :hd)l(Tk,i’Ek,i) Vie {1,...,3}, r= 69 1T, Me =h¢2,1(’F) and 2¢=h¢2’2(F), 29)
where the output corresponds to g (2¢|H;) = N(pe, L) (see Fig. 8 for details).

Regarding the task risk functional posterior inference module, this work has a close connection with the NP family
Both handle the set data points in probabilistic inference.

D.2 Formulation of ELBO & Stochastic Gradient Estimates

conditional prior
az(ze-1/Hi-1)

Dense Dense = Dense _' Denss Dense Dense Dense (=

[Tt Lol }ia — — \:L» ZtIHz — — — — L1

approxmate
10 Units 10 Units 10 Units posterior 10 Units 10 Units 10 Units

Encoder Network Decoder Network

Figure 8: The Encoder-Decoder Neural Network to Paramterize the RPM.

Unlike previous risk minimization principles in task episodic learning, ours include an additional risk predictive module, which
guides the task batch sampling. Importantly, we use the latent variable to summarize the historical information information and
quantify uncertainty in predicting task-specific adaptation risk. The following details the steps.

() = py(HilHua1) =In[[py(Hilz)p(zil Hia-1)dz (302)
_ p(2¢e|Hi4-1)
= In| f q¢(zt|Ht)Wp¢(Ht|zt)dzt] (30b)
2 Eq¢(zt|Ht)[1Hp¢(Ht\Zt)] -Dkr [%(zf,\Ht) | p(zt|H1:t—1)] := Gero (¥, @) (30c)

Then, we can rewrite the ELBO with the help of reparameterization trick ' in Eq. (31).

SeLno (W, @) = Eq, (z 11| 1Py (Hil20) | = Dici[ag (2o Ho) || (21l Hiar) | (31a)
= Ey(o)| Inpy (Hilgo (e, H)) | - Dici[ap (=il H) || (il Hiio)| (31b)
= Inpy (Hilgg (e, Hy)) - Dici[ag (2 Ho) | p(ziHior)], with €~ N(0, L) (3lc)

Moreover, we estimate the stochastic gradients w.r.z. all model parameters based on the reparameterized latent variable
distribution.

1 . 3
Vg IeLBo(¥, @) ~ Vo Inpy (Hilge (€, Hy)) - §V¢(Tf(2712¢) + (- 1) St - prg) ~ n(det T)) (32a)

with gg(2¢|H:) = N(pe, Xe) and p(2¢|Hi4-1) = N(4, ZA3) (32b)
Ve GeLBO (W, @) ~ Vo Inpy, (Hi|ge (€, Hy)) (32¢)

34

As illustrated in Eq. (32), one stochastic forward pass is required for gradient estimates in the training process. For flexible
implementation, we adopt a 3-VAE strategy to turn Eq. (31) into

B
S SeLBo (¥, @) = By, (z,m,) glnpw(&,iITt,u Zt)] - 5DKL[CI¢(Zt|Ht) I qqz(zt|Ht—1)] (33)

D.3 Theoretical Guarantee for Task Difficulties’ Scoring with Posterior Inference

Assumption 1 (Lipschitz Continuity) We assume the adaptation risk function {(-; @) reserves the Lipschitz continuity w.r.t. 0
and T, i.e.,

£(D2,D5,0) - (D2, D5;0')| < 410 - @] and (D2, DS;0) - £(D2, D 0)| < Bollr -7, (B4
where V{0,0'} € © and ¥Y{T, 7'} € T with Lipschitz constants 31 and s.

Assumption 2 (Bounded Sample Gradient) We assume the norm of the adaptation risk function’s gradient VL(+;0;) is
bounded:

sup||Vel(D?,D%:8,)|la < Gy and sup ||[Vel(DP, D 6,)|l2 < G, (35)
T€T 7€T,teNy

where G is a positive constant and G is a overall bound.

Assumption 3 (Sub-Gaussian Stochastic Gradient) The stochastic gradient g := g + € for the machine learner’s adaptation
at t-th iteration is o-sub-Gaussian, which means:

o?|lvlf3

E [exp (ane)] <exp (5

) VneRandveRY, (36)

where E[g] = g, E[||g - gl[3] < 0 and o € R,.

Given the Assumption 3 and the Chernoff bound ", we can have the concentration inequality as:

t2
P(llg -gll2>t) < 2exp(-5—) VteR. (37)
g

Theorem 1 (Provably Approximately Invariant Task Difficulties) Given arbitrary K data points {(7;,((D2,D? ;6,)} X,
the adaptation gradient VoL (60;) as a o-sub-Gaussian random variable and 0,1 = 0; — 1V L(0;), we denote the relative
difficulty via the difference A;j(0y41) = E(@g , Dfi; 0t+1)—€(ﬂ)9j , ﬂ)fg 101.1) and A (0,) = E(@g , @fi; Ht)—K(D% , ij ;604)
between t-th and (t + 1)-th iterations, and the gradient difference as v;; := Vol(D%, D3 :0,) - Vef(in?j , ij :0,).

Under Assumption 1/2/3, the set of rank-preserving variable E;j := 1 [sign(A;;(0y41)) = sign(A;;(0,))] satisfies the proba-

bility inequality:
]P)(m EU) >1 —f,
1<J
when n; < S with Gy in Assumption 2, 6; ‘= min;.; |€(®2,®i;0t) - E(?Qj,@fj;@tﬂ e R, the

2GtMt+\/802Gf In(£4ED)
stochastic gradient norm My := ||VoL(0;)||2.

The purpose of this part is to uncover the mechanism of the RPM in amortized evaluation of adaptation risk values and scoring
the difficulty of tasks. The function of the RPM relies on Assumptions 1/2/3 and the posterior inference p(¢|7, Hy.4; 0;) from
the historical risk information H;.;. The foundation of predicting the outcome of optimization in a rough granularity lies in the
Theorem 1, and we detail the proof of such a theorem as below.

(D. Any-Shot Adaptation After One-step Gradient Descent.

Here, we consider a set of data points for the RPM {(7;,£(D¥,D? ;6,)} X, under an arbitrary fixed machine learner 6;, where

tasks in the set {7;} X are randomly sampled from p(7). Without loss of generality, we can assume that the adaptation risk
values satisfy a rank ordering:

(D2, DS:0,) > (DS, DS:0,) >+ > (DS, DS, :0,). (38)

The gradient descent as fast adaptation is denoted by:

0141 =6, -1 Vel(6;). (39)

35

After the above operator, we can obtain another set of data points for the updated RPM {(7;, £(D%, D3 ;0,,1)} K.
@. Changes of Adaptation Risk Values and Pairwise Ranks.

