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Abstract

We consider the problem of conformal prediction under covariate shift. Given
labeled data from a source domain and unlabeled data from a covariate shifted
target domain, we seek to construct prediction sets with valid marginal coverage
in the target domain. Most existing methods require estimating the unknown
likelihood ratio function, which can be prohibitive for high-dimensional data such
as images. To address this challenge, we introduce the likelihood ratio regularized
quantile regression (LR-QR) algorithm, which combines the pinball loss with a
novel choice of regularization in order to construct a threshold function without
directly estimating the unknown likelihood ratio. We show that the LR-QR method
has coverage at the desired level in the target domain, up to a small error term that
we can control. Our proofs draw on a novel analysis of coverage via stability bounds
from learning theory. Our experiments demonstrate that the LR-QR algorithm
outperforms existing methods on high-dimensional prediction tasks, including a
regression task for the Communities and Crime dataset, an image classification task
from the WILDS repository, and an LLM question-answering task on the MMLU
benchmark.

1 Introduction

Conformal prediction is a framework to construct distribution-free prediction sets for black-box
predictive models [e.g., 45, 60, 61, etc]. Given a pretrained prediction model f : X → Y mapping
features x ∈ X to labels y ∈ Y , and n1 calibration datapoints (Xi, Yi) : i ∈ [n1] sampled i.i.d. from
a calibration distribution P1, we seek to construct a prediction set C(Xtest) ⊆ Y for test features Xtest
sampled from a marginal test distribution P2,X . We aim to cover the true label Ytest with probability
at least 1− α for some α ∈ (0, 1): that is, P(Ytest ∈ C(Xtest)) ⩾ 1− α. The left-hand side of this
inequality is the marginal coverage of the prediction set C, averaged over the randomness of both
the calibration datapoints and the test datapoint (Xtest, Ytest) ∼ P2. In the case that the calibration
and test distributions coincide (P1 = P2), there are numerous conformal prediction algorithms that
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construct distribution-free prediction sets with valid marginal coverage; e.g., split and full conformal
prediction [e.g., 29, 36].

However, in practice, it is often the case that test data is sampled from a different distribution
than calibration data. This general phenomenon is known as distribution shift [e.g., 41, 52]. One
particularly common type of distribution shift is covariate shift [50], where the conditional distribution
of Y |X stays fixed, but the marginal distribution of features changes from calibration to test time.
For instance, in the setting of image classification for autonomous vehicles, the calibration and test
data might have been collected under different weather conditions [25, 65]. Under covariate shift,
ordinary conformal prediction algorithms may lose coverage.

Recently, a number of methods have been proposed to adapt conformal prediction to covariate shift,
e.g., in [15, 19, 37, 38, 40, 55, 64]. Most existing approaches attempt to estimate the likelihood ratio
function r : X → R, defined as r(x) = (dP2,X/dP1,X)(x) for all x ∈ X , where Pi,X denotes the
marginal distribution of Pi over the features. One can construct an estimate r̂ of the likelihood ratio if
one has access to additional unlabeled datapoints sampled i.i.d from the test distribution P2. Methods
for likelihood ratio estimation include using Bayes’ rule to express it as a ratio of classifiers [12, 40]
and domain adaptation [13, 37]. However, such estimates may be inaccurate for high-dimensional
data. This error propagates to the coverage of the resulting conformal predictor, and the prediction
sets may no longer attain the nominal coverage level. Thus, it is natural to ask the following question:
Can one design a conformal prediction algorithm that attains valid coverage in the target domain,
without estimating the entire function r?

In this paper, we present a method that answers this question in the affirmative. We construct our
prediction sets by introducing and solving a regularized quantile regression problem, which combines
the pinball loss with a novel data-dependent regularization term that can be computed from one-
dimensional projections of the likelihood ratio r. Crucially, the objective function can be estimated
at the parametric rate, with only a mild dependence on the dimension of the feature space. This
regularization is specifically chosen to ensure that the first order conditions of the pinball loss lead to
coverage at test-time. Geometrically, the regularization aligns the selected threshold function with
the true likelihood ratio r. The resulting method, which we call likelihood ratio regularized quantile
regression (LR-QR), outperforms existing methods on high-dimensional datasets with covariate shift.

Our contributions include the following:

• We propose the LR-QR algorithm, which constructs a conformal predictor that adapts to
covariate shift without directly estimating the likelihood ratio.

• We show that the minimizers of the population LR-QR objective have coverage in the test
distribution. We also show that the minimizers of the empirical LR-QR objective lead to
coverage up to a small error term that we can control. Our theoretical results draw on a
novel analysis of coverage via stability bounds from learning theory.

• We demonstrate the effectiveness of the LR-QR algorithm on high-dimensional datasets
under covariate shift, including the Communities and Crime dataset, the RxRx1 dataset from
the WILDS repository, and the MMLU benchmark. Here, we crucially leverage our theory
by choosing the regularization parameter proportional to the theoretically optimal value.

1.1 Related work

Here we only list prior work most closely related to our method; we provide more references in
Appendix C. The early ideas of conformal prediction were developed in Saunders et al. [45], Vovk
et al. [61]. With the rise of machine learning, conformal prediction has emerged as a widely
used framework for constructing prediction sets [e.g., 36, 58, 59]. Classical conformal prediction
guarantees validity when the calibration and test data are drawn from the same distribution. In
contrast, when there is distribution shift between the calibration and test data [e.g., 5, 41, 50, 52, 54],
coverage may not hold. Covariate shift is a type of dataset shift that arises in many settings, e.g.,
when predicting disease risk for individuals whose features may evolve over time, while the outcome
distribution conditioned on the features remains stable [41].

Numerous works have addressed conformal prediction under distribution shift [37, 38, 40, 51, 55].
For example, Tibshirani et al. [55] investigated conformal prediction under covariate shift, assuming
the likelihood ratio between source and target covariates is known. Lei and Candès [32] allowed
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the likelihood ratio to be estimated. Park et al. [37] developed prediction sets with a calibration-set
conditional (PAC) property under covariate shift. Qiu et al. [40], Yang et al. [64] developed prediction
sets with asymptotic coverage that are doubly robust in the sense that their coverage error is bounded
by the product of the estimation errors of the quantile function of the score and the likelihood ratio.
Cauchois et al. [7] construct prediction sets based on distributionally robust optimization. In contrast,
our method entirely avoids estimating the likelihood ratio function.

To achieve coverage under a predefined set of covariate shifts, Gibbs et al. [15] develop an approach
based on minimizing the quantile loss over a linear hypothesis class. We build on their quantile
regression framework, but develop a novel regularization scheme that allows us to effectively optimize
over a data-driven class, adaptive to the unknown shift r. A similar regularization is used in [66],
which performs supervised learning under covariate shift by minimizing an upper bound of the test
risk. However, when one sets the loss function to equal the pinball loss, minimizing the objective in
[66] is not guaranteed to provide coverage at test-time, whereas our construction has asymptotically
valid coverage.

2 Problem Formulation

Preliminaries and notations. For α ∈ (0, 1), the quantile loss ℓα is defined for all c, s ∈ R as

ℓα(c, s) :=

{
(1− α)(s− c) if s ≥ c,
α(c− s) if s < c.

(1)

Let the source or calibration distribution be denoted P1 = P1,X × PY |X , where P1,X is the marginal
distribution of P1 over features. Let the target or test distribution be denoted P2 = P2,X × PY |X ,
where P2,X is the marginal distribution of P2 over features. Since the conditional distribution of
labels given features PY |X is common to P1 and P2, the test distribution is a covariate shifted version
of the calibration distribution. Let Ei denote the expectation over Pi, i = 1, 2. Let x 7→ r(x) =
(dP2,X/dP1,X)(x) denote the unknown likelihood ratio function.

We consider both discrete and continuous label spaces Y . When Y = R, prediction sets correspond
to prediction intervals. Recall that a prediction set C : X → 2Y has marginal (1− α)-coverage in
the test domain if P2 [Y ∈ C(X)] ⩾ 1 − α. Let S : (x, y) 7→ S(x, y) denote the nonconformity
score associated to a pair (x, y) ∈ X × Y . Given a threshold function q : X → R, we consider
the corresponding prediction set C : X → 2Y given by C(x) = {y ∈ Y : S(x, y) ⩽ q(x)} for all
x ∈ X . Thus a threshold function q yields a conformal predictor with marginal (1− α)-coverage in
the test domain if P2[S(X,Y ) ⩽ q(X)] ⩾ 1− α. Note that the use of an adaptive threshold function
is common in the conformal prediction literature, going back to [55]. We assume that α ⩽ 0.5. For
our theory, we consider [0, 1]-valued scores; however, in Appendix O, we comment on conditions
under which unbounded scores can be handled.

In this paper, a linear hypothesis class refers to a linear subspace of functions from X → R that
are square-integrable with respect to P1,X . An example is the space of functions representable by a
pretrained model with a scalar read-out layer. If Φ : X → Rd denotes the last hidden-layer feature
map of the pretrained model, where Φ = (ϕ1, . . . , ϕd) for ϕi : X → R for all i ∈ [d], then the linear
class of functions representable by the network is given by {⟨γ,Φ⟩ : γ ∈ Rd}, where ⟨·, ·⟩ is the ℓ2

inner product on Rd.

Problem statement. We observe n1 labeled calibration (or, source) datapoints {(Xi, Yi) : i ∈ [n1]}
drawn i.i.d. from the source distribution P1, and an additional n3 unlabeled calibration datapoints
S3. We also have n2 unlabeled (target) datapoints S2 drawn i.i.d. from the target distribution P2.
Given α ∈ (0, 1), our goal is to construct a threshold function q : X → R that achieves marginal
(1− α)-coverage in the test domain: P2[S(X,Y ) ⩽ q(X)] ⩾ 1− α.

3 Algorithmic Principles

Here we present the intuition behind our approach. Our goal is to construct a prediction set of the
form C(x) = {y ∈ Y : S(x, y) ⩽ q(x)}, where q should be close to a conditional quantile of S
given X = x. The quantile loss ℓα is designed such that for any random variable Z, the minimizers
of the objective κ 7→ Eℓα(κ, Z) are the (1 − α)th quantiles of Z. This has motivated prior work
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[15, 22], where the authors minimize the objective h 7→ Eℓα(h(X), S(X,Y )) for h in some linear
hypothesis classH. At a minimizer h∗, the derivatives in all directions g ∈ H should be zero. Since
the derivative of the pinball loss with respect to its first argument is given by

∂1ℓα(c, s) = −(1− α)1[s > c] + α1[s ⩽ c] = 1[s ⩽ c]− (1− α),

the chain rule implies that the directional derivative of h 7→ Eℓα(h(X), S(X,Y )) in the direction g
equals

∂

∂ϵ

∣∣∣∣
ε=0

E1[ℓα(h(X) + ϵg(X), S(X,Y ))] = E1

[
∂

∂ϵ

∣∣∣∣
ε=0

(h(X) + ϵg(X)) · ∂1ℓα(h(X), S(X,Y ))

]
= E1[g(X)(1[S(X,Y ) ⩽ h(X)]− (1− α))],

where in the first step we interchanged derivative and expectation, applied the chain rule, and evaluated
at ε = 0, and in the second step we used the formula for the derivative of the pinball loss. Setting
this equal to zero, if g takes the form g(x) = dQX/dP1,X(x) for some distribution QX , then2 this
equality reads EQ[1[S(X,Y ) ⩽ h∗(X)] − (1 − α)] = 0, which can be viewed as exact coverage
under the covariate shift induced by g for the prediction set x 7→ {y ∈ Y : S(x, y) ⩽ h∗(x)}. In
other words, if the test distribution is Q = QX × PY |X , then we have the exact coverage result

EQ[1[S(X,Y ) ⩽ h∗(X)]] = Q[S(X,Y ) ⩽ h∗(X)] = 1− α.

Therefore, if the hypothesis class H is large enough to include the true likelihood ratio r =
dP2,X/dP1,X , then the threshold function h∗ attains valid coverage in the test domain P2, as desired.

3.1 Our approach

An adaptive choice of the hypothesis class. The above approach requires special assumptions on
the hypothesis classH. The choice of the hypothesis class poses a challenge in practice: ifH is too
small, then coverage may fail, while ifH is too large, then finite-sample performance may suffer due
to large estimation errors.

To address this challenge, our idea is to choose H adaptively. We start by considering the class of
hypotheses h that are close to the true likelihood ratio r, as measured by E1[(h(X)− r(X))2] being
small. By our remarks above, if we minimize E1[ℓα(h(X), S(X,Y ))] for h restricted to this set, we
obtain a threshold function with valid coverage under the covariate shift r.

Removing the explicit dependence on the likelihood ratio. The quantity E1[(h(X) − r(X))2]
depends on the unknown r. However, we can expand this to obtain

E1[(h(X)− r(X))2] = E1[h(X)2] + E1[−2r(X)h(X)] + E1[r(X)2].

The term E1[r(X)2] does not depend on the optimization variable h, so it is enough to consider the
first two terms. Due to the change-of-measure identity E1[r(X)h(X)] = E2[h(X)], the sum of these
terms equals

E1[h(X)2] + E1[−2r(X)h(X)] = E1[h(X)2] + E2[−2h(X)].

A key observation is that neither of the terms E1[h(X)2] or E2[−2h(X)] explicitly involve r, and
thus they can be estimated by sample averages over the source and target data, respectively. Thus,
we can minimize E1[ℓα(h(X), S(X,Y ))] over h ∈ H while keeping E1[h(X)2] + E2[−2h(X)]
bounded. The threshold h∗ will have valid coverage under the covariate shift r.

Introducing a normalizing scalar. We also need to make sure that h is a valid likelihood ratio under
dP1,X , of the form g(x) = dQX/dP1,X(x) for some distribution QX . This imposes the constraint∫
h(x)dP1,X(x) = 1, which can be equivalently achieved for any non-negative h by scaling it with

an appropriate scalar β. In our analysis, it turns out to be convenient to use the optimization variable
βh and consider the class of functions h such that E1[(βh(X)− r(X))2] is bounded for some scalar
β ∈ R. By the above discussion, the term E1[r(X)2] is immaterial and it is sufficient to impose the
constraint that minβ∈R(E1[β

2h(X)2] + E2[−2βh(X)]) is bounded.

2This holds due to the change of measure identity EP[dQ/dP(X) · h(X)] = EQ[h(X)] for all integrable
functions h.
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Algorithm 1 Likelihood-ratio regularized quantile regression
Input: n1 labeled source datapoints, n2 unlabeled target datapoints, n3 unlabeled source datapoints
1: Compute scores Si = S(xi, yi) for all i ∈ [n1]

2: Solve (ĥ, β̂) ∈ argminh∈H,β∈R Ê1[ℓα(h(X), S(X,Y ))] + λÊ3[β
2h(X)2] + λÊ2[−2βh(X)],

where Ê1, Ê2, Ê3 denote expectations over the source, unlabeled target, and unlabeled source data;

Return: Prediction set Ĉ(x)← {y ∈ Y : S(x, y) ⩽ ĥ(x)} with asymptotic 1−α coverage in the
target distribution

Replacing the constraint with a regularization. Instead of imposing a constraint on
minβ∈R(E1[β

2h(X)2]+E2[−2βh(X)]), we can use this term as a regularizer. Given a regularization
strength λ ⩾ 0, we can solve

min
h∈H

{
E1[ℓα(h(X), S(X,Y ))] + λmin

β∈R
(E1[β

2h(X)2] + E2[−2βh(X)])

}
.

