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Abstract

Forecasting weather and climate events is cru-001
cial for making appropriate measures to mit-002
igate environmental hazards and minimize003
losses. However, existing environmental fore-004
casting research focuses narrowly on predicting005
numerical meteorological variables (e.g., tem-006
perature), neglecting the translation of these007
variables into actionable textual narratives of008
events and their consequences. To bridge this009
gap, we proposed Weather and Climate Event010
Forecasting (WCEF), a new task that leverages011
numerical meteorological raster data and tex-012
tual event data to predict weather and climate013
events. This task is challenging to accomplish014
due to difficulties in aligning multimodal data015
and the lack of supervised datasets. To address016
these challenges, we present CLLMate, the first017
multimodal dataset for WCEF, using 26,156 en-018
vironmental news articles aligned with ERA5019
reanalysis data. We systematically benchmark020
23 existing MLLMs on CLLMate, including021
closed-source, open-source, and our fine-tuned022
models. Our experiments reveal the advantages023
and limitations of existing MLLMs and the024
value of CLLMate for the training and bench-025
marking of the WCEF task.026

1 Introduction027

Weather and climate events, namely discrete028

episodes of extreme weather or abnormal climate029

conditions (Hurrell, 2013), pose a significant risk030

to human society, resulting in potential harm to031

property, infrastructure, injuries, and even loss of032

life (Stephenson et al., 2008). Such events (e.g.,033

heatwaves, floods, droughts) have experienced a034

noticeable surge in frequency, intensity, and du-035

ration in recent years due to climate change (Ac-036

carino et al., 2023). Significant concerns have been037

raised among human society. Appropriate mea-038

sures and optimal strategies are urgently needed039

to forecast these events and mitigate their negative040

impacts. Considerable researchers have studied041

weather forecasting for years. For example, Kang 042

et al. (2020) used factors such as temperature, wind, 043

and pressure data to forecast precipitation. Simi- 044

larly, Huang et al. (2021) relied on historical radia- 045

tion data to forecast future radiation. 046

However, those works only focus on meteoro- 047

logical variables forecasting, missing forecasting 048

textual weather and climate events or mapping the 049

relationship between meteorology and its textual 050

consequence. In the real world, there exists a wide 051

array of weather and climate events, also includ- 052

ing their cascading secondary and tertiary conse- 053

quences. For example, heavy rainfall can lead to 054

waterlogging, infrastructure degradation (e.g., road 055

collapse), traffic disruptions, and human casual- 056

ties when urban systems lack adaptive resilience 057

to climate change. A critical challenge lies in the 058

disparity between heterogeneous numerical mete- 059

orological data and textual descriptions of such 060

events and their consequences. The gap hinders the 061

accurate forecasting of real-world textual events 062

and their downstream impacts based solely on me- 063

teorological variables. 064

To address this critical gap, we propose the 065

Weather and Climate Event Forecasting (WCEF), 066

a novel task in environmental forecasting. Unlike 067

traditional approaches that predict numerical me- 068

teorological variables (e.g., precipitation) (Kang 069

et al., 2020; Yang et al., 2024), WCEF pioneers the 070

direct generation of natural language descriptions 071

to forecast weather and climate events and their cas- 072

cading real-world consequences. This represents a 073

fundamental paradigm shift, as it replaces the con- 074

ventional workflow—where domain experts manu- 075

ally interpret numerical predictions to infer poten- 076

tial events, a process that is labor-intensive, subjec- 077

tive, and lacking geographical adaptability—with 078

an automated, context-aware framework. 079

The complexity of WCEF stems from its dual 080

departure from existing methods: (1) its output re- 081

quires generating textual event descriptions rather 082
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than numerical sequences, and (2) its input de-083

mands multimodal integration of numeric, text, and084

image. Prior efforts, which focus solely on single-085

modal numerical predictions, fail to address these086

challenges (Schultz et al., 2021). They neither au-087

tomate the translation of raw climate data into ac-088

tionable narratives nor adapt to location-specific089

vulnerabilities, leaving critical gaps in forecasting090

precision and practical utility.091

The emergence of LLMs and multimodal LLMs092

(MLLMs) presents significant potential for bench-093

marking and addressing the WCEF task. To bench-094

mark this task, we collect weather and climate095

events from environmental news articles, which096

serve as a valuable complement to meteorological097

data. These articles provide detailed descriptions098

of weather and climate events (Roberts, 2023), in-099

cluding temporal and spatial information that can100

support precise event prediction. However, the101

sheer volume of unstructured environmental news102

conceals task-critical information. Additionally,103

the scarcity of supervised datasets, exacerbated by104

the novelty of the task and the complexity of curat-105

ing aligned multimodal pairs (numerical data and106

event descriptions), requires significant domain ex-107

pertise. The recent advancements in LLMs (Brown108

et al., 2020) offer a promising solution. They en-109

able the extraction of structured information from110

vast amounts of unstructured documents (Dagdelen111

et al., 2024; Biswas and Talukdar, 2024). Specifi-112

cally, we utilize GPT-4o-mini (OpenAI, 2025) to113

process 26,156 news articles, generating structured114

event representations (e.g., event A, cause, event115

B, location, and date) from unstructured text. To116

ensure accuracy, domain experts manually vali-117

date the outputs, resulting in the construction of a118

high-fidelity, spatiotemporally aligned multimodal119

dataset, CLLMate.120

To address the WCEF task, bridging the modal-121

ity gap between meteorological raster data (high-122

dimensional spatiotemporal grids) and textual de-123

scriptions remains a significant challenge (Liu et al.,124

2023; Jiang et al., 2024). MLLMs, in particular,125

offer an opportunity to integrate and align textual126

narratives with spatiotemporal data for the WCEF127

task (Xu et al., 2023). To evaluate current MLLM’s128

capabilities, we conduct extensive experiments on129

our constructed dataset using 23 MLLMs. The130

results demonstrate that while these models show131

potential, they remain constrained in their perfor-132

mance on the WCEF task. The experiment results133

reveal that current models have the advantage but134

are limited in the WCEF task. It underscores the 135

need for further work to achieve accurate weather 136

and climate event forecasting. 137

In summary, the contributions can be outlined: 138

• We propose the WCEF task to forecast textual 139

events based on numerical meteorological raster 140

data, which differs from traditional meteorologi- 141

cal data forecasting. 142

• We leverage domain knowledge extracted from 143

the news corpus to establish the first multimodal 144

dataset1 to connect events and meteorology. 145

• We conduct extensive experiments to evaluate 146

existing MLLMs and our fine-tuned models on 147

the WCEF task, benchmarking their capability in 148

forecasting textual weather and climate events. 149

2 Related Work 150

Weather and climate forecasting has long been a 151

research problem in the field of environment. In 152

this paper, we proposed a more challenging task to 153

predict textual events using MLLMs. 154

2.1 Weather and Climate Events Forecasting 155

In the era preceding modern weather prediction, 156

human experience connects diverse natural signs, 157

such as cloud patterns and animal behavior, with 158

weather and their subsequent effects (Risiro et al., 159

2012). The start of modern weather forecasting was 160

marked with the first modern weather chart (Allaby, 161

2009; Young and Grahame, 2022). In contempo- 162

rary study, a shift towards efficiency has occurred 163

by consolidating various numerical variables into 164

a unified numerical framework. Two primary nu- 165

merical methodologies are commonly employed: 166

numerical weather prediction, which utilizes nu- 167

merical simulation methods (Bauer et al., 2015; 168

Lynch, 2008), and AI-based forecasting, which 169

leverages data-driven approaches (Bi et al., 2023; 170

Hewage et al., 2021). Both methods focus on nu- 171

meric data, which experts are required to analyze 172

to predict potential consequences. In contrast to 173

those works, we make the first attempt to study the 174

WCEF task of predicting textual events with deep 175

learning models to ease expert labor. 176

2.2 Multimodal LLM 177

With the advancement of LLMs, there’s been a 178

surge of research on building multimodal LLMs. 179

Their studies (Wu et al., 2023; Zhan et al., 2024) 180

try to incorporate multiple types of data beyond 181

1The dataset will be publicly released.
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Dataset Meteorological Variables Textual Events
Not Post Records Post Records

SEVIR (Veillette et al., 2020) Satellite × ×
Mesogeos (Kondylatos et al., 2024) ERA5 × ×

Digital Typhoon (Kitamoto et al., 2024) Satellite × ×
Vaid et al.’s work (Vaid et al., 2022) × × Social Media

NeuralNERE (Mishra and Mittal, 2021) × × News
ClimateIQA (Chen et al., 2024a) ERA5 QA generated by LLM ×

WeatherQA (Ma et al., 2024) ERA5 Expert’s pre-analysis ×
CLLMate ERA5 × News, verified by experts

