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ABSTRACT

Graph Neural Networks (GNNs) with numerical node features and graph structure
as inputs have demonstrated superior performance on various semi-supervised
learning tasks with graph data. However, the numerical node features utilized
by GNNs are commonly extracted from raw data which is of text or tabular (nu-
meric/categorical) type in most real-world applications. The best models for such
data types in most standard supervised learning settings with IID (non-graph) data
are not simple neural network layers and thus are not easily incorporated into
a GNN. Here we propose a robust stacking framework that fuses graph-aware
propagation with arbitrary models intended for IID data, which are ensembled
and stacked in multiple layers. Our layer-wise framework leverages bagging and
stacking strategies to enjoy strong generalization, in a manner which effectively
mitigates label leakage and overfitting. Across a variety of graph datasets with tab-
ular/text node features, our method achieves comparable or superior performance
relative to both tabular/text and graph neural network models, as well as existing
state-of-the-art hybrid strategies that combine the two.

1 INTRODUCTION

Graph datasets comprise nodes of various data types and modalities linked by edges that encapsulate
non-IID conditional dependencies between them. While it is often assumed that graph neural networks
(GNN) (Kipf & Welling, 2016; Veličković et al., 2017) are preferable for handling such data relative
to models originally designed for IID instances, GNNs are nonetheless subject to various limitations.
In particular, the best architecture may be data-set specific and require appropriately setting many
attendant structural hyperparameters, e.g., note the complex assortment of GNN architectures that
populate the top of the Open Graph Benchmark (OGB) leaderboard (Hu et al., 2020). Moreover, most
GNNs implicitly assume that node features are numerical, and may struggle to remain competitive
with more complex text, tabular, or composite alternatives.

In fact, with richer node feature sets it has even been observed that models tailored to IID data (which
in our setting simply operate on individual node features as though they were independent of the
others) can at times outperform GNNs if they are combined with simple graph propagation operations
to account for the graph structure (Huang et al., 2020; Chen et al., 2021). Moreover, for graph data
with text features, Chien et al. (2021) has demonstrated that leveraging a BERT Transformer in
addition to a GNN can greatly improve performance. And beyond these considerations, real-world
applications of ML typically involve more than just a single model, GNN or otherwise. Instead they
usually require an ML pipeline composed of data preprocessing and training/tuning/aggregation of
many models to achieve the best results.

In this paper, we investigate how to adapt ML pipelines designed for supervised learning with IID
data (e.g., Transformers for text, gradient boosted decision trees or related for tabular data) to node
classification/regression tasks with graph-structured statistical dependencies between node features.
We focus on using k-fold bagging (Breiman, 1996), i.e. cross-validation, to avoid label leakage issues,
with stack ensembling methods for maximal flexibility (Wolpert, 1992; Van der Laan et al., 2007).
These techniques are particularly effective for achieving high accuracy across diverse IID datasets,
and are utilized in many popular AutoML frameworks (Erickson et al., 2020; LeDell & Poirier, 2020;
Feurer et al., 2015), but have largely been ignored within the context of graph data.
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Within this context, our goal is to design a single architecture that integrates graph propagation or
message passing steps and stacked ensembles of arbitrary base models to flexibly accommodate
diverse node/instance types within a unified framework. In doing so, our contributions are as follows:

• We propose a framework of stack ensembling with graph propagation called BestowGNN for
Bagged, Ensembled, Stacked Training Of Well-balanced GNNs (see Figure 1) that can bestow
arbitrary (non-graph) base models intended for IID data with the capability of producing highly
accurate node predictions in the graph (i.e., non-IID) setting.

• Using only a single, unified architecture, our proposed methodology can match or outperform
bespoke dataset-specific models that top competitive leaderboards for popular node classifica-
tion/regression tasks (e.g., on OGB and elsewhere completely different network architectures
typically dominate the top positions for different datasets and data types).

• Label leakage is an unavoidable issue for many layer-wise training strategies (SAGN (Sun & Wu,
2021) and GAMLP (Zhang et al., 2021)). To address this potential shortcoming, we formalize how
our bagging and stacking framework can effectively mitigate the label leakage issue within the
graph setting using analytical tools from differential privacy. This is the first work establishing that
bagging with graph-based predictors can be useful for ameliorating label leakage.

2 RELATED WORK

2.1 FROM SCALABILITY TO LAYER-WISE TRAINING

Currently, GNN training suffers from high computational cost with the number of layers growing.
To improve the scalability of GNNs, graph sampling scheme GraphSAGE (Hamilton et al., 2017) is
adopted by uniformly sampling a fixed number of neighbours for a batch of nodes. Cluster-GCN
(Chiang et al., 2019) uses graph clustering algorithms to sample a block of nodes that form a dense
subgraph and runs SGD-based algorithms on these subgraphs. L2-GCN (You et al., 2020) proposes a
layer-wise training framework by disentangling feature aggregation and feature transformation to
reduce time and memory complexity.

SAGN (Sun & Wu, 2021) iteratively trains models in several stages by applying graph structure-
aware attention mechanisms on node features and also combines the self-training approach with label
propagation to further improve performance. GAMLP (Zhang et al., 2021) proposes two attention
mechanisms to explore the relation between features with different propagation steps. Both SAGN and
GAMLP achieve state-of-the-art performance on two large open graph benchmarks (ogbn-products
and ogbn-papers100M), demonstrating the high scalability and efficiency of layer-wise training
strategies. However, SAGN and GAMLP suffer from the risk of label leakage: label information is
included in the enhanced training set, and can cause performance degredation if the model extracts
and relies on these labels. SAGN empirically shows that enough propagation depth can effectively
alleviate label leakage, thus they only use label information at one fixed propagation step. Meanwhile,
GAMLP passes label information between propagation steps using residual connections. Wang et al.
(2021) further randomly masks nodes during every training epoch to mitigate label leakage issue.

2.2 GRAPH MODELS WITH MULTIFACETED NODE FEATURES

Traditional GNN models are mostly studied for graphs with homogeneous sparse node features.
Leading GNN models fail to achieve competitive results for heterogeneous features with tabular or
text node features (Ivanov & Prokhorenkova, 2021; Huang et al., 2020; Chen et al., 2021). To remedy
this, Ivanov & Prokhorenkova (2021) jointly train Gradient Boosted Decision Trees (GBDT) and
GNN in an end-to-end fashion, demonstrating a significant increase in performance on graph data
with tabular node features.

