
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CTBENCH: A LIBRARY AND BENCHMARK FOR
CERTIFIED TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training certifiably robust neural networks is an important but challenging task.
While many algorithms for (deterministic) certified training have been proposed,
they are often evaluated on different training schedules, certification methods, and
systematically under-tuned hyperparameters, making it difficult to compare their
performance. To address this challenge, we introduce CTBENCH, a unified library
and a high-quality benchmark for certified training that evaluates all algorithms
under fair settings and systematically tuned hyperparameters. We show that (1)
almost all algorithms in CTBENCH surpass the corresponding reported performance
in literature in the magnitude of algorithmic improvements, thus establishing
new state-of-the-art, and (2) the claimed advantage of recent algorithms drops
significantly when we enhance the outdated baselines with a fair training schedule,
a fair certification method and well-tuned hyperparameters. Based on CTBENCH,
we provide new insights into the current state of certified training and suggest future
research directions. We are confident that CTBENCH will serve as a benchmark
and testbed for future research in certified training.

1 INTRODUCTION

As a crucial component of trustworthy artificial intelligence, adversarial robustness (Szegedy et al.,
2014; Goodfellow et al., 2015), i.e., resilience to small input perturbations, has established itself
as an important research area. While initially the community focused on heuristic methods to craft
adversarial examples and defenses against these, it turned out that such defenses are often brittle
and can be evaded by adaptive adversaries (Athalye et al., 2018; Tramèr et al., 2020). Thus, neural
network certification has emerged as a method for providing provable guarantees on the robustness of
a given network (Gehr et al., 2018; Wong & Kolter, 2018; Zhang et al., 2018; Singh et al., 2019).

Two families of neural network certification methods have been proposed: complete methods (Katz
et al., 2017; Tjeng et al., 2019) which compute the exact bounds but are extremely computationally
expensive, and convex-relaxation based methods (Zhang et al., 2018; Singh et al., 2019) which
provide approximate bounds but are more scalable. State-of-the-art (SOTA) verifiers (Xu et al., 2021;
Ferrari et al., 2022; Zhang et al., 2022) combine both approaches, by using convex relaxations to
speed up the solving of complete methods via Branch-and-Bound (Bunel et al., 2020).

However, the scalability of neural network certification is still a major challenge since the compu-
tational complexity of SOTA verifiers grows exponentially with network size. To tackle this issue,
certified training (Mirman et al., 2018; Gowal et al., 2018) was proposed in order to train neural
networks that are amenable to certification. Such methods are typically categorized into two groups:
(1) training with a sound upper bound of the robust loss (Zhang et al., 2020; Shi et al., 2021), and (2)
training with an unsound surrogate loss that aims to approximate the exact robust loss (Müller et al.,
2023; Mao et al., 2023; De Palma et al., 2024). The latter group has been shown to be more effective.

While certified training has made significant advances, there is currently no benchmark that can be
used to fairly evaluate the effectiveness of the different certified training methods. Specifically, the
literature often compares against previous methods using quoted numbers due to high computational
costs, although the verifier and certification budget differ. These unfair comparisons ultimately
hinder the community from drawing reasonable conclusions on the effectiveness of certified training
methods. In addition, existing works systematically under-tune hyperparameters, in order to show

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

effectiveness against baselines, thus establishing a weaker SOTA. Further, there is no unified codebase
for these methods, making future development and comparison difficult.

IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
6.0

6.6

7.2
Certified Error (%)

Literature

Ours

Figure 1: Reduction in certified error on MNIST
ϵ = 0.3 (lower is better).

This work: a unified library and high-quality
benchmark for certified training We address
these challenges, for the first time unifying
SOTA certified training methods into a single
codebase called CTBENCH. This enables a fair
comparison between certified training methods
and re-establishes a much stronger SOTA by
fixing problematic implementations and system-
atically tuning hyperparameters. As shown in
Figure 1, these steps lead to significant improve-
ments uniformly. In addition, we show that the
claimed advantage of recent SOTA reduces sig-
nificantly when we apply the same budget and
hyperparameter tuning to all methods. Based on
our released model checkpoints, we provide an extensive analysis of the model properties, high-
lighting many new insights on its loss landscape, mistake patterns, regularization strength, model
utilization, and out-of-distribution generalization. We are confident that CTBENCH will serve as a
benchmark and testbed for future work in certified training.

