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Abstract

Some of the most popular and successful knowl-
edge graph embedding (KGE) models – CP,
COMPLEX, RESCAL and TUCKER– encode ten-
sor factorizations that define an energy-based
score over subject-relation-object triples. As such,
they are not amenable to efficient maximum-
likelihood training, and do not easily allow to
sample triples nor answering complex queries in
a principled probabilistic way. In this paper, we
show how all these models can be readily in-
terpreted as constrained computational graphs—
circuits—and show how, by some minor modifi-
cations, one can turn them into tractable genera-
tive models of triples. This novel perspective not
only fixes many of the aforementioned shortcom-
ings of KGE models, but helps understand why
recent learning strategies for KGE are successful
while suggesting interesting new ones.

1 FROM KNOWLEDGE GRAPH
EMBEDDINGS. . .

A knowledge graph (KG) G is a graph-structured knowl-
edge base encoding relationships between entities as triples
of the form (s, p, o) where s and o denote the subject and
object entities and p the predicate, or relation type, labeling
the relationship between the two. More formally, let E be
the set of all entities and R be the set of all relation types.
Then, G ⊆ E ×R× E = {(si, pi, oi)}Ti=1.

The simplest reasoning query over KGs is to predict
missing triples, a task also called link prediction [Nickel
et al., 2016]. Knowledge graph embedding (KGE) models
achieve the current state-of-the-art models for link predic-
tion on KGs [Lacroix et al., 2018, Ruffinelli et al., 2020,
Chen et al., 2021]. A KGE model associates a continuous
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Figure 1: We turn existing KGE models based on tensor fac-
torizations into tractable generative models of KG triples
by interpreting their score functions as circuits and restrict-
ing their parameters (Sec. 3.1) or squaring them (Sec. 3.2).

vector representation to entities in E and relation types in
R. These embeddings are then used to compute a score
function ϕ : E × R × E → R that outputs the unnor-
malized log-probability of observing the triple (s, p, o), i.e.,
ϕ(s, p, o) ∝ logPr(s, p, o). As such, they are an instance of
energy-based models [LeCun et al., 2006].

We denote with X ∈ R|E|×|R|×|E| the three-order tensor of
confidence scores for each triple, i.e., xijk = ϕ(si, pj , ok).
In this work we focus on KGE models such as DIST-
MULT [Yang et al., 2015], CP [Lacroix et al., 2018], COM-
PLEX [Trouillon et al., 2016], RESCAL [Bordes et al.,
2013] and TUCKER [Balazevic et al., 2019], that define a
score function that represents a specific factorization for X .
E.g., CP defines the factorization as the trilinear product

ϕCP(s, p, o) = ⟨es,wp, eo⟩ (1)

over es,wp, eo ∈ RR, the R-dimensional embedding vec-
tors associated to the subject, relation type and object.
DISTMULT defines the same score function of CP, but does
not differentiate between subject and object roles of enti-
ties. COMPLEX, yielding state-of-the-art performance on
several link prediction benchmarks [Ruffinelli et al., 2020,
Chen et al., 2021], defines a score ϕCOMPLEX(s, p, o) from
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the application of DISTMULT over complex embeddings:

⟨Re(es),Re(wp),Re(eo)⟩+ ⟨Im(es),Re(wp), Im(eo)⟩
+ ⟨Re(es), Im(wp), Im(eo)⟩ − ⟨Im(es), Im(wp),Re(eo)⟩

where Re and Im define the real and imaginary part of the
complex embeddings es,wp, eo ∈ CR. Instead, TUCKER
and RESCAL generalize CP and DISTMULT as shown in
Fig. 1. Fig. 2 illustrates their scoring functions.