Chen et al. (2021) removes the need for a GNN altogether, proposing a generalized framework for
iterating boosting with parameter-free graph propagation steps that share node/sample information
across edges connecting related samples.

Correct and Smooth (C&S) (Huang et al., 2020) is a simple post-processing step that applies label
propagation to further incorporate graph information into the outputs of a learning algorithm. Chen
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et al. (2021) trains Gradient Boosted Decision Trees with label propagation incorporated into the
objective function, producing competitive results for graph data with tabular node features.

Because common GNNs take numerical node features as inputs, one must establish a way to extract
numerical embeddings from raw data such as text and images. For example, the embeddings of
ogbn-arxiv data are computed by running the skip-gram model (Mikolov et al., 2013). Chien et al.
(2021) proposes self-supervised learning to fully utilizing correlations between graph nodes, and
extracts the embedding of three open graph benchmark datasets (ogbn-arxiv, ogbn-products and ogbn-
papers100M). Chien et al. (2021) demonstrates the superior performance of these new embeddings
for the Open Graph Benchmark datasets. Lin et al. (2021) proposes BertGCN, which combines the
Bert model and transductive learning for text classification in an end-to-end fashion and achieves
superior performance on a range of text classification tasks.
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Figure 1: BestowGNN with a single base learner, 2
stacking layers, and k-fold bagging (repeated bagging
not depicted here). The stacking layer repeats the oper-
ations depicted between it and the input data.

Algorithm 1 BestowGNN Training Strategy

Input: Node features and labels (X,Y ) from
graph G with labeled (training) nodes L and
unlabeled (validation/test) nodes U , family of
models intended for IID dataM, L stacking
layers, n-repeated k-fold bagging, T propaga-
tion steps.
for l = 1 to L do {stacking}

for i = 1 to n do {repeated bagging}
Randomly split data into k chunks
{Xj ,Y j}kj=1
for j = 1 to k do

Train model m ∈M on {X−j ,Y −j}
Make predictions Ŷ j

m,i on OOF data
Xj

end for
end for
for m ∈M do

Get OOF predictions Ŷ m
L for labeled

nodes via (6)
Get predictions Ŷ m

U for unlabeled nodes
via (7)

end for
Concatenate all models’ predictions:
F (0) ≜ [{Ŷ m

L }m∈M, {Ŷ m
U }m∈M]

for t = 0 to T do {propagation}
Compute F (t) using (4)

end for
X ← concatenate (X, {F (0), ...,F (T )})

end for
Output: weighted prediction

∑
m∈M

αmŶ m
U

with {αm} fitted via Ensemble Selection

3 BACKGROUND

Consider an undirected graph G = (V, E) with n = |V| nodes. The node feature matrix is denoted by
X ∈ Rn×d, and the corresponding node label matrix is Y ∈ Rn×c with d and c being the dimension
of features and labels respectively. The unweighted adjacency matrix is A ∈ Rn×n. For training
purposes we only have access to the labels of a subset of nodes {yi}i∈L, with L ⊂ V . Given feature
values of all nodes {xi}i∈V , label data {yi}i∈L, and the connectivity of the graph E , the task is to
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predict the labels of the unlabeled nodes {yi}i∈U , with U = V \ L. We denote the labeled dataset
{xi,yi}i∈L as DL and the unlabeled dataset {xi}i∈U as DU .

3.1 BAGGING, ENSEMBLING, AND STACKING

For classification/regression with IID (non-graph) data, bagging, ensembling, and stacking represent
practical tools that can be combined in various ways to produce more accurate predictions relative
to other strategies across diverse tabular and text datasets (Shi et al., 2021; Blohm et al., 2020; Yoo
et al., 2020; Fakoor et al., 2020; Bezrukavnikov & Linder, 2021; Feldman, 2021). For example,
in each stacking layer of an ensemble-based architecture, bagging simply trains the same types of
base models with out-of-fold predictions from the previous layer models (obtained via bagging) as
extra predictive features. These base models might include various Gradient Boosted Decision Trees
(Ke et al., 2017; Prokhorenkova et al., 2018), fully-connected neural networks (MLP), K Nearest
Neighbors (Erickson et al., 2020), or pretrained Electra Transformer models (Clark et al., 2020). For
our purposes herein, we adopt the AutoML package AutoGluon (Erickson et al., 2020), which is
capable of exploiting these techniques while serving open-source code that we can readily adapt to
include graph propagation.

3.2 GRAPH-AWARE PROPAGATION LAYERS

Recently there has been a surge of interest GNN architectures with layers defined in one-to-one
correspondence with descent iterations that minimize a principled class of graph-regularized energy
functions (Klicpera et al., 2018; Ma et al., 2020; Pan et al., 2021; Yang et al., 2021; Zhang et al.,
2020; Zhu et al., 2021). IN this way GNN models can benefit from the inductive bias afforded by
energy function minimizers (or close approximations thereof) whose specific form can be controlled
by trainable parameters.

Following Zhou et al. (2004), one relevant energy function capable of inducing such graph-aware
propagation is given by

ℓY (Y ) ≜ (1− λ) ∥Y −m (X;θ)∥2F + λtr
[
Y ⊤LY

]
, (1)

where λ ∈ (0, 1) is a weight that determines the trade-off between the two terms. Y ∈ Rn×d is a
learnable d-dimensional embedding across n nodes, and m (X;θ) denotes a base model (parameter-
ized by θ) that computes an initial target embedding based on the node features X . L ∈ Rn×n is the
graph Laplacian of G, meaning L = D −A, where D represents the degree matrix.

Intuitively, the first term of (1) encourages Y to be close to initial target embedding, while the second
term introduces the smoothness over the whole graph. On the positive side, the closed-form optimal
solution of energy function (1) can be easily derived as

m̃∗ (X;θ) ≜ argmin
Y

ℓY (Y ) = P ∗m (X;θ) , (2)

with P ∗ ≜ (I + λL)
−1. However, for large graphs the requisite inverse is impractical to compute,

and alternatively iterative approximations are more practically-feasible. To this end, we may initialize
as Y (0) = m (X;θ), and it follows that Y can be approximated by iterative descent in the direction
of the negative gradient. Given that

∂ℓY (Y )

∂Y
= 2λLY + 2Y − 2m (X;θ) , (3)

the k-th iteration of gradient descent becomes

Y (k) = Y (k−1) − α
[
(λL+ I)Y (k−1) −m (X;θ)

]
, (4)

where α
2 serves as the effective step size. Considering that L is generally sparse, computation of (4)

can leverage efficient sparse matrix multiplications, and we may also introduce modifications such as
Jacobi preconditioning to speed convergence (Axelsson, 1996; Yang et al., 2021).