Based on the Assumption 1, we can perform local approximation over ¢ (Dg ;D i ; @) with the help of first-order Talor expansion
w.r.t. the 0;:

(DY, D7 ;04,1) = (DL, D35 60,) ~ni Vol (D, D5 ;6,)TL(6:) + O(17]|V L (0:)]3) (402)
UDE, D2 10p41) » (DL, D2 10,) - Vol(DL,D2;0,)7L(0,) Vie{l,2,...,K}. (40b)

One straightforward way to assess the task difficulty is to compare arbitrary paired tasks {7;,7;}’s adaptation risk values
{¢(DY, DS 6,),¢ (D?J) ij ;0;)} with i < j. Then, we can estimate the relative difficulty via the difference as:

T
Aij(0141) » Aij(8,) =i (Vol(DP, D7 56,) - Vol(DL, D3 :6,)) VoL(6y), (41)

where we denote the relative difficulty via the difference as A;;(60¢41) = E(Dg , ‘Dfi; 0:1) - K(@Qj , @fj ;0:.1) and A;;(6;) =
(DL, D3:6,) - é(ﬂ)gj , ij ;0;) between ¢-th and (¢ + 1)-th iterations. As A;;(6;) is positive, one feasible condition for
Aij(0t+1) € R.,_ is:

T
Aij(Or41) ~ Aij(0:) = (VM(T)Q, ®i§ 0:) - Veg(‘Dq%vgfj?et)) Vel (0:) (422)
Ai;(6:)
2GtMt

The above implies that when the learning rate 7, in gradient step is smaller enough, the relative difficulty between the task ¢ and
J can be preserved after the machine learner’s update with the Assumption 2.

> AU(Ot) - QT]thM > 0, =1 < with M, := ||VQL(0,5)H2 (42b)

. Probabilistic Inequality with a Nearly Invariant Ranking Guarantee.

In practice, the stochastic gradient descent is performed, which means the gradient is a random variable V¢ £(6;) = g; + € with
Ele] = 0,E[||e||3] < 02 and g; = E[Ve£(6;)]. Meanwhile, we denote the gradient difference by v;; := V/(D¥, D2 ; 0;) -
Vol(DE, D3 ;6;), which leads to:

l|vijll2 SQSU{?HVGE(D%Df;er <2Gy, (43)
TE

according to the Assumption 2. Another variable is introduced as the minimum separation between arbitrary paired adaptation
risk values:

: S
0 i=min (DT, D7:0,) ~ (DT, D7:6,)| € R,.. (44)
Still, to make sure the invariant rank, one necessary condition can be:
A (0;) = nivj;ge > 0. (45)

And the above inequality reasonably holds when ntviTj g+ < 0;. Here, we define the random event E;; :=
1 [sign(A;;(0:+1)) = sign(A;;(6;))] from the task pair together with Ef; == 1 [sign(A;;(041)) # sign(A;;(6;))]. With the
help of o-sub-Gaussain property in Assumption 3, we can bound the case of the rank flipping as (note some critical conditions
that 'uiTj gr € R, and n, ’Uij; g: < 0y as the learning rate 7, can be typically smaller enough):

((51& - ntvrgt)2 ((St - 2nthMt)2
P(ES) = P(nwLvel(0,) > 6,) < a2t T wer S Al Ll i 720 46
() =P £ (00 25 <oxp (S5) <o (- RS o
K(K - 1) ((§f - 277thMt)2)
P ES) < S P(ES,) < exp |- (46b)
SESEMCARES il
K(K— 1) (515 - QT]thMt)Q
P(NEij)=1-P(JES)>1 - 222 T oy (T2 X)) s ¢ 46
(NE) (UEG) > 5 exp($7202G7 ¢ (460)

Sy
2GtMt+\/8c72Gf In(£512)

The condition for the above inequality holds is 7; < . With the above steps (D-(@3) and corresponding

conditions, we complete the proof.

36

E Convergence Analysis

Predictive Foundation of MPTS. In brief, the foundation of MPTS is to use the risk history and generalization results under
6, to approximately rank the difficulty of task samples in (¢ + 1)-th iteration. Note that precise sample average Monte Carlo for

CVaR relies on the exact evaluation and access to the (¢ + 1)-th adaptation risk values in B tasks to pick up the Top-B ones.
MPTS tries to circumvent the complete evaluation and uses the ¢-th adaptation risk batch {Km}?:l to train a generative model
with Hy.;—1 to extract the prior to forecast the B tasks’ difficulty order for (¢ + 1)-th subset selection. (Importantly, such a setup
necessitates MPTS when accessing expensive evaluation of {EHLZ-}?:1 is prohibited.)

The theoretical analysis focuses on the rank-flipping that occurs during the model’s update 8; — 0,1, and we will demonstrate
that, under certain conditions, this does not affect the convergence of the adopted strategy to surrogate MC-CVaR in a biased
manner. The candidate task pool is ‘Iﬁl used for the subset selection and robust adaptation at the (¢ + 1)-th iteration. The
Top-B task batch under 6,’s risk evaluation is denoted by T2 c ‘J’E’rl, and its complementary set is TC := ‘Tgil \TP. The
ground truth Top-B task batch under ;1 ’s risk evaluation is ‘.Tﬁl.

Assumption 4 (Margin Anti-Concentration) We assume A;;(0;) = ¢ (Df? , @i; 0,)-¢ (@97 , ij ;01) has a density uniformly
bounded by p in a neighborhood of zero. That is, Ve > 0, the probability inequality holds: '

The above assumption is reasonable in online robust optimization scenarios. If a large mass of task pairs has nearly identical
loss, this suggests the Top-B set is unstable, making it difficult for any difficulty prioritized sampling algorithm to approximate
the CVaR subset stably. Anti-concentration ensures that near-ties are probabilistically rare, hence rank changes are infrequent
over iterations.

Lemma 1 (Misranked Subset Quantity) /n the presence of adaptation risk value, let Ny be the number of order flipped

cross-pairs between the ground-truth Top-B subset T2 under 0, and the remainder of the candidate tasks TC := 721 NTB
when the machine learner’s parameter changes from 0, to 0.,1. We denote the number of tasks that change Top-B membership
by my1 = |‘J'tB A ‘Jﬁl , where ‘Jﬁl is the ground-truth Top-B subset under 0y,1. Then the inequality holds: m.1 < 2Ny.