Table 1: Comparison with CLLMate with the existing datasets. CLLMate uniquely integrates ERA5 reanalysis data
with expert-verified textual events, addressing the scarcity of aligned multimodal datasets for weather and climate
event forecasting. (ERA5: the fifth generation ECMWF atmospheric reanalysis dataset of the global climate.)

just natural language, such as images, audio, and182

video. BLIP-2 (Li et al., 2023) has developed183

a large-scale image captioning dataset, combin-184

ing a language model with a vision encoder to185

create a multimodal model. Building on this,186

LLaVA (Liu et al., 2023) introduces a more cost-187

effective method for training multimodal models188

through visual instruction tuning. The following189

multimodal LLMs, including QwenVL2 (Wang190

et al., 2024a), CogVLM (Wang et al., 2023a),191

deepseek-vl (Lu et al., 2024), Intern-vl (Chen et al.,192

2024b; Dong et al., 2024), etc., all follow a similar193

architecture of LLaVA. Following them, our work194

focuses on meteorology.195

2.3 Existing Similar Dataset196

Prior efforts to model meteorological events fall197

into three categories (Table 1):198

Single-Modality Physical Datasets. Works like199

SEVIR (storm imagery) (Veillette et al., 2020),200

Mesogeos (wildfire-related variables) (Kondylatos201

et al., 2024), and Digital Typhoon (typhoon trajec-202

tories) (Kitamoto et al., 2024) focus on meteorolog-203

ical measurements but lack textual event narratives.204

While valuable for physical modeling, they omit205

explicit linkages to real-world impacts.206

Text-centric datasets. Text-centric datasets207

such as Vaid et al.’s work (social media208

events) (Vaid et al., 2022) and NeuralNERE (news-209

derived knowledge graphs) (Mishra and Mittal,210

2021) catalog climate-related events but fail to link211

them to corresponding meteorological data. This212

disconnect leaves the causal chain between weather213

patterns (e.g., extreme rainfall) and societal conse-214

quences (e.g., floods) unquantified.215

Multimodal Approaches with Limitations.216

Several other meteorological multimodal dataset217

construction efforts were conducted around the218

same time as CLLMate. However, they remain219

limited by data quality and scope. ClimateIQA 220

(Chen et al., 2024a) pairs ERA5 data with LLM- 221

generated QA pairs but lacks verified event records 222

and impact descriptions. WeatherQA (Ma et al., 223

2024) aligns ERA5 with expert pre-analysis texts, 224

yet it focuses on meteorological forecasts rather 225

than post-event records and excludes societal im- 226

pacts. Both datasets prioritize meteorological phe- 227

nomena over downstream consequences and rely 228

on synthetic or non-verified textual data, limiting 229

their utility for impact-driven research. 230

CLLMate bridges these gaps by integrating 231

expert-verified post-event records from authorita- 232

tive news sources with spatiotemporally matched 233

meteorological raster data. Unlike prior works, 234

CLLMate (1) captures both meteorological phe- 235

nomena (e.g., rainfall) and their downstream con- 236

sequences (e.g., flooding, infrastructure damage), 237

(2) establishes explicit cross-modal mappings be- 238

tween textual event descriptions (including time 239

and location) and meteorological variables, and (3) 240

ensures reliability through domain expert valida- 241

tion of event reports. 242

3 Problem Formulation 243

In this section, we provide an introduction to the 244

data type in our dataset, CLLMate, and outline the 245

formulation of the WCEF task (Figure 1). 246

3.1 Spatio-Temporal Data 247

Two types of spatio-temporal data are utilized: me- 248

teorological raster data and event data. 249

3.1.1 Meteorological Raster Data 250

Meteorological raster data is commonly employed 251

in the environmental domain to depict meteoro- 252

logical variables. For instance, one global mete- 253

orological variable can be represented as a three- 254

dimensional tensor R ∈ RT×Λ×Φ, where T de- 255
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Event A{location, time, category}

Event B{location, time, category}
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Figure 1: The CLLMate framework is designed to ex-
tract textual weather and climate events and align them
with meteorological raster data for the WCEF task.

notes the time dimension, and Λ and Φ represent256

the longitude and latitude dimensions, respectively.257

Each element rt,λ,ϕ corresponds to the variable258

value at a specific time t and location (λ, ϕ).259

3.1.2 Event Data260

On the other hand, event data E are occurrences of261

interest at specific points in space and time with the262

shape of T × Λ× Φ. For example, a single event263

can be represented using textual information et,λ,ϕ,264

indicating the occurrence at a particular time t and265

location (λ, ϕ).266

Two distinctions exist between raster and event267

data. First, raster data is numerical, while event268

data is textual. Next, raster data is dense, whereas269

event data is sparse, featuring specific instances at270

discrete locations and times.271

3.2 WCEF Task272

The existing weather forecasting task involves pre-273

dicting the future target meteorology variable using274

either the same or more variables. This task can be275

formulated as follows:276

RC+1:C+F = f(RC−H+1:C) (1)277

where f(·) is the forecasting model, RC denotes278

the numerical meteorological variables at the cur-279

rent time, F represents the length of the forecasting280

data, and H is the length of historical data used.281

In contrast, the objective of the proposed WCEF282

task is to predict textual events using numerical283

data (Figure 1). These events can be defined based284

on meteorological characteristics, such as heat-285

waves and the subsequent consequences they en-286

tail. The scope of events encompasses primary287

occurrences like heatwaves and droughts, as well288

as secondary and tertiary events (consequences)289

like landslides and human casualties that arise as a290

result of the primary events. These examples illus-291

trate the complexity of deriving such events solely292

from numerical data. It highlights the significance293

of the historical events and the valuable knowledge294

Figure 2: Spatial distribution of extracted events. Each
rectangle represents an extracted event. The events span
most global regions, with notable concentrations in East
Asia, North America, and Europe.
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Figure 3: Temporal distribution of extracted events. The
events span a long time period, from 2015 to 2023. A
notable outlier in the number of events occurred due to
the catastrophic flooding in Zhengzhou in July 2021.

they offer. The WECF task can be formulated: 295

EC:C+F−1 = fϕ(RC−H+1:C , Instruction) (2) 296

where fϕ(·) denotes the LLM model and EC is the 297

textual events happening at the current time. It is 298

worth emphasizing that, unlike existing forecasting 299

tasks utilizing the same source data, we employ C 300

in both the forecasting and historical data. This is 301

because EC and RC hold distinct meanings. 302

4 Dataset Construction Process 303

In this section, we introduce the meteorological 304

raster dataset and environmental news dataset we 305

used to construct the multimodal instruction dataset 306

for the WCEF task. Then, we explain the pipeline 307

to create the multimodal dataset (appendix A.1). 308

4.1 Dataset Used to Construct CLLMate 309

Meteorological Raster Dataset. We use the open 310

and free ERA5 reanalysis dataset (Hersbach et al., 311

2020) to obtain the meteorology data (Copernicus 312

License). Its usage in climate research has been 313

widely acknowledged for its quality (Sun et al., 314

2022). Four variables, namely “2m temperature,” 315

“10m u-component of wind,” “10m v-component 316

of wind,” and “total precipitation,” were selected to 317
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forecast the following textual weather and climate318

events. The dataset consists of hourly data span-319

ning from July 2015 to July 2023, with a spatial320

resolution of 27.75 km× 27.75 km.321

Environmental News Dataset. We acquired en-322

vironmental news from Wisers (Wisers, 2024)323

through a procurement process, which consisted324

of highly environment-related news articles from325

news publishers. The dataset spans from July 2015326

to June 2023. Each news article contains the title,327

content, character statistics, date, publisher, and328

media type. The media types encompass both web329

and publication resources while excluding internet-330

based media sources primarily reliant on aggregat-331

ing news reports from official news agencies.332

4.2 The Multimodal Dataset333

We construct the first multimodal dataset for the334

WCEF task through three steps.335

4.2.1 Event Extraction336

Weather and climate events exist within a vast337

amount of news articles. Research has demon-338

strated the efficacy of utilizing LLMs for extracting339

structured information from text (Dagdelen et al.,340

2024). The initial step of our pipeline is to identify341

and extract these events and their relationships from342

each news document. First, we employed GPT-4o-343

mini to analyze 26,156 environmental news arti-344

cles, extracting weather and climate event knowl-345

edge in structured triples with spatiotemporal meta-346

data (e.g., high temperature causes heatwave, Hong347

Kong, 2022-08-16). The details of the prompt for348

extracting events can be found in appendix B.1.349

Initial automated labeling identified 6,352 news350

containing potential event relationships. These351

articles, along with their extracted triples, loca-352

tions, and dates, underwent rigorous manual val-353

idation by three meteorological domain experts.354

Events, which are not meteorological events, or355

lack clear spatial information, or temporal details356

will be excluded. Following verification, 2,575357

news were confirmed to contain accurate event358

knowledge, yielding a final curated dataset of 7,747359

spatiotemporally grounded events. Please refer to360

appendix B.2 for more details on annotation.361

Specially as for the spatial aspect, there are 1,049362

distinct regions in the dataset. To derive geospatial363

bounds for these locations, we continue to employ364

GPT-4o-mini to generate latitude-longitude coordi-365

nates, which are subsequently validated by humans366

to ensure alignment with real-world geographical367
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Figure 4: Distribution of categories within the meteoro-
logical phenomena category (3,979/7747 events). The
distribution is imbalanced, reflecting the nature of event
reporting in the news.
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Figure 5: Distribution of categories within the conse-
quences category (3,768/7747 events). The distribution
is imbalanced, reflecting the nature of event reporting
in the news.