Since the first term does not depend on β, this is equivalent to the joint optimization problem

min
h∈H,β∈R

{
Lλ(h, β) := E1[ℓα(h(X), S(X,Y ))] + λ(E1[β

2h(X)2]− E2[2βh(X)])
}
. (LR-QR)

3.2 Algorithm: likelihood ratio regularized quantile regression

We solve an empirical version of this objective. We use our labeled source data {(Xi, Yi) : i ∈ [n1]} to
estimate E1[ℓα(h(X), S(X,Y ))], our additional unlabeled source data S3 to estimate E1[β

2h(X)2],
and our unlabeled target data S2 to estimate λE2[−2βh(X)]. Letting Ê1, Ê2, and Ê3 denote empirical
expectations over {(Xi, Yi) : i ∈ [n1]}, S2, and S3, respectively, we then solve the following
empirical likelihood ratio regularized quantile regression problem, for λ ⩾ 0:

(ĥ, β̂) ∈ arg min
h∈H,β∈R

{
L̂λ(h, β) := Ê1[ℓα(h(X), S(X,Y ))] + λÊ3[β

2h(X)2]− λÊ2[2βh(X)]
}
.

(Empirical-LR-QR)

Our proposed threshold is q = ĥ. See Algorithm 1. In the following section, we justify this algorithm
through a novel theoretical analysis of the test-time coverage.

4 Theoretical Results

4.1 Infinite sample setting

We first consider the infinite sample or “population" setting, characterizing the solutions of the LR-QR
problem from (LR-QR) in an idealized scenario where the exact values of the expectations E1,E2

can be calculated. In this case, we will show that if the hypothesis classH is linear and contains the
true likelihood ratio r, then the optimizer achieves valid coverage in the test domain. Let rH be the
projection of r ontoH in the Hilbert space induced by the inner product ⟨f, g⟩ = E1[fg].3 The key
step is the result below, which characterizes coverage weighted by rH.

Proposition 4.1. Let H be a linear hypothesis class consisting of square-integrable functions
with respect to P1,X . Then under regularity conditions specified in Appendix E (the conditions
of Lemma L.3), if (h∗, β∗) = (h∗λ, β

∗
λ) is a minimizer of the objective in Equation (LR-QR) with

regularization strength λ > 0, then we have E1[rH(X)1[S(X,Y ) ⩽ h∗(X)]] ⩾ 1− α.

The proof is given in Appendix I. As a consequence of Proposition 4.1, if H contains the true
likelihood ratio r, so that rH = r, then in the infinite sample setting, the LR-QR threshold function
h∗ attains valid coverage at test-time:

E1[r(X)1[S(X,Y ) ⩽ h∗(X)]] = P2[S(X,Y ) ⩽ h∗(X)] ⩾ 1− α.

3Explicitly, given an orthonormal basis {φ1, . . . , φd} for H, we have rH =
∑d

i=1⟨r, φi⟩φi.
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However, in practice, we can only optimize over finite-dimensional hypothesis classes, and as a result
we must control the effect of mis-specifyingH. If r is not inH, we can derive a lower bound on the
coverage as follows. First, write

E1[r(X)1[S(X,Y ) ⩽ h∗(X)]]

= E1[rH(X)1[S(X,Y ) ⩽ h∗(X)]] + E1[(r(X)− rH(X))1[S(X,Y ) ⩽ h∗(X)]].

By Proposition 4.1, the first term on the right-hand side is at least 1 − α. Since the random
variable 1[S(X,Y ) ⩽ h∗(X)] is {0, 1}-valued, the second term on the right-hand side is at least
−E1[(r(X)− rH(X))+], where (x)+ = max{0, x} for x ∈ R. We set our threshold function q to
equal h∗, so that our conformal prediction sets equal C∗(x) = {y ∈ Y : S(x, y) ⩽ h∗(x)} for all
x ∈ X . Thus, we have the lower bound

P2[Y ∈ C∗(X)] = E1[r(X)1[S(X,Y ) ⩽ h∗(X)]] ⩾ (1− α)− E1[(r(X)− rH(X))+].

Geometrically, this coverage gap is the result of restricting toH. This error decreases ifH is made
larger, but in the finite sample setting, this comes at the risk of overfitting.

4.2 Finite sample setting

From the analysis of the infinite sample regime, it is clear that if the hypothesis class H is made
larger, the test-time coverage of the population level LR-QR threshold function h∗ moves closer
to the nominal value. However, in the finite sample setting, optimizing over a larger hypoth-
esis class also presents the risk of overfitting. By tuning the regularization parameter λ, we
are trading off the estimation error incurred for the first term of Equation (LR-QR), namely
(Ê1−E1)[ℓα(h(X), S(X,Y ))], and the error incurred for the second and third terms of Equation (LR-
QR), namely λ(Ê3−E3)[β

2h(X)2]+λ(Ê2−E2)[−2βh(X)]. Heuristically, for a fixed h, the former
should be proportional to 1/

√
n1, and the latter should be proportional to λ(1/

√
n3 +1/

√
n2). Thus,

if we pick λ to make these two errors of equal order, it will be proportional to
√

(n2 + n3)/n1.

Put differently, in order to ensure that the Empirical LR-QR threshold ĥ from Equation (Empirical-
LR-QR) has valid test coverage, one must choose the regularization λ based on the relative amount
of labeled and unlabeled data. The unlabeled datapoints carry information about the covariate
shift r, because r depends only on the distribution of the features. The labeled datapoints provide
information about the conditional (1 − α)-quantile function q1−α, which depends only on the
conditional distribution of S|X . When λ is large, our optimization problem places more weight on
approximating r (the minimizer of E1[(βh(X)− r(X))2] in βh), and if λ is small, we instead aim
to approximate q1−α (the minimizer of E1[ℓα(h(X), S(X,Y ))] in h). Therefore, if the number of
unlabeled datapoints (n2 + n3) is large compared to the number of labeled datapoints (n1), our data
contains much more information about the covariate shift r, and we should set λ to be large. If instead
n1 is very large, the quantile function q1−α can be well-approximated from the labeled calibration
datapoints, and we set λ to be close to zero. In the theoretical results, we make this intuition precise.

In order to facilitate our theoretical analysis in the finite sample setting, we consider constrained
versions of Equation (LR-QR) and Equation (Empirical-LR-QR). Fix a collection Φ = (ϕ1, . . . , ϕd)

⊤

of d basis functions, where ϕi : X → R for i ∈ [d]. Let I = [βmin, βmax] ⊂ R be an interval with
βmin > 0. Let HB = {⟨γ,Φ⟩ : ∥γ∥2 ⩽ B < ∞} be the B-ball centered at the origin in the linear
hypothesis class spanned by {ϕ1, . . . , ϕd}. We equipHB with the norm ∥h∥ = ∥γ∥2 for h = ⟨γ,Φ⟩.
At the population level, consider the following constrained LR-QR problem: (h∗, β∗) ∈
argminh∈HB ,β∈I Lλ(h, β). Also consider the following empirical constrained LR-QR problem4:

(ĥ, β̂) ∈ arg min
h∈HB ,β∈I

L̂λ(h, β). (2)

We begin by bounding the generalization error of an ERM (ĥ, β̂) computed via Equation (2).
Theorem 4.2 (Suboptimality gap of ERM for likelihood ratio regularized quantile regression). Under
the regularity conditions specified in Appendix E, and for appropriate choices of the optimization
hyperparameters5, for sufficiently large n1, n2, n3, with probability at least 1 − δ, any optimizer

4For brevity, this notation overloads the definition of (ĥ, β̂) from (Empirical-LR-QR). From now on, (ĥ, β̂)
will refer to the definition from (2), and the one from (Empirical-LR-QR) will not be used again.

5Specifically, suppose that βmin ⩽ βlower, βmax ⩾ βupper, and B ⩾ Bupper, where the positive scalars βlower,
βupper, and Bupper are defined in Lemma L.4 in the Appendix, and depend on the data distribution and the choice
of basis functions, but not on the data, the sample sizes, or the regularization parameter λ.
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(ĥ, β̂) of the empirical constrained LR-QR objective from (2) with regularization strength λ > 0 has
suboptimality gap Lλ(ĥ, β̂)− Lλ(h∗, β∗) with respect to the population risk (LR-QR) bounded by

Egen := cλ
√
1/n2 + 1/n3 + c′/

√
n1 + c′′/

√
λn1,

and c, c′, c′′ are positive scalars that do not depend on λ.

The proof is in Appendix J. The generalization error Egen is minimized for an optimal regularization
on the order of

λ∗ ∝ n−1/3
1 (1/n2 + 1/n3)

−1/3
, (3)

which yields an optimized upper bound of order E∗gen = O
(
n
−1/3
1 (1/n2 + 1/n3)

1/6
+ 1/
√
n1

)
. As

can be seen from Appendix F, c, c′, c′′ depend only polynomially on the radius B.

As a corollary of Theorem 4.2, we have the following lower bound on the excess marginal coverage
of our ERM threshold ĥ in the covariate shifted domain. Let rB denote the projection of r onto the
closed convex setHB in the Hilbert space induced by the inner product ⟨f, g⟩ = E1[fg].

Theorem 4.3 (Main result: Coverage under covariate shift). Under the same conditions as Theo-
rem 4.2, consider the LR-QR optimizers ĥ and β̂ from (2) with regularization strength λ > 0. Given
any δ > 0, for sufficiently large n1, n2, n3, we have with probability at least 1− δ that6

P2

[
Y ∈ Ĉ(X)

]
⩾ (1− α) + 2β̂λE1[(rB(X)− β̂ĥ(X))2]− Ecov − (1− α)E1[|r(X)− rB(X)|],

where Ecov := A (1/n2 + 1/n3)
1/4

λ+ A′(λn1)
−1/4 + λ1/2/n

1/4
1 , rB denotes the projection of r

ontoHB , and A,A′ are positive scalars that do not depend on λ.

The proof is in Appendix K. This result states that our LR-QR method has nearly valid coverage
at level 1− α under covariate shift, up to small error terms that we can control. The quantity Ecov
vanishes as we collect more data. The term E1[|r(X)−rB(X)|] captures the level of mis-specification
by not including the true likelihood ratio function r in our hypothesis classHB . This can be decreased
by making the hypothesis class HB larger. Of course, this will also increase the size of the terms
A,A′ in our coverage error, but in our theory we show that the dependence is mild. Indeed, the terms
depend only on a few geometric properties ofHB : they depend polynomially on the radius B, on the
eigenvalues of the sample covariance matrix of the basis Φ(X) under the source distribution, and on
a quantitative measure of linear dependence of the features; but not explicitly on the dimension of the
basis. We also note that the dimension of the feature space dim(X) does not appear in our results;
only dim(H) affects our bounds.

We highlight the term 2β̂λE1[(rB(X)− β̂ĥ(X))2], which is an error term relating the projected like-
lihood ratio rB to the LR-QR solution β̂ĥ. Crucially, this term is a non-negative quantity multiplied
by λ, and so for appropriate λ it may counteract in part the coverage error loss. Consistent with
the above observations, we find empirically that choosing small nonzero regularization parameters
improves coverage. Moreover, we find that choosing the regularization parameter to be on the order
of the optimal value for Ecov is suitable choice across a range of experiments.

Our proofs are quite involved and require a number of delicate arguments. Crucially, they draw on a
novel analysis of coverage via stability bounds from learning theory. Existing stability results cannot
directly be applied, due to our use of a data-dependent regularizer. For instance, in classical settings,
the optimal regularization tends to zero as the sample size goes to infinity, but this is not the case
here. To overcome this challenge, we combine stability bounds [48, 49] with a novel conditioning
argument, and we show that the values of L at the minimizers of L̂ and L are close by introducing
intermediate losses that sequentially swap out empirical expectations Ê1, Ê2, Ê3 with their population
counterparts. We then leverage the smoothness of L, to derive that the gradient of L at (β̂, ĥ) is small.
Finally, we show that a small gradient implies the desired small coverage gap.

6The probability P2

[
Y ∈ Ĉ(X)

]
is over (X,Y ) ∼ P2, conditional on Ĉ.
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Figure 1: (Left) Coverage. (Right) Average prediction set size on the Communities and Crime dataset.

5 Experiments
We compare our method with the following baselines: (1) Split/inductive conformal prediction
[31, 36]; (2) Weighted-CP: Weighted conformal prediction [55]; (3) 2R-CP: The doubly robust method
from Yang et al. [64]; (4) DRO-CP: Distributionally robust optimization [7]; (5) DR-iso: Isotonic
distributionally robust optimization [19]; (6) Robust-CP: Robust weighted conformal prediction [1].

5.1 Choosing the Regularization Parameter
Equation (3) suggests an optimal choice of the regularization parameter λ in the LR-QR algorithm.
Guided by this, we form a uniform grid of size ten from λ∗/10 to λ∗. We then perform three-fold
cross-validation over the combined calibration and unlabeled target datasets (without using any
labeled test data) as follows: we train the LR-QR threshold for each λ, and compute as a validation
measure the ℓ2-norm of the gradient of the LR-QR objective on the held-out fold. We pick λ with the
smallest average validation measure across all folds.

This validation measure is motivated by our algorithmic development: the first-order conditions of
the LR-QR objective play a fundamental role in ensuring valid coverage in the test domain. While
the model is trained to satisfy these conditions on the observed data, we seek to ensure this property
generalizes well to unseen data. Thus, our selection criterion is based on two key observations: (1) a
small gradient of the LR-QR objective implies reliable coverage, and (2) the regularization parameter
λ balances the generalization error of the two terms in LR-QR. By minimizing this measure, we
select a λ that optimally trades off these competing factors.

Finally, we re-train the LR-QR threshold on the entire calibration and unlabeled target datasets using
this best λ, and report coverage and interval size on the held-out labeled test set. This ensures that no
test labels are used during hyperparameter tuning. Additionally, in Appendix B, we provide deeper
insights on different regimes of regularization in practice through an ablation study.

5.2 Communities and Crime
We evaluate our methods on the Communities and Crime dataset [42], which contains 1994 datapoints
corresponding to communities in the United States, with socio-economic and demographic statistics.
The task is to predict the (real-valued) per-capita violent crime rate from a 127-dimensional input.

We first randomly select half of the data as a training set, and use it to fit a ridge regression model f̂ as
our predictor. We tune the ridge regularization with five-fold cross-validation. We use the remaining
half to design four covariate shift scenarios, determined by the frequency of a specific racial subgroup
(Black, White, Hispanic, and Asian). For each of these features, we find the median value m over the
remaining dataset. Datapoints with feature value at most m form our source set, and the rest form our
target set. In other words, in each scenario, the source set consists of data points with below-median
frequency of the specified racial subgroup, while the target set contains those with above-median
frequency. This creates a covariate shift between calibration and test, as the split procedure only
observes the covariates and is independent of labels. We then further split the target set into roughly
equal unlabeled and labeled subsets. The unlabeled subset and the calibration data (without the
labels) is used to estimate r, while the labeled test subset is held out only for final evaluation. The
same procedure is applied to each of the four racial subgroups, creating four distinct partitions.
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Figure 2: (Left) Coverage, (Right) Average prediction set size on the RxRx1 dataset from the WILDS repository.