Furthermore, based on well-known properties of gradient descent, if k is sufficiently large and α is
small enough, then

m̃∗ (X;θ) ≈ m̃(k) (X;θ) ≜ P (k) [m (X;θ)] , (5)
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where the operator P (k) (·) computes k gradient steps via (4). The structure of these propagation
steps, as well as related variants based on normalized modifications of gradient descent, equate to
principled GNN layers, such as those used by GCN (Kipf & Welling, 2016), APPNP (Klicpera et al.,
2018), and many others, which can be trained within a broader bilevel optimization framework as
described next.

4 STACK ENSEMBLING FOR GRAPH DATA (BESTOWGNN)

For node prediction tasks (either regression or classification), each (non-graph) base model is trained
within our BestowGNN framework by simply treating each node and its label as a separate IID
training example and fitting the model in the usual manner. Such a model may informatively encode
tabular or text features from the nodes, but its predictions will be uniformed by the additional
information available in the graph structure. To enhance such models with graph information we
utilize graph-aware propagation.

4.1 GRAPH-AWARE PROPAGATION

Let Ŷ L, Ŷ U denote the predictions of labeled (i.e. training) nodes and unlabeled (i.e. validation/test)
nodes, respectively. In node classification tasks, these may be predicted class probability vectors.
Via iterative application of the update in (4), we can apply graph-aware propagation to predictions
{Ŷ L, Ŷ U} in order to ensure they reflect statistical dependencies between nodes encoded by the
graph structure. We denote F (0) ≜ {Ŷ L, Ŷ U}, and for each propagation step t we compute the
update F (t) via (4). In our method, Ŷ may actually be predictions from multiple models concatenated
together at each node, but the propagation procedure remains identical in this case.

4.2 STACK ENSEMBLING

In stack ensembling, the predictions output by individually trained base models are concatenated
together as features that are subsequently used to train a stacker model whose target is still to predict
the original labels (Wolpert, 1992; Ting & Witten, 1997). A good stacker model learns how to
nonlinearly combine the predictions of base models into an even more accurate prediction. This
process can be iterated in multiple layers, a strategy that has been used to win high-profile prediction
competitions with IID data (Koren, 2009).

In this work, we closely follow the stacking methodology of Erickson et al. (2020), but adapt it for
graphs rather than IID data. We allow stacker models to access the original node features X by
concatenating X with the base models’ predictions when forming the features used to train each
stacker model. To produce a final prediction for each node, we aggregate predictions from the topmost
layer models via a simple weighted combination where weights are learned via the efficient Ensemble
Selection technique of Caruana et al. (2004). Our base models before the first stacking layer are
those which can effectively encode the original tabular or text features observed at the nodes (here we
utilize AutoGluon which leverages models like Gradient Boosted Decision Trees for tabular features
and Transformers for text features). Our stacker models are simply chosen as the same types of
models as the base models.

4.3 REPEATED K-FOLD BAGGING TO MITIGATE OVER-FITTING

A problem that arises in the aforementioned stacking strategy is label leakage. If a base model is even
slightly overfit to its training data such that its predictions memorize parts of the training labels, then
subsequent stacker models will have low accuracy due to distribution shift in their features between
training and inference time (their features will be highly correlated with the labels during training but
not necessarily during inference). This issue is remedied by ensuring stacker models are only trained
on features comprised of base model predictions on held-out nodes omitted from the base model’s
training set.

We achieve this while still being able to train stacker models using all labeled nodes by leveraging
k-fold bagging (i.e. cross-validation) of all models (Van der Laan et al., 2007; Parmanto et al., 1996;
Erickson et al., 2020). Here the training nodes are partitioned into k disjoint chunks and k copies of
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each (non-graph-aware) model m are trained with a different data chunk held-out {X−j ,Y −j}kj=1
held out from each copy. After training all k copies of model m, we can produce out-of-fold (OOF)
predictions Ŷ j

m for each chunk Xj by feeding it into the model copy from which it was previously
held-out. Following Erickson et al. (2020), we repeat this k-fold bagging procedure over n different
random partitions of the training data to further reduce variance and distribution shift that arises in
stack ensembling with bagging. Thus for a labeled training node, the OOF prediction from a model
of type m is averaged over n different partitions (this node is held-out from exactly one model copy
in each partition):

Ŷ L =

{
1

n

n∑
i=1

Ŷ j
m,i

}k

j=1

. (6)

Since unlabeled (validation/test) nodes were technically held-out from every model copy, we can feed
them through any copy without harming stacking performance. For a particular type of model m, we
simply make predictions Ŷ U for unlabeled nodes by averaging over all n bagging repeats and all k
copies of the model within each repeat:

Ŷ U =
1

kn

k∑
j=1

n∑
i=1

Ŷ j
m,i. (7)

For IID data, this stack ensembling procedure with bagging can produce powerful predictors, both in
theory (Van der Laan et al., 2007) and in practice (Erickson et al., 2020).

4.4 STACKING WITH GRAPH-AWARE PROPAGATION

To extend this methodology to graph data, our proposed training strategy is precisely detailed in
Algorithm 1. The main idea is to apply graph-aware propagation on the predictions of models at each
intermediate layer of the stack. Different amounts of propagation lead to different characteristics
of the data being captured in the resulting prediction (few steps of propagation means predictions
are only influenced by local neighbors, whereas many propagation steps allow predictions to be
influenced by more distant nodes as well). Thus we can further enrich the feature set of our stacker
models by concatenating together the predictions produced after different numbers of propagation
steps. With this expanded feature set, our stacker models learn to aggregate not only the predictions
of different models, but differently smoothed versions of these predictions as well. This allows
the stacker model to adaptively decide how to best account for dependencies induced by the graph
structure.

More precisely, if we let F (t) denote the predictions (concatenated across all base model types) for
labeled and unlabeled nodes after t smoothing steps, then the feature input to each stacker model
is given by the original node features X concatenated with [F (0), ...,F (T )]. Here the predictions
for labeled nodes are always OOF, obtained via bagging. Another fundamental difference between
our approach and stack ensembling in the IID setting is the use of unlabeled (test) nodes at each
intermediate layer of the stack. By including unlabeled nodes in the propagation, these nodes
influence the features used to train subsequent stacker models at labeled nodes. This can even further
reduce potential distribution shift in the stacker models’ features between the labeled and unlabeled
nodes, which ensures better generalization.