boundaries by visualizing them on the map. Addi- 368

tionally, we expand the geographical range, with a 369

minimum of 5 degrees, to incorporate surrounding 370

meteorological conditions. 371

Spatial Distribution. The dataset exhibits a broad 372

geographical representation, covering most global 373

regions (Figure 2). Events are notably concen- 374

trated in East Asia, North America, and Europe, 375

with comparatively fewer instances in other regions. 376

This imbalance likely reflects socioeconomic dis- 377

parities in environmental reporting infrastructure 378

and media coverage biases. 379

Temporal Distribution. The temporal coverage 380

spans July 2015 to July 2023, with marked sea- 381

sonal patterns: event frequency peaks during sum- 382

mer and winter months (Figure 3). A signif- 383

icant outlier occurred in July 2021, coinciding 384

with catastrophic flooding since extreme rainfall in 385

Zhengzhou, China, which caused hundreds of fatal- 386

ities and widespread infrastructure damage. This 387

event garnered exceptional media attention. 388
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4.2.2 Event Categorization389

To simplify the evaluation of MLLMs’ capabilities390

in the WCEF task, collaborating with domain ex-391

perts, we design the problem into a multiple-choice392

framework by categorizing weather and climate393

events hierarchically (appendix A.2). The catego-394

rization combines a bottom-up approach to clus-395

tering (using semantic similarity) with a top-down396

approach (using the taxonomy in the environmental397

domain) (Gaiteri et al., 2015). Events are classified398

into two primary categories: meteorological phe-399

nomena (3979/7747 events, Figure 4) and their cas-400

cading consequences (3768/7747 events, Figure 5).401

Each category is further divided into fine-grained402

subclasses, which serve as candidate options for403

model selection. In the benchmarking, MLLMs404

are required to select the most probable predefined405

fine-grained subclass. We split the dataset into train406

and test sets. For the category distribution of train407

and test sets, please refer to appendix A.3.408

The statistical distributions of these subclasses409

are visualized in Figures Figure 4 and Fig-410

ure 5. There are imbalances in the category411

distribution, such as for the primary category412

of meteorological phenomena, there are 43.7%413

events are atmospheric-related, 40.5% events are414

precipitation-related, and only 15.8% events are415

wind-related. That is because all events are ex-416

tracted from the news and follow the distribution417

of the recording of events.418

4.2.3 Event-Meteorology Alignment419

Multimodal dataset construction relies on precise420

spatiotemporal alignment between events and their421

meteorological conditions (Figure 1). For each422

event (appendix A.1), we integrate: (1) textual423

event, (2) meteorological raster data for the event’s424

specific date and region, and (3) regional statistical425

context (e.g., max) from the same spatiotemporal426

origin. Meteorological inputs are preprocessed into427

RGB-like grids (normalized to [0, 1]):428

• Channel 1: 2m temperature.429

• Channel 2: 10m wind speed (u- and v-430

components combined via magnitude norm).431

• Channel 3: total precipitation.432

This representation enables MLLMs to process spa-433

tial climate patterns as visual inputs.434

5 Benchmarking Results435

5.1 Benchmarked Models436

The dataset is partitioned chronologically into train-437

ing (90%) and testing (10%) sets. We conducted 438

extensive experiments with 23 MLLMs on the test 439

set, encompassing closed-source, open-source, and 440

our fine-tuned models: 441

5.1.1 Closed-Source Models 442

• GPT Series (OpenAI, 2025): OpenAI’s flagship 443

MLLM with integrated vision capabilities. We 444

evaluated three variants of OpenAI’s GPT ar- 445

chitecture optimized for multimodal reasoning: 446

GPT-4o, GPT-4o-mini, and GPT-o1. 447

• Gemini (Team et al., 2023): Google’s MLLM 448

with enhanced context window and optimized for 449

high-speed processing of text-image inputs. We 450

evaluated Gemini-1.5-pro and Gemini-2.0-flash. 451

• Claude-3.5-Sonnet (Anthropic, 2025): An- 452

thropic’s MLLM with improved analytical ca- 453

pabilities, supporting text and image inputs. 454

5.1.2 Open-Source Models 455

• Deepseek-Janus-Pro-7B (Chen et al., 2025): 456

Deepseek’s MLLM with both multimodal un- 457

derstanding and text-to-image capabilities. 458

• InternVL2-8B (Chen et al., 2024b): A vision- 459

language foundation model with powerful capa- 460

bilities in handling complex multimodal data. 461

• Cambrian-1-8B (Tong et al., 2024): A fully 462

open multimodal LLM designed with a vision- 463

centric approach. 464

• LLaVA-1.5/1.6 (Liu et al., 2023, 2024): Ver- 465

sions of the widely adopted open-source MLLM 466

framework: LLaVA-1.5-7B/13B: MLLMs with 467

standard vision-language alignment. LLaVA-1.6- 468

7B/13B/34B: Enhanced variants MLLMs for fine- 469

grained visual grounding. 470

• Qwen2/2.5 (Wang et al., 2024b) utilize dynamic 471

resolution and frame rate training for video un- 472

derstanding. We evaluate Qwen2-VL-7B and 473

Qwen2.5-VL-7/72B. 474

5.1.3 Fine-tuned Models 475

We fine-tuned a series of LLaVA models using the 476

training set of the CLLMate to evaluate the value of 477

the dataset and the efficiency of MLLMs in solving 478

the WCEF task. The fine-tuned models include 479

LLaVA-1.5-7B/13B and LLaVA-1.6-vicuna-7B/13B. 480

They are trained on 8 A800 GPUs for one epoch. 481

Please refer to appendix C for more details. 482

5.2 Prompt Design 483

We design specialized prompts for MLLMs to fore- 484

cast meteorological phenomena and their conse- 485

quences. The prompts consist of “System Prompt,” 486
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Models
Primary

Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence
Random guess 33.33% 12.50% 20.00% 5.56%
Majority guess 40.12% 26.07% 40.11% 4.90%
GPT-4o-mini (OpenAI, 2025) 30.28% 13.62% 34.63% 14.13%
GPT-4o (OpenAI, 2025) 32.11% 15.65% 39.22% 12.01%
GPT-o1 (OpenAI, 2025) 32.93% 10.97% 17.67% 10.60%
Gemini-1.5-pro (Team et al., 2023) 20.12% 8.74% 28.98% 10.25%
Gemini-2.0-flash (Team et al., 2023) 37.80% 19.72% 30.39% 13.43%
Claude-3.5-Sonnet (Anthropic, 2025) 37.60% 19.72% 40.28% 15.90%
Janus-Pro-7B (Chen et al., 2025) 31.31% 2.64% 21.20% 2.83%
InternVL2-8B (Chen et al., 2024b) 29.27% 10.37% 21.91% 5.30%
Cambrian-1-8B (Tong et al., 2024) 31.10% 9.56% 31.80% 4.59%
LLaVA-1.5-7B (Liu et al., 2023) 31.30% 14.02% 20.85% 3.89%
LLaVA-1.6-vicuna-7B (Liu et al., 2024) 31.30% 13.82% 20.85% 3.89%
LLaVA-1.6-mistral-7B (Liu et al., 2024) 32.93% 17.28% 39.22% 12.01%
LLaVA-1.5-13B (Liu et al., 2023) 31.32% 15.04% 28.27% 7.77%
LLaVA-1.6-vicuna-13B (Liu et al., 2024) 29.47% 14.63% 21.91% 7.42%
LLaVA-1.6-vicuna-34B (Liu et al., 2024) 42.28% 15.45% 17.67% 3.89%
Qwen2-VL-7B (Wang et al., 2024b) 32.72% 11.38% 25.80% 5.30%
Qwen2.5-VL-7B (QwenTeam, 2025) 42.27% 17.48% 21.91% 7.78%
Qwen2.5-VL-72B (QwenTeam, 2025) 40.85% 20.73% 39.58% 16.25%
Fine-tuned-LLaVA-1.5-7B 45.93% 23.37% 43.46% 9.89%
Fine-tuned-LLaVA-1.6-vicuna-7B 44.91% 29.67% 44.17% 8.48%
Fine-tuned-LLaVA-1.6-mistral-7B 45.53% 25.61% 43.82% 8.13%
Fine-tuned-LLaVA-1.5-13B 44.92% 23.78% 43.46% 6.36%
Fine-tuned-LLaVA-1.6-vicuna-13B 45.54% 27.03% 42.40% 9.19%

Table 2: The accuracy of benchmarked MLLMs across two granularity levels: primary category classification and
subordinate category identification for both meteorological phenomena and their cascading consequence.