2 RELATED WORK

We now briefly review key developments most related to our work.

Benchmarking Certified Robustness Li et al. (2023) provides the first benchmark for certified
robustness, covering not only deterministic certified training but also randomized certified training
and certification methods. However, it is outdated and thus provides little insight into the current
SOTA methods. For example, it reports 89% and 51% best certified accuracy for MNIST ϵ = 0.3
and CIFAR-10 ϵ = 2

255 in its evaluation, respectively, while recent methods have achieved more than
93% and 62% (Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024).

Certified Training DIFFAI (Mirman et al., 2018) and IBP (Gowal et al., 2018) apply box relaxation
to upper bound the worst-case loss for training. Efforts have been made towards applying more
precise approximations: Wong et al. (2018) and Balunovic & Vechev (2020) apply DEEPZ (Singh
et al., 2018), while Zhang et al. (2020) incorporate linear relaxations (Zhang et al., 2018; Singh
et al., 2019). While these approximations are more precise (Baader et al., 2024), they often lead to
worse training results, attributed to non-smoothness (Lee et al., 2021), discontinuity and sensitivity
(Jovanović et al., 2022) of the loss surface. Some recent work (Balauca et al., 2024) aim to mitigate
these problems, however, the most effective training approximation is still the least precise box
relaxation. In this regard, the focus of the community has shifted towards improving IBP: Shi et al.
(2021) propose a new regularization and initialization paradigm to speed up IBP training; De Palma
et al. (2022) apply IBP regularization to make adversarial training certifiable; Müller et al. (2023),
Mao et al. (2023) and De Palma et al. (2024) propose unsound but more effective IBP-based surrogate
losses for training; Mao et al. (2024) propose to use wider models instead of deeper models for
IBP-based methods. These methods achieve universal advantages and are thus the focus of our work.

3 BACKGROUND

We now introduce the necessary background for our work, both training concepts and algorithms.

3.1 TRAINING FOR ROBUSTNESS

We present the mathematical notations on adversarial and certified training here. We consider a neural
network classifier fθ(x) that estimates the log-probability of each class and predicts the class with
the highest estimated log-probability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Legend

Input
Space

Latent
Space

Output
Space

Forward Pass
Gradient Ascent
Box Relaxation

PGD IBP

SABR TAPS MTL-IBP

L = (1− τ)LPGD
+τLIBP

Figure 2: Conceptual overview of core algorithms built into CTBENCH.

Adversarial Training A classifier fθ(x) is said to be adversarially robust with radius ϵ w.r.t.
L∞ perturbation if fθ(x + δ) = y for all ∥δ∥∞ ≤ ϵ, where y is the ground truth label of x. For
brevity, we will omit the perturbation type in the rest of the paper. Finding an adversarially robust
classifier is formally defined to solve a min-max problem θ = argminθ Ex,y max∥δ∥≤ϵ L(x+ δ). In
this regard, adversarial training solves the inner maximization problem by generating adversarial
examples during training, and the outer minimization problem by optimizing the empirical loss of
adversarial examples.

Certified Training A classifier fθ(x) is said to be certifiably robust if it is adversarially robust
and there exists a sound verifier that certifies the robustness. A verifier typically computes an upper
bound on the margin fi(x+ δ)− fy(x+ δ) and certifies its robustness if the upper bound is negative
for all i ̸= y. Certified training thus replaces the inner maximization problem with an upper bound
and minimizes the upper bound during training instead.

Metrics The main metric for certified training is certified accuracy, defined to be the ratio of
certifiably robust samples in the dataset. The ratio of correctly classified samples in the dataset is
thus called natural accuracy. For reference, we include adversarial accuracy as well, defined to
be the ratio of adversarially robust samples in the dataset. We apply one of the most widely used
SOTA certification methods, MN-BAB (Ferrari et al., 2022), as the verifier. To compute adversarial
accuracy, we apply the strong AUTOATTACK (Croce & Hein, 2020) for adversarial training, and a
combination of PGD attack and branch-and-bound attack from MN-BAB for certified training.