Graph machine learning models for non-IID data typically do not use bagging, seemingly because
there has not been a rigorous study on the effect of bagging in relation to propagation models.
Furthermore, bagging traditionally serves as a means of variance reduction which only brings limited
performance benefits for large datasets (Breiman, 1996). In contrast, our stacking framework adopts
bagging primarily as a means to mitigate the catastrophic effects of label leakage. While bagging can
effectively mitigate label information from being directly encoded in stacker model features in the
IID setting, it is not clear whether this property still holds with graph-structured dependence between
nodes. A particular concern is the fact that the propagation of base model predictions across the
graph implies label information is shared across the k-fold chunks used to hold-out some nodes from
some models. In the next section, we theoretically study this issue and prove that bagging can still
mitigate the effects of label leakage even in the non-IID graph setting. Our subsequent experiments
(see Table 4) reveal that bagging produces substantial performance gains in practical applications of
stack ensembling with graph propagation.
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5 THEORETICAL ANALYSIS

Label utilization is a common technique in which the outputs of a model are concatenated with
input features and then used to train a stacking layer. Unfortunately, layer-wise training with label
utilization is susceptible to the label leakage problem. Although prior work (Sun & Wu, 2021; Zhang
et al., 2021) has mentioned heuristic ways to address label leakage via graph propagation, it is unclear
how generally applicable this strategy is in practice. Moreover, there is a natural trade-off between
avoiding label leakage via graph propagation, and well-known oversmoothing effects in GNN models.

In this section we employ a powerful theoretical tool, Differential Privacy (Mironov, 2017), to
showcase the advantage of bagging in our proposed BestowGNN. Our analysis will show that
BestowGNN enjoys strong generalization under the Rényi Differential Privacy framework. In fact
this is the first work that establishes that bagging in graph predictors is useful and mitigates label
leakage. Specifically, BestowGNN can preserve the privacy (or information sharing) of labels between
bags, that would otherwise be compromised by graph propagation.

To this end, we first introduce the definition of Rényi Differential Privacy, which is a relaxation of
Differential Privacy based on the Rényi Divergence.

Definition 1. (Rényi Differential Privacy (Mironov, 2017)). Consider a randomized algorithmM
mapping from D to a real-valueR. Such an algorithm is said to have ϵ-Rényi Differential Privacy of
order α if for any D,D′ ∈ D with dH(D,D′) = 1, where dH is the Hamming distance (D,D′ are
also referred to as adjacent datasets), we have that

Dα(M(D)||M(D′)) ≜
1

α− 1
logEx∼M(D′)

(
M(D)

M(D′)

)α

≤ ϵ. (8)

In plain words, this definition establishes that the output of an algorithm does not change significantly,
as measured by the Rényi divergence Dα(M(D)||M(D′)), when the data changes slightly. The idea
behind this framework is that if each individual data sample has only a small effect on the resulting
model, the model cannot be used to infer information about any single individual.

We then have the following result:

Theorem 1. Assume base model m is a multi-layer (two-layer) perceptron and that node features X
are sampled from a multivariate Gaussian as in (Jia & Benson, 2021):

X ∼ N (0,Γ−1), Γ = c1In + c2L,

where In is an identity matrix and L is the normalized graph Laplacian. Here c1 controls a noise level
and c2 the smoothness over the whole graph. E(x0;DL) and F (x0;DL) are predictions produced
by BestowGNN for a data point x0 with and without bagging mode, respectively. If E has sensitivity 1
and lower magnitude bound L, i.e., for any two adjacent D,D′ ∈ D : |E(x0;D)−E(x0;D

′)| ≤ 1
and |E| ≥ L, then E satisfies ( 12 ,

1
4σ2L2 + 1

2L2 )-Rényi Differential Privacy, where σ2 depends on
graph structure G. Meanwhile, F has no privacy guarantee, i.e., the Rényi differential privacy loss
(8) is unbounded.

The proof is deferred to the supplementary. Theorem 1 indicates that bagging with graph propagation
can well preserve the privacy of DL = {xi,yi}i∈L between different chunks while non-bagging
would have a high risk of leaking the information of DL. For layer-wise training with label utilization,
the output of the model E(x0;DL) is concatenated with input features and then used to train next
stacking layer, and bagging can effectively mitigate the label leakage issue since the information of
true label is well preserved at the first layer, while no-bagging exposes the true labels and can lead to
over-fitting issue for next stacking layer.

6 EXPERIMENTS

Setup. We study the effectiveness of our approach by comparing performance against state-of-
the-art baselines in node regression and classification tasks. For node regression with tabular
node features, we consider four real-world graph datasets used for benchmarking by Ivanov &
Prokhorenkova (2021): House, County, VK and Avazu. As node classification tasks, we adopt one
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datasets with numerical features: Reddit; and two datasets with raw text features: OGB-Arxiv and
OGB-Products. More details about the datasets are provided in the supplementary.

We compare our method against various baselines, starting with purely tabular baseline models or
language models where the graph structure is ignored. Our first baseline is Autogluon (Erickson et al.,
2020), an AutoML system for IID tabular or text data that is completely unaware of the graph structure
(here we simply treat nodes as IID). Next, we consider AutoGluon + C&S, which performs Correct
and Smooth (Huang et al., 2020) as a posthoc processing step on top of AutoGluon’s predictions, in
order to at least account for the graph structure during inference. For node regression tasks we also
consider some popular GNN models: GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017),
and a hybrid strategy BGNN (Ivanov & Prokhorenkova, 2021), which combines Gradient Boosted
Decision Trees (also a model intended for IID data) with GNNs via end-to-end training in a manner
that is graph-aware.

For node classification, we firstly consider Reddit with original numerical features. We compare with
GraphSAGE (Hamilton et al., 2017) and PCAPass + Tree (Sadowski et al., 2022), which combines
PCA and message passing to generate node embeddings and leverages tree-based model for node
classification.