“Location Information,” “Meteorological Param-487

eters,” “Meteorological Image,” “Options,” and488

“Zero-Shot CoT (Kojima et al., 2022).” As for489

the Zero-Shot CoT, we use (1) analysis of statis-490

tical data, (2) analysis of spatial patterns in the491

image, and (3) synthesis of findings to select the492

most probable fine-grained category. To ensure493

precision and minimize ambiguity, outputs are con-494

strained to standardized serial codes (e.g., A.1 high495

temperature.) Additionally, to mitigate positional496

bias, answers are randomized across instances (e.g.,497

"high temperature" may appear as Option A.1 in498

one instance and Option B.2 in another). Refer to499

appendix B.3 and appendix B.4 for more details.500

5.3 Evaluation Metric501

For the benchmarking of multi-choice questions,502

we employ accuracy as the metric, following the503

previous research, such as Ge et al.’s work (Ge504

et al., 2022). Accuracy is a straightforward metric505

that measures the proportion of correct answers out506

of the total number of questions.507

5.4 Heuristic Baselines508

We implement two heuristic baselines:509

• Random Guess: Answers are selected uniformly510

at random from all valid options, reflecting 511

chance-level performance. 512

• Majority Guess: The most frequent category/- 513

subcategory in the training set (Precipitation/Liq- 514

uid Precipitation and Disaster/Flood, Figure 6) 515

is chosen for all test instances. Thus, the dis- 516

tribution of them in the test set will be used 517

(40.12%/26.07% and 40.11%/4.90%). It serves 518

two purposes: (1) quantifying the advantage of 519

leveraging dataset biases, and (2) contextualiz- 520

ing model performance relative to empirically 521

informed predictions. 522

5.5 Main Results 523

Table 2 summarizes the performance of bench- 524

marked MLLMs across two granularity levels: pri- 525

mary category (coarse-grained) and subordinate 526

category (fine-grained) for meteorological phenom- 527

ena and their consequences. The results are also 528

shown in Figure 8 and Figure 9. 529

5.5.1 Meteorological Phenomena Forecasting 530

Primary Category: Most closed-source and 531

open-source models perform near random guess 532

(30.28–37.80%), with the exception of LLaVA-1.6- 533

vicuna-34B and Qwen2.5 (40.85%-42.28%), which 534
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exceeds the majority guess baseline (40.12%).535

Fine-tuned models achieve substantial gains, with536

Fine-tuned-LLaVA-1.5-7B attaining the highest ac-537

curacy (45.93%).538

Subordinate Category: While most existing539

models surpass random guessing, none exceed the540

majority guess baseline (26.07%). Fine-tuning541

yields significant improvements (e.g., Fine-tuned-542

LLaVA-1.6-vicuna-7B: 29.67% vs. 13.82% for its543

untrained counterpart).544

5.5.2 Consequence Forecasting545

Primary Category: Claude-3.5-Sonnet leads546

among untrained models (40.28%), while fine-547

tuned variants dominate, notably Fine-tuned-548

LLaVA-1.6-vicuna-7B (44.17%), surpassing the549

random guess (20.00%) and majority guess base-550

line (40.11%). This demonstrates the learnability551

of meteorology-to-impact mappings when models552

are task-adapted.553

Subordinate Category: QWen2.5-VL-72B554

achieves the highest accuracy (16.25%), marginally555

exceeding the heuristic baselines (5.56%/4.90%),556

while fine-tuned models show limited gains.557

6 Performance Analysis558

We show some findings of the benchmarking. For559

more analysis, such as case study, ablation study,560

and scale analysis, please refer to appendix D.561

6.1 MLLMs vs. Heuristic Baselines562

While MLLMs outperform the random guessing563

baseline, some of them often fall short of the major-564

ity guess baseline, a pattern attributable to an inher-565

ent class imbalance in the dataset. The imbalance566

provides a competitive advantage for naive reliance567

on prior knowledge of the category distribution.568

However, fine-tuned models such as Fine-tuned-569

LLaVA-1.5-7B surpass the majority guess baseline570

in phenomena prediction (45.93% vs.40.12%) and571

in consequence forecasting (43.46% vs. 40.11%).572

Critically, this demonstrates that MLLMs can learn573

meteorology-to-event mappings, achieving gains574

through pattern recognition.575

6.2 Closed-Source and Open-Source Models576

Among closed-source models, Claude-3.5-Sonnet577

achieves the highest forecasting accuracy. Surpris-578

ingly, GPT-o1’s performance is lower than that of579

other models. Open-source models exhibit signif-580

icant performance fragmentation. While LLaVA-581

1.6-34B achieves competitive primary phenomena582

accuracy (42.28%), its consequence forecasting de- 583

creases to 17.67%, worse than random guessing 584

(20%). Qwen2.5-VL-72B shows an advantage in 585

consequence forecasting (39.58%/16.25%). The 586

performance of the best closed-source model is 587

comparable to that of the best open-source model. 588

6.3 Effectiveness of Task-Specific Fine-tuning 589

Fine-tuning on CLLMate yields dramatic im- 590

provements: Fine-tuned-LLaVA-1.5-7B surpasses 591

Claude-3.5-Sonnet in primary phenomena accuracy 592

(45.93% vs. 37.60%) and consequences (43.46% 593

vs. 40.28%). Subordinate category performance 594

improves by 9–15 percentage points for phenom- 595

ena (e.g., 23.37% vs. 14.02% in LLaVA-1.5-7B), 596

though subordinate consequence forecasting re- 597

mains challenging (<10% accuracy). This demon- 598

strates that while MLLMs lack inherent weather 599

reasoning capabilities, task-specific adaptation en- 600

ables competitive forecasting. This underscores the 601

necessity of task-specific alignment for bridging 602

numerical meteorology and textual narratives. 603

6.4 Limited Performance 604

while existing or fine-tuned MLLMs outperform 605

the heuristic baselines, they have relatively low ac- 606

curacy (< 50%), suggesting current models have 607

the advantage, however, limited, in distinguishing 608

different coarse-grained event types (e.g., Precipi- 609

tation vs. Wind) and fine-grained event types (e.g., 610

General wind vs. Typhoon). It underscores the 611

need for future work to forecast meteorological 612

events more accurately. 613

7 Conclusion 614

We propose the WCEF task, which forecasts 615

weather and climate events using meteorological 616

raster data. To support this task, we present CLL- 617

Mate, the first supervised multimodal dataset that 618

aligns spatiotemporally grounded event descrip- 619

tions and their consequences with corresponding 620

meteorological numerical data. We conducted ex- 621

tensive experiments to assess 23 MLLMs and our 622

fine-tuned MLLMs’s performance on the dataset, 623

CLLMate. The results show that while the MLLMs’ 624

performance can outperform the heuristic baselines, 625

they are still limited. CLLMate establishes a foun- 626

dational benchmark for WCEF, revealing both the 627

feasibility of event forecasting and the pressing 628

need for domain-optimized architectures. 629
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Limitation630

We identify some limitations exist in this study and631

future research directions in this emerging field:632

First, the inclusion of additional modalities to633

offer supplementary insights for forecasting is es-634

sential. While this study initially delves into modal-635

ities encompassing numerical spatiotemporal data636

and text, there exist other meteorological data637

modalities like satellite imagery and time series638

data (Jin et al., 2023) from global meteorological639

stations that could contribute to longer-term, more640

precise forecasting. These data can be easily in-641

tegrated into the events in CLLMate according to642

the spatiotemporal information. Further research is643

warranted to enrich the forecasting capabilities.644

Second, since we extracted a large number of645

triples (event A causes event B), the incorpora-646

tion of the knowledge graph necessitates addi-647

tional exploration. Employing more sophisticated648

techniques to equip the MLLM with prior world649

knowledge (Do et al., 2024; Wang et al., 2024c)650

of weather and climate for the events understand-651

ing (Wang et al., 2022, 2023b), could potentially652

enhance the performance.653
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A Dataset Release and License 936