) ®

®@ 6 ©6

._ 7C
V._7;®

Figure 9: Rank Flipping after One-Step Update. We number tasks from the sampled pseudo task batch TE, for the (t + 1)-th subset
selection. The left figure partitions the set into U U 'V as illustrated in the Proof of Lemma 1, with the blue ones, i.e., 1, 2, 3 as Top-B tasks
evaluated under 0 and the red ones as the complementary set. Note that tasks 2 and 8 are swapped in relative Top-B ranking after one-step
model update; hence, the right figure depicts the Top-B tasks as 1,3, and 8. The gray lines indicate possible order-flipped cross-pairs between
U and V. The blue and the red lines are probably flipped cross-pairs in separate partitioned sets’ induced graphs.

Proof. Now we can construct a bipartite graph G = (U, "V, £), where U denotes the ground-truth Top-B subset T2 while V is
the remainder of the candidate tasks TC := T2 \ TP. Each task in the set corresponds to a vertex in the graph. Also note that
there are exactly B(B — B) ordered task cross-pairs.

For each ordered cross pair (i € U; j € V), which flips, i.e. the sign of A;;(0;) changes between 0, and 0.1, we place an
undirected edge e;; between vertices i and j, and this constitutes the edge set . Further, the subset of vertices, where the order

37

flipping occurs, can be defined as Vg = {1 € ‘Tgl |3e € & with T € e}, which describes the set of tasks that participate in at least
one flipped cross-pair. As a result, we can have TP & TE | ¢ V. Obviously, m,1 < |Vg|.

The total number of flipping pairs is Ny. As illustrated in Fig. 9, the flipped ordered cross-pairs comprises three disjoint cases
or edge partition in G: (i) order flipping between ‘J'?, (ii) order flipping between TC, and (iii) order flipping between ‘J';B and
TE. This indicates that |€| < Ny.

Putting the above together, we can have my.1 < |Vg| < 2|E| < 2Ny. And this establishes the connection between the relative
task difficulty ranking and the direct task difficulty ranking. And this completes the proof of Lemma 1.

Lemma 2 (Rank-Preserving Bound in Expectation) With the risk difference notation A;;(6;) = K(CD%DEI_ :10;) —
6(@2,@%;015) and A;j(0p41) = Z(Dg, @i;0t+1) - E(Dg,@i;@tﬂ), when the (i,7) cross-pair flips its order from 0,
to 0;,1, we conclude that ‘A”(Ot” < |Aij(0t+1) - A”(Ot)|

Proof. Now let us consider limited scenarios for the occurrence of the order flipping event FE;; :=
1 [sign(Ai;j(61+1)) # sign(Ai;(6:))]:
In scenario (1), where A;;(6;) <0 and A;;(6:.1) > 0 hold, this implies that:

———
Positive Value Positive Value

In scenario (2), where A;;(0;) > 0 and A;;j(0;41) < 0 hold, this implies that:

Aij(0i41) = Aij(0:) < 0-Ay5(0y) - (49)

Non-Positive Value Non-Positive Value

Purtting the above together, we can derive that |A;;(0;)] < |A;;(0¢+1) — A;;(0:)|. And this completes the proof of Lemma 2.
Next, we analyze the term |A;;(0:4+1) — Ay;(6:)| and associate it with [A;;(6;)]:

|Aij(0t+1) - Aij(gt” = If(ﬂgﬂi;%l) - K(Dfi, Di;ot) - E(ng) inj 16p41) + K(ng) ij ;01)] (502)
<DL, D73 0,01) - (DL, D7 50,)| + (DL, D5 5 0111) - (DL, DY 6,))| (50b)

< 2Gy|0¢41 - 04l|2 (50c)

= |A2](0t)| < 2Gt||0t+1 - 0t||2' (SOd)

Connection between Rank Flipping and Gradient Difference. From Lemma 2 together with the anti-concentration
Assumption 4, we can bound the probability of the order flipping event F;; with the one-step iteration:

P(E;j|0:,0:01) <P (JA;;(01)] < 2G¢||0111 — 04]|2) < 2pGy||0s11 — 04| (5D

Note that the graph only cares about pairwise relation between the Top-B tasks and other B — B tasks. Now in a population
level, the scale of plausible pairs in the task set T2, is B(B - B) and |V | = ¥ j Eij. Also, with the linearity of expectation
over Eij, Lemma 1 and Eq. (50)/(51), we can bound the flipping count expectation:

E[mu1] <E[|VE|] < 20B(B - B)GLE[||0141 - 04|2] (52a)
E[mnl]

5 <20(B =~ B)GLE[|Br1 ~6u]le] < 20(B - B)GFO(n:). (52b)

Tt41 =

Next, we need to show that the selection bias from rank flipping vanishes quickly and the gradient norm declines to ensure
the convergence. Recall that the expectation form of CVaR can be written as |, (.0,,,) [E(DQ, DI 0)], and MC-CVaR is

its unbiased estimate from the subset T2, c T 31- Accordingly, the expectation form of perturbed CVaR can be written as
L(0) = Eq(r.0,.1) [é(@f?, DI 0)] and q(7; 6;,1) denotes the distribution of biased subset due to miskranked cases, which

produced the biased estimate of expected CVaR from T’ c 7;%1-

38

Given the latest machine learner parameter 6,1, we can derive the equation after one-step gradient update as:

One-Step Gradient Update: 6,0 = 0441 — My VoLl(0:41) (53a)
—_—
Perturbed Gradient After Rank-Flipping
with Gradient Decomposition Ve£L(60;.1) = Jis1 + Agig1 (53b)
—— ——

Unbiased Average Gradient Gradient Difference

where we refer to the average task gradient after rank-flipping as the perturbed gradient. The unbiased av-
erage gradient are estimated from ‘Tﬁl, the ground-truth Top-B subset under 6;.;. And term Ag;1 =

2 (ZT@?\T&) U(DL, D 0,,1) - YreqB \T2 (DY, DY, 9t+1)) denotes the gradient difference between rank-flipping

Mmi+1
tasks after model update. Eq. (53) will work for the convergence analysis V¢ € N, in the following contents.