We also consider OGB-Arxiv and OGB-Products with raw text as node features (as opposed to pre-
computed text embeddings as node features such as the low-dimensional homogeneous embeddings
provided by OGB). We compare with GIANT-XRT + MLP, GIANT-XRT + GRAPHSAGE and
GIANT-XRT + GRAPHSAINT, which extracts numerical embeddings from text features via a
transformer trained through self-supervised learning and feed these high quality embeddings to a
multi-layer perceptron or sampling based GNN model. For the smaller OGB-Arxiv dataset, we
also consider standard GNN models: GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017)
and Ensemble GCN, a natural baseline/competitor which divides all training nodes into k chunks,
trains a GCN model for each chunk and then ensembles the results. Finally, we compare against
SOTA model for OGB-Arxiv and OGB-Products with GIANT-XRT embedding and low-dimensional
homogeneous embedding from OGB leaderboard. To our knowledge, there is not a consistent method
with superior performance across each dataset. So we compare our single general framework with
different SOTA models for each dataset to ensure we are competing against the best in each case; i.e.,
there is no single existing model that is SOTA across them all. We evaluate our method BestowGNN,
which incorporates the graph information through propagation operations in each stacking layer.

Results. In Table 1 we present the results for the node regression task with tabular node features.
The baseline GNN models are challenged by the tabular node features. AutoGluon is an ensemble
of various base models (e.g., Gradient Boosted Decision Trees, fully-connected neural networks)
intended for IID data without considering graph structure. We observe that Autogluon + C&S
outperforms Autogluon, demonstrating that graph information can greatly boost the performance
of models intended for IID data. Incorporating the graph structure at each stacking layer, our
BestowGNN method performs better than BGNN on all datasets.

Tables 2 and 3 show the results for node classification with either raw text features or numerical
embeddings. Our method BestowGNN outperforms all baselines regardless of whethor or not they
leverage the raw text or OGB embeddings (or numerical Reddit embeddings). Note that OGB-Arxiv
and OGB-Products have different SOTA models in the OGB leaderboard, for instance: AGDN +
BoT + self-KD + C&S are architectural components from the best existing model for OGB-Arxiv,
while GAMLP + RLU + SCR + C&S undergird the best existing model for OGB-Products. These
SOTA models consisting of data-specific modules/components are manually composed to perform
particularly well only for one specific dataset. In contrast, BestowGNN uses essentially the same ar-
chitecture with minor/standard hyperparameter tuning to fit all datasets. Comparison of BestowGNN
with AutoGluon demonstrates how incorporating graph information at each stacking layer can further
improve the node classification performance of this AutoML system. More experiments details and
computing cost are deferred to the supplementary.

Ablation. The key ingredients of our framework are bagging/ensembling and graph propagation.
Table 4 shows an ablation study involving these components using OGB-Arxiv and OGB-Products
with original OGB embeddings. From these results we observe that bagging modes can outperform

8
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Table 1: Mean squared error results for four node
regression datasets with tabular node features.

Data set House County Vk Avazu

GCN 0.63 ± 0.01 1.48 ± 0.08 7.25 ± 0.19 0.1141 ± 0.02
GAT 0.54 ± 0.01 1.45 ± 0.06 7.22 ± 0.19 0.1134 ± 0.01

BGNN 0.50 ± 0.01 1.26 ± 0.08 6.95 ± 0.21 0.109 ± 0.01

AutoGluon 0.618 ± 0.01 1.379 ± 0.08 7.176 ± 0.21 0.117 ± 0.018
AutoGluon + C&S 0.477 ± 0.01 1.162 ± 0.09 6.995 ± 0.21 0.107 ± 0.015

BestowGNN 0.467 ± 0.007 1.145 ± 0.083 6.918 ± 0.220 0.105 ± 0.013

Table 2: Node classification accuracy for
Reddit with numerical node features.

Method Reddit

PCAPass + XGBoost 96.26 ± 0.02
GraphSAGE 95.40 ± 0.22
AutoGluon 95.83 ± 0.00
BestowGNN 96.44 ±0.00

Table 3: Node classification accuracy for OGB-Arxiv and OGB-Products achieved by various methods. Rows
labeled TEXT contain methods including SOTA models trained on the raw text features at each node, while
those labeled OGB indicate models trained on precomputed numerical embeddings provided by OGB as node
features. SOTA models vary from each dataset with different embeddings/architectures, but BestowGNN has
consistently superior performance for each dataset; similarly for Table 1 results above.

OGB-Arxiv

Feature Method Test Acc (Validation)

OGB
GCN 73.06 ± 0.24 (74.42 ± 0.12)

GAT + C&S 73.86 ± 0.14 (74.84 ± 0.07)
AGDN+BoT+self-KD+C&S 74.31 ± 0.14 (75.18 ± 0.09)

Ensemble GCN 73.22 ± 0.12 (74.64 ± 0.01)

TEXT

GIANT-XRT+MLP 73.06 ± 0.11 (74.32 ± 0.09)
GIANT-XRT+graphSAGE 74.35 ± 0.14 (75.95 ± 0.11)

GIANT-XRT+GCN 75.28 ± 0.17 (76.87 ± 0.04)
GIANT-XRT+RevGAT+KD 76.15 ± 0.10 (77.16 ± 0.09)

TEXT AutoGluon 73.05 ± 0.00 (74.33 ± 0.00)
AutoGluon + C&S 75.34 ± 0.00 (76.67 ± 0.00)

TEXT BestowGNN 76.19 ± 0.02 (77.25 ± 0.05)

OGB-Products

Feature Method Test Acc (Validation)

OGB
DeeperGCN + FLAG 81.93 ± 0.31 (92.21 ± 0.37)

GAT + FLAG 81.76 ± 0.45 (92.51 ± 0.06)
GAMLP+RLU+SCR+C&S 85.20 ± 0.08 (93.04 ± 0.05)

Ensemble GAT 80.01 ±0.20 (93.24 ± 0.05)

TEXT

GIANT-XRT+MLP 80.49 ± 0.28 (92.10 ± 0.09)
GIANT-XRT+graphSAGE 81.99 ± 0.45 (93.38 ± 0.05)
GIANT-XRT+graphSAINT 84.15 ± 0.22 (93.18 ± 0.04)
GIANT-XRT+SAGN+SLE 85.47 ± 0.29 (-)

TEXT AutoGluon 77.10 ± 0.06 (91.78 ± 0.03)
AutoGluon + C&S 79.03 ± 0.12 (93.62 ± 0.03)

TEXT BestowGNN 85.48 ± 0.03 (93.93 ± 0.02)

Table 4: BestowGNN ablation study with (✓) and without bagging (✗). Here T is the number of graph
propagation steps, thus T = 0 represents a baseline model that completely ignores graph structure.