A.1 CLLMate License and Availability. 937

The CLLMate dataset will be publicly available after the review phase and use the CC BY 4.0 license. 938

The data format is: 939

940
1 { 941

2 ... 942

3 "6973": { 943

4 "caused by": "None", 944

5 "cause": "6970", 945

6 "news_id": "5838681", 946

7 "event": "high temperature", 947

8 "category_name": "phenomena.atmospheric.high temperature", 948

9 "category_index": "A.A.A", 949

10 "time": "2022/07/25", 950

11 "location": "Guangzhou City", 951

12 "coordinate": "[20.69, 110.88, 25.69, 115.88]", 952

13 "image_path": "./ image/6973.png", 953

14 "temperature": { 954

15 "max": "302.75", 955

16 "min": "302.00", 956

17 "mean": "302.50" 957

18 }, 958

19 "wind speed": { 959

20 "max": "6.56", 960

21 "min": "4.09", 961

22 "mean": "5.51" 962

23 }, 963

24 "precipitation": { 964

25 "max": "0.00", 965

26 "min": "0.00", 966

27 "mean": "0.00" 967

28 } 968

29 }, 969

30 "6974": { 970

31 "caused by": "6979", 971

32 "cause": "None", 972

33 "news_id": "5677320", 973

34 "event": "increased wildfire severity", 974

35 "category_name": "consequence.disaster.fire", 975

36 "category_index": "B.A.D", 976

37 "time": "2022/07/25", 977

38 "location": "California State", 978

39 "coordinate": "[32.5288, -124.4096, 42.0095, -114.1312]", 979

40 "image_path": "./ image/6974.png", 980

41 "temperature": { 981

42 "max": "312.50", 982

43 "min": "295.00", 983

44 "mean": "306.00" 984

45 }, 985

46 "wind speed": { 986
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47987

48 "max": "12.07",988

49 "min": "0.00",989

50 "mean": "4.01"990

51 },991

52 "precipitation": {992

53 "max": "0.00",993

54 "min": "0.00",994

55 "mean": "0.00"995

56 }996

57 },997

58 ...998

59 }9991000
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A.2 Category 1001

Weather and
Climate Events

Consequence

Transportation

Impacted Maritime

Impacted Road Traffic

Impacted Train

Impacted Flight

Society Impact
Impacted activity

Impacted resource

Damage

Equipment Damage

Vehicle Damage

Building Damage

Infrastructure Damage

Organisms Impact

Impacted Plant

Impacted Animal

Impacted Human

Disaster

Pollution

Fire

Earthquake &
Landslide

Drought

Flood

Meteorological
Phenomena

Wind

Tornado

Typhoon

General Wind

Precipitation
Solid Precipitation

Liquid Precipitation

Atmospheric

Low Visibility

Low Temperature

High Temperature
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A.3 Category Distribution of Train and Test Sets.1003

The dataset is partitioned chronologically into training (90%) and test (10%) sets. We present the category1004

distribution of training (Figure 6) and testing (Figure 7) sets.1005
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Impacted Maritime

Figure 6: Distribution of categories of the training set. A: meteorological phenomena categories (3487/7747 events).
B: consequences categories (3485/7747 events).
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Figure 7: Distribution of categories of the testing set. A: meteorological phenomena categories (492/7747 events).
B: consequences categories (283/7747 events).

A.4 Generalizability of CLLMate1006

While the CLLMate benchmark is structured for hierarchical categorization via multiple-choice evaluation,1007

its design inherently supports other discriminative or generative tasks, such as open-ended generation1008

tasks. The inclusion of raw textual event descriptions (subsection A.1) alongside aligned meteorological1009

data enables applications beyond constrained categorization. For example:1010

• Free-form event narrative generation: Training or evaluating MLLMs to produce human-readable1011

weather/climate event summaries from numerical inputs.1012

• Causal reasoning exploration: Probing model capabilities to infer and articulate chains of causality1013

between meteorological drivers and societal impacts.1014

• Automated report drafting: Generating localized risk assessments or mitigation advisories grounded in1015

spatio-temporal climate patterns.1016

• Open for integrating additional meteorological data (e.g., more meteorological variables) and more1017

modalities (e.g., satellite images). For each event, we provide the location and date, making it easy to1018

align future data.1019

The generalizability of CLLMate ensures compatibility with both discriminative and generative eval-1020

uation paradigms, broadening its utility for research in meteorology-informed language modeling and1021

operational forecasting systems.1022

A.5 ERA5 Reanalysis Dataset.1023

The link to the ERA5 dataset is https://cds.climate.copernicus.eu/datasets/1024

reanalysis-era5-single-levels?tab=overview. The ERA5 dataset uses a license of Coper-1025

16

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview


nicus products. This license permits access to Copernicus Products for any lawful purpose. Authorized 1026

uses include, but are not limited to, reproduction, distribution, public dissemination, adaptation, 1027

modification, and integration with other data and information. 1028

The meteorological variables of ERA5 used in CLLMate are: 1029

ERA5 Varaibles

• 2m temperature: This parameter is the temperature of air at 2m above the surface of land,
sea or inland waters. 2m temperature is calculated by interpolating between the lowest model
level and the Earth’s surface, taking account of the atmospheric conditions. This parameter has
units of kelvin (K). Temperature measured in kelvin can be converted to degrees Celsius (°C) by
subtracting 273.15.

• 10m u-component of wind: This parameter is the eastward component of the 10m wind. It is
the horizontal speed of air moving towards the east, at a height of ten metres above the surface
of the Earth, in metres per second. This parameter can be combined with the V component of
10m wind to give the speed and direction of the horizontal 10m wind. This parameter has units
of metre per second (m/s).

• 10m v-component of wind: This parameter is the northward component of the 10m wind. It is
the horizontal speed of air moving towards the north, at a height of ten metres above the surface
of the Earth, in metres per second. This parameter can be combined with the U component of
10m wind to give the speed and direction of the horizontal 10m wind. his parameter has units of
metre per second (m/s).

• Total precipitation: This parameter is the accumulated liquid and frozen water, comprising
rain and snow, that falls to the Earth’s surface. It is the sum of large-scale precipitation and
convective precipitation. Large-scale precipitation is generated by the cloud scheme in the
ECMWF Integrated Forecasting System (IFS). This parameter has units of meter (m).

1030

A.6 The environmental news dataset. 1031

The environmental news dataset used to extract meteorological events was acquired through a procurement 1032

process from Wisers (Wisers, 2024). 1033

B Prompt and Annotation 1034

B.1 Prompt for Extracting Events 1035

System Prompt

You are an AI assistant with expertise in extracting environmental events. Your task is to analyze
the given news article and identify environmental events (and their consequences) and their
corresponding locations and time that have actually occurred and are explicitly mentioned in the
text. Only extract triples if they pertain to environmental events and actual events. Do not make
inferences.

1036

Output Definition

In the extracted triples, the first element should represent the subject, the second element should be
the constrained verb ’cause,’ and the third element should represent the object. Both the subject
and object should relate to environmental events or risks. If the geographic location is not provided,
indicate ’no’. If the date is provided, output YYYY/MM/DD. If the date is not provided, indicate
’no’.

1037
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Zero-Shot CoT

Initially, evaluate if the news article discusses environmental events. Next, determine if the
associated geographic location and time are specified. If both conditions are met, output the list
[subject, cause, object, location, time]. The output should be in English.

1038

Few-shot

If the news is <news article containing environmental events>, the output should be <correct events
with location and time>. If the news is <news article containing no environmental events>, the
output should be “No”. Now, the news is: <news article to be analyzed>

1039

B.2 Annotation Details1040

We presented the original news articles along with the extracted events to three domain experts for1041

annotation. The experts are postdoc and PhD candidates in the domain. Each expert assessed the extracted1042

events based on the corresponding news article, assigning a label of 1 (accurate) or 0 (inaccurate). The1043

final annotation for each event was determined by majority vote. Out of 6,352 news articles, the extracted1044

events from 2,575 articles (40.54%) were deemed accurate. The inter-annotator agreement (IAA) score,1045

measured by the pairwise agreement proportion, was 81.83%, and Fleiss’s κ (Fleiss, 1971) was calculated1046

to be 0.63.1047

B.3 Prompt for Phenomena Forecasting1048

System Prompt

You are an AI assistant with expertise in weather analysis. Your task is to interpret meteorological
data and figures, analyze weather variables, and provide accurate insights into weather conditions.

1049

Location Information

The provided figure corresponds to <city_name> city, covering the geographic area defined
by:Latitude: [<lat_min>, <lat_max>], Longitude: [<lon_min>, <lon_max>].