Experimental details. The nonconformity score is s(x, y) = |y − f̂(x) |. Several baselines require
an estimate of the likelihood ratio r, which we obtain by training a logistic regression model p̂ to
distinguish unlabeled source and target data. We then set r̂ = p̂

1−p̂ , where p̂(x) is the predicted
probability that x came from the target distribution. The hypothesis class H consists of all linear
maps from the feature space to R. All experimental results are averaged over 1000 random splits.

Results. Figure 1 displays the results. Notably, split conformal undercovers in two setups and
overcovers in the other two. Methods that estimate r and DRO fail to track the nominal coverage,
particularly in the first setup on the left. However, the LR-QR method is closer to the nominal level
of coverage, showing a stronger adaptivity to the covariate shift.

5.3 RxRx1 data - WILDS

Our next experiment uses the RxRx1 dataset [53] from the WILDS repository [25], which is designed
to evaluate model robustness under distribution shifts. The RxRx1 task involves classifying cell
images based on 1339 laboratory genetic treatments. These images, captured using fluorescent
microscopy, originate from 51 independent experiments. Variations in execution and environmental
conditions lead to systematic differences across experiments, affecting the distribution of input
features (e.g., lighting, cell morphology) while the relationship between inputs and labels remains
unchanged. This situation creates covariate shift where the marginal distribution of inputs shifts
across domains, but the conditional distribution PY |X remains the same.

We use a ResNet50 model [20] trained by the WILDS authors on 37 of the 51 experiments. Using
the other experiments, we construct 14 distinct evaluations, where each experiment is selected as
the target dataset, and its data is evenly split into an unlabeled target set and a labeled test set. The
labeled data from the other 13 experiments serves as the source dataset.

Experimental details. The nonconformity score is s(x, y) = − log fx(y), where fx(y) is the
probability assigned the image-label pair (x, y). To estimate r, we train a logistic regression model
p̂ on top of the representation layer of the pretrained model to distinguish unlabeled source and
target data, and we set r̂ = p̂

1−p̂ . We set the hypothesis class H to be a linear head on top of the
representation layer of the pretrained model. Experimental results are averaged over 50 random splits.

Results. Figure 2 presents the coverage and average prediction set size for all methods. To enhance
visual interpretability, we display results for eight randomly selected settings out of the 14, with the
full plot provided in Figure 3 in the Appendix. The x-axis shows the indices of the test condition.
LR-QR adheres more closely to the nominal coverage value of 0.9 compared to other methods.

Notably, split conformal prediction, which assumes exchangeability between calibration and test data,
shows under- and overcoverage due to the covariate shift. The coverage of weighted CP and 2R-CP is
also far from the nominal level, showing that directly estimating the likelihood ratio and conditional
quantile is insufficient to correct the coverage violations in the case of high-dimensional image data.
Further, the superior coverage of LR-QR is not due to inflated prediction sets.
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5.4 Multiple choice questions - MMLU

Finally, we evaluate all methods using the MMLU benchmark, which covers 57 subjects spanning a
wide range of difficulties. To induce a covariate shift, we partition the dataset by subject difficulty:
prompts from subjects labeled as elementary or high school are used for calibration, while those from
college and professional subjects form the test set.

Motivated by the design from [26], we follow a prompt-based scoring scheme adapted for LLMs:
we append the string “The answer is the option:” to the end of each MMLU question and feed the
resulting prompt into the Llama 13B model without generating any output. We then extract the
next-token logits corresponding to the first decoding position (i.e., immediately after the prompt) and
consider the logits associated with the characters A, B, C, and D. These four logits are normalized
using the softmax function to produce a probability vector over the answer options.

Experimental details. The nonconformity score is s(x, y) = 1 − f(x)y, where f(x)y is the
probability assigned to the correct answer. For r̂ andH, we compute prompt embeddings as follows.
We extract the final hidden layer outputs from GPT-2 Small to obtain 768-dimensional embeddings.
We then apply average pooling across all token embeddings in a prompt to obtain a single fixed-length
vector representation for each input. We fit a probabilistic classifier p̂ using logistic regression on the
unlabeled pooled embeddings from the source and target data, and we set r̂ = p̂

1−p̂ . We setH to be a
linear head on top of the representation layer of the pretrained model.

Results. As shown in Table 1, our LR-QR method achieves near-nominal coverage and has the
smallest average prediction set size among methods that achieve approximately 90% or higher
coverage, demonstrating both validity and efficiency under covariate shift.

Table 1: Comparison of Methods by Coverage and Set Size (mean ± std)

Metric Nominal LR-QR DRO WCP

Coverage (%) 90.0 ± 0.0 89.6 ± 1.2 99.7 ± 0.3 86.5 ± 1.5
Set Size – 3.38 ± 0.15 3.92 ± 0.20 3.31 ± 0.12

Metric SCP DR-iso Robust-CP 2R-CP

Coverage (%) 78.1 ± 2.1 96.3 ± 0.6 95.8 ± 0.7 96.9 ± 0.5
Set Size 2.60 ± 0.10 3.64 ± 0.18 3.56 ± 0.14 3.80 ± 0.17

6 Discussion
We proposed the LR-QR method to construct prediction sets under covariate shift. While we have
provided strong guarantees on the coverage of our method, it would be desirable to have results that
control of the slack in coverage in specific scenarios depending on the structure of the likelihood ratio
and the hypothesis space. Our work concerns uncertainty quantification and may have positive social
impact for reliable decision-making. We do not envision any negative social impact of our work.
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A Additional figures

B Ablation studies

Here we provide an ablation study for λ, the regularization strength that appears in the LR-QR
objective. In the same regression setup as Section 5.2, instead of selecting λ via cross-validation,
here we sweep the value of λ from 0 to 1, and we plot the coverage of the LR-QR algorithm on
the test data. Here, note that the split ratios between train, calibration, and test (both labeled and
unlabeled data) are fixed and similar to the setup in Section 5.2. We report the averaged plots over
100 independent splits.

Figure 4 displays the effect of different regimes of λ. At one extreme, when λ is close to zero, the LR-
QR algorithm reduces to ordinary quantile regression. In this regime, the LR-QR algorithm behaves
similarly to the algorithm from [15], without the test covariate imputation. In other words, when we
set λ = 0, we try to provide coverage with respect to all the covariate shifts in the linear hypothesis
class that we optimize over. As we can see in Figure 4, this can lead to overfitting and undercoverage
of the test labels. As we increase λ, as a direct effect of the regularization, the coverage gap decreases.
This is primarily due to the fact that larger λ restricts the space of quantile regression optimization
in such a way that it does not hurt the test time coverage, since the regularization is designed to
shrink the optimization space towards the true likelihood-ratio. Thus, the regularization improves the
generalization of the selected threshold, as the effective complexity of the hypothesis class is getting
smaller. That being said, this phenomenon is only applicable if λ lies within a certain range; once λ
grows too large, due to the data-dependent nature of our regularization, the generalization error of the
regularization term itself becomes non-negligible and hinders the precise test-time coverage of the
LR-QR threshold. As is highlighted in Figure 4, our theoretical results suggest an optimal regime for
λ which can best exploit the geometric properties of the LR-QR threshold.

C Related work

The basic concept of prediction sets dates back to foundational works such as Wilks [63], Wald [62],
Scheffe and Tukey [46], and Tukey [56, 57]. The early ideas of conformal prediction were developed
in Saunders et al. [45], Vovk et al. [61]. With the rise of machine learning, conformal prediction has
emerged as a widely used framework for constructing prediction sets [e.g., 2, 4, 8–11, 16–18, 27–
31, 34–36, 43, 58, 59]. A wide range of predictive inference methods have been developed [e.g.,
14, 24, 33, 37, 38, 40, 44, 47, 51].
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Numerous works have addressed conformal prediction under various types of distribution shift
[37, 38, 40, 51, 55]. For example, Tibshirani et al. [55] investigated conformal prediction under
covariate shift, assuming the likelihood ratio between source and target covariates is known. Lei
and Candès [32] allowed the likelihood ratio to be estimated, rather than assuming it is known. Park
et al. [37] developed prediction sets with a calibration-set conditional (PAC) property under covariate
shift. [3] present the nonexchangeable conformal prediction algorithm for arbitrary distribution shifts,
assuming that the optimal weights for their method are known. Qiu et al. [40], Yang et al. [64]
developed prediction sets with asymptotic coverage that are doubly robust in the sense that their
coverage error is bounded by the product of the estimation errors of the quantile function of the
score and the likelihood ratio. Cauchois et al. [7] construct prediction sets based on a distributionally
robust optimization approach. Gui et al. [19] develop methods based on an isotonic regression
estimate of the likelihood ratio. They provide theoretical guarantees for the difference between the
population-level distributionally robust risk and its empirical counterpart. However, their results do
not directly lead to coverage guarantees under distribution shift in our setting, as that would further
require characterizing the effect of estimating the likelihood ratio.

Qin et al. [39] combine a parametric working model with a resampling approach to construct
prediction sets under covariate shift. Bhattacharyya and Barber [6] analyze weighted conformal
prediction in the special case of covariate shifts defined by a finite number of groups. Ai and Ren
[1] reweight samples to adapt to covariate shift, while simultaneously using distributionally robust
optimization to protect against worst-case joint distribution shifts. Kasa et al. [23] construct prediction
sets by using unlabeled test data to modify the score function used for conformal prediction.

Our algorthm works by constructing a novel regularized regression objective, whose stationary
conditions ensure coverage in the test domain. We can minimize the objective by estimating certain
expectations of the data distribution—which implicitly involve estimating only certain functionals
of the likelihood ratio. We further show that the coverage is retained in finite samples via a novel
analysis of coverage leveraging stability bounds [48, 49]. We illustrate that our algorithms behave
better in high-dimensional datasets than existing methods.

D Notation and conventions

Constants are allowed to depend on dimension only through properties of the population and sample
covariance matrices of the features, and the amount of linear independence of the features; see the
quantities λmin(Σ), λmax, cmin, cmax, and cindep defined in Appendix E. In the Landau notation (o, O,
Θ), we hide constants. We say that a sequence of events holds with high probability if the probability
of the events tends to unity. We define S1 as the features of the labeled calibration dataset. All
functions that we minimize can readily be verified to be continuous, and thus attain a minimum over
the compact domains over which we minimize them; thus all our minimizers will be well-defined. We
may not mention this further. We denote by 1[A] the indicator of an event A. Recall thatH denotes
the linear hypothesis class H = {⟨γ,Φ⟩ : γ ∈ Rd}. This defines a one-to-one correspondence
between Rd andH. This enables us to view functions defined on Rd equivalently as defined onH.
In our analysis, we will use such steps without further discussion. Unless stated otherwise, H is
equipped with the norm ∥h∥ := ∥γ∥2 for h = ⟨γ,Φ⟩. Given a differentiable function φ : H → R, its
directional derivative at f = ⟨γ,Φ⟩ ∈ H in the direction defined by the function g ∈ H is defined as
d
dε

∣∣
ε=0

φ(f + εg). Note that if we write g = ⟨γ̃,Φ⟩ for some γ̃ ∈ Rd, then the directional derivative
of φ at f equals ⟨γ̃,∇γφ(γ)⟩, where ∇γφ(γ) denotes the gradient of φ : Rd → R evaluated at
γ ∈ Rd. When it is clear from context, we drop the subscript λ from the risks Lλ and L̂λ.

E Conditions

Condition 1. Suppose CΦ = supx∈X ∥Φ(x)∥2 is finite.

Condition 2. For the population covariance matrix Σ = E1[ΦΦ
⊤], we have λmin(Σ) > 0 and

λmax(Σ) is of constant order, not depending on the sample size, or any other problem parameter.

Condition 3. For the sample covariance matrix Σ̂ = 1
n3

∑n3

k=1 Φ(xk)Φ(xk)
⊤, we have both

λmin(Σ̂) ⩾ cmin > 0 and λmax(Σ̂) ⩽ cmax of constant order with probability 1− o(n−1
3 ).
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Condition 4. Defining C1 as in (7) in Appendix H, assume there exists an upper bound C1,upper on
E[C1] of constant order.
Condition 5. The conditional density fS|X=x exists for all x ∈ X , and Cf =
supx∈X ∥fS|X=x(s)∥∞ is a finite constant.

The following can be interpreted as an independence assumption on the basis functions.
Condition 6. Suppose infv∈Sd−1 E1[|⟨v,Φ⟩|] ⩾ cindep > 0 for some constant cindep.

Condition 7. Suppose E1[rh
∗
0 ]

E1[|h∗
0 |2]1/2

⩾ calign > 0 for some minimizer h∗0 of the objective in Equa-
tion (18) with regularization λ = 0.
Condition 8. Suppose E1[r

2] is finite.
Condition 9. The constant function h : X → R given by h(x) = 1 for all x ∈ X is inH.

The following ensures that the zero function 0 ∈ H is not a minimizer of the objective in Equation (LR-
QR).
Condition 10. For each λ ⩾ 0, there exists h ∈ H and β ∈ R such that

E1[ℓα(h, S)] + λE1[(βh− r)2] < E1[ℓα(0, S)] + λE1[r
2].

F Constants

The following are the constants that appear in Theorem 4.2:

ρ1 := 2β2
maxBC

2
Φ + 2βmaxCΦ, µ1 := 2β2

mincmin, ρ2 := (1− α)CΦ,

C̃1 :=
4ρ21
µ1

, Ĉ2 :=
4ρ22

2β2
mincmin

, A1 :=

√
64C̃1a1

δ
, A2 :=

√
128Ĉ2a2

δ
.

Further,

A3 := (1− α)(BCΦ + 1)

√
1

2
log

8

δ
, A4 :=

√
2(βmaxBCΦ)

√
1

2
log

16

δ
max {βmaxBCΦ, 4} ,

A5 := A1 +A4, a1 := 2CΦ(C2,upper + C2,max)(1 + βmaxBCΦ), a2 := (1− α)CΦ(C1,upper + C1,max).

The following are the constants that appear in Theorem 4.3:

A6 := 2β2
max

√
4B2λmax(Σ), A7 :=

√
4B2β2

maxλmax(Σ), A8 :=
√

2B2Cfλmax(Σ), A9 := A6 +A7,

and

A10 := A9A
1/2
5 , A11 := max{A9A

1/2
3 , A8A

1/2
5 },

A12 := A9A
1/2
2 , A13 := A8A

1/2
3 , A14 := A8A

1/2
2 .

G Generalization bound for regularized loss

The following is a generalization of Shalev-Shwartz and Ben-David [48, Corollary 13.6].
Lemma G.1 (Generalization bound for regularized loss; extension of [48]). Fix a compact and convex
hypothesis class H̃ equipped with a norm ∥ · ∥H̃, a compact interval I ⊆ R, and a sample space Z .
Consider the objective function f : H̃×I ×Z → R given by (h, β, z) 7→ f(h, β, z) := J (h, β, z)+
R(h, β), where R : H̃ × I → R is a regularization function, and J : H̃ × I × Z → R can be
decomposed as J (h, β, z) := J1(h, β, z1)+J2(h, β, z2) for two functions J1,J2 : H̃×I×Z → R.