Lemma 3 (Misranking Acute-Angle) Ler g; and Ag, respectively denote the unbiased Monte Carlo estimate of CVaR and the
gradient difference between it and the biased gradient VoL(0;). For a given c € (0,1) and arbitrary small ¢, > 0, there exists
T such that ¥t > T, the following dichotomy holds: either (i) ||G||2 < €x, or (ii) || Agtll2 < ¢/|gel|2-

Proof. In case (i) if ||gi||2 < €+, with arbitrary small €., we can see that lim;_, o ||g¢||2 = 0. Also, recall the truth in Eq. (52),
we can find that limy_, o, 7441 = 0 when limy_,oo 1y = 0. Then we can have limy_,o, ||[Vo£(0;)|l2 < limy_ oo ||Gt|l2 + || Age|l2 <
lim¢ oo ||Gt]l2 + 741G, Which implies the stationarity of ||Ve£(0:)||2 and already guarantees the convergence of algorithms
with diminishing rank flipping.

In case (ii) if ||g¢||2 > €, we perform analysis as: recall the previous finding about the misranking rate 11,1 = % <

2p(@ B)G20(n;). When limy_,oo 1 = 0, it is also trivial to see that limy_, o, r141 = 0. Hence, choosing a large enough T
such that for all t > T, we can have 14,1 < G€x. Then the inequality holds:

[[Agtl2 < 741Gt < 741G < ey (54)
Then, together with the case condition ||g¢||2 > €, we can have:

[Agillz < cex < cllgillz = [|Agil2 < cllgella- (55)

Finally, the dichotomy holds for the studied two cases. And this completes the proof of Lemma 3.

Theorem 2 (Convergence with Diminishing Rank Flipping) Suppose there exists ¢ € (0,1) and T > 0 such that Vt > T, the
inequality holds: ||Agt||2 < ||@t|l2. Given the Assumptions 1/2/3/4, and the appropriate construction of the step sizes {n}
from Theorem 1, we conclude that: lim;_,., E [||Ve£(8,)||2] = 0. Hence, the iteration converges to first-order stationary points
in expectation.

Proof. The Theorem 1 indicates that the probability inequality holds when the learning rate follows that: & >

5
K(K-1) (o _(,Tft’*?thVft)2
2 P 8052G?

. K(K-1 (3£-2G M;)?
1-¢ ::1—7(2)exp(—”&ﬂézt .

. Then for a given n:, we can guarantee the probability of rank-preserving for all pairs as

Since Gy and M; are bounded, the behavior of the exponent is determined by the coefficient 5: According to the Assumption

4, for a sufficiently small constant §y,;,, > 0, there holds the probability inequality P(5; > 6iin) > 1 — pOmin, Which means
d¢ > 0 stands with a sufficiently large probability with the sampled tasks well scattered in random sampling. Hence, the limit of
)

o> “]“‘“ goes to the infinity when lim;_, ., 1; = 0 in a probabilistic sense. This suggests the tightening bound of rank preserving

with the diminishing & .
In practice, we can construct the example of the plausible learning rate scheduling strategy by setting 1, = t™° with b € (%, 1],

which naturally makes Robbins-Monro conditions hold: ¥,m; = oo and Y, n? < oco. This decays the learning rate
limy, o n¢ = 0 over iteration, which probabilistically reduces the chance of rank flipping cases and tightens the inequality
bound in Theorem 1. Note that in this theorem, we leave out the case of approaching stationarity, i.e., case (i) when the
gradient norm limit approaches zero from Lemma 3.

The next step is to perform the Taylor expansion of the MC-CVaR risk function £(0) at the parameter 0, which obtains
£(0) =L(0:) +gL(0-6,)+0(]|0 - 0y||). Then, we input the biased gradient V9L (0;) and the updated parameter to derive

39

the equation as:

L(0i11) = £(0;) —mg] VoL (0;) + O(||0s41 — 04]]) (56a)
= L(0p41) ~ £(0;) —nellgell3 — mG7 Age (56b)
< L(0;) = mellgells + melgel 2/l Agell2 (56¢)
<L£(0:) = mellgell3 + enellgell3 = £(6:) = (1= c)nellgells (56d)
= (1= c)nellgell < £(6:) = £(61) (56¢)
T+N
= Y m(1-c)E[||g.l3] <E[L(67) - £(Or:n+1)] < 0 (56f)
t=T
T+N
]\lfim Z ne(1-c)E [Ilgtllﬁ] < oo. (56g)

Together with the condition Y, 1, = 00 and r¢y1 = O(1)), we can validate the convergence of the optimization process, i.e.,
limy—, oo E[||ge||2] = 0. This further indicates the lim;_,o, E[||[VoL(0:)]||2] < limio oo E[||gell2] +E[Ag:] < limys oo E[||ge]|2]+
r4+1G = 0. And this completes the proof of Theorem 2.

Diminishing Temporal Bias in the RPM. The above few sections have clarified the predictive foundation of MPTS and
illustrated the theoretical convergence in stochastic optimization. Intuitively, the diminishing rank flipping can be viewed as the
noise noise injected to the gradient of the MC-CVaR. In implementation, MPTS uses the function approximation capability
of neural networks and introduces the RPM to utilize the optimization history H.;, generalizing from previously sampled

and evaluated tasks to a new candidate pool T2 ;. That is the rank flipping can also be attributed to the error of the function
approximation in the RPM. However, this can be well alleviated if seeking an optimal RPM. For better understanding, we
analyze the temporal bias on arbitrary task 7 through the adaptation risk approximation lens:

Temporal Bias: |Ep(f|T’Hl:t)|:€:| - é(Dg, Df; 0t+1)| (57a)
B (e i1y (€] = €(DEL, DY 0,)| +[6(DEL, D 0,) - £(DEL, DT 0,11))| (57b)
<€+ B1] 01 = Orfl2 = €+ Bin [Vo L (0y) |2 (57¢)

Here ;" “™" denotes the RPM’s approximation error due to the function approximation of the RPM, while f3 is the Lipschitz

from the Assumption 1. Note that if the RPM is expressive enough, the generalization error from function approximation can be
theoretically well decreased with the accumulation of the optimization history based on the statistical learning theory. Hence,
the limit of the right side term shrinks to extremely tiny values over iteration.

As specific analysis from multiple approximation bias depends on the design of the RPM. This work provides the VAE-like
model in implementation, and we believe there exist more optimal candidates for the choice of RPMs. And this can be a
promising research direction in the future.