1050

Meteorological Parameters

The daily mean meteorological parameters I provided are as follows:
The 2m temperature: the temperature of air at 2m above the surface of land, sea or inland waters.
This parameter has units of kelvin (K). Average daily mean temperature of that area: <t_mean> K.
Max daily mean temperature of that area: <t_max> K. Min daily mean temperature of that area:
<t_min> K.
The 10m wind: the speed of air moving towards the north, at a height of ten metres above the
surface of the Earth, in metres per second. Average daily mean wind speed of that area: <w_mean>
m/s. Max daily mean wind speed of that area: <w_max> m/s. Min daily mean wind speed of that
area: <w_min> m/s.
Precipitation: the accumulated liquid and frozen water, comprising rain and snow, that falls to the
Earth’s surface. The units of this parameter are depth in metres of water equivalent. Average daily
mean precipitation of that area: <p_mean> m. Max daily mean precipitation of that area: <p_max>
m. Min daily mean precipitation of that area: <p_min> m.

1051
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Meteorological Image

The figure provided is an RGB image derived from spatiotemporal meteorological data for the
region. Each channel represents: channel 1: Temperature. channel 2: Wind Speed. channel 3:
Precipitation.

1052

Options (The order is random for different instances.)

The possible answers are structured into main categories with sub-options:
• A: Atmospheric

– A.1: High Temperature
– A.2: Low Temperature
– A.3: Low Visibility

• B: Wind
– B.1: General Wind
– B.2: Tornado
– B.3: Typhoon

• C: Precipitation
– C.1: Solid Precipitation
– C.2: Liquid Precipitation

1053

Zero-Shot CoT

To determine the most likely meteorological scenario, follow these steps: 1. Analyze Statistical
Data: Evaluate the statistical information (mean, max, and min values) for temperature, wind
speed, and precipitation. Identify any conditions that suggest extreme weather or notable patterns.
2. Analyze Spatial Patterns in the Image: Examine the RGB image for regional variations in
temperature, wind, and precipitation. Consider the spatial distribution of these variables to identify
meteorological phenomena. 3. Synthesize Findings: Combine insights from the statistical data and
image analysis. Choose the only most appropriate sub-option from the given categories based on
your analysis. You must output the serial number of the option.

1054

B.4 Prompt for Consequences Forecasting 1055

For the prompt for the consequences forecasting, we will change the “System Prompt” and “Options”
sections by using the corresponding categories. 1056

System Prompt

You are an AI assistant with expertise in weather analysis. Your task is to interpret meteorological
data and figures, analyze weather variables, and provide accurate insights into meteorological
consequences.

1057
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Options (The order is random for different instances.)

The possible answers are structured into main categories with sub-options:
• A: Disaster

– A.1: Flood
– A.2: Drought
– A.3: Earthquake & Landslide
– A.4: Fire
– A.5: Pollution, including Air Pollution, Water Pollution, Solid Pollution

• B: Organisms Impact
– B.1: Impacted Human, including Trap, Injury, Death
– B.2: Impacted Animal
– B.3: Impacted Plant

• C: Damage
– C.1: Infrastructure Damage
– C.2: Building Damage
– C.3: Vehicle Damage
– C.4: Equipment Damage

• Society Impact
– D.1: Impacted resource, including Food Shortage, Power Shortage
– D.2: Impacted activity, including Work Activity, School Activity

• Transportation Impact
– E.1: Impacted Flight
– E.2: Impacted Train
– E.3: Impacted Road Traffic
– E.4: Impacted Maritime

1058

C Visual Instruction Tuning Models1059

We fine-tuned the LLaVA models on the training set of CLLMate. The fine-tuned models include1060

LLaVA-1.5-7B/13B and LLaVA-1.6-vicuna-7B/13B.1061

C.1 Vision Encoder and Adapter1062

We maintain consistency with LLaVA on the vision encoder and adapter. For the vision encoder, we1063

utilized CLIP ViT-L/14 (Radford et al., 2021) to extract the spatial patterns of meteorological images. For1064

the vision-language adapter, we used the two-later MLP vision-language adapter provided by LLaVA.1065

The vision encoder and the adapter are frozen during the fine-tuning.1066

C.2 Training Configuration1067

We fine-tuned LLaVA-7B and 13B models for one epoch using DeepSpeed ZeRO-3 on 8×A800 GPUs,1068

with a learning rate of 2e-5 and batch size of 16. Training required 1 hour (7B) and 2 hours (13B) for one1069

epoch.1070

D More Evaluation1071

D.1 Case Study1072

To illustrate the model capabilities on the WCEF task, we analyze the representative examples (event1073

6973 and event 6974 in subsection A.1) with the original news article and MLLMs’ output.1074

D.1.1 Case 1: Phenomena Forecasting (Event 6973)1075

We present some typical MLLMs’s output in subsection A.1, with correct analyses highlighted in blue1076

and incorrect ones in red, as assessed by a domain expert.1077
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Current MLLMs all provide structured, human-aligned rationales and identify meteorological thresholds 1078

(e.g., 29.35°C). All models correctly excluded precipitation (C.1/C.2) and wind extremes (B.2/B.3); 1079

however, only Claude-3.5-Sonnet explicitly justified these exclusions using statistical ranges. The fine- 1080

tuned model, Fine-Tuned-LLaVA-1.6-vicuna-7B, provided direct answers without offering reasoning. 1081

Regarding multimodal data, these models demonstrated accurate analysis of meteorological images. For 1082

instance, QWen2.5-VL-72B uniquely interpreted the meaning of colors, while LLaVA-34B concentrated 1083

on analyzing spatial uniformity. 1084

Case 1: Event 6973 (shown in subsection A.1)

The news article:
Guangzhou issued its first high temperature red warning this year. Guangzhou will continue to be
sunny and hot in the next three days.
Southern Metropolis Daily
Original Report | July 25, 2022, 16:24

Guangzhou has issued its first red high-temperature warning of the year. As of 4 p.m., seven
districts in Guangzhou, excluding Conghua, Zengcheng, Nansha, and Panyu, have issued red
warnings for high temperatures. The highest temperatures in these districts are expected to reach
around 39°C today and tomorrow. According to the provincial government’s defense guidelines,
outdoor activities should be minimized during the daytime, and outdoor work in open areas should
be suspended, except for special industries.
Under the influence of a strong subtropical high-pressure system, Guangzhou is expected to
experience widespread sunny and hot weather with high temperatures over the next three days.

Ground Truth: A.1: High Temperature (option in the question)
Event: high temperature
Category_name: phenomena.atmospheric.high temperature
Category_index: A.A.A
Time: 2022/07/25
Location: Guangzhou City

GPT-4o’s output:
• 1. Analyze Statistical Data:

– Temperature: Average daily mean temperature is 302.50 K, with a max of 302.75 K and a
min of 302.00 K. These values suggest relatively high temperatures.

– Wind Speed: Average daily mean wind speed is 5.51 m/s, with a max of 6.56 m/s and a min
of 4.09 m/s. These figures suggest moderate wind speeds.

– Precipitation: All values show 0.00 m, indicating no precipitation.
• 2. Analyze Spatial Patterns in the Image:

The image predominantly shows a strong red hue, indicating high temperatures. There is also a
noticeable green component, indicating the presence of notable wind speeds.

• 3. Synthesize Findings:
The data indicates high temperatures without any precipitation and moderate winds.

Conclusion: The most appropriate option based on the analysis is: A.1: High Temperature.

Claude-3.5-Sonnet’s output:

Let me analyze the meteorological data and image systematically:
1085
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• 1. Statistical Data Analysis:
– Temperature: 302.5K (29.35°C) with small variation (0.75K range)
– Wind speed: Average 5.51 m/s with moderate variation (2.47 m/s range)
– Precipitation: 0.00m (no precipitation)

• 2. Image Analysis: The image shows a predominantly yellow/orange color. High intensity in
the red channel (temperature). Moderate intensity in green channel (wind). No visible blue
component (confirming zero precipitation).

• 3. Synthesis: The high temperature (302.5K/29.35°C) and uniform yellow/orange coloring
indicates hot conditions. Wind speeds are moderate but not extreme. No precipitation is
present. The spatial pattern shows consistent high temperature across the region. Based on these
observations: The dominant feature is the high temperature. No extreme wind events (ruling out
B options). No precipitation (ruling out C options). The uniform high temperature pattern best
matches A.1.

Therefore, I select option A.1 (High Temperature) as the most appropriate classification for these
conditions. Answer: A.1

LLaVA-1.6-vicuna-34B’s output:

Based on the provided meteorological data and the RGB image, the most likely meteorological
scenario for the region is: A: Atmospheric. A.1: High Temperature. The average daily mean
temperature of 302.50 K (29.50°C) is relatively high, and the maximum daily mean temperature of
302.75 K (29.75°C) is even higher. The image shows a uniform distribution of high temperatures
across the region, with no significant variations in temperature. The wind speed and precipitation
are relatively low and do not show any extreme patterns. The high temperatures suggest a warm
and sunny climate, which is consistent with the image’s depiction of high temperatures.