Given distributions D1,D2 on Z , let L : H̃ × I → R be given for all h, β by

L(h, β) = EZ1∼D1,Z2∼D2 [f(h, β, Z1, Z2)]

denote the population risk, averaging over independent datapoints Z1 ∼ D1 and Z2 ∼ D2. Suppose
that for both Z ∼ D1 and Z ∼ D2, |J1(h, β, Z)| and |J2(h, β, Z)| are almost surely bounded by a
quantity not depending on h ∈ H̃ and β ∈ I.
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Let L̂ : H̃×I → R denote the empirical risk computed overZi,1
i.i.d.∼ D1, i ∈ [m1] andZj,2

i.i.d.∼ D2,
j ∈ [m2], given by

L̂(h, β) := 1

m1

m1∑
i=1

J1(h, β, Zi,1) +
1

m2

m2∑
j=1

J2(h, β, Zj,2) +R(h, β).

Assume that for each fixed β ∈ I and z ∈ Z ,

• h 7→ J1(h, β, z) is convex and ρ-Lipschitz with respect to the norm ∥ · ∥H̃,

• h 7→ J2(h, β, z) is convex and ρ-Lipschitz with respect to the norm ∥ · ∥H̃, and

• h 7→ L̂(h, β) is µ-strongly convex with respect to the norm ∥ · ∥H̃ with probability 1 −
o(m−1

1 +m−1
2 ),

where the deterministic values µ = µ(β) and ρ = ρ(β) may depend on β.

Let (ĥ, β̂) denote an ERM, i.e., a minimizer of L̂(h, β) over H̃ × I . Let ĥβ denote a minimizer of the
empirical risk in h for fixed β.

Suppose the stochastic process β 7→ Wβ given by Wβ = L(ĥβ , β) − L̂(ĥβ , β) for β ∈ I obeys
|Wβ −Wβ′ | ⩽ K|β − β′| for all β, β′ ∈ I for some random variable K, and suppose that the
probability of Km1,m2

⩽ Kmax converges to unity as m1,m2 → ∞, for some constant Kmax.
Suppose that there exists a constant C > 0 such that for all β ∈ I,

4ρ(β)2

µ(β)
⩽ C. (4)

Then for sufficiently large m1,m2, with probability at least 1− δ,

|L(ĥ, β̂)− L̂(ĥ, β̂)| ⩽
√

16CKmax

δ
(m−1

1 +m−1
2 ).

Remark G.2. A special case is when we do not have any data from D2, and instead all m1 datapoints
are sampled i.i.d. from D1. In this case, defining with a slight abuse of notation J := J1, the
statement simplifies to the analysis of the empirical risk

L̂(h, β) := 1

m1

m1∑
i=1

J (h, β, Zi,1) +R(h, β).

If for each fixed β ∈ I, we have that h 7→ J (h, β, z) is convex and ρ-Lipschitz with respect to the
norm ∥ · ∥H̃, and if |J (h, β, Z)| is almost surely bounded by a quantity not depending on h ∈ H̃ and
β ∈ I for Z ∼ D1 = D2, then under the remaining assumptions, we obtain the slightly stronger
bound

|L(ĥ, β̂)− L̂(ĥ, β̂)| ⩽
√

16CKmax

δm1
.

We omit the proof, because it is exactly as below.
Remark G.3. We relax the strong convexity assumption on the regularizerR from Shalev-Shwartz and
Ben-David [48, Corollary 13.6], substituting it with the less restrictive condition of strong convexity
of the empirical loss L̂. In order to use assumptions that merely hold with high probability, we impose
a boundedness condition on J .

Proof. Fix β and let E denote the event that h 7→ L̂(h, β) is µ-strongly convex in h. By assumption,
E occurs with probability 1− o(m−1

1 +m−1
2 ).

We modify the proof of Shalev-Shwartz and Ben-David [48, Corollary 13.6] as follows. Let
Z ′
1 ∼ D1 and Z ′

2 ∼ D2 be drawn independently from all other randomness. For a
fixed i ∈ [m1], let h 7→ L̂i,1(h, β) denote the empirical risk computed from the sample
(Z1,1, . . . , Zi−1,1, Z

′
1, Zi+1,1, . . . , Zm1,1) ∪ (Z1,2, . . . , Zm2,2), and let ĥ(i)β denote an ERM for this
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sample. Let I be drawn from [m1] uniformly at random. The variables J, L̂J,2(h, β), ĥ(J)β are defined
similarly but for the sample from D2.

Note that for fixed β, similarly to the argument in Shalev-Shwartz and Ben-David [48, Theorem
13.2], we have

E[L(ĥβ , β)] = EZ′
1∼D1,Z′

2∼D2
[J1(ĥβ , β, Z ′

1) + J2(ĥβ , β, Z ′
2) +R(ĥβ , β)]

= EZ′
1∼D1,Z′

2∼D2
[J1(ĥ(I)β , β, ZI,1) + J2(ĥ(J)β , β, ZJ,2) +R(ĥβ , β)]

and

E[L̂(ĥβ , β)] = E[J1(ĥβ , β, ZI,1) + J2(ĥβ , β, ZJ,2) +R(ĥβ , β)].

Therefore

E[L(ĥβ , β)− L̂(ĥβ , β)] =(E[J1(ĥ(I)β , β, ZI,1)− J1(ĥβ , β, ZI,1)])

+(E[J2(ĥ(J)β , β, ZJ,2)− J2(ĥβ , β, ZJ,2)]).

Further, splitting the expectations over E and its complement Ec, this further equals

(E[(J1(ĥ(I)β , β, ZI,1)− J1(ĥβ , β, ZI,1))1[E]] + E[(J1(ĥ(I)β , β, ZI,1)− J1(ĥβ , β, ZI,1))1[Ec]])
(5)

+ (E[(J2(ĥ(J)β , β, ZJ,2)− J2(ĥβ , β, ZJ,2))1[E]] + E[(J2(ĥ(J)β , β, ZJ,2)− J2(ĥβ , β, ZJ,2))1[Ec]]).

On the event E, h 7→ L̂(h, β) is µ-strongly convex. Now, consider the setting of Shalev-Shwartz
and Ben-David [48, Corollary 13.6]. We claim that the arguments in their proof hold if we replace
the regularizer h 7→ λ∥h∥2 by h 7→ R(h, β), as they only leverage the strong convexity of the
overall empirical loss L̂. Indeed, working on the event E, since L̂ is µ-strongly convex, we have that
L̂(h)− L̂(ĥβ) ⩾ 1

2µ∥h− ĥβ∥
2 for all h ∈ H̃. Next, for any h1, h2 ∈ H̃, we have

L̂(h2)− L̂(h1) = L̂I,1(h2)− L̂I,1(h1) +
J1(h2, β, ZI,1)− J1(h1, β, ZI,1)

m1

− J1(h2, β, Z
′
1)− J1(h1, β, Z ′

1)

m1
.

Setting h2 = ĥ
(I)
β and h1 = ĥ, since ĥ(I)β minimizes h 7→ L̂I,1(h, β), and using our lower bound on

L̂(h)− L̂(ĥβ), we deduce

1

2
µ∥ĥ(I)β − ĥβ∥

2 ⩽
J1(ĥ(I)β , β, ZI,1)− J1(ĥβ , β, ZI,1)

m1
−
J1(ĥ(I)β , β, Z ′

1)− J1(ĥβ , β, Z ′
1)

m1
. (6)

Since by assumption, h 7→ J1(h, β, z) is ρ-Lipschitz, we have the bounds |J1(ĥ(I)β , β, ZI,1) −
J1(ĥβ , β, ZI,1)| ⩽ ρ|ĥ(I)β − ĥβ | and |J1(ĥ(I)β , β, Z ′

1) − J1(ĥβ , β, Z ′
1)| ⩽ ρ|ĥ(I)β − ĥβ |. Plugging

these into Equation (6), we obtain 1
2µ∥ĥ

(I)
β − ĥβ∥2 ⩽ 2ρ

m1
∥ĥ(I)β − ĥβ∥, so that ∥ĥ(I)β − ĥβ∥ ⩽

4ρ(β)
µ(β)m1

.

Using once again that h 7→ J1(h, β, z) is ρ-Lipschitz, we find |J1(ĥ(I)β , β, ZI,1)−J1(ĥβ , β, ZI,1)| ⩽
4ρ(β)2

µ(β)m1
.

Similarly, on the event E, we have the bound |J2(ĥ(J)β , β, ZJ,2)−J2(ĥβ , β, ZJ,2)| ⩽ 4ρ(β)2

µ(β)m2
. Thus

the first and third terms are bounded in magnitude by 4ρ(β)2

µ(β)m1
and 4ρ(β)2

µ(β)m2
, respectively. Due to (4),

their sum is at most C(m−1
1 +m−1

2 ).

By our assumption that |J1(h, β, Z)| and |J2(h, β, Z)| are almost surely bounded by a constant for
both Z ∼ D1 and Z ∼ D2, and our assumption that P [Ec] = o(m−1

1 +m−1
2 ), the second term and

fourth terms from (5) sum to o(m−1
1 +m−1

2 ). Thus for for each β, for sufficiently large m1,m2,
we have E[|Wβ |] ⩽ 2C(m−1

1 +m−1
2 ). By Markov’s inequality, for any fixed t > 0, |Wβ | > t with
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probability at most 2C
t (m−1

1 +m−1
2 ). We now use chaining. Let N be an ε-net for I. Then using

the fact that by assumption, the process W is Km1,m2 -Lipschitz, and by a union bound,

P

[
sup
β∈I
|Wβ | > Km1,m2

ε+ t

]
⩽ P

[
sup
β∈N
|Wβ | > t

]
⩽ |N |2C

t
(m−1

1 +m−1
2 ).

Pick N with |N | = 1/ε, and set t = 4C
δ (m−1

1 +m−1
2 ) 1ε . We deduce that

sup
β∈I
|Wβ | > Km1,m2ε+

4C

δ
(m−1

1 +m−1
2 )

1

ε

with probability at most δ2 . Set ε =
√

4C
Km1,m2δ

(m−1
1 +m−1

2 ). We deduce that

sup
β∈I
|Wβ | >

√
16CKm1,m2

δ
(m−1

1 +m−1
2 )

with probability at most δ
2 . Since the probability of Km1,m2

⩽ Kmax converges to unity, for
sufficiently large m1,m2,

sup
β∈I
|Wβ | >

√
16CKmax

δ
(m−1

1 +m−1
2 )

holds with probability at most δ. Since |Wβ̂ | ⩽ supβ∈I |Wβ |, we may conclude.

H Lipschitz process

Lemma H.1 (Lipschitzness of minimizer of perturbed strongly convex objective). Let C ⊆ Rd be a
closed convex set. Suppose ψ : C → R is µ-strongly convex and g : C → R is L-smooth. Suppose
also that ψ + g is convex. Let xψ denote the minimizer of ψ in C, and let xψ+g denote the minimizer
of ψ + g in C. Then for any x ∈ C,

∥xψ+g − xψ∥2 ⩽
1

µ
(L∥xψ+g − x∥2 + ∥∇g(x)∥2).

Proof. Since ψ is µ-strongly convex and since xψ+g, xψ are minimizers of ψ + g, ψ respectively,

µ∥xψ+g − xψ∥22 ⩽ ⟨∇ψ(xψ+g)−∇ψ(xψ), xψ+g − xψ⟩
= ⟨∇(ψ + g)(xψ+g), xψ+g − xψ⟩+ ⟨∇ψ(xψ), xψ − xψ+g⟩
− ⟨∇g(xψ+g), xψ+g − xψ⟩
⩽ −⟨∇g(xψ+g), xψ+g − xψ⟩
= −⟨∇g(xψ+g)−∇g(x), xψ+g − xψ⟩ − ⟨∇g(x), xψ+g − xψ⟩,

so that by L-smoothness of g,

µ∥xψ+g − xψ∥22 ⩽ (L∥xψ+g − x∥2 + ∥∇g(x)∥2)∥xψ+g − xψ∥2,

which implies the result.

Lemma H.2 (Lipschitzness of minimizer of perturbed ERM). Under Condition 1, with Σ̂ from
Condition 3, and with the notations of Lemma H.4, we have with respect to the norm ∥ · ∥ onHB that
β 7→ ĥβ is C1-Lipschitz on I, and β 7→ βĥβ is C2-Lipschitz on I, where

C1 = (β2
minλmin(Σ̂))

−1((2βmaxλmax(Σ̂)B + CΦ) + 4βmaxλmax(Σ̂)B), C2 = B + βmaxC1. (7)

Proof. First, consider ĥβ . Fix β > β′ in I. Recalling the definition of L̂ from (Empirical-LR-QR),
the difference between the objectives L̂(h, β) and L̂(h, β′) is the quadratic

g(h) := L̂(h, β)− L̂(h, β′) = λÊ3[(β
2 − (β′)2)h2] + λÊ2[−2(β − β′)h].
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We claim that g is 2λ(β2 − (β′)2)λmin(Σ̂)-strongly convex and 2λ(β2 − (β′)2)λmax(Σ̂)-smooth in h.
To see this, write h = ⟨γ,Φ⟩ for γ ∈ Rd, and note that g can be rewritten as

g(γ) = λ(β2 − (β′)2)γ⊤Σ̂γ − 2(β − β′)λγ⊤Ê2[Φ],

a quadratic whose Hessian equals 2λ(β2 − (β′)2)Σ̂, which implies the claim.

Similarly, we claim that the function ψ(h) := L̂(h, β′) is 2λ(β′)2λmin(Σ̂)-strongly convex in h. To
see this, again write h = ⟨γ,Φ⟩ for γ ∈ Rd, and note that ψ can be rewritten as

ψ(γ) = λ(β′)2γ⊤Σ̂γ + Ê1[ℓα(γ
⊤Φ, S)] + λÊ2[−2βγ⊤Φ].

By Lemma N.3, the second term is convex, and since the third term is linear, it too is convex. The
Hessian of the quadratic first term is 2λ(β′)2Σ̂, from which it follows that ψ is 2λ(β′)2λmin(Σ̂)-
strongly convex.

Thus ψ and g satisfy the conditions of Lemma H.1, which implies the bound

∥ĥβ − ĥβ′∥ ⩽ (2λ(β′)2λmin(Σ̂))
−1(∥∇g(ĥg)∥2 + 2λ(β2 − (β′)2)λmax(Σ̂) · ∥ĥβ − ĥg∥), (8)

where ĥg = ĥg,β,β′ denotes the minimizer of g inHB . Since

∇g(γ) = λ(β − β′)((β + β′)2Σ̂γ − 2Ê2[Φ]),

and by |β|, |β′| ⩽ βmax, ∥γ∥ ⩽ B, and Condition 1, we have

∥∇g(γ)∥2 ⩽ λ(4βmaxλmax(Σ̂)B + 2CΦ)|β − β′|

for β, β′ ∈ I and h ∈ HB . Plugging this into the bound (8) on ∥ĥβ − ĥβ′∥ and using the fact that
β′ ⩾ βmin and ∥ĥβ∥, ∥ĥg∥ ⩽ B,

∥ĥβ − ĥβ′∥ ⩽
(2λβ2

minλmin(Σ̂))
−1(λ(4βmaxλmax(Σ̂)B + 2CΦ)|β − β′|+ 8λβmaxλmax(Σ̂)B|β − β′|).