To conclude, MPTS is computationally efficient and requires minimal annotation, such as agent-environment interactions;
however, it also introduces approximation bias from the RPM and irreducible bias due to rank flipping when the model
parameters change from 6, to 8,,1. (Please see this point in Appendix Fig. 9)

F Backbone Methods & Experimental Details in Any-Shot Learning

F.1 MAML, Reptile and PEARL

In sinusoid regression and Meta-RL, MAML is used as the backbone algorithm. As previously discussed, MAML is widely
applied in solving few-shot learning tasks. In mathematics, its optimization objective can be characterized as:

where the term inside the bracket specifies the adaptation risk £(D%, D?: 0), and @ — A\Ve/(D?;) denotes the gradient update
with the learning rate \ as fast adaptation to the task 7. After meta-training, we can access the meta initialization 6 that
generalizes across the task space.

When it comes to reinforcement learning scenarios, D.. corresponds to episodic returns collected from MDPs with either the
meta policy or the fast adapted policy. To ensure enough coverage of task space, we adopt a mixture strategy of MPTS and
random sampling as an empirical regularizer in all RL scenarios, which is similar to work

40

Similar to MAML, Reptile” is a simple yet effective meta-learning algorithm to learn an initialization of model parameters
for rapid adaptation to new tasks with just a few gradient updates. Unlike MAML, which explicitly differentiates through the
adaptation process, Reptile approximates the meta-objective by repeatedly sampling tasks, performing a few steps of stochastic
gradient descent on each, and then moving the initialization toward the adapted weights.

PEARL " is an off-policy SoTA Meta-RL algorithm that enables efficient adaptation to new tasks by learning a latent
probabilistic context variable representing task-specific information. Instead of relying on on-policy trajectories, PEARL uses
off-policy data and amortized inference to infer this latent variable g4(2|C), where C is a small context set of experience from
the target task. The policy mg(als, z) and value functions are conditioned on z, allowing fast adaptation through posterior
inference rather than gradient updates. This design benefits from sample efficiency of off-policy learning and rapid task
adaptation.

F.2 Domain Randomization

Robotic DR refers to the setup that trains the agent in a collection of environments to obtain a generalizable policy. The diversity
of environments tends to increase the robustness of policies in deployment. Such a setup does not require few-shot episodes in
unseen but similar environments. In mathematics, we can express the optimization objective as:

H
pax 3(0) == En, By [th”] >
0c® =0

where p(7) defines the distribution over MDPs, and {r; } is the episodic stepwise reward after interacting with a specific
MDP with H as the horizon. Once finishing the optimization of Eq. (59), we can access the policy mg as the zero-shot
decision-maker in new environments. In this case, the adaptation risk can be in the form £(D%, D?:0) = - 2 ~tr,.

Remember that MDP distribution p(7) is mostly induced by physical parameters, e.g., mass, gravity, friction, etc., or the reward
functions. In each training iteration, the machine learner resamples a batch of MDPs and gets the shared policy to interact with
them to collect episodes. Consequently, the query dataset contains the episodes collected with no support dataset. Overall,
policy optimization follows the standard TD3 algorithm ™' due to its sample efficiency and stability.

F.3 Multi-Modal Prompt Learning

Multi-modal prompt learning is based on the backbone of the prompt tuning method MaPLe ", which we use on both few-shot
and SFT for image classifications.

Few-shot classification. The few-shot prompt learning refers to the common few-shot classification setting *~’~. We integrate
the MaPLe backbone with the ProtoNet " to fully utilize the support sets in few-shot learning. As illustrated in Section G.3, we
generate the model prediction using both the textual classifiers from the CLIP textual encoder and the visual classifiers from the
support set. By freezing the CLIP model parameters, only the prompts are optimized during meta-training. In mathematics, the
optimization objective can be formulated as:

mEXIEp(T)]EZNfDQ [logpe(ylz,w)], (60)

where u denotes the learnable multi-modal prompts. 6 = (6;, ;) contains the parameters of the CLIP textual and visual
encoders, which are frozen during training. The prediction of each query image x from task 7 is calculated by Eq. (64).
Loglikelihood maximization is implemented by minimizing the classification cross-entropy loss.

SFT for image classification. The prompt learning setting refers to the 16-shot classification task proposed in work
Based on the MaPLe backbone ™, we again freeze the CLIP model parameters and tune multi-modal prompts. The prompts are
optimized on a selected ImageNet subset, with 16 samples from each category.

Note that in the SFT setting, we do not have pre-defined N-way K-shot tasks, either the splits of support and query sets in
each task. Therefore, we replace the “tasks” in the meta-learning setting with training samples. Model predictive task sampling
is then achieved through data sampling. In mathematics, the objective can be formulated as:

max Eq..p [log pe(ylz, w)], (61

where u and 6 denote the prompts and frozen CLIP parameters as in the few-shot prompt learning setting, respec-

tively. « are training samples from the entire training set D. The prediction of each image pg(y|x,w) is calculated by
exp(-d(fo, (®,u),tx))

i exp(=d(fe, (z,u),t)))

with the textual classifiers £, obtained similarly to Eq. (62).

41

G Experimental Setups & Implementation Details

Practical Learning Efficiency and Robustness. Widely recognized in reinforcement learning is the high sample complexity
in policy evaluation, which demands massive interactions with environments, while policy optimization over the MDP
distribution makes this even more severe. In N-way K-shot image classification, we can create K-shot classification task

from an arbitrary combination of N classes; then the task space complexity O (C 1\]\/;) grows with the number of categories M in

image datasets. Meanwhile, challenges arise when gradient updates of foundation models consume substantial computational
power and memory with a large batch size. Similar circumstance also occurs in robust finetuning foundation models.

Table 5: A Summary of the Considered Benchmarks. Here, we list the primary expensive part in task episodic learning for each scenario
together with backbone methods. Also note that N-way K-shot image classification and SFT requires implicit task identifiers while others
can directly access explicit task identifiers as the lower dimensional task representation.

Benchmarks | Adaptation \ Backbone \ Expensive Part \
K-shot sinusoid regression few-shot MAML/Reptile computations
N-way K-shot image classification few-shot MaPLe computation/memory
Meta-RL few-shot MAML/PEARL interactions
\ Robotic DR \ zero-shot \ TD3 \ interactions \
\ SFT \ many-shot \ MaPLe | computation/memory \

Neural architecture of the RPM. As mentioned in the main paper, the RPM is in an encoder-decoder structure. For generality
sake, we keep the neural architecture same for all benchmarks, including regression, classification and reinforcement learning.
The encoder includes an embedding network with 4 hidden layers of size 128 (for Image Classification and Prompt-Tuning) or
10 (for Sinusoid Regression, Meta-RL, and Robotic DR) with the Rectified Linear Unit (ReLU) nonlinear activation units to
encode {[7¢, ¢;;]} batch for mean pooling and then maps to [, 3] with an output layer. The decoder is a network with 3
hidden layers with nonlinear activation units to map [z, 7] to £ € R. For further details, please refer to our code.