3.2 ALGORITHMS IN CTBENCH

Here, we briefly introduce the core algorithms built into CTBENCH. Concepts behind these algorithms
are visualized in Figure 2.

PGD and EDAC Projected Gradient Descent (PGD) (Madry et al., 2018) is the most widely
recognized adversarial training method. Starting from a random initialization, PGD solves the inner
maximization problem by iteratively taking a step towards the gradient direction and clipping the
result into the valid perturbation set. Then, it uses the generated adversarial input x′ to compute the
worst case loss as L(x′). Croce & Hein (2020) find that PGD remains effective against strong attacks,
thus is popular as an integrated part of many certified training methods (Müller et al., 2023; Mao
et al., 2023; De Palma et al., 2024). To further improve adversarial robustness, Zhang et al. (2023)
improves adversarial generalization via an extra-gradient method called EDAC, which remains one of
the SOTA methods in adversarial training. These methods achieve good but uncertifiable adversarial
robustness, hence we use them as adversarial robustness baselines in CTBENCH.

IBP Interval Bound Propagation (IBP) (Gowal et al., 2018) uses interval analysis to approximate
the output range of each layer. For example, for the toy network y = 2 − ReLU(x1 + x2) with
input bounds x1, x2 ∈ [−1, 1], it first computes the output range of the first layer as x1 + x2 ∈
[−1, 1] + [−1, 1] ⊆ [−2, 2], the second layer as ReLU([−2, 2]) ⊆ [0, 2] and then final layer as
2− [0, 2] ⊆ [0, 2], thus proving y ≥ 0 for all possible x1, x2 ∈ [−1, 1]. Similarly, IBP computes the
layer-wise bounds and then derives the worst-case loss based on the output bounds of the final layer.
To stably train models with IBP, Shi et al. (2021) propose to rescale the parameter initialization
to ensure constant growth of IBP bounds and a specialized regularization to control the activation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

status of neurons. They also show that adding a batch norm (Ioffe & Szegedy, 2015) layer before
every ReLU can improve IBP training. These training tricks are adopted by every IBP-based method
introduced below. For brevity, we refer to this variant as IBP in the rest of the paper unless otherwise
stated, since it improves the original IBP universally with tricks that facilitate training.

CROWN-IBP CROWN-IBP (Zhang et al., 2020) tightens the imprecise interval analysis with
linear relaxations of ReLU layers based on IBP bounds and only solves the linear constraints for the
final layer output based on CROWN (Zhang et al., 2018), avoiding prohibitive costs during training.
To further reduce the cost of solving the bounds for each class, Xu et al. (2020) propose a loss fusion
trick to only solve for the final loss, thus reducing the asymptotic complexity by a factor equal to
the number of classes. For brevity, we refer to this variant as CROWN-IBP in the rest of the paper
unless otherwise stated, since the original CROWN-IBP cannot scale to datasets with many classes.

SABR Since IBP is often criticized for the increasingly strong regularization w.r.t. input radius
imposed on the neural network, SABR (Müller et al., 2023) proposes to use IBP only for a carefully
chosen small box inside the original input box for IBP training. More specifically, it first conducts a
PGD attack in the full input box to find an adversarial input, and then takes the surrounding small box
with radius λϵ around the adversarial input as the input box for IBP training, where λ is a pre-defined
ratio. For exceptional cases (specifically CIFAR-10 ϵ = 2

255), SABR further shrinks the output box
of every ReLU towards zero by a pre-defined constant to further reduce the regularization.