Thus we may take

C1 = (β2
minλmin(Σ̂))

−1((2βmaxλmax(Σ̂)B + CΦ) + 4βmaxλmax(Σ̂)B).

For the map β 7→ βĥβ , fix β > β′ in I , and write ∥βĥβ − β′ĥβ′∥ ⩽ |β− β′|∥ĥβ∥+ |β′|∥ĥβ − ĥβ′∥.
For the first term, note that since ĥβ ∈ HB implies ∥ĥβ∥ ⩽ B, the first term is bounded by B|β−β′|.
For the second term, note that since |β′| ⩽ βmax and since β 7→ ĥβ is C1-Lipschitz on I, the second
term is bounded by βmaxC1|β−β′|. Summing, we deduce that β 7→ βĥβ is C2-Lipschitz on I , where
C2 = B + βmaxC1.

Lemma H.3 (Lipschitzness of minimizer of perturbed auxiliary ERM). Under Condition 1, we have
that β 7→ h̃β is C1-Lipschitz on I, and β 7→ βh̃β is C2-Lipschitz on I.

Proof. The proof is almost identical to Lemma H.2.

Recalling cmin and cmax from Condition 3, define

C1,max = (β2
mincmin)

−1((2βmaxcmaxB + CΦ) + 4βmaxcmaxB), C2,max = B + βmaxC1,max, (9)

so that by Condition 3, C1 ⩽ C1,max and C2 ⩽ C2,max with probability tending to unity over the
randomness in S3.

We now compute the Lipschitz constants of the processes used in the proof of Theorem 4.2.

Recall L̄ from (13), L̂ from (Empirical-LR-QR), L̃ from (12), andHB = {⟨γ,Φ⟩ : ∥γ∥2 ⩽ B <∞}
from Section 4. For any fixed β ∈ I, define ĥβ as the minimizer of h 7→ L̂(h, β) over HB ,
which exists under the conditions of Theorem 4.2 due to our argument checking the convexity of
h 7→ L̂(h, β) in Term (I) in the proof of Theorem 4.2.
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Lemma H.4. Assume the conditions of Theorem 4.2. Define the stochastic processes W̄β and W̃β on
I given by β 7→ (L̄− L̂)(ĥβ , β) and β 7→ (L̃− L̂)(ĥβ , β), respectively. Then W̄β is K1,λ-Lipschitz
on I with probability tending to unity as n1, n2, n3 → ∞, and W̃β is K2,λ-Lipschitz on I with
probability tending to unity as n1, n2, n3 →∞, where

K1,λ := 2CΦ(C2,upper + C2,max)(1 + βmaxBCΦ)λ =: a1λ,

K2,λ := (1− α)CΦ(C1,upper + C1,max) =: a2,

with C1,max and C2,max are defined in (9) and where C1,upper satisfies Condition 4 and C2,upper :=
BCΦ + βmaxCΦC1,upper. In fact, W̄ is K1,λ-Lipschitz on I with probability tending to unity condi-
tional on S1, and W̃ is K2,λ-Lipschitz on I deterministically, when conditioning on S2,S3, when the
event C1 ⩽ C1,max holds.

Proof. We start with the process W̃ . Consider β, β′ ∈ I . Note that for any (h, β), using the definition
of L̃ from (12), we have the identity

L̃(h, β)− L̂(h, β) = E1[ℓα(h, S)]− Ê1[ℓα(h, S)].

Thus we may write

W̃β − W̃β′ = (E1[ℓα(ĥβ , S)]− E1[ℓα(ĥβ′ , S)])− (Ê1[ℓα(ĥβ , S)]− Ê1[ℓα(ĥβ′ , S)]),

so that

|W̃β − W̃β′ | ⩽ E1[|ℓα(ĥβ , S)− ℓα(ĥβ′ , S)|] + Ê1[|ℓα(ĥβ , S)− ℓα(ĥβ′ , S)|] (10)

Note that we have the uniform bound

|ℓα(ĥβ , S)− ℓα(ĥβ′ , S)| ⩽ (1− α)|ĥβ − ĥβ′ |
⩽ (1− α)CΦ∥ĥβ − ĥβ′∥ ⩽ (1− α)CΦC1|β − β′|,

where in the first step we applied Lemma N.2, in the second step we used Condition 1 to apply
Lemma N.4, and in the third step we used Lemma H.2. Thus the first term in Equation (10)
is bounded by (1 − α)CΦE1[C1]|β − β′|, and the second term in Equation (10) is bounded by
(1− α)CΦÊ1[C1]|β − β′|. Summing, we deduce that

|W̃β − W̃β′ | ⩽ (1− α)CΦ(E1[C1] + Ê1[C1])|β − β′|,

so that the process W̃ is K2-Lipschitz with K2 := (1− α)CΦ(E1[C1] + Ê1[C1]).

We now condition on S2,S3. Observe that C1, C2 are S3-measurable (as Σ̂ from Condition 3 is
S3-measurable). Since E1[C1] ⩽ C1,upper, on the event that C1 ⩽ C1,max, we have K2 ⩽ K2,λ,
where K2,λ = (1− α)CΦ(C1,upper + C1,max), as claimed.

We now continue with the process W̄ . Consider β, β′ ∈ I. Note that for any (h, β), using the
definition of L̄ from Equation (13), we have the identity

L̄(h, β)− L̂(h, β) = (λE3[β
2h2] + λE2[−2βh])− (λÊ3[β

2h2] + λÊ2[−2βh]).

Thus we may write

W̄β − W̄β′ = λ(E3[β
2ĥ2β ]− E3[(β

′)2ĥ2β′ ]) + λ(E2[−2βĥβ ]− E2[−2β′ĥβ′ ])

− λ(Ê3[β
2ĥ2β ]− Ê3[(β

′)2ĥ2β′ ])− λ(Ê2[−2βĥβ ]− Ê2[−2β′ĥβ′ ]),

so that

|W̄β − W̄β′ | ⩽ λE3[|β2ĥ2β − (β′)2ĥ2β′ |] + 2λE2[|βĥβ − β′ĥβ′ |]

+ λÊ3[|β2ĥ2β − (β′)2ĥ2β′ |] + 2λÊ2[|βĥβ − β′ĥβ′ |] (11)

The integrands of the first and third terms of Equation (11) can be uniformly bounded as

|β2ĥ2β − (β′)2ĥ2β′ | ⩽ |βĥβ − β′ĥβ′ | · |βĥβ + β′ĥβ′ | ⩽ CΦ∥βĥβ − β′ĥβ′∥ · CΦ∥βĥβ + β′ĥβ′∥
⩽ CΦC2|β − β′| · 2CΦβmaxB = 2βmaxBC

2
ΦC2|β − β′|.
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where in the first step we used difference of squares, in the second step we used Condition 1 to
apply Lemma N.4, in the third step we applied Lemma H.2 to bound the first factor and the triangle
inequality and the bounds β ⩽ βmax for β ∈ I and ∥h∥ ⩽ B for h ∈ HB to bound the second
factor. The integrand of the second and fourth term in (11) can be bounded as |βĥβ − β′ĥβ′ | ⩽
CΦ∥βĥβ−β′ĥβ′∥ ⩽ CΦC2|β−β′|, where in the first step we used Condition 1 to apply Lemma N.4,
and in the second step we applied Lemma H.2.

Plugging these into our bound in Equation (11), we deduce

|W̄β − W̄β′ | ⩽ (2CΦ(E2[C2] + Ê2[C2]) + 2βmaxC
2
ΦB(E3[C2] + Ê3[C2]))λ|β − β′|,

so that the process W̄ is K1-Lipschitz with

K1 = (2CΦ(E2[C2] + Ê2[C2]) + 2βmaxC
2
ΦB(E3[C2] + Ê3[C2]))λ.

We now work conditional on S1. On the event thatC1 ⩽ C1,max andC2 ⩽ C2,max, and by Condition 4,
we have K1 ⩽ K1,max, where

K1,λ = (2CΦ(C2,upper + C2,max) + 2βmaxC
2
ΦB(C2,upper + C2,max))λ

= 2CΦ(C2,upper + C2,max)(1 + βmaxBCΦ)λ.

Since C1 ⩽ C1,max and C2 ⩽ C2,max with probability tending to one due to Condition 3, K1 ⩽ K1,λ

and K2 ⩽ K2,λ both hold with probability tending to one if we uncondition on S1, and we are
done.

I Proof of Proposition 4.1

Fix λ ⩾ 0. Under the assumptions of Lemma L.3, there exists a global minimizer (h∗, β∗) of
L(h, β). The first order condition with respect to β reads 2λE1[h

∗(X)(β∗h∗(X)− r(X))] = 0. By
Lemma N.5, the first order condition with respect to h reads

E1[h
∗(X)(PS|X [S(X,Y ) ⩽ h∗(X)]− (1− α))] + 2λE1[β

∗h(X)(β∗h∗(X)− r(X))] = 0

for all h ∈ H. Setting h = rH in the second equation, and subtracting (β∗)2 times the first equation
from the second, we deduce that

E1[h
∗(X)(PS|X [S(X,Y ) ⩽ h∗(X)]− (1− α))]

+ 2λE1[β
∗ · rH(X) · (β∗h∗(X)− r(X))]− 2λE1[β

∗ · β∗h∗(X) · (β∗h∗(X)− r(X))]

= E1[h
∗(X)(PS|X [S(X,Y ) ⩽ h∗(X)]− (1− α))]

+ 2λE1[β
∗(rH(X)− β∗h∗(X))(β∗h∗(X)− r(X))]

= E1[h
∗(X)PS|X [S(X,Y ) ⩽ h∗(X)]]− (1− α)− 2λβ∗E1[(rH(X)− β∗h∗(X))2] = 0.

Therefore,

E1[rH(X)PS|X [S(X,Y ) ⩽ h∗(X)]] = (1− α) + 2λβ∗E1[(rH(X)− β∗h∗(X))2],

which implies the result.

J Proof of Theorem 4.2

Recall that S1 are the features of the labeled calibration dataset. We also recall the notation Ej and
Êj for j = 1, 2, 3 from Section 2. Given the unlabeled test data S2 and the unlabeled calibration data
S3, define the auxiliary risks for h ∈ HB , β ∈ I,

L̃(h, β;S2,S3) := E1[ℓα(h, S)] + λÊ3[β
2h2] + λÊ2[−2βh] (12)

and

L̄(h, β;S1) := Ê1[ℓα(h, S)] + λE3[β
2h2] + λE2[−2βh]. (13)

Let

(h̃, β̃) ∈ arg min
h∈HB ,β∈I

L̃(h, β;S2,S3). (14)
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For convenience, we leave implicit the dependence of L̃ and (h̃, β̃) on S2, S3 and the dependence of
L̄ on S1.

In order to study the generalization error, we write

L(ĥ, β̂)− L(h∗, β∗) = (L(ĥ, β̂)− L̃(ĥ, β̂)) + (L̃(ĥ, β̂)− L̂(ĥ, β̂)) + (L̂(ĥ, β̂)− L̂(h̃, β̃))
+ (L̂(h̃, β̃)− L̃(h̃, β̃)) + (L̃(h̃, β̃)− L̃(h∗, β∗)) + (L̃(h∗, β∗)− L(h∗, β∗)).

Since (ĥ, β̂) is a minimizer of the risk L̂, we have L̂(ĥ, β̂) − L̂(h̃, β̃) ⩽ 0, and since (h̃, β̃) is a
minimizer of the risk L̃, we have L̃(h̃, β̃)− L̃(h∗, β∗) ⩽ 0. Thus our generalization error is bounded
by the remaining four terms:

L(ĥ, β̂)− L(h∗, β∗) ⩽ (L(ĥ, β̂)− L̃(ĥ, β̂)) + (L̃(ĥ, β̂)− L̂(ĥ, β̂))
+ (L̂(h̃, β̃)− L̃(h̃, β̃)) + (L̃(h∗, β∗)− L(h∗, β∗))

=: (I) + (II) + (III) + (IV ). (15)

We study the generalization error by conditioning on the unlabeled calibration or test data. Then
our regularization becomes data-independent. Conditional on S1, Term (I) can be handled with
Lemma G.1 above. Conditional on S2,S3, Term (II) can be handled with Lemma G.1 above. Terms
(III) and (IV) are empirical processes at fixed functions, conditional on S2,S3.

Term (I): We work conditional on S1. First, note that due to the definition of L̂ from
(Empirical-LR-QR), we can write for any (h, β),

L(h, β)− L̃(h, β) = L̄(h, β)− L̂(h, β).

Since L̄(h, β)− L̂(h, β) can be viewed as a difference of a population risk λE3[β
2h2] +λE2[−2βh]

and an empirical risk λÊ3[β
2h2] + λÊ2[−2βh] with “regularizer" Ê1[ℓα(h, S)], this expression

enables us to apply Lemma G.1 to bound L̄(ĥ, β̂)− L̂(ĥ, β̂).
Explicitly, we can write

1

λ
L̂(h, β) = Ê3[β

2h2] + Ê2[−2βh] +
1

λ
Ê1[ℓα(h, S)].

Hence, fixing β, we can apply Lemma G.1, choosing m1 = n3 and m2 = n2. Further, we choose
H̃ := HB = {⟨γ,Φ⟩ : ∥γ∥2 ⩽ B < ∞} with the norm ⟨γ,Φ⟩ = ∥γ∥2. Moreover, letting
z = (x′′, x′) for x′′, x′ ∈ X , and ξ = 1/λ, we use the objective function given by (h, z) 7→
f1(h, z) = J (h, β, z) +R(h, β), where J (h, β, z) = J1(h, β, z) + J2(h, β, z), and where

J1(h, β, z) = β2h(x′′)2, J2(h, β, z) = −2βh(x′), R(h, β) = ξÊ1[ℓα(h, S)].

We now check the conditions of Lemma G.1.

Boundedness: Note that |J1(h, β, z)| = |β|2|h(x′′)|2 ⩽ β2
max(BCΦ)

2, where in the second step we
used |β| ⩽ βmax for β ∈ I, and we used h ∈ HB and Condition 1 to apply Lemma N.4. Similarly,
note that |J2(h, β, z)| = 2|β||h(x′)| ⩽ 2βmaxBCΦ, where in the second step we used |β| ⩽ βmax
for β ∈ I, and we used h ∈ HB and Condition 1 to apply Lemma N.4. Thus |J1(h, β, z)| and
|J2(h, β, z)| are both bounded by the sum β2

max(BCΦ)
2 + 2βmaxBCΦ.

Convexity: Write h = ⟨γ,Φ⟩ for γ ∈ Rd. The map h 7→ J1(h, β, z) can equivalently be written
as γ 7→ β2γ⊤Φ(x′′)Φ(x′′)⊤γ, a quadratic whose Hessian equals the positive semidefinite matrix
2β2Φ(x′′)Φ(x′′)⊤. Thus h 7→ J1(h, β, z) is convex. The map h 7→ J2(h, β, z) can equivalently be
written as γ 7→ −2βγ⊤Φ(x′), which is linear, hence convex.