Visualized Results during Training Phases. Note that the active selection and the random sampler with different batches
affect the reflection of the machine learner’s performance. Hence, learning curves in sinusoid regression (Fig. 3.a), Meta-RL
(Fig. 4.a-b), and DR (Fig. 5.a-b) are actually evaluated in a uniformly sampled validation task dataset for fair comparison.
Details on these validation task dataset are attached in the opensourced code.

Considerations in Experimental Design. To comprehensively evaluate MPTS, we consider benchmarks that span typicality
and various levels of complexity and computational demands. For trait illustration, we adopt sinusoid regression, a classical
and widely used benchmark in meta-learning research, as it provides an accessible and interpretable testbed for verifying
the core traits of MPTS. To examine computational and memory efficiency in pattern recognition with foundation models,
we employ few-shot learning and multimodal prompt-tuning tasks in image classification, which are standard benchmarks
in the community. These tasks illuminate the advantage of MPTS in alleviating the intensive computational and memory
costs typically associated with large backbone models under CVaR-based strategies. Finally, to investigate annotation and
computational efficiency in sequential decision-making, we include Meta-RL and DR benchmarks. As standard environments
for adaptive agent training, they are notoriously expensive due to extensive agent—environment interactions and the heavy task
evaluations required by MC-CVaR strategies. In contrast, MPTS is capable of reducing such costs by partially surrogating
agent—environment interactions and directly identifying a subset of MDPs from which to collect trajectories.

G.1 Sinusoid Regression

Task setup. For sinusoid regression, we retain the setup in MAML *~, where the few-shot machine learner tries to complete a
wave function with the support dataset. In specific, sampling the amplitude a and the phase b configures the wave function, and
10 data points are uniformly sampled from the interval [-5.0, 5.0] coupled with y = asin(z — b) to obtain the support dataset.
This formulates the 10 — shot sinusoid regression task.

Meta training process and neural architectures for MAML. The machine learner is a neural network with 2 hidden layers
of size 40 with two nonlinear activation units. The task batch for ERM, GDRM, OHTM, DATS and TDPS is 16, and that
for DRM is 32 as default. DRM selects the 16 hardest tasks for optimization based on their real evaluation losses. OHTM
selects the 8 hardest tasks from the memory and randomly samples the remaining ones from the current batch, following Kumar
et al. . The temperature parameter is set to = 0.001 in GDRM, 7 = 0.02 in DATS, and 7 = 0.005 in PDTS. The learning

42

rates for the inner loop and the outer loop are 0.001. For MPTS, the batch size of the candidate task identifier in training is 32,
the Lagrange multiplier is set as 1, and the balance parameters {~o, 1} is set to {1,3}. We use the Adam optimizer with the
learning rate 3e — 4 to update the RPM for 20000 step. In sinusoid regression and Meta-RL, we use the standard repository in
MAML

Meta training process and neural architectures for Reptile. Reptile is implemented following Nichol et al. ”, with 8 inner
iterations, an inner learning rate of 0.01, and an outer learning rate of 0.5. The neural network architecture for the machine
learner and the hyperparameters for all baselines are kept consistent with MAML, except that the temperature parameter in
DATS is set to np = 0.2.

G.2 N-way K-shot Image Classification

Task Setup. This is a commonly seen benchmark in few-shot learning. It learns a model that can classify images from
N distinct classes with support of K labeled examples for each class. The support dataset as reference is in the form
D = {{[@i,yix =]}, }1¥,. And the query dataset corresponds to the image information for the model to classify. Hence,

for a large image dataset with M classes, the complexity of the task space is O(Cﬁ). Here, we include ImageNet-CG ',

ImageNet-CI’~, ImageNet-CS -, ImageNet-A’~, ImageNet-S -~ and ImageNet-R " as the dataset in evaluation.

Meta training process and neural architectures. Explicit T are unavailable to specify the task; however, it can be
approximately resolved by describing the identifier through a small reference model. Specifically, we leverage CLIP’s text
encoder to obtain 7 ~ [CLIPyx(C1), . . . , CLIPx (C) | with the tokenizations of K class texts Cq.x from Df . The machine
learner utilizes a prompt learning backbone following MaPLe, with the frozen CLIP model. The task batch for ERM and
GDRM is 4, and that for DRM is 8 as default. The temperature parameter in GDRM is 0.001. The learning rate for the
outer loop is 0.01. The learning rate for the inner loop follows that in MaPLe ™. The following is about extra optimization
details or setups in MPTS. The task identifier is generated by the frozen CLIP text encoder using the input class names, with a
dimensionality of 512. The batch size of the identifier in training is 8, the Lagrange multiplier is set as 3, and we use the Adam
optimizer with the learning rate 0.01 to update the RPM.

G.3 Prompt-based Few-shot Image Classification

We adopt the standard few-shot image classification setting "~"~', where tasks are constructed using the N-way K-shot paradigm
for both meta-training and meta-testing. Each task comprises support and query sets. The support set contains K examples for
each of the N classes, while the query set includes 15 examples per class. During meta-training, labels for both support and
query data are accessible to the adaptive machine learner. During meta-testing, the query dataset’s labels are to be predicted
given the labeled support dataset. The class categories of task datasets in the meta-training and meta-testing do not overlap. In
experiments, we specifically consider a 5-way 1-shot image classification configuration. During meta-training, we set the
task batch for ERM and DRM as B = 4 (For implementation simplicity, the data loader samples 8 tasks and then randomly
keeps half without ranking to optimize). The task batch for DRM is B = 8 before the filtering operation; DRM filters half to
optimization. Similarly, that for MPTS is B = 8 and only 4 tasks are screened to optimize. For DATS and TDPS, we set the task
batch as B = 4 and compute the gradients of each task. The optimization of the 4 tasks are then weighted by gradient-derived
diffculty scores (TDPS) or similarity scores (DATS). In OHTM, we introduce a hard task buffer as size ten to store the most
difficult tasks during meta-training. We set B = 8 and randomly sample 4 tasks from the buffer in each iteration.