TAPS and STAPS Observing that IBP relaxation error grows exponentially w.r.t. model depth
(Müller et al., 2023; Mao et al., 2024), TAPS (Mao et al., 2023) proposes to split the network into two
subparts, using IBP for the first subpart and PGD for the other. This way, the over-approximation
from IBP and the under-approximation from PGD partially cancel out, yielding a more precise
approximation of the worst-case loss. Further, TAPS uses a separate PGD attack to estimate the
bounds for every class to align better with the certification objective. STAPS (Mao et al., 2023)
combines TAPS with SABR by using the adversarial small box for TAPS training, thus further
reducing regularization.

MTL-IBP De Palma et al. (2024) formalizes a family of surrogate loss functions that interpolate
between PGD and IBP training. We study MTL-IBP, one of the most effective algorithms in this
family. MTL-IBP linearly interpolates between PGD loss and IBP loss, i.e., L = (1− τ)LPGD +
τLIBP, where τ is the pre-defined IBP coefficient. To recover the re-weighing between PGD and
IBP as SABR does with box shrinking, MTL-IBP uses a larger input radius for a PGD attack in the
same setting (specifically, CIFAR-10 ϵ = 2

255).

4 A UNIFIED LIBRARY AND HIGH-QUALITY BENCHMARK FOR CERTIFIED
TRAINING

We now discuss CTBENCH, both the unified library and the corresponding benchmark.

4.1 THE CTBENCH LIBRARY

We implement every algorithm described in Section 3.2 in a unified framework. The training loss
is composed of three components: the natural loss which measures performance on clean inputs,
the robust loss which measures robust performance depending on the concrete algorithms and
regularization losses which are used to stabilize training and improve generalization. Formally, the
training loss is defined as L = (1−wrob)Lnat +wrobLrob + Lreg. We mainly use L1 regularization to
reduce overfitting and the warmup regularization proposed by Shi et al. (2021) to improve certified
training methods. The IBP initialization (Shi et al., 2021) is applied for every certified training
method, while adversarial training is initialized with Kaiming uniform (He et al., 2015). Every
method has a warmup phase where ϵ is increased from 0 to the target value and a fine-tuning phase
where the model continues to train at the targeted ϵ to converge. The learning rate is held constant
during the warmup phase and decayed in the fine-tuning phase with a constant multiplier. We use
CNN7 as the model architecture, in agreement with recent literature (Shi et al., 2021; Müller et al.,
2023; Mao et al., 2023; De Palma et al., 2024).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: CTBENCH results with comparison to the literature. We include the natural accuracy of
standard training and adversarial training, and the adversarial accuracy of adversarial training for
reference. The best numbers are in bold and those exceeding the literature results are underlined.

Dataset
ϵ∞ Training Method Source Nat. [%] Cert. [%] Adv. [%]

Std. Nat. Accu. Literature CTBENCH Literature CTBENCH CTBENCH

MNIST

0.1

PGD / / 99.47 / ≈0† 98.97
EDAC / / 99.58 / ≈0† 98.95

IBP Shi et al. (2021) 98.84 98.87 97.95 98.26 98.27
CROWN-IBP Xu et al. (2020) 98.83 98.94 97.76 98.21 98.23

SABR Müller et al. (2023) 99.23 99.08 98.22 98.40 98.47
TAPS Mao et al. (2023) 99.19 99.16 98.39 98.52 98.58

STAPS Mao et al. (2023) 99.15 99.11 98.37 98.47 98.50
MTL-IBP De Palma et al. (2024) 99.25 99.18 98.38 98.37 98.44

99.50

0.3

PGD / / 99.43 / ≈0† 93.83
EDAC / / 99.51 / ≈0† 95.02

IBP Shi et al. (2021) 97.67 98.54 93.10 93.80 94.30
CROWN-IBP Xu et al. (2020) 98.18 98.48 92.98 93.90 94.29

SABR Müller et al. (2023) 98.75 98.66 93.40 93.68 94.46
TAPS Mao et al. (2023) 97.94 98.56 93.62 93.95 94.66

STAPS Mao et al. (2023) 98.53 98.74 93.51 93.64 94.36
MTL-IBP De Palma et al. (2024) 98.80 98.74 93.62 93.90 94.55