To obtain normalized probabilities and exact gradients,
one would need to compute the partition function, Z =∑

s∈E
∑

p∈R
∑

o∈E expϕ(s, p, o). As it would require a
summation over |E×R×E| terms, this can be infeasible for
real-world KGs. For instance, for Freebase [Nickel et al.,
2016] it would require 1019 evaluations of ϕ and in the
order of 1011 for the much smaller WN18RR and FB15k-
237 KGs [Dettmers et al., 2018, Toutanova and Chen,
2015]. Therefore, several training strategies for KGEs mod-
els have been devised, involving heuristics and losses that
circumvent the computation of Z . E.g., the 1vsALL objec-
tive is a discriminative objective [Ruffinelli et al., 2020]
that does so by computing log-conditional probabilities:

L1vsALL :=
∑

(s,p,o)∈G

logPr(s | p, o)+logPr(o | s, p). (2)

While these losses and heuristics can deliver good perfor-
mance in link prediction tasks [Ruffinelli et al., 2020, Chen
et al., 2021], other probabilistic reasoning scenarios are still
out of their reach. For example, even sampling from energy-
based models is inherently hard [Song and Kingma, 2021]
despite some recent heuristics for KGE models [Chauhan
et al., 2021]. Answering more complex queries such as
union of conjunctive queries (UCQ) [Dalvi and Suciu,
2007] exactly and efficiently would require a principled
generative model [Friedman and Van den Broeck, 2020].

In this paper, we investigate when and how we can devise
a generative KGE model for triples that is expressive as
a discriminative one and furthermore allows to: 1) obtain
normalized and calibrated probabilities thus facilitating the
comparison of triples; 2) efficiently and exactly marginal-
ize, thus enabling the computation of exact gradients and
maximum-likelihood learning; 3) efficiently sample new
triples; 4) exactly answer UCQs. We do so by first noting
how some of the most popular KGE models, whose scores
are based on tensor factorizations [Kolda and Bader, 2009],
can be naturally interpreted as constrained computational
graphs, also known as circuits [Vergari et al., 2021]. Then,
we devise under which assumptions these circuits can be
cast as probabilistic circuits [Choi et al., 2020] and discuss
how this enables properties 1-4 listed above.

2 . . . TO CIRCUITS. . .

We start by showing in Thm. 1 that the score functions
of tensor-factorization KGE models can be readily repre-

sented as parameterized computational graphs with certain
structural properties, called circuits [Vergari et al., 2021,
Choi et al., 2020]. The next definitions introduce the prop-
erties of circuits that are relevant for our purposes.

Definition 1 (Circuit). A Circuit C over variables X is a
parametrized directed acyclic computational graph encod-
ing a function C(X) and comprising three kinds of com-
putational units: input functionals, product, and sum units.
An input functional n represents a base parametric func-
tion Cn(δ(n); λ) over some variables δ(n) ⊆ X, called
its scope, and it is parameterized by λ. Sum and prod-
uct units n elaborate the output of other units, denoted
in(n). Sum units are parameterized by ω and compute the
weighted sum of their inputs

∑
i∈in(n) ωiCi(δ(n)), while

product units compute
∏

i∈in(n) Ci(δ(n)). The scope of an
inner unit (i.e., product or sum) is the union of the scopes
of its inputs. The output of the circuit is given by the last
unit in the computational graph.

Exact computation of the partition function, and any other
marginals, can be done in a smooth and decomposable cir-
cuit in a single graph evaluation (Thm. 3).

Definition 2 (Smoothness and Decomposability). A circuit
is smooth if for every sum unit, its input units depend all on
the same variables. A circuit is decomposable if the inputs
of every product unit depend on disjoint sets of variables.

Furthermore, structured-decomposable circuits can support
the exact computations of natural powers, which will be
useful in the next section.

Definition 3 (Structured-Decomposability). A decompos-
able circuit is structured-decomposable if all the product
units sharing the same scope decompose in the same way.

Theorem 1 (KGE models as Circuits). The score functions
of CP, DISTMULT, COMPLEX, RESCAL and TUCKER
can be represented as smooth and structured-decomposable
circuits over variables X = {S, P,O} denoting respec-
tively the subject, the relation type and the object, without
additional memory requirements.