To enable few-shot learning by prompt-tuning, we integrate the multimodal prompt learning methods MaPLe " and prototypical
network (ProtoNet) ’. MaPLe operates on the CLIP model ', capturing multimodal prompts to refine both visual and textual
feature representations with frozen CLIP’s parameters. These refined textual features serve as classifiers for predicting refined
image features. In parallel, ProtoNet is utilized to derive class-specific visual embeddings from the support set, which assist in
distinguishing query samples.

To utilize both MaPLe and ProtoNet, we construct classifiers based on both textual features and visual embeddings. Predictions
for query samples are generated by combining the classifiers through a weighted sum. This combination strategy is employed
during meta-training to optimize the multimodal prompts. Meanwhile, the CLIP model’s parameters remain frozen throughout
optimization. During meta-testing, these trained prompts are adopted to create textual and visual classifiers and process
query image features. Final predictions for each query sample are made using the same weighted combination approach as in
meta-training.

In mathematics, we can characterize the mentioned pipeline as:

Textual Classifier from the Textual Features: & = fo, (11, u), (62)

43

1
Prototypical Classifier from the Support Image: c

Z fai(wia u)» (63)

|Sk| (@i,yi)€Sk
Classification Likelihood from the Query Dataset:
exp(=d(fo,(z,u), ck)) exp(=d(fo,(z,u),t1)) (64)
1 + A2)
Ziexp(=d(fo,(z,u),crr)) "Xy exp(=d(fo, (z,u), ti))
where 0, and 0, denote the textual and visual encoders of the CLIP model, respectively. I and w respectively denote the
textual descriptions of category k and the multimodal prompts. (x;, ;) € Sk denotes the images and labels of category k in the

support dataset D, Once the textual classifier ¢ and support visual classifier ¢ are obtained, we predict the query sample x by
the classifiers with hyperparameters A\; = 0.25 and A2 = 1.0.

po(y = klz,u) = A

G.4 Meta-RL

Task Setup. We construct MDP distributions based on Mujoco physics engines '''. These include HalfCheetahVel, HalfChee-
tahMassVel, Walker2dVel, Walker2dMassVel, and ReacherPos. The HalfCheetah Vel and Walker2d Vel tasks involve training
the cheetah or walker robot to achieve a target velocity. These tasks define the reward function as the negative absolute
difference between the robot’s current velocity and the target velocity, supplemented by a control penalty and an alive bonus to
facilitate the learning process. The goals and rewards of HalfCheetahMassVel and Walker2dMassVel are the same as those of
the corresponding velocity-related tasks, with the additional identifier of varying mass for the cheetah or walker robot. The
ReacherPos task tries to move a two-jointed robot arm’s end effector close to a target position, and its reward function is defined
as the negative L-1 distance between the robot arm’s position and the target position, supplemented by a control cost to ensure
robustness.

Meta training process and neural architectures for MAML. The machine learner is a neural network with 2 hidden
layers of size 64 with the Rectified Linear Unit (ReL.U) nonlinear activation units. The task batch for ERM, GDRM, OHTM,
DATS and TDPS is 20, and that for DRM is 40 as default. DRM selects the 20 hardest tasks for optimization based on their
real evaluation losses. OHTM selects the 10 hardest tasks from the memory and randomly samples the remaining ones from
the current batch, following Kumar et al. ™. The temperature parameter in GDRM is 0.001. For DATS, it is set to 0.05 for
HalfCheetahMassVel, 0.1 for ReacherPos, HalfCheetah Vel, and Walker2dVel, and 0.2 for Walker2dMassVel. For TDPS, it is
set to 0.05 for HalfCheetahMassVel, Walker2dMassVel, and HalfCheetahVel, 0.1 for Walker2dVel, and 0.2 for ReacherPos.
The learning rates for the inner loop and the outer loop are 0.1. For MPTS, the batch size of the candidate task identifier in
training is 30, the Lagrange multiplier is set as § = 0.0001, and the balance parameters {7o,~1 } is set to {1,5}. We use the
Adam optimizer with the learning rate 0.005 to update the RPM.

Meta training process and neural architectures for PEARL. PEARL™ and RoML ' are implemented based on the official
RoML codebase available at https://github.com/ido90/RoML-pearl . Two tasks, HalfCheetahBody and HalfCheetah-
Mass, are adopted from RoML. For MPTS, the batch size of the candidate task identifier during training is set to 5x that of the
real training batch size (30) for HalfCheetahBody, and 2x for HalfCheetahMass. All other hyperparameters follow those used
in MAML.

G.5 Robotic DR

Task Setup. We conduct experiments on LunarLander-v2 and ErgoReacher-v0 environments . LunarLander is a 2 degrees
of freedom (DoF) environment in which the agent has to land a spacecraft on a designated landing pad without crashing,
implemented using Box2D ’°. The reward function of LunarLander awards positive rewards for successful landings, negative
rewards for crashes, and additional penalties for fuel consumption and deviation from the landing pad, encouraging efficient
and controlled landings. ErgoReacher is a 4 DoF arm environment from " in which the arm has to touch a goal with its end
effector, implemented in the Bullet Physics Engine ' . The reward function of ErgoReacher includes the negative distance
between the end effector’s position and the target, along with other control costs to promote efficient and safe movements.
In LunarLander, we randomize the engine strength, while in ErgoReacher, we randomize the joint damping and maximum
torque for each of the 4 joints, resulting in a total of 8 parameters. The detailed ranges of the randomized parameters for each
environment are provided in Table 4.

DR training process and neural architectures. Both the actor and critic are neural networks with 2 hidden layers of size
256 with the Rectified Linear Unit (ReLU) nonlinear activation units. The task batch for ERM, GDRM, and OHTM is 10, and
that for DRM is 20 as default. DRM selects the 10 hardest tasks for optimization based on their real evaluation losses. OHTM
selects the 5 hardest tasks from the memory and randomly samples the remaining ones from the current batch, following Kumar
etal. . The temperature parameter in GDRM is 0.01. The learning rates for actor and critic are 3e — 4. The following is about

44

https://github.com/ido90/RoML-pearl

extra optimization details or setups in MPTS. The batch size of the candidate task identifier in training is 25 for LunarLander
and 250 for ErgoReacher. The Lagrange multiplier is set as /3 = 1.0, and the balance parameters {~o,~1} is set to {1,5}. We
use the Adam optimizer with the learning rate 0.005 to update the RPM.