Lipschitzness: Write h = ⟨γ,Φ⟩ for γ ∈ Rd. The map h 7→ J1(h, β, z) can equivalently be written
as γ 7→ β2γ⊤Φ(x′′)Φ(x′′)⊤γ. The gradient of this quadratic is given by γ 7→ 2β2Φ(x′′)Φ(x′′)⊤γ.
The norm of this gradient can be bounded by

∥2β2Φ(x′′)Φ(x′′)⊤γ∥2 ⩽ 2|β|2∥Φ(x′′)∥22∥γ∥2 ⩽ 2β2
maxBC

2
Φ,

where in the first step we applied the Cauchy-Schwarz inequality, in the second step we used
|β| ⩽ βmax for β ∈ I, ∥γ∥2 ⩽ B, and Condition 1. Next, the map h 7→ J2(h, β, z) can equivalently
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be written as γ 7→ −2βγ⊤Φ(x′). The gradient of this linear map is given by γ 7→ −2βΦ(x′).
The norm of this gradient can be bounded by 2|β|∥Φ(x′)∥ ⩽ 2βmaxCΦ, where we used |β| ⩽ βmax
for β ∈ I and Condition 1. Thus the norm of each of these gradients is bounded by the sum
ρ1 := 2β2

maxBC
2
Φ + 2βmaxCΦ, and the maps h 7→ J1(h, β, z) and h 7→ J2(h, β, z) are both ρ1-

Lipschitz.

Strong convexity: Since h 7→ ℓα(h, s) is convex for all s ∈ R by Lemma N.3 and since h 7→ Ê2[βh]

is linear, the map h 7→ ξÊ1[ℓα(h, S)] − 2Ê2[βh] is convex. Consider the map h 7→ Ê3[β
2h2].

Writing h = ⟨γ,Φ⟩ for γ ∈ Rd, this can be rewritten as γ 7→ β2γ⊤Σ̂γ, a quadratic whose Hessian
equals 2β2Σ̂. By β ⩾ βmin for β ∈ I and Condition 3, it follows that with probability 1− o(n−1

3 ) =

1− o(n−1
2 + n−1

3 ), the map h 7→ Ê2,3[f1(h, Z)] is µ1-strongly convex, where Z = (X ′′, X ′) with
X ′ is uniform over X2 and X ′′ is uniform over X3, and where µ1 := 2β2

mincmin. In particular,
h 7→ 1

λ L̂(h, β) is convex.

Let C̃1 =
4ρ21
µ1

. Let K1 denote the Lipschitz constant of the process W̄β , where K1 ⩽ K1,λ with
probability tending to unity conditional on S1 by Condition 4 and Lemma H.4. From Lemma G.1
applied with ξ = 1/λ, L = 1

λ L̄, and L̂ = 1
λ L̂, and W = (L̄− L̂)/λ, we obtain that conditional on

S1, for sufficiently large n2, n3, with probability at least 1− δ
4 , we have for Term (I) from (15),

1

λ
Term (I) ⩽

√
16C̃1K1,λ/λ

δ/4

(
1

n2
+

1

n3

)
.

Thus

Term (I) ⩽

√
64C̃1λK1,λ

δ

(
1

n2
+

1

n3

)
= A1λ

√
1

n2
+

1

n3
,

where we define A1 =

√
64C̃1a1

δ . Since the right-hand side does not depend on S1, the same bound
holds when we uncondition on S1.

Term (II): We work conditional on S2, S3. The risks L̂ and L̃ share the same data-independent
regularization λÊ3[β

2h2] + λÊ2[−2βh]. Write z = (x, s) for x ∈ X and s ∈ [0, 1]. Fixing β, we
apply Lemma G.1 with the objective function (h, z) 7→ f(h, z) = J (h, β, z) +R(h, β), where

J (h, β, z) = ℓα(h(x), s), R(h, β) = λÊ3[β
2h2] + λÊ2[−2βh].

Since the empirical risk L̂ is computed over the i.i.d. sample Zi = (Xi, Si) for i ∈ [n1], we use
the modified version of Lemma G.1 given in Remark G.2. In particular, we check boundedness,
convexity, and Lipschitzness of J without writing it as a sum J1 + J2.

Boundedness: we have the uniform bound, for all h, β, z

|J (h, β, z)| ⩽ (1− α)|h(x)− s| ⩽ (1− α)(|h(x)|+ 1) ⩽ (1− α)(BCΦ + 1), (16)

where in the first step we used Lemma N.1, in the second step we used the triangle inequality and
s ∈ [0, 1], and in the third step we used h ∈ HB and Condition 1 to apply Lemma N.4.

Convexity: By Lemma N.3, h 7→ J (h, β, z) is convex.

Lipschitzness: Fix h = ⟨γ,Φ⟩ and h′ = ⟨γ′,Φ⟩ inHB , where γ, γ′ ∈ Rd. Note that

|J (h, β, z)− J (h, β, z)| = |ℓα(h(x), s)− ℓα(h′(x), s)|
⩽ (1− α)|h(x)− h′(x)| ⩽ (1− α)CΦ∥h− h′∥,

where in the second step we used Lemma N.2, and in the third step we used Condition 1 to apply
Lemma N.4. Thus h 7→ J (h, β, z) is ρ2-Lipschitz, where ρ2 := (1− α)CΦ.

Strong convexity: To analyze R, first observe that since h 7→ λÊ2[−2βh] is linear, it is convex.
Writing h = ⟨γ,Φ⟩ for γ ∈ Rd, the term h 7→ λÊ3[β

2h2] inR can be rewritten as γ 7→ λβ2γ⊤Σ̂γ,
a quadratic whose Hessian equals 2λβ2Σ̂. By β ⩾ βmin for β ∈ I and Condition 3, it follows
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that with probability 1− o(n−1
3 ) over S2,S3, the map h 7→ R(h, β) is µ2-strongly convex, where

µ2(λ) := 2λβ2
mincmin.

Let C̃2(λ) =
4ρ22
µ2(λ)

. Let K2 denote the Lipschitz constant of the process Wβ ; recall that conditional
on S2,S3, K2 ⩽ K2,λ deterministically on the event C1 ⩽ C1,max by Lemma H.4. By the version of
Lemma G.1 given in Remark G.2, conditional on S2, S3, if h 7→ R(h, β) is µ2(λ)-strongly convex,
and if C1 ⩽ C1,max, then for sufficiently large n1, with probability at least 1− δ

8 , we have

Term (II) ⩽

√
16C̃2(λ)K2,λ

(δ/8)n1
=

A2√
λn1

, (17)

where we define A2 =

√
128Ĉ2a2

δ and Ĉ2 =
4ρ22

2β2
mincmin

. Unconditioning on S2,S3, since R(h, β)
is µ2(λ)-strongly convex with probability tending to unity by the above analysis, and since by
Condition 3 we have C1 ⩽ C1,max with probability tending to unity, we deduce that for sufficiently
large n1, n2, n3, with probability at least 1− δ

4 , (17) still holds.

Term (III): We work conditional on S2,S3. Since h̃ from (14) lies inHB , we may use the bound in
Equation (16) to obtain supx∈X |ℓα(h̃, S)| ⩽ (1− α)(BCΦ + 1). Thus by Hoeffding’s inequality
[21], with probability at least 1− δ

4 we have

(L̂− L̃)(h̃, β̃) = (Ê1 − E1)[ℓα(h̃, S)] ⩽
(1− α)(BCΦ + 1)

√
1
2 log

2
δ/4

√
n1

.

Thus we have Term (III) ⩽ A3√
n1

, where we define A3 = (1− α)(BCΦ + 1)
√

1
2 log

8
δ .

Term (IV): Note that we may write

(L̃− L)(h∗, β∗) = (Ê2 − E2)[λ(β
∗h∗)2] + (Ê3 − E3)[−2λβ∗h∗].

Since ∥h∗∥ ⩽ B by h∗ ∈ HB and since Condition 1 holds, we may apply Lemma N.4 to deduce that
supx∈X |h∗(x)| ⩽ BCΦ. Consequently, for β ∈ I, we have the uniform bound supx∈X |βh∗(x)| ⩽
βmaxBCΦ. By Hoeffding’s inequality [21], with probability at least 1− δ

8 , we have

|(Ê2 − E2)[λ(β
∗h∗)2]| ⩽

λ(βmaxBCΦ)
2
√

1
2 log

2
δ/8

√
n2

.

By another application of Hoeffding’s inequality, with probability at least 1− δ
8 , we have

|(Ê3 − E3)[−2λβ∗h∗]| ⩽
4λ(βmaxBCΦ)

√
1
2 log

2
δ/8

√
n3

.

Summing, with probability at least 1− δ we have the bound

(L̃− L)(h∗, β∗) ⩽
λ(βmaxBCΦ)

2
√

1
2 log

16
δ

√
n2

+
4λ(βmaxBCΦ)

√
1
2 log

16
δ

√
n3

.

Using the inequality a+ b ⩽
√
2
√
a2 + b2 for all a, b ∈ R, we deduce Term (IV) ⩽ A4λ

√
1
n2

+ 1
n3

,
where we define

A4 =
√
2(βmaxBCΦ)

√
1

2
log

16

δ
max {βmaxBCΦ, 4} .

Returning to the analysis of (15), and summing all four terms while defining A5 = A1 +A4, with
probability at least 1− δ we obtain a generalization error bound of

L(ĥ, β̂)− L(h∗, β∗) ⩽ A5λ

√
1

n2
+

1

n3
+A3

1
√
n1

+A2
1√
λ

1
√
n1
.

The result follows by taking c = A5, c′ = A3, and c′′ = A2.
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K Proof of Theorem 4.3

We use the following result to convert the generalization error bound in Theorem 4.2 to a coverage
lower bound.

Lemma K.1 (Bounded suboptimality implies bounded gradient for smooth functions). Let f :

Rd′ → R, for some positive d′. Suppose x∗ is a global minimizer of f . Suppose x′ is such that
f(x′) ⩽ f(x∗) + ε. Suppose h ∈ Rd is such that the map g : R → R given by t 7→ f(x′ + th) is
L-smooth, i.e. |g′′(h)| is uniformly bounded by L. Then

|f ′(x′;h)| = |∇f(x′)⊤h| ⩽
√
2Lε∥h∥2.

Proof. Assume there exists h and δ > 0 with f ′(x′;h) > δ∥h∥. Setting y = x′ − th,

f(x′ − th) ⩽ f(x′)− tf ′(x′;h) + L
2 t

2∥h∥2.

Set t = δ/(L∥h∥) to obtain

f(x′ − th) ⩽ f(x′)− δ2

L + δ2

2L = f(x′)− δ2

2L .

Since f(x′) ⩽ f(x∗) + ε, we have f(x′ − th) ⩽ f(x∗) + ε− δ2

2L . If δ >
√
2Lε, then f(x′ − th) <

f(x∗), a contradiction.

A similar argument with f ′(x′;h) < −δ∥h∥ and y = x′ + th yields the same contradiction. Hence
−
√
2Lε∥h∥ ⩽ f ′(x′;h) ⩽

√
2Lε∥h∥.

By Condition 1 and Condition 5, we may apply Lemma N.5 to deduce that the Hessian of our
population risk L from (LR-QR) in the basis {ϕ1, . . . , ϕd} is the block matrix

∇2L(h, β) =

[
E1[ΦΦ

⊤(fS|X(h) + 2λβ2)] E1[2λΦ
⊤(2βh− r)]

E1[2λΦ(2βh− r)] E1[2λh
2]

]
.

Thus by β ⩽ βmax, ∥h∥ ⩽ B for h ∈ HB , Condition 5, and Jensen’s inequality, we have the uniform
bounds

sup
h∈HB ,β∈R

|∂2βL(h, β)| ⩽ 2λE1[h
2] ⩽ 2λB2λmax(Σ) =: ν1

and

sup
h∈H,β∈I

∥∇2
hL(h, β)∥2 = ∥E1[ΦΦ

⊤(fS|X(h) + 2λβ2)]∥2 ⩽ (Cf + 2λβ2
max)λmax(Σ) =: ν2.

By Lemma L.3 and Lemma L.4, a global minimizer of the objective in Equation (LR-QR) exists, and
since βmin ⩽ βlower, βmax ⩾ βupper, and B ⩾ Bupper, any such minimizer lies in the interior ofHB×I .
Thus we may apply Lemma K.1 to the objective function L. We utilize two directional derivatives
in the space H× R. The first is in the direction 0H × 1, the unit vector in the β coordinate. Since
(ĥ, β̂) ∈ HB × I, the magnitude of the second derivative of L along this direction is bounded by ν1.

The second is in the direction of the vector rB×0, where rB the projection of r onto the closed convex
setHB in the Hilbert space induced by the inner product ⟨f, g⟩ = E1[fg]. Since (ĥ, β̂) ∈ HB × I,
the magnitude of the second derivative of L along this direction is bounded by ν2.

Given ĥ, let Ĉover(X) := P
[
S ⩽ ĥ(X)|X

]
− (1 − α). Now, on the event E that L(ĥ, β̂) −

L(h∗, β∗) ⩽ Egen, we apply Lemma K.1 with f being (γ, β) 7→ L(hγ , β), x∗ being (h∗, β∗), x′

being (ĥ, β̂), ε = Egen, and the directions specified above, with their respective smoothness parameters
derived above. Using the formulas for ∇L from Lemma N.5 and the bound ∥rB∥ ⩽ B, we obtain
that on the event E,

|2λE1[ĥ(β̂ĥ− r)]| ⩽ E1, |E1[rBĈover] + λE1[2βrB(β̂ĥ− r)]| ⩽ E2,

where E1 =
√

2ν1Egen, E2 =
√
2B2ν2Egen.
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For any h and β, we may write

E1[rBĈover] = (E1[rBĈover] + λE1[2βrB(βh− r)])
− λE1[2β(βh)(βh− r)]− λE1[2β(rB − βh)(βh− r)].

Evaluating at (ĥ, β̂), the first term is at most E2 in magnitude, the second term is at most β̂2E1 in
magnitude, and the third term equals 2β̂λE1[(rB − β̂ĥ)2]. We deduce

E1[rBĈover] ⩾ 2β̂λE1[(rB − β̂ĥ)2]− β̂2E1 − E2.

Since Ĉover ∈ [−(1− α), α],

|E1[rĈover]− E1[rBĈover]| ⩽ (1− α)E1[|r − rB |].
We deduce that

E1[rĈover] ⩾ 2β̂λE1[(rB − β̂ĥ)2]− β̂2E1 − E2 − (1− α)E1[|r − rB |].

We now bound the quantity β̂2E1 + E2. First, since
√
a+ b ⩽

√
a+
√
b for all a, b ⩾ 0, Theorem 4.2

implies that √
Egen ⩽ A

1/2
5 λ1/2

(
1

n2
+

1

n3

)1/4

+
A

1/2
3

n
1/4
1

+A
1/2
2

1

λ1/4
1

n
1/4
1

.

We may write E1 =
√
2ν1Egen =

√
4B2λmax(Σ) · λ1/2

√
Egen, so that for β̂ ∈ I we have

β̂2E1 ⩽ β2
max

√
4B2λmax(Σ) · λ1/2

√
Egen =: A6λ

1/2
√
Egen.