Proof. We report the complete proof by construction in
App. A. In a nutshell, it suffices to i) transform the tensor
multiplications into corresponding sum and product units
and ii) create an input functional for each i-th embedding
component, i = 1, . . . , R, as to implement a lookup func-
tion that computes the corresponding value for an entity
or predicate, e.g., esi for the subject embedding in CP.
Fig. 2 shows this construction for the scoring functions of
CP/DISTMULT, RESCAL and TUCKER.

This construction paves new ways to build KGE models
by leveraging the literature on how to build circuit struc-
tures [Vergari et al., 2020]. More crucially, it helps us de-
vise tractable generative KGE models.
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Figure 2: CP, DISTMULT, RESCAL and TUCKER scoring functions over rank-2 embeddings represented as circuits. All
sum unit parameters are assumed to be 1 except for TUCKER where they are the vectorization of the core tensor T .

3 . . . TO PROBABILISTIC CIRCUITS

Under the light of Thm. 1, the score functions of KGE mod-
els are circuits that could support efficient marginalization,
but in log-space and not in probability space. As stated in
Sec. 1, current KGE models retrieve a probabilistic output
by applying a logistic function to the output of their cir-
cuits and this clearly hinders marginalization [Vergari et al.,
2021, Van den Broeck et al., 2021]. To retrieve both a prob-
abilistic semantic and efficient marginalization in one pass
we are looking at smooth and decomposable circuits that
encode functions that output positive values, i.e., probabilis-
tic circuits (App. B).

Definition 4 (Tractable probabilistic KGE Circuit). A
tractable probabilistic circuit (PC) for KGE models is a
smooth and decomposable circuit C that encodes a triple
score function ϕC(s, p, o) ∝ Pr(s, p, o), i.e., it outputs
ϕC(s, p, o) ≥ 0 for all triples (s, p, o).

In Def. 4 the score function ϕC always outputs non-negative
values in contrast with the score functions of the KGE mod-
els previously cited. To build such a PC, we propose two
strategies: restricting its parameter space and squaring it,
as reported in the following.

3.1 MONOTONIC RESTRICTION

A sufficient condition for obtaining a PC as in Def. 4 is
to restrict the circuit to be monotonic, i.e., to allow only
for non-negative parameters [de Colnet and Mengel, 2021].
By contrast, circuits encoding KGE score functions, as dis-
cussed in Thm. 1 and shown in Fig. 2, are a form of non-
monotonic circuits—i.e., they contain negative parameters.
While sum unit parameters are unitary (hence positive)
in CP and RESCAL, their embeddings can take any real
values. We denote as CP+, DISTMULT+, RESCAL+ and
TUCKER+ the monotonic restrictions of the corresponding
KGE models. In these monotonic PCs, we can now inter-
pret the input functionals associated to embedding entries
as (unnormalized) categorical random variables that can
take values in E or R if they refer to entities or relations.

However, we cannot simply restrict parameters to be non-
negative in COMPLEX to obtain a PC, as its score function

explicitly contains a subtraction (Sec. 1). To circumvent
this issue, we impose an additional constraint that enforces
that the real part of each embedding entry is always greater
or equal than the corresponding imaginary part. We discuss
this in detail in App. C.

3.2 SQUARING NON-MONOTONIC CIRCUITS

Restricting PCs to have non-negative parameters can be a
too strong limitation impacting its expressiveness [Valiant,
1979]. For this reason, we propose to obtain a PC by squar-
ing the non-monotonic circuits encoding a KGE score func-
tion, i.e., ϕ2(s, p, o) = ϕ(s, p, o) ∗ ϕ(s, p, o). This will en-
sure the non-negativity of the score, while allowing parame-
ters to be negative. For example for CP, its squared version
CP2 will encode

ϕCP2(s, p, o) = ϕ2
CP(s, p, o) = ⟨es,wp, eo⟩2 (3)

Since the score functions of CP, COMPLEX, RESCAL
and TUCKER can be readily represented as structured-
decomposable circuits (Thm. 1), their squared versions can
be compactly represented as smooth and decomposable cir-
cuits [Vergari et al., 2021].