STEP T ARXIV PRODUCTS

✓ ✗ ✓ ✗
0 55.70 ± 0.33 54.14 ± 0.29 62.28 ± 0.35 62.05 ± 0.19
1 66.25 ± 0.27 64.57 ± 0.76 74.18 ± 0.21 72.61 ± 0.66
2 69.34 ± 0.16 67.37 ± 0.44 77.07 ± 0.32 74.61 ± 0.58
3 70.01 ± 0.16 68.08 ± 0.74 78.11 ± 0.19 75.79 ± 0.49
4 70.43 ± 0.21 68.72 ± 0.63 78.76 ± 0.60 76.86 ± 0.17

no-bagging modes for each number propagation step, demonstrating that bagging can effectively
mitigate label leakage and over-fitting issues even in a graph-aware propagation setting.

7 DISCUSSION

While real-world graph data come with heterogeneous feature types, existing GNN models are
primarily suited for (adequately preprocessed) numerical features. For IID supervised learning, it
is well-known that the best models for different feature types vary based on dataset and data-type,
and that a learning system aiming to output good predictions across a variety of datasets should
leverage a heterogeneous collection of different types of models (Erickson et al., 2020). There is
little reason the situation should be different for graph data. In this paper, we demonstrate the first
working system that can utilize arbitrary heterogeneous collections of models for arbitrary graph
datasets with heterogeneous feature-types (numerical, categorical, text). This is achieved by means of
a novel graph-aware stack ensembling technique that takes the graph structure into account without
restricting how individual models are trained. Our graph-aware propagation techniques leverage
specific properties of stack ensembling that allow our proposed methodology to outperform both
many complex GNNs as well as existing approaches in which propagation is only applied to the
predictions output by an IID base model (e.g., AutoGluon+C&S, etc.).
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Supplementary Materials

A PROOF OF THEOREM 1.

Preliminary 1. Firstly, we derive the format of E(x0;DL) and F (x0;DL). Suppose BestowGNN
randomly splits the labeled nodes DL into 2 disjoint chunks D1 = {X1,Y 1}, D2 = {X2,Y 2}.
BestowGNN trains a model m ∈ M with a different data chunk held-out. Model m is defined by
a set of parameters collected in θ namely, which is defined as m(X;θ). In the following, we will
express the predicted labels from model m under the bagging and non-bagging settings. We compare
the predicted labels under both settings and establish that our bagging solution is less amenable to
label leakage.

The model m will learn different parameters for each chunk and those are denoted as θ1 for the
chunk I and θ2 for the chunk II, namely θ1 = θ(D1) and θ2 = θ(D2). Next, BestowGNN
produces prediction Ŷ 1, Ŷ 2 on out-of-fold data, i.e., Ŷ 1 = m(X1;θ2) and Ŷ 2 = m(X2;θ1).
The prediction for unlabeled nodes is Ŷ U = 1

2 [m(XU ;θ1) + m(XU ;θ2)] as explained in (7).
Consider one data point x0 from the unlabeled dataset DU , the prediction of x0 is given by ŷ0 =
1
2 [m(x0;θ1) +m(x0;θ2)]. Next, we perform one step graph-aware propagation on ŷ0.

ŷ
(1)
0 =

∑
u∈N (x0)∩DU

ŷu +
∑

v∈N (x0)∩D1

ŷv +
∑

w∈N (x0)∩D2

ŷw

=
∑

u∈N (x0)∩DU

1

2
[m(xu;θ1) +m(xu;θ2)] +

∑
v∈N (x0)∩D1

m(xv;θ2) +
∑

w∈N (x0)∩D2

m(xw;θ1),

(9)
where ŷ

(1)
0 is the aggregated results from one-hop neighbor N (x0), which may belongs to DU , D1

and D2.

Next, we consider the no-bagging mode, where the predictions of X1,X2 are changed into Ỹ 1 =

m(X1;θ1) and Ỹ 2 = m(X2;θ2). Notice that with bagging mode we use the parameters from a
different bag, while without bagging we use the parameters from the same bag. The prediction of the
test point x0 is once again ỹ0 = 1

2 [m(x0;θ1) +m(x0;θ2)], which is identical to the bagging mode.
We perform the same graph-aware propagation on ỹ0.

ỹ
(1)
0 =

∑
u∈N (x0)∩DU

ỹu +
∑

v∈N (x0)∩D1

ỹv +
∑

w∈N (x0)∩D2

ỹw

=
∑

u∈N (x0)∩DU

1

2
[m(xu;θ1) +m(xu;θ2)] +

∑
v∈N (x0)∩D1

m(xv;θ1) +
∑

w∈N (x0)∩D2

m(xw;θ2).

(10)
Next, we compare the terms among the predicted labels from the two settings, namely (9) and (10).
The first term

∑
u∈N (x0)∩DU

1
2 [m(xu;θ1) + m(xu;θ2)] is the same for (9) and (10) and can be

cancelled. In order to facilitate the exposition of the theoretical contributions we will define functions
for the different terms in (9) and (10). We define E(x0;DL), that is a function formulating the
relation between training data DL and the prediction for test data x0 under bagging mode.

E(x0;DL) :=
∑

v∈N (x0)∩D1

m(xv;θ(D2)) +
∑

w∈N (x0)∩D2

m(xw;θ(D1)). (11)

Similarly, we define the function F (x0;DL) formulating the relation between training data DL and
the prediction for test data x0 under the no-bagging mode:

F (x0;DL) :=
∑

v∈N (x0)∩D1

m(xv;θ(D1)) +
∑

w∈N (x0)∩D2

m(xw;θ(D2)). (12)

Notice here θ(D1) is the model parameters of Chunk I involving information of true label Y 1. We
aim to examine bagging and stacking strategies effectively preserve the information of label Y 1 via
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introducing randomness to the function E(x0;DL) while F (x0;DL) has high risk of leaking the
information of true label Y 1.

We first reiterate the definition of Rényi Differential Privacy.

Definition 1. (Rényi Differential Privacy (Mironov, 2017)). Consider a randomized algorithmM
mapping from D to real-valueR. Such an algorithm is said to have ϵ-Rényi Differential Privacy of
order α (α > 1) if any D,D′ ∈ D with dH(D,D′) = 1, where dH is the Hamming distance (D,D′

are also referred to as adjacent datasets):

Dα(M(D)||M(D′)) =
1

α− 1
logEx∼M(D′)

(
M(D)

M(D′)

)α

≤ ϵ. (13)

To proceed in a quantifiable way, we rely on some preliminary results for Rényi Differential privacy
and generative model for graph learning algorithms.