G.6 Prompt-Tuning Multimodal Foundation Models

Task Setup of Prompt-tuning. We refer the reader to MaPLe’s implementation in https://github. com/muzairkhattak/
multimodal-prompt-learning. For all baselines, we retain the MaPLe’s task construction in prompt-tuning.

Prompt-tuning process and neural architectures. The machine learner follows the prompt learning method MaPLe
based on the frozen CLIP model (ViT/B-16). The task batch for ERM and GDRM is 4, and that for DRM is 8 as default. The
temperature parameter in GDRM is 0.001. The learning rate for the outer loop is 0.005. The learning rate for the inner loop
follows that in MaPLe"'. The following is about extra optimization details or setups in MPTS. As for the neural architecture of
the RPM, the encoder is a neural network with 5 hidden layers with 4 ReLU nonlinear activation units, and the decoder is a
neural network with 4 hidden layers with 3 nonlinear activation units. The task identifier’s dimension is 512 with the latent
embedding from CLIP encoders. The batch size of the identifier in training is 8, the Lagrange multiplier is set as /3, and we use
the Adam optimizer with the learning rate 0.005 to update the RPM for 8000 steps. During prompt-tuning, we set the task batch
for ERM and DRM as B = 4 (For implementation simplicity, the data loader samples 8 tasks and then randomly keeps half
without ranking to optimize). The task batch for DRM is B = 8 before the filtering operation; DRM filters half to optimization.
Similarly, that for MPTS is B = 8 and only 4 tasks are screened to optimize.

H Computational Tools & Platforms & Model Design

In this research project, we use the Pytorch as the package to implement all methods to run all deep learning experiments.

From Definition 2, we can see that the goal is to learn some low-dimensional signals online when the task identifier is
low-dimensional and the loss is one-dimensional. According to the Occam’s Razor theorem, the best practice is to adopt the
generative model that captures historical priors while exhibiting less model complexity. In our implementation, we typically
use the same architecture of shallow networks from the Open-source code. However, we also believe it is a promising direction
to develop more advanced RPMs to online tell task difficulty and achieve the purpose of Definition 2.

I Competing Interests & Author Contributions

The author list is Qi Cheems Wang (Q.C.W.), Zehao Xiao (Z.X.), Yixiu Mao (Y.M.), Yun Qu (Y.Q.), Jiayi Shen (J.S.), Yiqin Lv
(Y.L.), and Xiangyang Ji (X.J.). The authors declare no competing interests in this work. X.J. launched and sponsored this
research on the reliable and efficient adaptation learning project. Z.X. and J.S. from the University of Amsterdam attended this
project, and this work was done during their remote visiting the Tsinghua University Intelligent Decision-Making Lab from
April 2024 to August 2024. J.S. is now working at Facebook Al Research. The authors confirm their contributions to this work
as follows:

Under the supervision of professor X.J., Q.C.W. conceptualized the idea of MPTS, designed the computational framework,
formulated the mathematical part, and wrote the draft. Z.X. and J.S. implemented MPTS in sinusoid regression, prompt-
based few-shot image classification, and SFT image classification, collected experimental results to visualize, and added
implementation details in Supplementary Material. Y.M., Y.Q., and Y.L. implemented MPTS in sinusoid regression, Meta-RL
and robotic DR, collected experimental results to visualize, and added implementation details in Supplementary Material. X.J.
supervised the progress of MPTS, organized technical discussions, reviewed and revised the original draft. All authors have
read the manuscript and approved the public version.

First Author Biography: Qi Wang received Ph.D. degree under supervision of Professor Max Welling and Associate
Professor Herke van Hoof in 2022. He is now under supervision of Prof. Xiangyang Ji and works as a research assistant at
Tsinghua University. His research focus is on generative modeling and intelligent decision-making. He has published several
papers on top-tier conferences such as ICML/NeurIPS/ICLR and was awarded 2023 China Multi-Agent System Outstanding
Doctoral Thesis Award.

Correspondence Author Biography: Xiangyang Ji received the B.S. degree in materials science and the M.S. degree in
computer science from the Harbin Institute of Technology, Harbin, China, in 1999 and 2001, respectively, and the Ph.D. degree
in computer science from the Institute of Computing Technology, Chinese Academy of Sciences, in 2008. He joined Tsinghua
University, Beijing, in 2008, where he is currently a Professor with the Department of Automation, School of Information

45

https://github.com/muzairkhattak/multimodal-prompt-learning
https://github.com/muzairkhattak/multimodal-prompt-learning

Science and Technology. He has authored more than 100 refereed conference and journal papers. His current research interests
include signal processing, computer vision, computational photography, and intelligent decision-making.

46

	Introduction
	Adaptation and Robustness
	Results
	Demonstration of the MPTS's role in K-shot sinusoid regression
	Few-Shot adaptation benefits from MPTS in robustness and learning efficiency
	MPTS retains multi-faced advantages beyond robustness in zero-shot continuous control
	MPTS also reserves the potential of robust SFT

	Discussion
	Methods
	Theoretical Feasibility of Constructing RPMs
	Generative Modeling Risk Functions and Posterior Inference
	Task Sampling Strategy Design
	Sequentially Optimize the Adaptive Machine Learner
	Overall Algorithm and Interpretation

	Quick Guideline to MPTS
	Research Background
	Adaptation Learning for Cross-Task Generalization
	Dataset Curation and Task-Level Robustness
	Risk Minimization Principles and Prioritized Sampling

	Task Construction and Identifiers
	Tasks with Explicit Identifiers
	Tasks with Implicit Identifiers
	Scalability with Large Reasoning Models

	Auto-Encoding Adaptation Risk through Streaming VI
	Neural Modules to Parameterize Distributions
	Formulation of ELBO & Stochastic Gradient Estimates
	Theoretical Guarantee for Task Difficulties' Scoring with Posterior Inference

	Convergence Analysis
	Backbone Methods & Experimental Details in Any-Shot Learning
	MAML, Reptile and PEARL
	Domain Randomization
	Multi-Modal Prompt Learning

	Experimental Setups & Implementation Details
	Sinusoid Regression
	N-way K-shot Image Classification
	Prompt-based Few-shot Image Classification
	Meta-RL
	Robotic DR
	Prompt-Tuning Multimodal Foundation Models

	Computational Tools & Platforms & Model Design
	Competing Interests & Author Contributions