Theorem 2 (Tractable squaring of KGE Circuits).
The marginalization of the score functions of CP2,
DISTMULT2, COMPLEX2, RESCAL2, and TUCKER2 can
be computed in time linear to |E| and |R| and quadratic in
the size of the original circuits.

Proof. The proof directly comes from the fact that squar-
ing a smooth, decomposable and structured-decomposable
KGE circuit C can be done in time O(|C|2) [Vergari et al.,
2021]. Since the resulting probabilistic circuit is smooth
and decomposable, marginalization can be performed in
time O(|E| · |C|2 + |R| · |C|2). In App. D we show time
and space complexity results regarding the computation of
the partition function of squared KGE circuits.

In the next sections, we discuss how the efficient and sound
probabilistic interpretation derived by our monotonic re-
striction and squaring strategies can enable a number of
strategies to train and perform inference on KGE models
that were not possible before.
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4 THE PERKS OF BEING A TRACTABLE
GENERATIVE MODEL

Learning. Our probabilistic KGE circuits can be effi-
ciently trained by directly maximising the log-likelihood

LMLE =
∑

(s,p,o)∈G
log ϕC(s, p, o)− logZC ; (4)

as we can exactly compute the partition function ZC =∑
s′∈E

∑
p′∈R

∑
o′∈E ϕC(s

′, p′, o′) in a single pass. This
enables us to also speed-up the computation of the discrimi-
native 1vsALL objective (Eq. (2)) while marginalizing over
subjects s and objects o. By applying this idea to other
pseudo-likelihood like objectives [Chen et al., 2021] and
composing them we can train our models by novel compos-
ite (log-)likelihood objectives [Varin et al., 2011], e.g., by
optimizing LMLE + L1vsALL which retrieves a generative-
discriminative objective and LMLE can be interpreted as a
regularizer [Peharz et al., 2019, 2020].

Sampling. While sampling triples from KGE models is
generally intractable, one can sample from KGE circuits
obtained through monotonic restriction (Sec. 3.1) easily
via ancestral sampling [Vergari et al., 2019]. For non-
monotonic squared circuits (Sec. 3.2) we can use inverse
transform sampling, since they support tractable condition-
ing and the computation of the cumulative distribution func-
tion (CDF). This can be done in an autoregressive fashion:
one can sample every variable by mapping some uniform
noise through the inverse CDF conditioned on some vari-
able ordering [Novikov et al., 2021].

Complex query answering. Answering queries such as
UCQs on KGs has been addressed via several heuristics
such as training additional neural network classifiers or us-
ing continuous relaxations of logic operators [Hamilton
et al., 2018, Ren et al., 2020, Arakelyan et al., 2021].

To answer all UCQs exactly, instead, we follow the assump-
tion of Friedman and Van den Broeck [2020] and factorize
each relation R(x, y) appearing in a UCQ Q into a conjunc-
tion of unary atoms E(x)∧ T (R)∧E(y). This implies we
now need a probability distribution defined over a larger set
of random variables: E∪R, i.e., one for each entity and one
for each relation type. This is different from considering
only three random variables S, P,O as we assumed so far.
In order to fill this conceptual gap, we can view any of the
proposed KGE circuit C as the result of the marginalization
of another PC B encoding a joint probability distribution
over independent binary variables E ∪ R:

ϕC(s, p, o) =
∑

x∈{0,1}m

ϕB(s = 1, p = 1, o = 1, E ′ ∪R′ = x)

where E ′ = E \ {s, o}, R′ = R \ {p} and m = |E ′ ∪ R′|.
This can be realized by substituting the categorical input
distribution for S or O (resp. P ) in C by a product over

Dataset Model 1vsALL 1vsALL+MLE
MRR Hits@1 MRR Hits@1

Nations
CP 0.792 0.676 — —
CP+ 0.804 0.700 0.786 0.677
CP2 0.797 0.699 0.805 0.705

UMLS
CP 0.943 0.897 — —
CP+ 0.855 0.759 0.854 0.759
CP2 0.920 0.873 0.896 0.817

Kinship
CP 0.855 0.769 — —
CP+ 0.722 0.598 0.734 0.612
CP2 0.868 0.796 0.889 0.827

Table 1: Best MRR and Hits@1 on the test sets of small
multi-relational knowledge graphs with CP as a baseline.

the binary variables in E (resp. R). If we do so for our
DISTMULT+, we retrieve TRACTOR [Friedman and Van
den Broeck, 2020].