Proposition 1. Rényi differential privacy is preserved by post-processing (Mironov, 2017). If F (·) has
ϵ-Rényi Differential Privacy, then for any randomized or deterministic function g, g(F (·)) satisfies
ϵ-Rényi Differential Privacy.

Proposition 2. The closed-form expression of the Rényi divergence between any two Gaussian
distributions is given by Dα(N (µ0, σ

2
0)||N (µ1, σ

2
1)) =

α(µ1−µ0)
2

2σ2
α

+ 1
1−α ln σα

σ1−α
0 σα

1

, provided that

σ2
α = (1− α)σ2

0 + ασ2
1 > 0 (Van Erven & Harremos, 2014).

Proposition 3. Assume f has sensitivity 1 and lower magnitude bound L, i.e., for any pair of adjacent
datasets D,D′ ∈ D: |f(D) − f(D′)| ≤ 1 and |f | ≥ L, and define the Gaussian multiplicative
mechanism

GMµ,σf(D) = f(D)N (µ, σ2).

Then GMµ,σf satisfies ( 12 ,
1

4σ2L2 + 1
2L2 )-Rényi Differential Privacy.

Proof. According to Proposition (2):

D1/2

(
N (f(D) + µ, f2(D)σ2)||N (f(D′) + µ, f2(D′)σ2)

)
=

(f(D)− f(D′))
2

2σ2 (f2(D) + f2(D′))
+ ln[

1

2

(
f2(D) + f2(D′)

)
]− ln |f(D)| − ln |f(D′)|

=
1

2σ2
− f(D)f(D′)

σ2 (f2(D) + f2(D′))
+ ln[

1

2

(
f2(D) + f2(D′)

)
]− ln |f(D)f(D′)|

=
1

2σ2
− f(D)f(D′)

σ2 (f2(D) + f2(D′))
+ ln |f

2(D) + f2(D′)

2f(D)f(D′)
|

≤ 1

2σ2

1

f2(D) + f2(D′)
+ ln(

1

2|f(D)f(D′)|
+ 1)

≤ 1

4σ2L2
+ ln(

1

2L2
+ 1)

≤ 1

4σ2L2
+

1

2L2
.

The first inequality follows from |f(D)− f(D′)| ≤ 1, take square for both side f2(D) + f2(D′) ≤
1 + 2f(D)f(D′). Then we have 1

2σ2 − f(D)f(D′)
σ2(f2(D)+f2(D′)) ≤

1
2σ2

1
f2(D)+f2(D′) and f2(D)+f2(D′)

2|f(D)f(D′)| ≤
1

2|f(D)f(D′)| + 1, the first inequality holds.

Proposition 4. If f has sensitivity 1, i.e., for any pair of adjacent datasets D,D′ ∈ D: |f(D) −
f(D′)| ≤ 1. Define the Gaussian additive mechanism

GAσf(D) = f(D) +N (0, σ2),

then Gaussian additive mechanism GAσf satisfies (α, α
2σ2 )-Rényi Differential Privacy (Mironov,

2017).
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Proposition 5. Consider a multivariate Gaussian distribution, and the random variables are parti-
tioned into two groups (zP , zQ), the distribution is block matrix format(

zP

zQ

)
∼ N

([
z̄P

z̄Q

]
,

[
ΓPP ΓPQ

ΓQP ΓQQ

]−1)
,

where
[
ΓPP ΓPQ

ΓQP ΓQQ

]
is precision (inverse covariance) matrix. Then the marginal and conditional

distribution can be written as

zP ∼ N
(
z̄P , (ΓPP − ΓPQΓ

−1
QQΓQP )

−1
)
, (14)

zP |zQ = zQ ∼ N
(
z̄P − Γ−1ΓPQ(zQ − z̄Q)

)
. (15)

Before proceeding to our specific results in the main paper, we also need to describe the graph setting.

Preliminary 2. Let G = (V,E) be an undirected graph, where V is the set of n nodes and E is the
set of edges. The adjacency matrix of G is W ∈ Rn×n, the diagonal degree matrix is D ∈ Rn×n.
The normalize graph Laplacian can be written as N = I −D−1/2WD−1/2 = I − S. We use
X ∈ Rn×p for the feature matrix, where p is the dimension of features. We assume all vertex features
X are jointly sampled from a multivariate Gaussian distribution (Jia & Benson, 2021), namely

X ∼ N (0,Γ−1), Γ = c1In + c2N , (16)

where In is identical matrix, N is normalized graph Laplacian. Here c1 controls noise level and c2
controls the smoothness over the whole graph.

We now proceed to our specific results in the main paper.
Theorem 1. Assume base model m to be a multi-layer (two-layer) perceptron and node features X
is sampled from a multivariate Gaussian as in Jia & Benson (2021):

X ∼ N (0,Γ−1), Γ = c1In + c2L,

where In is an identity matrix and L is the normalized graph Laplacian. Here c1 controls noise level
and c2 controls the smoothness over the whole graph. E(x0;DL) and F (x0;DL) are predictions
produced by BestowGNN for a data point x0 with and without bagging mode, respectively. If E has
sensitivity 1 and lower magnitude bound L, i.e., for any two adjacent D,D′ ∈ D : |E(x0;D) −
E(x0;D

′)| ≤ 1 and |E| ≥ L, then E satisfies ( 12 ,
1

4σ2L2 + 1
2L2 )-Rényi Differential Privacy, where

σ2 depends on graph structure G. Meanwhile, F has no privacy guarantee, i.e., the Rényi differential
privacy loss (8) is unbounded.