CIFAR-10

2
255

PGD / / 88.67 / ≈0† 72.41
EDAC / / 89.18 / ≈0† 72.42

IBP Shi et al. (2021) 66.84 67.49 52.85 55.99 56.10
CROWN-IBP Xu et al. (2020) 71.52 67.60 53.97 57.11 57.28

SABR Müller et al. (2023) 79.24 77.86 62.84 63.61 65.56
TAPS Mao et al. (2023) 75.09 74.44 61.56 61.27 62.62

STAPS Mao et al. (2023) 79.76 77.05 62.98 64.21 66.09
MTL-IBP De Palma et al. (2024) 80.11 78.82 63.24 64.41 67.69

91.27

8
255

PGD / / 78.71 / ≈0† 35.93
EDAC / / 78.95 / ≈0† 42.48

IBP Shi et al. (2021) 48.94 48.51 34.97 35.28 35.48
CROWN-IBP Xu et al. (2020) 46.29 48.25 33.38 32.59 32.77

SABR Müller et al. (2023) 52.38 52.71 35.13 35.34 36.11
TAPS Mao et al. (2023) 49.76 49.96 35.10 35.25 35.69

STAPS Mao et al. (2023) 52.82 51.49 34.65 35.11 35.54
MTL-IBP De Palma et al. (2024) 53.35 54.28 35.44 35.41 36.02

TINYIMAGENET 1
255

PGD / / 46.78 / ≈0† 33.16
EDAC / / 46.79 / ≈0† 33.16

IBP Shi et al. (2021) 25.92 26.77 17.87 19.82 19.84
CROWN-IBP Xu et al. (2020) 25.62 28.44 17.93 22.14 22.31

47.96 SABR Müller et al. (2023) 28.85 30.58 20.46 20.96 21.16
TAPS Mao et al. (2023) 28.34 28.64 20.82 21.58 21.71

STAPS Mao et al. (2023) 28.98 30.63 22.16 22.31 22.57
MTL-IBP De Palma et al. (2024) 37.56 35.97 26.09 27.73 28.49

† None of the first 10 samples are certified due to the time limit of 1000 seconds per sample.

Due to the importance of batch norm in certified training, we consider it as a native part of CTBENCH.
Specifically, the best practice so far is to set batch norm statistics based on the clean input and use
this for computing IBP bounds. However, we find several problematic implementations of batch
norm in the literature: (1) when gradient accumulation is involved, the batch norm statistics are not
updated correctly, as sub-batch statistics are applied for training; (2) batch norm statistics change
more than once before taking a gradient step, as typically running statistics is used for conducting a
PGD attack and thus evaluating Lrob, while Lnat is evaluated with batch statistics. The first problem
makes gradient accumulation ineffective since the quality of batch statistics depends highly on the
batch size, and the second problem prevents training with wrob ∈ (0, 1). To address the first problem,
we propose to use full batch statistics during gradient accumulation, which leads to slim overheads
but allows arbitrary gradient accumulation. To address the second problem, we conduct a PGD attack
with the batch statistics as well and evaluate everything with the current batch statistics. This way,
the batch norm statistics are set once per batch just like standard training, allowing training with the
combination of Lnat and Lrob. Further, Wu & Johnson (2021) find that running statistics lag behind
the population statistics and propose to use the population statistics for testing. We adopt this strategy
in CTBENCH, since it only needs to compute Lnat and is much cheaper than the computation of Lrob.

We find that models trained with the hyperparameters reported in the literature frequently show strong
overfitting patterns. To remediate this, we conduct a magnitude search for L1 regularization until the
train and validation performance roughly match. To further aid generalization, we apply Stochastic
Weight Averaging (Izmailov et al., 2018) for methods that cannot provide metrics for model selection,
e.g., MTL-IBP. A more detailed description of the implementation can be found in App. B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10−1

100

101

102
Unstable (%)

evaluated at ε = 0.1

evaluated at ε = 0.3

trained at ε = 0.1

trained at ε = 0.3

trained at ε = 0

Figure 3: Ratio of unstable neurons for models trained on MNIST with different methods and ϵ.