Therefore, we are able to answer any UCQ Q with a cir-
cuit B exactly and efficiently by i) preprocessing them and
factorizing each binary atom as in Friedman and Van den
Broeck [2020], ii) compiling the logic query into a smooth
and decomposable propositional logic circuit as in Van den
Broeck et al. [2011], and iii) computing the expectation of
Q w.r.t. B which can be done efficiently by multiplying the
resulting logic circuit with B [Vergari et al., 2021].

5 EMPIRICAL EVALUATION

Here we provide some preliminary experiments to support
the use of tractable KGE circuits. Specifically, we inves-
tigate how expressive are our monotonic restriction and
squared circuits when compared to unrestricted KGE mod-
els. To this end, we compare CP against our alternatives
CP+ and CP2 on link prediction datasets: Nations, UMLS,
Kinship, WN18RR and FB15k-237. App. E reports the ex-
perimental setting details. We use the 1vsALL objective in
Eq. (2) and, for CP+ and CP2, also the composite likeli-
hood combining the 1vsALL and MLE objectives.

Table 1 shows the results in terms of the test mean recip-
rocal rank (MRR) and Hits@1 after a grid search over hy-
perparameters. The metrics are averaged over 5 indepen-
dent trials with different seeds. CP+ and CP2 achieve com-
petitive performance with respect to CP, and perform bet-
ter in Nations and Kinship using the composite objective.
On WN18RR and FB15k-237 instead, we performed ex-
periments using the 1vsALL objective. On WN18RR and
FB15k-237, CP achieves MRRs of 0.440 and 0.340, while
CP2 achieves MRRs of 0.392 and 0.273 respectively. Fur-
thermore, CP2 always performs better than CP+ confirm-
ing that squared circuits can be more expressive than the
ones obtained by monotonic restriction.
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A FROM KGES TO CIRCUITS

Proof. For the extended proof of Thm. 1, we prove it for
TuckER, since the other KGE models are based on special-
izations of the Tucker tensor factorization [Balazevic et al.,
2019]. For instance, the DISTMULT score function can be
written as TuckER’s where T is a three-order tensor having
ones on the superdiagonal and zeros elsewhere.

The presented proof constructs a circuit that compute the
TuckER score function in a bottom-up way, i.e., by creat-
ing the input functionals of the circuit and by transforming
the tensor multiplications into corresponding sum and prod-
uct units. Given (s, p, o) ∈ E × R × E , the TuckER score
function computes:

ϕTUCKER(s, p, o) = JT ; es,wp, eoK (5)
= T ×1 es ×2 wp ×3 eo (6)

=

Re∑
i=1

Rp∑
j=1

Re∑
k=1

τijkesiwpjeok (7)

where ×n denotes the tensor product along the n-th mode,
and Re, Rp are the dimensions of the embeddings of en-
tities and relation types respectively. For subjects, relation
types and objects we introduce input functionals as para-
metric mappers such that:

IS
i := CS

i ({S}; E) IS
i (s) = esi (8)

IP
i := CP

i ({P}; W) IP
i (p) = wpi (9)

IO
i := CO

i ({O}; E) IO
i (o) = eoi (10)

where E ∈ R|E|×Re ,W ∈ R|R|×Rp are the parameters.
We introduce R2

eRp product units that compute products of
the input functionals:

Pijk := Cijk({S, P,O}) (11)

Pijk(s, p, o) = IS
i (s) · IP

j (p) · IO
k (o) (12)

Finally, we introduce a sum unit that computes a weighted
summation of the results given by the product units:

S := C({S, P,O}; T ) (13)

S(s, p, o) =
∑

(i,j,k)∈
[Re]×[Rp]×[Re]

τijk · Pijk(s, p, o) (14)

where [n] denotes the set {1, . . . , n}. It is straightforward
to see that S(s, p, o) = ϕTUCKER(s, p, o) for any triple by
construction.