Proof. Given the definition of function E from above, we have that

E(x0;DL) =
∑

v∈N (x0)∩D1

m(xv;θ(D2)) +
∑

w∈N (x0)∩D2

m(xw;θ(D1))

=
∑

v∈N (x0)∩D1

m(xvθ(D2)) +
∑

w∈N (x0)∩D2

m(xwθ(D1)),
(17)

where the second equality follows from the MLP assumption. Similarly for F we have

F (x0;DL) =
∑

v∈N (x0)∩D1

m(xv;θ(D1)) +
∑

w∈N (x0)∩D2

m(xw;θ(D2))

=
∑

v∈N (x0)∩D1

m(xvθ(D1)) +
∑

w∈N (x0)∩D2

m(xwθ(D2)).
(18)

We now define the adjacent datasets D and D′ as follows. Assume D = D1; one data point {x′,y′}
is then randomly selected from Chunk I and removed {x′,y′} from D1 forming D′ = D1\{x′,y′}.
Meanwhile, the unlabeled set DU and D2 remain the same. Our goal is to examine the extent to
which E and F may leak information pertaining to {x′,y′} when {x′,y′} is removed from D1 as
described above.
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Denote xv,xw as training data in chunk I and chunk II. Assume
(
xv

xw

)
is drawn from a multivariate

Gaussian distribution: (
xv

xw

)
∼ N

([
0
0

]
,

[
Γvv Γvw

Γwv Γww

]−1)
, (19)

where
[
Γvv Γvw

Γwv Γww

]
= aI+ bN , I is identical matrix, N is normalized graph Laplacian, a controls

noise level and b controls the smoothness over the whole graph.

From Proposition 5, the condition distribution of xw given xv = xv can be written as

xw|xv = xv ∼ N (−Γ−1
wwΓwvxv,Γ

−1
ww).

Condition on the data D1, the distribution of D2 is a conditional multivariate Gaussian distribution
with mean −Γ−1

wwΓwvxv and variance Γ−1
ww. Furthermore, multiplicative Gaussian distribution

xwθ(D1) introduces a Gaussian random noise into (17). According to Proposition (1) and (3), E
satisfies ( 12 ,

1
4σ2L2 + 1

2L2 )-Rényi Differential Privacy, where σ2 depends on Γ−1
ww decided by graph

structure.

Meanwhile, although (18) is deterministic, we can manually add Gaussian noise N (0, σ2) such that
F satisfies α

2σ2 -Rényi Differential Privacy via Proposition (4). However, if we then let σ → 0 to
reproduce F , we have that α

2σ2 →∞, indicating that in fact F has no privacy guarantee.

B EXPERIMENT DETAILS

B.1 DATA DESCRIPTIONS

House: node features are the property of house, edges connect the neighbors, the task is to predict
the price of the house. County: each node is a county and edges connect two counties sharing a
border, the task is to predict the unemployment rate for a county. VK: each node is a person and
edges connect two people based on the friendships, the task is to predict the age of each person.
Avazu: each node is a device and edges connect two devices if they appear on the same site with the
same application, the target is the click-through-rate of a node. For House, County, VK and Avazu
datasets, Training/validation/testing are randomly split with 6/2/2 ratio and all experiments results are
averaged over 5 trails.

OGB-Arxiv, OGB-Products are standard datasets from OGB-leaderboards and all train-
ing/validation/testing splits follow the standard data splitting from OGB-leaderboards. Reddit
is standard datset from Deep Graph Library (DGL).

B.2 BASE MODELS

Specifically, we consider LightGBM boosted Tress (GBM) (Ke et al., 2017), CatBoost boosted trees
(CAT) (Prokhorenkova et al., 2018), fully-connected neural networks (NN), Extremely Randomized
Trees (RT), Random Forests (RF), K Nearest Neighbors (KNN), Label Propagation (LP) (Huang
et al., 2020) and Transformer with electra pretrained model (Text) (Training epoch is 12) (Clark et al.,
2020). For the first layer, we keep the typical models, for example, Gradient Boosted Decision Trees
for Tabular data, Transformer models for text data. For second stacking layer, we use all of models
except extremely low-efficient models for large dataset, for example, KNN and Catboost slow down
the training procedure for OGB-products dataset. All details about the base models can be found in
table 5. The parameters about all models can be referred to AutoGluon (Erickson et al., 2020).

B.3 PARAMETERS FOR GRAPH-AWARE PROPAGATION

We do graph-aware propagation for the prediction to incorporate the graph structure. Table 6 shows
two hyperparameters considered in the propagation part: weight λ and number of propagation step T .
We also present the hyperparameters for Correct and Smooth in Table 7.
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Table 5: Base models

DATASET FIRST LAYER SECOND LAYER

HOUSE/COUNTY/VK/AVAZU CAT, GBM, NN KNN, GBM, RF, RT, CAT, NN

OGB-ARXIV TEXT, GBM, NN GBM, RF, RT, NN

OGB-PRODUCTS TEXT, LP GBM, RF, RT, NN
REDDIT NN, RF, RT, GBM NN, RF, RT, KNN, GBM

Table 6: Hyperparameters

DATASET λ INPUT FOR STACKING LAYER

HOUSE/COUNTY/VK/AVAZU 0.9 (X, {F (0)
m ,F

(1)
m ,F

(2)
m ,F

(3)
m ,F

(4)
m ,F

(5)
m })

OGB-ARXIV 0.95 (X, {F (0)
m ,F

(1)
m ,F

(3)
m ,F

(5)
m ,F

(7)
m ,F

(9)
m })

OGB-PRODUCTS 0.97 (X, {F (0)
m ,F

(1)
m ,F

(3)
m ,F

(5)
m ,F

(7)
m ,F

(9)
m })

REDDIT 0.95 (X, {F (0)
m ,F

(1)
m ,F

(2)
m ,F

(3)
m ,F

(4)
m ,F

(5)
m })

Table 7: Hyperparameters for C&S

DATASET λ1 KERNEL TYPE λ2 KERNEL TYPE NUM_PROPAGATION

HOUSE/COUNTY/AVAZU 0.8 DA 0.5 DA 5

VK 0.8 DA - - 5

OGB-ARXIV 0.9 DA 0.1 AD 50

OGB-PRODUCTS 0.3 DAD 0.3 AD 50

Table 8: Training time tested on AWS g4dn.12xlarge machine.

DATASET BASE MODEL TIME(S)

HOUSE GBM, NN 52

COUNTY GBM, NN 18

VK GBM, NN 119

AVAZU GBM, NN 15

OGB-ARXIV NN 199

OGB-PRODUCTS NN 837

B.4 COMPUTING COST

The computing cost depends on the ensemble models we select (e.g., transformer models can take
more computing resources relying on the implementation, including more emsemble models leads to
more computing cost). So it’s hard to consistently measure the training/inference time or memory
consumption. But the computing cost is in a competitive range since the integration of the bagging
and ensembling parts key to our model can be efficiently implemented, e.g., via open source packages
like AutoGluon that we used. In Table 8, we present the training time of different datasets with basic
ensemble models. For instance, the training time for OGB-products with OGB embeddings is around
800s, while for GraphSage it is about 1000s for 100 epochs.
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