Using the inequality
√
a+ b ⩽

√
a+
√
b for all a, b ⩾ 0, we may bound

E2 =
√
2B2ν2Egen ⩽

√
4B2β2

maxλmax(Σ) · λ1/2
√
Egen +

√
2B2Cfλmax(Σ) ·

√
Egen

=: A7λ
1/2
√
Egen +A8

√
Egen,

Thus

β̂2E1 + E2 ⩽ A6λ
1/2
√
Egen +A7λ

1/2
√
Egen +A8

√
Egen

=: A9λ
1/2
√
Egen +A8

√
Egen.

Plugging in our bound on
√
Egen and grouping terms according to the power of λ, we deduce that

β̂2E1 + E2 ⩽ Ecov, where Ecov equals

A10

(
1

n2
+

1

n3

)1/4

λ+A11

(
1

n
1/4
1

+

(
1

n2
+

1

n3

)1/4
)
λ1/2 +A12

λ1/4

n
1/4
1

+
A13

n
1/4
1

+A14
λ−1/4

n
1/4
1

and where A10, . . . , A14 are the positive constants given in Appendix F. It follows that on the event
E,

E1[rĈover] ⩾ (1− α) + 2β̂λE1[(rB − β̂ĥ)2]− Ecov − (1− α)E1[|r − rB |].
By Theorem 4.2, E occurs with probability 1 − δ for sufficiently large n1, n2, n3, and we may
conclude.

L Unconstrained existence and boundedness

In this section, we prove apriori existence and boundedness of unconstrained global minimizers of
the population objective Equation (LR-QR). We write (h∗λ, β

∗
λ) for a minimizer of the unconstrained

objective in Equation (LR-QR) with regularization strength λ ⩾ 0.

In Lemma L.1, we show that under Condition 10, we may eliminate β from Equation (LR-QR), so
that Equation (LR-QR) is equivalent to solving the following unconstrained optimization problem
over h:

min
h∈H\{0}

E1[ℓα(h, S)]− λ
E1[rh]

2

E1[h2]
. (18)
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Lemma L.1. Under Condition 10, for λ ⩾ 0, given any minimizer (h∗λ, β
∗
λ) of the objective in

Equation (LR-QR) with regularization λ, h∗λ is a minimizer of the objective in Equation (18) with
regularization λ. Conversely, if h is a minimizer of the objective in Equation (18) with regularization
λ, then there exists a minimizer (h∗λ, β

∗
λ) of the objective in Equation (LR-QR) with regularization λ

such that h∗λ = h.

Proof. By Condition 10, the minimization in Equation (LR-QR) with regularization λ can be taken
overH \ {0}. Further, since the projection of r onto span{h} := {ch : c ∈ R}, for h ̸= 0 is given by
E1[rh]
E1[h2]h, we may explicitly minimize the objective in Equation (LR-QR) over β via

ℓα(h, S) + λmin
β∈R

E1[(βh− r)2] = ℓα(h, S) + λE1

[(
E1[rh]

E1[h2]
h− r

)2
]

= ℓα(h, S) + λ

(
E1[r

2]− E1

[(
E1[rh]

E1[h2]
h

)2
])

= ℓα(h, S) + λ

(
E1[r

2]− E1[rh]
2

E1[h2]

)
,

where in the second step we applied the Pythagorean theorem. Since the term λE1[r
2] does not

depend on the optimization variable h, we may drop it from the objective, which yields the objective
in Equation (18). It follows that h is a minimizer of the objective in Equation (18) iff h = h∗λ for
some minimizer (h∗λ, β

∗
λ) of the objective of Equation (LR-QR).

Lemma L.2. Let rH denote the projection of r onto H in the Hilbert space induced by the inner
product ⟨f, g⟩ = E1[fg]. Then under Condition 5 and Condition 9, there exists θ∗ > 0 such that
E1[S]− α−1E1[ℓα(θ

∗rH, S)] > 0.

Proof. Define g : R→ R by g(θ) = E1[S]− α−1E1[ℓα(θ
∗rH, S)]. Clearly g(0) = 0. Note that by

Condition 5, PS|X [S = 0] = 0, so that

g′(0) = −α−1E1[rH(PS|X [S ⩽ 0]− (1− α))] = α−1(1− α)E1[rH].

By Condition 9, E1[rH] = E1[rH · 1] = E1[r · 1] = E1[r] = 1, so g′(0) > 0. Thus there exists
θ∗ > 0 such that g(θ∗) > g(0) = 0, as claimed.

Lemma L.3 (Existence of unconstrained minimizers). Under Condition 2, Condition 5, Condition 6,
Condition 7, Condition 8, Condition 9, and Condition 10, for each λ ⩾ 0, there exists a global
minimizer (h∗λ, β

∗
λ) of the objective in Equation (LR-QR).

Proof. Fix λ ⩾ 0. By Condition 10 and Lemma L.1, it suffices to show that there exists a global
minimizer of the objective in Equation (18). Let G(h) denote the objective of Equation (18). Define
the function h̃ = θ∗rH ∈ H \ {0}, where θ∗ is chosen to satisfy Lemma L.2. With cindep from
Condition 6, define B̃(λ) := 2c−1

indep(1 + α−1E1[ℓα(h̃, S)]) > 0 and

b̃(λ) :=
1

2
λmax(Σ)

−1/2(E1[S]− α−1E1[ℓα(h̃, S)]) > 0.

We show that if ∥h∥ ⩾ B̃(λ) or ∥h∥ ⩽ b̃(λ), then G(h) > G(h̃). Consequently, the minimization in
Equation (18) can be taken over the compact set {⟨γ,Φ⟩ : b̃(λ) ⩽ ∥γ∥2 ⩽ B̃(λ)} ⊆ H, so that by
continuity of G onH \ {0}, a global minimizer h∗λ exists.

To see this, first suppose ∥h∥ ⩾ B̃(λ). Then writing h = ⟨γ,Φ⟩ for γ ∈ Rd and applying Lemma N.1,
the triangle inequality, and S ∈ [0, 1],

E1[ℓα(h, S)] ⩾ αE1[|h− S|] ⩾ α(E1[|h|]− E1[|S|]) ⩾ α(E1[|⟨γ,Φ⟩|]− 1). (19)

By Condition 6 and our assumption that ∥h∥ ⩾ B̃(λ), this implies that E1[ℓα(h, S)] ⩾
α(B̃(λ)cindep − 1). Further, by the Cauchy-Schwarz inequality,

E1[rh]
2

E1[h2]
⩽ sup
h̃′∈H\{0}

E1[rh̃
′]2

E1[(h̃′)2]
⩽ E1[r

2
H].
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Thus by Lemma N.1 and Condition 8, G(h) ⩾ α(B̃(λ)cindep−1)−λE1[r
2
H]. To prove the inequality

G(h) > G(h̃), it suffices to show that

α(B̃(λ)cindep − 1)− λE1[r
2
H] > E1[ℓα(h̃, S)]− λ

E1[rh̃]
2

E1[h̃2]
.

Indeed, since h̃ is a scalar multiple of rH, we have E1[r
2
H] = E1[rh̃]

2

E1[h̃2]
, so the inequality reduces to

α(B̃(λ)cindep − 1) > E1[ℓα(h̃, S)]. This holds by our choice of B̃(λ), which finishes the argument
in this case.

Next, suppose ∥h∥ ⩽ b̃(λ). By Lemma N.1, the triangle inequality, and S ∈ [0, 1],

E1[ℓα(h, S)] ⩾ αE1[|h− S|] ⩾ α(E1[S]− E1[|h|]). (20)

As above, the Cauchy-Schwarz inequality implies the bound E1[rh]
2

E1[h2] ⩽ E1[r
2
H]. We deduce that

G(h) ⩾ α(E1[S]− E1[|h|])− λE1[r
2
H].

Writing h = ⟨γ,Φ⟩ for γ ∈ Rd, our assumption that ∥h∥ ⩽ b̃(λ) implies that

E1[|h|] ⩽ E1[|h|2]1/2 = E1[γ
⊤ΦΦ⊤γ]1/2 ⩽ b̃(λ)λmax(Σ)

1/2,

which when plugged into our lower bound on G(h) yields

G(h) ⩾ α(E1[S]− b̃(λ)λmax(Σ)
1/2)− λE1[r

2
H].

To prove the inequality G(h) > G(h̃), it suffices to show that

α(E1[S]− b̃(λ)λmax(Σ)
1/2)− λE1[r

2
H] > E1[ℓα(h̃, S)]− λ

E1[rh̃]
2

E1[h̃2]
.

As above, since h̃ is a scalar multiple of rH, we have E1[r
2
H] = E1[rh̃]

2

E1[h̃2]
, so the inequality reduces to

α(E1[S]− b̃(λ)λmax(Σ)
1/2) > E1[ℓα(h̃, S)].

This holds for our choice of b̃(λ), finishing the proof.

Lemma L.4 (Bounds on unconstrained minimizers). Under the conditions used in Lemma L.3,
for all λ > 0, for any minimizer (h∗λ, β

∗
λ) of the objective in Equation (LR-QR), we have that

∥h∗λ∥ ∈ (Blower, Bupper) and β∗
λ ∈ (βlower, βupper), where

Blower =
1

2
λmax(Σ)

−1/2(E1[S]− α−1E1[ℓα(θ
∗rH, S)]) > 0, (21)

Bupper = 2c−1
indep(α

−1E1[ℓα(θ
∗rH, S)] + 1), βlower =

calign

Bupperλmax(Σ)1/2
> 0,

βupper =
E1[r

2]1/2

Blowerλmin(Σ)1/2
,

and where θ∗ > 0 is as in Lemma L.2 and rH denotes the projection of r ontoH in the Hilbert space
induced by the inner product ⟨f, g⟩ = E1[fg].

Proof. In order to derive our bounds, we consider the reparametrized optimization problem

min
h∈H\{0}

ξE1[ℓα(h, S)]−
E1[rh]

2

E1[h2]
(22)

for ξ ⩾ 0. We claim that for ξ > 0, any minimizer of the objective in Equation (22) is of the form
h∗1/ξ. To see this, note that for ξ > 0, the objective of Equation (18) with regularization λ = 1/ξ

can be obtained by scaling the objective of Equation (22) by the positive factor 1/ξ. Next, by
Condition 10, we may apply Lemma L.1 to deduce that h ∈ H \ {0} is a minimizer of the objective
in Equation (18) with regularization λ = 1/ξ iff h = h∗1/ξ.
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In particular, by Lemma L.3, for all ξ > 0, there exists a global minimizer of Equation (22) with
regularization ξ. In the case that ξ = 0, it is clear that any minimizer h∗∞ of the objective in
Equation (22) with regularization ξ = 0 has the form h∗∞ = θrH for some scalar θ > 0.

Since there exists a minimizer of the objective in Equation (22) for all regularizations ξ in the
interval [0,∞), we may apply Lemma M.1 to deduce that for all ξ > 0 we have E1[ℓα(h

∗
1/ξ, S)] ⩽

E1[ℓα(h
∗
∞, S)].

We prove lower and upper bounds on ∥h∗1/ξ∥ for all ξ > 0. We begin with the lower bound.

Lower bound: By (20), we have E1[ℓα(h
∗
1/ξ, S)] ⩾ α(E1[S]− E1[|h∗1/ξ|]). Rearranging, we obtain

the lower bound
E1[|h∗1/ξ|] ⩾ E1[S]− α−1E1[ℓα(h

∗
∞, S)].

By Lemma L.2, there exists θ∗ > 0 such that E1[S]−α−1E1[ℓα(θ
∗rH, S)] > 0. Setting h∗∞ = θ∗rH

and plugging in the expression for Blower given in (21), our lower bound becomes E1[|h∗1/ξ|] >
λmax(Σ)

1/2Blower. We now convert this L1 norm bound to an L2 norm bound as follows. Write
h∗1/ξ = ⟨γ

∗
1/ξ,Φ⟩ for γ∗1/ξ ∈ Rd. By the Cauchy-Schwarz inequality, we obtain the upper bound

E1[|h∗1/ξ|] ⩽ E1[|h∗1/ξ|
2]1/2 = E1[(γ

∗
1/ξ)

⊤ΦΦ⊤γ∗1/ξ]
1/2 ⩽ λmax(Σ)

1/2∥γ∗1/ξ∥2.

Combining this with the lower bound E1[|h∗1/ξ|] > λmax(Σ)
1/2Blower, we deduce that ∥h∗1/ξ∥ =

∥γ∗1/ξ∥2 > Blower, as claimed.

Upper bound: We prove the upper bound in a similar manner. By the first two steps in (19), and using
S ∈ [0, 1], we have

E1[ℓα(h
∗
1/ξ, S)] ⩾ α(E1[|h∗1/ξ|]− E1[|S|]) ⩾ α(E1[|h∗1/ξ|]− 1).

Rearranging, we obtain the upper bound E1[|h∗1/ξ|] ⩽ α−1E1[ℓα(h
∗
∞, S)] + 1. Write h∗1/ξ =

⟨γ∗1/ξ,Φ⟩ for γ∗1/ξ ∈ Rd. Since we have already established that ∥h∗1/ξ∥ > Blower > 0, we know that
γ∗1/ξ ̸= 0. Thus we may write

E1[|h∗1/ξ|] = E1[|⟨γ∗1/ξ,Φ⟩|] = ∥γ
∗
1/ξ∥2E1

[∣∣∣∣∣
〈

γ∗1/ξ

∥γ∗1/ξ∥2
,Φ

〉∣∣∣∣∣
]
.

By Condition 6, this is at least ∥γ∗1/ξ∥2cindep. Combining these upper and lower bounds on E1[|h∗1/ξ|],
we obtain ∥γ∗1/ξ∥2cindep ⩽ α−1E1[ℓα(h

∗
∞, S)] + 1. Isolating ∥γ∗1/ξ∥2, we have

∥h∗1/ξ∥ = ∥γ
∗
1/ξ∥2 ⩽ c−1

indep(α
−1E1[ℓα(h

∗
∞, S)] + 1) < Bupper,

as claimed.

Having established 0 < Blower < infλ>0 ∥h∗λ∥ ⩽ supλ>0 ∥h∗λ∥ < Bupper < ∞, we turn to upper
and lower bounds on β∗

λ. As shown in the proof of Lemma L.1, if (h∗λ, β
∗
λ) is a minimizer of

the objective in Equation (LR-QR) with regularization λ, then β∗
λ =

E1[rh
∗
λ]

E1[|h∗
λ|2]

. By Condition 7,
E1[rh

∗
0 ]

E1[|h∗
0 |2]1/2

⩾ calign > 0 for some minimizer (h∗0, β
∗
0) of the objective in Equation (LR-QR) with

regularization 0. By Condition 10 and Lemma L.1, h is a minimizer of the objective in Equation (18)
with regularization λ ⩾ 0 iff h = h∗λ for some minimizer (h∗λ, β

∗
λ) of the objective in Equation (LR-

QR). Thus by Lemma L.3, for all λ ⩾ 0, there exists a global minimizer of Equation (18), and we may
apply Lemma M.1 to Equation (18) to deduce that for any λ ⩾ 0 we have E1[rh

∗
λ]

E1[|h∗
λ|2]1/2

⩾ calign > 0.
Consequently, by our bounds on h∗λ, Condition 8, and the Cauchy-Schwarz inequality, if we write
h∗λ = ⟨γ∗λ,Φ⟩ for γ∗λ ∈ Rd, then we have

β∗
λ ⩾

calign

E1[|h∗λ|2]1/2
=

calign

E1[(γ∗λ)
⊤ΦΦ⊤γ∗λ]

1/2
>

calign

Bupperλmax(Σ)1/2
=: βlower

and

β∗
λ ⩽

E1[r
2]1/2

E1[|h∗λ|2]1/2
<

E1[r
2]1/2

Blowerλmin(Σ)1/2
=: βupper,

completing the proof.
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M Monotonicity

Lemma M.1. For some set X and f, g : X → R, let x(c) = argminx∈X (f(x) + cg(x)), where
f, g are such that for some interval I ⊂ R, the minimum is attained for all c ∈ I. Then G : I → R,
G : c 7→ g(x(c)) is non-increasing in c.