Qwen2.5-VL-72B’s output:

A.1. Analysis:

• Step 1: Analyze Statistical Data
– Temperature: Average daily mean temperature: 302.50 K (approximately 29.35°C). Max

daily mean temperature: 302.75 K (approximately 29.60°C). Min daily mean tempera-
ture: 302.00 K (approximately 28.85°C). These temperatures indicate relatively high and
consistent warmth across the region, suggesting a hot day.

– Wind Speed: Average daily mean wind speed: 5.51 m/s. Max daily mean wind speed:
6.56 m/s. Min daily mean wind speed: 4.09 m/s. The wind speeds are moderate but not
indicative of extreme weather like tornadoes or typhoons.

– Precipitation: Average daily mean precipitation: 0.00 m. Max daily mean precipitation:
0.00 m. Min daily mean precipitation: 0.00 m. There is no recorded precipitation, indicating
dry conditions.

• Step 2: Analyze Spatial Patterns in the Image. The image is uniformly yellow, which suggests a
consistent pattern across the region. Given the color coding: Red (Temperature): The yellow
hue indicates a high temperature since red is associated with temperature. Green (Wind Speed):
The lack of green suggests moderate wind speeds, consistent with the statistical data. Blue
(Precipitation): The absence of blue confirms the lack of precipitation.

• Step 3: Synthesize Findings. Combining the statistical data and the spatial patterns observed
in the image, it is clear that the region experienced high temperatures with no significant
precipitation and moderate wind speeds.

Therefore, the most appropriate sub-option is A.1: High Temperature.
1086
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Fine-Tuned-LLaVA-1.6-vicuna-7B’s output:

A.1: High Temperature
1087

D.1.2 Case 2: Consequence Forecasting (Event 6974) 1088

We present some typical MLLMs’s output in subsection A.1, with correct analyses highlighted in blue 1089

and incorrect ones in red, as assessed by a domain expert. 1090

This case demonstrates critical disparities in multimodal causal reasoning for fire risk prediction. While 1091

GPT-4o and Claude-3.5-Sonnet identified fire-prone conditions (high temperatures, moderate winds 1092

(should be strong wind), and zero precipitation), both erroneously selected A.4: Drought rather than A.5: 1093

Fire. In contrast, Qwen2.5-VL-72B successfully synthesized all variables, especially interpreting wind 1094

spikes as fire accelerants, to correctly predict A.5: Fire. 1095

Case 2: Event 6974 (shown in subsection A.1)

The news article:
Wildfire spreads near Yosemite National Park in the United States

On July 25 local time, the spread of a wildfire near Yosemite National Park in California slowed
down, the containment rate increased, and firefighting efforts showed signs of progress.
The California Department of Forestry and Fire Protection (Cal Fire) stated on the evening of
the 25th that it was a "successful day" for firefighting efforts. From morning to evening, strong
winds caused the burned area to expand from 16,791 acres (approximately 68 square kilometers)
to 17,241 acres (approximately 70 square kilometers), while the containment rate rose from 10%
to 16%. The agency reported that the fire had destroyed 55 structures. As firefighting efforts
advanced, evacuation orders in some areas were downgraded to evacuation warnings, and certain
roads were reopened for local residents.
On the 25th, a China News Service reporter observed at the fire site that firefighters had cleared
a large number of firebreaks through the forested areas. In areas near major roads, the fire was
no longer severe, but thick smoke continued to rise from the hillsides and mountain tops. Several
aircraft took turns dropping water or fire retardants onto larger hotspots, while fire trucks were
dispersed across various locations to respond to potential flare-ups. On the charred land, small
groups of firefighters were extinguishing smaller fires.
According to Cal Fire, as of the evening of the 25th, nearly 3,000 firefighters, 24 helicopters, 302
fire engines, and 68 water trucks had been deployed to the fire site. On that day alone, helicopters
dropped 300,000 gallons (approximately 1.136 million liters) of water onto the fire.
With climate change causing increasingly hotter and drier conditions in the western United
States, wildfires in California have become more severe. This wildfire near Yosemite Na-
tional Park started in the Midpines area of Mariposa County and spread rapidly due to
strong winds, becoming California’s largest wildfire so far this year. U.S. media have re-
ported that this wildfire is likely the beginning of another severe wildfire season in California.

Ground Truth: A.5: Fire (option in the question)
Event: increased wildfire severity
Category_name:consequence.disaster.fire
Category_index: B.A.D
Time: 2022/07/25
Location: California State

1096

23



GPT-4o’s output: To determine the most likely meteorological scenario, let’s analyze the provided
data and image:
• 1. Analyze Statistical Data:

– Temperature: The average daily mean temperature is 306.00 K, with a max of 312.50 K.
This indicates high temperatures, potentially indicative of heat waves.

– Wind Speed: The average daily mean wind speed is 4.01 m/s with peaks at 12.07 m/s. This
suggests mild to moderate winds, with occasional stronger gusts.

– Precipitation: There is no precipitation recorded (0.00 m), indicating very dry conditions.
• 2. Analyze Spatial Patterns in the Image: The image is predominantly yellow with reddish tones,

indicating high temperatures (red channel is for temperature). This suggests a uniform region
of warm temperatures. The lack of blue and green tones indicates negligible precipitation and
moderate to minimal wind activity.

• 3. Synthesize Findings: Temperature and Precipitation: The very high temperature coupled
with the lack of precipitation suggests a dry heat scenario. Impact Analysis: The conditions
are suggestive of potential drought and fire risks due to high temperatures and no rainfall.
Considering the provided categories: Drought (A.4): Prolonged high temperatures and no
precipitation are indicative of drought conditions, impacting water availability, agriculture, and
potentially leading to wildfires.

Given this analysis, the most appropriate sub-option based on the scenario is: A.4: Drought.

Claude-3.5-Sonnet’s output:

Let me analyze the meteorological data and image systematically:
• 1. Statistical Data Analysis:

– Mean: 306.00 K (32.85°C). Max: 312.50 K (39.35°C). Min: 295.00 K (21.85°C). These
are very high temperatures, indicating extreme heat conditions.

– Wind: Mean: 4.01 m/s. Max: 12.07 m/s. Min: 0.00 m/s. Moderate to high wind speeds
present.

– Precipitation: All values at 0.00 m. Indicating completely dry conditions with no rainfall.
• 2. Image Analysis: Dominant yellow-orange coloring indicates high temperatures. Some varia-

tions in green suggesting wind speed variations. No blue tinting, confirming zero precipitation.
• 3. Synthesis: The combination of: Extremely high temperatures (approaching 40°C). Complete

absence of precipitation. Presence of wind. Geographic location (California). These conditions
strongly indicate a severe drought situation with high fire risk. The complete lack of precipitation,
combined with high temperatures and wind, creates perfect conditions for drought conditions.

Based on the given options and this analysis, the most appropriate classification would be: A.4
(Drought). The conditions present clear indicators of drought conditions, which can lead to water
shortages and increased fire risk. This is supported by both the statistical data showing zero
precipitation and very high temperatures, as well as the image showing warm conditions across the
region.

LLaVA-1.6-vicuna-34B’s output:
Based on the provided meteorological data and the RGB image, I will analyze the situation and
provide the most appropriate sub-option from the given categories.

• 1. Analyze Statistical Data: The average daily mean temperature of the area is 306.00 K,
which is equivalent to 32.83 degrees Celsius. The max daily mean temperature is 312.50
K (34.38 degrees Celsius), and the min daily mean temperature is 295.00 K (27.27 degrees
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Celsius). The average daily mean wind speed is 4.01 m/s, with a max daily mean wind
speed of 12.07 m/s and a min daily mean wind speed of 0.00 m/s. The average daily mean
precipitation is 0.00 m, with a max daily mean precipitation of 0.00 m and a min daily mean
precipitation of 0.00 m. From the statistical data, we can observe that the area experiences
relatively high temperatures, with a range of 7.56 degrees Celsius between the max and min
daily mean temperatures. The wind speeds are relatively low, with a range of 12.07 m/s
between the max and min daily mean wind speeds. The precipitation levels are very low, with
no precipitation recorded.