Notice that each product unit Pijk fully factorizes the scope
{S, P,O}. For this reason the resulting circuit is decompos-
able and structured-decomposable. The inputs of the sum
unit S share the same scope {S, P,O}, hence the circuit is
also smooth.

B PROBABILISTIC CIRCUITS

Definition 5 (Probabilistic Circuit). A probabilistic circuit
(PC) over variables X is a circuit C encoding a function
that is non-negative for all values of X, i.e., ∀x ∈ val(X) :
C(x) ≥ 0.

Theorem 3 (Tractable integration). Let C be a smooth and
decomposable circuit over variables X with input func-
tions that can be tractably integrated. For any Y ⊆ X,
y ∈ val(Y), Z = X \ Y, the following integral can be
computed in time Θ(|C|), where |C| denotes the size of the
circuit [Choi et al., 2020].∫

z∈val(Z)

C(y, z)dZ (15)

Here the integral symbol denotes the usual integration for
continuous variables, while summation over states for dis-
crete variables.

Given a smooth and decomposable PC C, Thm. 3 asserts
that we can perform marginalization in linear time w.r.t. the
size of C. Therefore, we can answer full evidence (Pr(X)),
marginal (Pr(Y) with Y ⊂ X) and conditional (Pr(Y | Z)
with Y ⊂ X and Z ⊂ X \Y) probabilistic queries exactly
and efficiently by evaluating the circuit in a single forward
pass [Choi et al., 2020].

C REALIZING COMPLEX+

The score function of COMPLEX explicitly contains a sub-
traction, as showed below.

ϕCOMPLEX(s, p, o) = Re(⟨es,wp, eo⟩) (16)

= ⟨Re(es),Re(wp),Re(eo)⟩
+ ⟨Im(es),Re(wp), Im(eo)⟩
+ ⟨Re(es), Im(wp), Im(eo)⟩
− ⟨Im(es), Im(wp),Re(eo)⟩

(17)

Restricting the real and imaginary parts to be non-negative
using monotonic restriction as described in Sec. 3.1 is not
sufficient to obtain a PC, since it could output negative val-
ues for some inputs. Under monotonic restriction, we en-
sure that ϕCOMPLEX(s, p, o) ≥ 0 for any (s, p, o) ∈ E×R×E
by enforcing the following constraint.

⟨Re(es),Re(wp),Re(eo)⟩ ≥ ⟨Im(es), Im(wp),Re(eo)⟩
(18)

The constraint can be simplified to two inequalities:

∀u ∈ E Re(eui) ≥ Im(eui) (19)
∀p ∈ R Re(wpi) ≥ Im(wpi) (20)

In other words, we assume that the real part of each param-
eter is always greater or equal than the corresponding imag-
inary part. Practically, we can parameterize the imaginary
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part in function of the real part:

∀u ∈ E Im(eui) := Re(eui) · σ(θui) (21)
∀p ∈ R Im(wpi) := Re(wpi) · σ(γpi) (22)

where σ denotes the logistic function and θui, γpi ∈ R are
additional parameters for entities and relation types respec-
tively. The parametrization of the imaginary parts using
Eqs. (21) and (22) is sufficient for the satisfaction of the
constraint showed in Eq. (18), and also maintains the same
number of parameters of COMPLEX.