Proof. Let c1, c2 ∈ I, c1 < c2. At c = c1, the minimizer x(c1) satisfies:

f(x(c1)) + c1g(x(c1)) ≤ f(x(c2)) + c1g(x(c2)).

At c = c2, the minimizer x(c2) satisfies:

f(x(c2)) + c2g(x(c2)) ≤ f(x(c1)) + c2g(x(c1)).

Adding the two inequalities, we find[
f(x(c1)) + c1g(x(c1))

]
+
[
f(x(c2)) + c2g(x(c2))

]
≤
[
f(x(c1)) + c2g(x(c1))

]
+
[
f(x(c2)) + c1g(x(c2))

]
.

Subtracting the common terms f(x(c1)) + f(x(c2)) leads to

c1g(x(c1)) + c2g(x(c2)) ≤ c2g(x(c1)) + c1g(x(c2)).

Rearranging, and factoring out c1 and c2, we find

c1
[
g(x(c1))− g(x(c2))

]
− c2

[
g(x(c1))− g(x(c2))

]
≤ 0.

Thus, (c1 − c2)
[
g(x(c1)) − g(x(c2))

]
≤ 0. Since c2 − c1 > 0, the inequality implies g(x(c1)) ≥

g(x(c2)), as desired.

N Helper lemmas

Lemma N.1. If α ⩽ 0.5, then α|c− s| ⩽ ℓα(c, s) ⩽ (1− α)|c− s| for all c, s ∈ R.

Proof. If s ⩾ c, then ℓα(c, s) = (1 − α)(s − c). Since s − c ⩾ 0 and α ⩽ 1 − α, we have
α(s− c) ⩽ ℓα(c, s) ⩽ (1−α)(s− c), which implies α|c− s| ⩽ ℓα(c, s) ⩽ (1−α)|c− s|. If s < c,
then ℓα(c, s) = α(c−s). Since c−s > 0 and α ⩽ 1−α, we have α(c−s) ⩽ ℓα(c, s) ⩽ (1−α)(c−s),
which implies α|c− s| ⩽ ℓα(c, s) ⩽ (1− α)|c− s|.

Lemma N.2. If α ⩽ 0.5, then the map R→ R given by c 7→ ℓα(c, s) is (1− α)-Lipschitz.

Proof. If s ⩽ c1 ⩽ c2, we have 0 ⩽ ℓα(c2, s) − ℓα(c1, s) = α(c2 − c1), which by α ⩽ 0.5 is
at most (1 − α)(c2 − c1). Hence |ℓα(c2, s) − ℓα(c1, s)| ⩽ (1 − α)|c2 − c1|. If c1 ⩽ s ⩽ c2 and
ℓα(c2, s) ⩾ ℓα(c1, s), then we have

0 ⩽ ℓα(c2, s)− ℓα(c1, s) = α(c2 − s)− (1− α)(s− c1) ⩽ α(c2 − s) + α(s− c1) = α(c2 − c1),

which by α ⩽ 0.5 implies |ℓα(c2, s) − ℓα(c1, s)| ⩽ (1 − α)|c2 − c1|. If c1 ⩽ s ⩽ c2 and
ℓα(c2, s) ⩽ ℓα(c1, s), then

0 ⩽ ℓα(c1, s)− ℓα(c2, s) = (1− α)(s− c1)− α(c2 − s)
⩽ (1− α)(s− c1) + (1− α)(c2 − s) = (1− α)(c2 − c1),

hence |ℓα(c2, s)− ℓα(c1, s)| ⩽ (1− α)|c2 − c1|. Finally, if c1 ⩽ c2 ⩽ s, we have 0 ⩽ ℓα(c1, s)−
ℓα(c2, s) = (1− α)(c2 − c1), hence |ℓα(c2, s)− ℓα(c1, s)| ⩽ (1− α)|c2 − c1|.

Lemma N.3. The mapH → R given by h 7→ ℓα(h(x), s) is convex for all x ∈ X and s ∈ R.

Proof. Write h(x) = ⟨γ,Φ⟩ for γ ∈ Rd. It suffices to show that the mapping Rd → R given by
γ 7→ ℓα(γ

⊤Φ(x), s) is convex. But this map is the composition of the linear function Rd → R given
by γ 7→ γ⊤Φ(x) and the convex function R→ R given by c 7→ ℓα(c, s), hence it is convex.
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Lemma N.4. Under Condition 1, if h ∈ H, then supx∈X |h(x)| ⩽ CΦ∥h∥, where we use the norm
given by ∥h∥ = ∥γ∥2 for h = ⟨γ,Φ⟩. In particular, if h ∈ HB , then supx∈X |h(x)| ⩽ BCΦ.

Proof. Writing h = ⟨γ,Φ⟩ for γ ∈ Rd, we have supx∈X |h(x)| = supx∈X |⟨γ,Φ(x)⟩| ⩽
supx∈X ∥γ∥2∥Φ(x)∥2 ⩽ CΦ∥h∥, where in the second step we applied the Cauchy-Schwarz in-
equality.

Lemma N.5. Consider the function φ : Rd → R given by φ(γ) = E1[ℓα(hγ(X), S)], where
h := hγ : X → R is given by h(x) = ⟨γ,Φ(x)⟩ for all x ∈ X . Then under Condition 1 and
Condition 5, φ is twice-differentiable, with gradient and Hessian given by

∇γφ(γ) = E1[(PS|X [h(X) > S]− (1− α))Φ(X)], ∇2
γφ(γ) = E1[fS|X(h(X))Φ(X)Φ(X)⊤].

Consequently, given γ̃ ∈ Rd, defining g : X → R as g(x) = ⟨γ̃,Φ(x)⟩ for all x ∈ X , the
directional derivative of φ : H → R in the direction g is given by ⟨γ̃,∇γφ(γ)⟩ = E1[(PS|X [h(X) >
S]− (1− α))g(X)].

Proof. For each x ∈ X , define the function η(·;x) : R → R given, for all u, by η(u; s) =
ES|X=x[ℓα(u, S)]. For each s ∈ R, define the function χ(·; s) : R→ R, where for all u, χ(u; s) =
α1[u > s]− (1− α)1[u ⩽ s].

By the definition of the pinball loss ℓα(·, ·), and since by Condition 5 the conditional density fS|X=x(·)
of S|X = x exists for all x ∈ X , the derivative of ℓα(u, S) with respect to u agrees with the random
variable χ(u;S) almost surely with respect to the distribution S|X = x. Also, note that for fixed u ∈
R, |χ(u;S)| is bounded by the constant (1− α). By the dominated convergence theorem, it follows
that u 7→ η(u;x) is differentiable, and that its derivative equals ∂

∂uη(u;x) = ES|X=x[χ(u;S)],
which, by the formula for χ(u;S), can be written as αPS|X=x[u > S] − (1 − α)PS|X=x[u ⩽ S].
Thus for all u ∈ R and x ∈ X , we may write ∂

∂uη(u;x) = PS|X=x[u > S] − (1 − α). Since
by Condition 5 the conditional density fS|X=x of the distribution S|X = x exists for all x ∈ X ,
it follows that the cdf u 7→ PS|X=x[u > S] is differentiable for all u ∈ R and all x ∈ X with
derivative given by u 7→ fS|X=x(u). Thus the map u 7→ ∂

∂uη(u;x) is differentiable for all x ∈ X
with derivative given by u 7→ fS|X=x(u). In particular, η(·;x) is twice-differentiable with second
derivative given by fS|X=x(·).

Next, for each x ∈ X , define the function ψ(·;x) : Rd → R given by ψ(γ;x) =
ES|X=x[ℓα(hγ(x), S)], where h = hγ = ⟨γ,Φ⟩. For each x ∈ X , let ev(·;x) : Rd 7→ R be
given by ev(γ;x) = hγ(x), where h = hγ = ⟨γ,Φ⟩. Then ψ(·;x) is given by the composition
η(·;x) ◦ ev(·;x). Since ev(γ;x) = ⟨γ,Φ(x)⟩, ev(·;x) is linear, it is smooth. Its gradient is given
by ∇γev(γ;x) = Φ(x) for all γ ∈ Rd, and its Hessian is zero. It follows that ψ(·;x) is twice-
differentiable. By the chain rule, the gradient of ψ(·;x) is given by

∇γψ(γ;x) =
∂

∂u
η(u;x)

∣∣∣∣
u=ev(γ;x)

· ∇γev(γ;x) = (PS|X=x[h(x) > S]− (1− α))Φ(x).

Since the map γ 7→ PS|X=x[h(x) > S]− (1− α) is given by the composition ∂
∂uη(·;x) ◦ ev(·;x),

we may again apply the chain rule to deduce that the Hessian of ψ(·;x) is given by

∇2
γψ(γ;x) =

∂2

∂u2
η(u;x)

∣∣∣∣
u=ev(γ;x)

· ∇γev(γ;x) · Φ(x)⊤ = fS|X=x(h(x))Φ(x)Φ(x)
⊤.

Returning to our original function φ, note that by the tower property, φ(γ) = E1[ψ(γ;X)]. Note that
∥∇γψ(γ;x)∥2 is at most

|PS|X=x[h(x) > S]− (1− α)|∥Φ(x)∥2 ⩽ (|PS|X=x[h(x) > S]|+ (1− α))∥Φ(x)∥2 ⩽ (2− α)CΦ,

where in the first step we used the triangle inequality, and in the second step we used the fact that
PS|X=x[h(x) > S] ⩽ 1 and Condition 1. Similarly, we may bound the Frobenius norm ∥ · ∥F of
∇2
γψ(γ;x) by

|fS|X=x(h(x))|∥Φ(x)Φ(x)⊤∥F ⩽ Cf∥Φ(x)∥22 ⩽ CfC
2
Φ,

33



where in the first step we used Condition 1, the identity ∥vv⊤∥F = ∥v∥22, and in the second step we
used Condition 5. Since the entries of∇γψ(·;x) and∇2

γψ(·;x) are bounded by constants, we may
apply the dominated convergence theorem to deduce that φ is twice-differentiable, with gradient
given by∇γφ(γ) = E1[∇γψ(γ;X)] and Hessian given by∇2

γφ(γ) = E1[∇2
γψ(γ;X)].

Finally, since the directional derivative of φ in the direction g is defined as ⟨γ̃,∇γφ(γ)⟩, we may
plug in our expression for the gradient to deduce

⟨γ̃,∇γφ(γ)⟩ = ⟨γ̃,E1[(PS|X [h(X) > S]− (1− α))Φ(X)]⟩
= E1[(PS|X [h(X) > S]− (1− α))⟨γ̃,Φ(X)⟩]
= E1[(PS|X [h(X) > S]− (1− α))g(X)].

The result follows.

O Unbounded scores

In this section, we comment on our assumption that S ∈ [0, 1] a.s. Given an arbitrary a.s. finite score
S, and given the sigmoid function g : R→ R given by g(x) = 1

1+e−x , the composition g(S) is a.s.
[0, 1]-valued. As the proof of Theorem 4.2 only requires boundedness, this allows one to obtain the
generalization bound for arbitrary score functions.

However, the proof of Theorem 4.3 places a boundedness assumption on the conditional density of
S|X = x in Condition 5, which precludes us from directly applying the transformation trick given
above. We claim that Condition 5 can be replaced with the following alternate condition:
Condition 11. (1) The conditional density fS|X=x exists for all x ∈ X ; (2) there exists a constant
Cf > 0 and a real k > 0 such that for all s ∈ (0, 1), we have

fS|X=x(s) ⩽ Cf (|s|−k + |1− s|−k),

uniformly in x ∈ X ; (3) the basis Φ obeys

sup
γ∈Sd−1

E1[⟨γ,Φ(X)⟩−k] <∞,

and (4) the quantity Bupper defined in Lemma L.4 obeys Bupper < C−1
Φ , where CΦ is defined in

Condition 1.

In other words, we can allow the conditional density of S|X = x to diverge at a polynomial rate
near s = 0 and s = 1, so long as Φ obeys a certain moment condition, and so long as apriori, the
population LR-QR objective can be restricted to a sufficiently small ball.

One can consider point (3) of Condition 11 as a slight strengthening of Condition 6, a quantitative
independence condition on the basis functions. Regarding point (4) of Condition 11, note that by
inspecting the definition of Bupper, we see that an upper bound on Bupper imposes (a) a lower bound on
calign in Condition 7, as well as (b) an upper bound on E1[ℓα(θ

⋆rH , S)], which states that optimally
scaling the projection rH can yield a threshold function with low pinball loss.

Now, we sketch how utilizing Condition 11 implies Theorem 4.3 for unbounded scores. In the original
proof, Condition 5 is used in order to control expressions of the form |E1[Φ(X)Φ(X)T fS|X(h(X))]|,
uniformly for γ ∈ Rd with 0 < Blower ⩽ ∥γ∥2 ⩽ Bupper, where h(X) = ⟨γ,Φ(X)⟩. By Condition 1
and Jensen’s inequality, this is bounded by E1[|fS|X(h(X))|], up to constants. By point (2) of
Condition 11, this in turn is bounded by E1[|h(X)|−k + |1− h(X)|−k], up to constants. By point
(3) of Condition 11 and the bounds 0 < Blower ⩽ ∥γ∥2 ⩽ Bupper, the first term E1[|h(X)|−k] is
uniformly bounded. Next, by the triangle inequality, the Cauchy-Schwarz inequality, Condition 1,
and point (4) of Condition 11, we have

|1− h(X)| ⩾ 1− |h(X)| ⩾ 1− CΦBupper > 0,

so we may uniformly bound the second term by

E1[|1− h(X)|−k] ⩽ (1− CΦBupper)
−k.

Putting these bounds together, we see that Condition 11 provides the desired uniform control.
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Finally, if we utilize Condition 11 instead of Condition 5, then the sigmoid transformation allows us
to generalize Theorem 4.2 beyond bounded scores. Note that for g, the conditional density fg(S)|X=x

of the transformed score g(S) obeys

fg(S)|X=x(t) =
1

t(1− t)
fS|X=x

(
log

t

1− t

)
for all t ∈ (0, 1). Consequently, if the original density fS|X=x(s) is supported on R with
polynomially-decaying tails as s → ±∞, then the transformed density diverges like ∼ (t(1 −
t))−(1+o(1)) as t→ 0, 1, which satisfies Condition 11 with k = 1 + ε for any ε > 0.
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• We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.
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