• 2. Analyze Spatial Patterns in the Image: The RGB image shows variations in temperature,
wind speed, and precipitation across the region. The red channel (temperature) shows a
gradient of temperature, with warmer areas in the south and cooler areas in the north. The
green channel (wind speed) shows a gradient of wind speed, with higher wind speeds in
the south and lower wind speeds in the north. The blue channel (precipitation) shows no
precipitation across the region. From the image analysis, we can observe that the region
experiences a gradient of temperature and wind speed, with warmer and windier conditions in
the south and cooler and calmer conditions in the north. However, there is no precipitation
recorded in the image.

• 3. Synthesize Findings: Based on the statistical data and image analysis, the most appropriate
sub-option from the given categories is: D: Organisms Impact D.1: Impacted Plant. The
reason for this choice is that the region experiences high temperatures and low precipitation,
which can lead to drought conditions. Drought can have a significant impact on plant life,
as it can cause stress, wilting, and even death. The lack of precipitation in the image further
supports this conclusion.

Therefore, the serial number of the most appropriate sub-option is: D.1.

Qwen2.5-VL-72B’s output:

Based on the provided meteorological data and the analysis of the RGB image:

• Step 1: Analyze Statistical Data
– Temperature: Average daily mean temperature: 306.00 K (approximately 32.85°C). Maxi-

mum daily mean temperature: 312.50 K (approximately 39.35°C). Minimum daily mean
temperature: 295.00 K (approximately 21.85°C). These temperatures indicate relatively
warm conditions, with some areas experiencing high temperatures.

– Wind Speed: Average daily mean wind speed: 4.01 m/s. Maximum daily mean wind
speed: 12.07 m/s. Minimum daily mean wind speed: 0.00 m/s. The average wind speed is
moderate, but there are areas with higher wind speeds, which could be significant.

– Precipitation: Average daily mean precipitation: 0.00 m. Maximum daily mean precipita-
tion: 0.00 m. Minimum daily mean precipitation: 0.00 m. There is no recorded precipitation,
indicating dry conditions.

• Step 2: Analyze Spatial Patterns in the Image. Temperature (Red Channel): The red color
dominates the image, suggesting widespread high temperatures across the region. Wind Speed
(Green Channel): The green color is present but less dominant compared to red, indicating
variable wind speeds with some areas experiencing higher wind speeds. Precipitation (Blue
Channel): The absence of blue suggests no precipitation across the region.

• Step 3: Synthesize Findings. Given the high temperatures, lack of precipitation, and variable wind
speeds, the most likely meteorological scenario is one associated with dry and hot conditions.
The combination of high temperatures and wind can lead to increased risk of wildfires.
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Conclusion: The most appropriate sub-option based on the analysis is: A.5: Fire.

Fine-Tuned-LLaVA-1.6-vicuna-7B’s output:

A.2: Earthquake & Landslide
1099

D.2 Ablation Study1100

To quantify the contribution of multimodal inputs, we conducted the ablation study with Gemini-2.0-flash1101

(closed-source) and LLaVA-1.6-mistral-7B (open-source) for their good performance (e.g., LLaVA-1.6-1102

mistral-7B has the best performance among 7/8B open-source MLLMs). We ablated three components:1103

meteorological images, statistical summaries, and Zero-Shot CoT prompting. The results are displayed in1104

Table 3.1105

Models Primary
Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence

Gemini-2.0-flash (Team et al., 2023) 37.80% 19.72% 30.39% 13.43%
w/o image 25.81% 14.63% 30.74% 14.84%
w/o statistics 37.80% 17.48% 38.87% 13.43%
w/o Zero-Shot CoT 33.94% 11.99% 17.67% 3.89%

LLaVA-1.6-mistral-7B (Liu et al., 2024) 32.93% 17.28% 39.22% 12.01%
w/o image 27.64% 13.41% 13.78% 4.95%
w/o statistics 26.22% 15.45% 44.52% 7.77%
w/o Zero-Shot CoT 33.33% 10.77% 20.49% 3.89%

Table 3: The results of the ablation study show the accuracy of benchmarked MLLMs across two granularity levels:
primary category classification (coarse-grained) and subordinate category identification (fine-grained) for both
meteorological phenomena and their cascading consequences. w/o image: remove the meteorological image from
the prompt. w/o: remove the statistics of meteorological variables from the prompt. w/o: remove the Zero-Shot CoT
from the prompt.

D.2.1 Closed-Source Models (Gemini-2.0-Flash)1106

Image Removal: Eliminating meteorological raster data catastrophically degrades phenomena forecasting1107

(37.80% → 25.81%, 19.72% → 14.63%), but marginally improves consequence subordinate accuracy1108

(30.39% → 30.74%, 13.43% → 14.84%). This suggests Gemini-2.0-flash relies heavily on spatial patterns1109

for phenomena forecasting.1110

Statistics Removal: Removing statistics surprisingly does not significantly impact performance, im-1111

proving overall accuracy from 30.39% to 38.87% of primary consequence forecasting. This indicates a1112

redundancy between statistical summaries and raster data for Gemini-2.0-flash.1113

Zero-Shot CoT Removal: Disabling Zero-Shot CoT harms event forecasting, especially for consequence1114

forecasting for Gemini-2.0-flash, underscoring its necessity for causal event differentiation.1115

D.2.2 Open-Source Models (LLaVA-1.6-Mistral-7B)1116

Image Removal: Degrades performance universally and largely, with catastrophic drops in consequence1117

forecasting (39.22% → 13.78%). Unlike Gemini-2.0-flash, LLaVA-1.6-mistral-7B cannot compensate for1118

missing spatial data via text-based statistics.1119

Statistics Removal: Improves primary consequence accuracy (39.22% → 44.52%) while harming1120

phenomena prediction (32.93% → 26.22%), suggesting statistical summaries introduce noise for impact1121

forecasting but aid event detection for LLaVA-1.6-mistral-7B.1122

Zero-Shot CoT Removal: Erases Zero-Shot CoT, reducing the performance of LLaVA-1.6-mistral-7B1123

with the exception of primary phenomena forecasting.1124
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D.2.3 Key Insights 1125

Modality Asymmetry: MLLMs exhibit flexible modality compensation (e.g., statistics → images) in 1126

part of tasks but fail to compensate for all tasks. For example, LLaVA-1.6-mistral-7B has a performance 1127

drop for primary phenomena forecasting but not for consequence forecasting when ablating statistics. 1128

Reasoning Bottleneck: Zero-Shot CoT prompting provides gains, especially in subordinate accuracy, 1129

proving essential for parsing causal meteorology-event relationships. 1130

D.3 Impact of Model Scale 1131

We conducted the scale study on the open-source models, the results are shown in Figure 8 and Figure 9. 1132

Figure 8: The line chart of the accuracy of open-sourced MLLMs. Left: Primary category of phenomena forecasting.
Right: Subordinate category of phenomena forecasting. The x-axis is in the log scale.

Figure 9: The line chart of the accuracy of open-sourced MLLMs. Left: Primary category of consequence
forecasting. Right: Subordinate category of consequence forecasting. The x-axis is in the log scale.

D.3.1 Scale 1133

Contrary to expectations, increasing the model scale does not guarantee improved performance: 1134

LLaVA-1.6-34B achieves state-of-the-art primary phenomena accuracy (42.28%) but catastrophically 1135

fails at primary consequence forecasting (17.67% vs. 20.85% for its 7B variant), suggesting larger models 1136

overfit to meteorological patterns while losing causal reasoning capabilities of consequence. 1137

The Qwen2.5-VL series demonstrates scale-dependent tradeoffs: Scaling from 7B to 72B improves 1138

subordinate consequence accuracy by 17.67% in primary consequence forecasting (21.91% → 39.58%) 1139

and 8.47% in subordinate consequence forecasting (7.78% → 16.25%) but reduces primary phenomena 1140

forecasting (42.27% → 40.85%). 1141
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D.3.2 Architectural Refinements1142

Architectural improvements (LLaVA-1.5 → 1.6, Qwen2 → Qwen2.5) yield significant gains. The LLaVA-1143

1.6-Mistral-7B variant outperforms LLaVA-1.5-7B in all tasks. The Qwen2.5-VL-7B outperforms the1144

Qwen2-VL-7B except for the primary consequence forecasting.1145

D.3.3 Fine-Tuning as a Scaling Alternative1146

Task-specific adaptation eclipses scale advantages: Smaller fine-tuned models consistently outperform1147

larger untrained counterparts (13B/34B), with Fine-tuned-LLaVA-1.6-vicuna-7B surpassing the 34B1148

untrained variant by 26.50% in primary consequence forecasting (44.17% vs. 17.67%). Fine-tuned-1149

LLaVA-1.6-vicuna-7B also achieves 29.67% subordinate phenomena accuracy vs. 15.45% for LLaVA-1150

1.6-vicuna-34B. Fine-tuned 7B models outperform larger untrained counterparts, proving task alignment1151

outweighs raw scale for meteorology-to-text translation.1152
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