We denote as COMPLEX+ the PC corresponding to COM-
PLEX encoding the function:

ϕCOMPLEX+ := C1 + C2 + C3 (23)
C1(s, p, o) = ⟨Im(es),Re(wp), Im(eo)⟩ (24)
C2(s, p, o) = ⟨Re(es), Im(wp), Im(eo)⟩ (25)

C3(s, p, o) = ⟨Re(es),Re(wp),Re(eo)⟩
− ⟨Im(es), Im(wp),Re(eo)⟩

(26)

where C1, C2 are PCs and C3 is a Twin Sum-Product Net-
work (TwinSPN) [Dennis, 2016], since it is a subtraction
of two PCs with pairwise constrained parameters that en-
sure that C3 always outputs non-negative values.

D PARTITION FUNCTION OF SQUARED
KGE CIRCUITS

KGE Circuit Time Space

CP2 O(|E| ·R2 + |R| ·R2) O(R2)
DISTMULT2 O(|E| ·R2 + |R| ·R2) O(R2)
COMPLEX2 O(|E| ·R2 + |R| ·R2) O(R2)
RESCAL2 O(|E| ·R2 + |R| ·R4) O(R4)
TUCKER2 O(|E| ·R2

e + |R| ·R2
p +R4

eR
2
p) O(R4

eR
2
p)

Table 2: Time and additional space complexity of comput-
ing the partition function of squared KGE circuits.

D.1 CP2, DISTMULT2, COMPLEX2

Here we derive the partition function of CP2. For the scor-
ing functions of DISTMULT2 and COMPLEX2 the deriva-
tion is similar, since they share the same computational
graph. The squared CP scoring function ϕCP2 can be writ-
ten as:

ϕCP2(s, p, o) = ϕ2
CP(s, p, o) (27)

= ⟨es,wp, eo⟩2 (28)

=

R∑
i=1

R∑
j=1

esiesjwpiwpjeoieoj (29)

where es, eo ∈ RR and wp ∈ RR are rows of matrices
U,V ∈ R|E|×R and W ∈ R|R|×R respectively. The parti-
tion function Z can be computed as:

Z =
∑
s∈E

∑
p∈R

∑
o∈E

ϕCP2(s, p, o) (30)

=

R∑
i=1

R∑
j=1

(∑
s∈E

esiesj

)∑
p∈R

wpiwpj

(∑
o∈E

eoieoj

)
(31)

= ⟨vec(UTU), vec(WTW), vec(VTV)⟩ (32)

where vec(·) denotes the vectorization operator. With the
simplest algorithm for matrix multiplication, we recover
that computing the partition function of CP2 requires time
O(|E| ·R2 + |R| ·R2) and additional space O(R2).

D.2 RESCAL2

The squared RESCAL scoring function ϕRESCAL2 can be writ-
ten as:

ϕRESCAL2(s, p, o) = ϕ2
RESCAL(s, p, o) (33)

=
(
eTs Wpeo

)2
(34)

=
∑

(i,j,k,l)∈[R]4

esieskwpijwpkleojeol (35)

where es, eo ∈ RR are rows of matrix E ∈ R|E|×R and
Wp ∈ RR×R are slices of tensor W ∈ R|R|×R×R along
the first mode. As computing the partition function of CP2

requires operating on 2-dimensional tensors (i.e., matrices),
we operate on a 4-dimensional tensor for RESCAL2. We do
so compactly by using the einsum notation. The partition
function Z can be computed as:

Z =
∑
s∈E

∑
p∈R

∑
o∈E

ϕRESCAL2(s, p, o) (36)

=
∑

(i,j,k,l)∈[R]4

(∑
s∈E

esiesk

)∑
p∈R

wpijwpkl

(∑
o∈E

eojeol

)
(37)

= uTVu (38)

where

u = vec(ETE) (39)

V = reshape(Ŵ, R2 ×R2) (40)

Ŵ = einsum(“nij, nkl → ikjl”,W,W) (41)

and reshape(·, ·) denotes the reshape operator. We recover
that computing the partition function of RESCAL2 requires
time O(|E| ·R2 + |R| ·R4) and additional space O(R4).
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D.3 TUCKER2

The derivation of the partition function of TUCKER2 is sim-
ilar to the one for RESCAL2. The squared TUCKER scoring
function ϕTUCKER2 can be written as:

ϕTUCKER2(s, p, o) = ϕ2
TUCKER(s, p, o) (42)

= (T ×1 es ×2 wp ×3 eo)
2 (43)

=

 Re∑
i=1

Rp∑
j=1

Re∑
k=1

τijkesiwpjeok

2

(44)

where es, eo ∈ RRe are rows of matrix E ∈ R|E|×Re , wp

is a row of matrix W ∈ R|R|×Rp , and T ∈ RRe×Rp×Re

denotes the core tensor. The partition function Z can be
computed as:

Z =
∑
s∈E

∑
p∈R

∑
o∈E

ϕTUCKER2(s, p, o) (45)

= V ×1 u×2 w ×3 u (46)

where

u = vec(ETE) (47)

w = vec(WTW) (48)

V = reshape(T̂ , R2
e ×R2

p ×R2
e) (49)

T̂ = einsum(“ijk, pqr → ipjqkr”, T , T ) (50)

Therefore, for TUCKER2 computing the partition function
requires time O(|E| ·R2

e+ |R| ·R2
p+R4

eR
2
p) and additional

space O(R4
eR

2
p).

E EXPERIMENTAL SETTING

Table 3 shows some statistics about the considered datasets.

Table 4 shows the hyperparameters search for CP, CP+ and
CP2 on small datasets: Nations, UMLS and Kinship. More-
over, Table 5 shows the hyperparameters search on large
datasets: FB15k-237 and WN18RR. All the models are
trained by SGD with the Adagrad optimizer [Duchi et al.,
2011] for 200 epochs, and by augmenting the training data
with reciprocal triples [Lacroix et al., 2018].

Following Chen et al. [2021], we intialize the parameters
of CP by sampling from a normal distribution N (0, 10−3).
In order to ensure non-negative parameters in CP+, we
re-parameterize them with their logarithm, and perform
computations in log-space. We initialize the parameters
of CP+ directly in log-space by sampling from a nor-
mal distribution N (0, 10−2). In CP2, we initialize the
parameters by sampling from a log-normal distribution
LogNormal(0, 10−2), and allow them to become negative
during training. The reason of using a log-normal distribu-
tion is that by doing so we ensure that the scores in log-
space are approximately normally distributed in the initial

optimization steps. Empirically this resulted in CP2 con-
verging to a better local minimum.

Dataset |E| |R| # Train # Valid # Test

Nations 14 55 1,592 100 301
UMLS 135 46 5,216 652 661
Kinship 104 25 8,544 1,068 1,074
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 3: Statistics of Nations, UMLS, Kinship, FB15k-237
and WN18RR showing the number of entities |E| and rela-
tion types |R|, and the number of triples in training, valida-
tion and test splits.

Model Rank Learning Rate Batch Size

CP [200, 500] [0.01, 0.1] [100, 500]
CP+ [200, 500] [0.1, 1.0] [100, 500]
CP2 [200, 500] [0.1, 1.0] [100, 500]

Table 4: Hyperparameters search for CP, CP+ and CP2 on
Nations, UMLS and Kinship.

Model Rank Learning Rate Batch Size

CP 2000 [0.01, 0.1] 500
CP+ 2000 [0.1, 1.0] 500
CP2 2000 [0.1, 1.0] 500

Table 5: Hyperparameters search for CP, CP+ and CP2 on
FB15k-237 and WN18RR.

9


	From Knowledge Graph Embeddings…
	… to circuits…
	…to probabilistic circuits
	Monotonic Restriction
	Squaring Non-monotonic Circuits

	The perks of being a tractable generative model
	Empirical Evaluation
	From KGEs to Circuits
	Probabilistic Circuits
	Realizing ComplEx+
	Partition Function of Squared KGE Circuits
	CP2, DistMult2, ComplEx2
	Rescal2
	TuckER2

	Experimental Setting