4.2 THE CTBENCH BENCHMARK

Table 1 shows the result of CTBENCH using the methodology described in Section 4.1. We find that
CTBENCH achieves consistent improvements in both certified and natural accuracies. In particular, it
establishes new SOTA by a margin matching algorithmic advances everywhere except CIFAR-10
ϵ = 8

255 , where we have 0.03% lower certified accuracy compared to De Palma et al. (2024) but 0.93%
higher natural accuracy. This proves the effectiveness of our implementation and the importance
of setting batch norm statistics properly in certified training. We also observe the following: (1)
when ϵ is large, the claimed advantage of recent SOTA over IBP drops significantly, from 7.54%
relative certified error reduction to 2.42% on MNIST ϵ = 0.3 and from 1.34% relative increase in
certified accuracy to 0.45% on CIFAR-10 ϵ = 8

255 ; (2) when the model has sufficient capacity, e.g., on
MNIST ϵ = 0.1, certified training can get close to the natural accuracy of standard training (99.18%
for MTL-IBP vs 99.50% for standard training), and they also get similar adversarial accuracy to
adversarial training (98.58% for TAPS vs 98.95% for EDAC), with boosted certified accuracy
(98.52% for TAPS vs almost 0% for EDAC); (3) when ϵ is large, certified training even gets better
adversarial accuracy than PGD training (94.66% for TAPS vs 93.83% for PGD on MNIST ϵ = 0.3
and 36.11% for SABR vs 35.93% for PGD on CIFAR-10 ϵ = 8

255), but there is still a gap between
the adversarial accuracy of the SOTA adversarial training methods and that of the SOTA certified
training methods, as well as natural accuracy.

5 EVALUATING AND UNDERSTANDING CERTIFIED MODELS

We now preform an extensive evaluation on models trained with CTBENCH, providing insights into
the current state of certified training. Further experimental results are provided in App. C.

5.1 LOSS FRAGMENTATION

ReLU networks are known to have a fragmented loss surface, due to the activation switch of neurons.
Fragmentation leads to a non-smooth loss surface and increases the difficulty of finding the worst-case
loss via gradient-based methods like PGD. Due to its connection to adversarial robustness, in this
section, we investigate the fragmentation of loss surfaces in certified models. Specifically, we answer:
(1) do certified models have less fragmentation, thus easing adversarial search, and (2) how does the
fragmentation change w.r.t. ϵ?

Fragmentation is closely related to the number of unstable neurons, i.e., neurons that switch activation
status in the neighborhood, as all fragments are defined by a group of unstable neurons. Vice versa,
in most cases, a switching neuron introduces at least one fragmentation since every activation pattern
defines a local linear function. Therefore, we can quantify the fragmentation by the ratio of unstable
neurons. Since the exact ratio is NP-complete to compute, we use a heuristic but effective method
to estimate it: first, a group of inputs is sampled in the input box; second, these inputs are fed into
the model to get the corresponding activation pattern; finally, we count the ratio of unstable neurons
observed in the sampled activations. This method always establishes a lower bound of the true ratio

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Observed count of common mistakes of models on MNIST against their expected values
assuming independence across model mistakes.

models succeeded
0 1 2 3 4 5 6

ϵ = 0.1
obs. 93 25 21 30 32 56 9743
exp. 0 0 0 1 37 900 9062

ϵ = 0.3
obs. 452 73 53 51 80 111 9180
exp. 0 0 2 39 445 2698 6816

and gets arbitrarily close when sample size is large enough. In our experiments, we sample the noise
50 times from a standard Gaussian clipped to [−1, 1] and rescale it by ϵ. This sampling focuses more
on the neighborhood of the clean input and the boundary of the input box, where new fragments
appear most likely. We find this sampling process extremely effective, as the ratio of unstable neurons
observed is very close to the upper bounds derived by IBP for certified models.

Figure 3 shows the result of certified models trained at ϵ = 0.1 and ϵ = 0.3 on MNIST, respectively.
We evaluate the fragmentation of every model at both ϵ = 0.1 and ϵ = 0.3. First, we observe that
both adversarial training and certified training greatly reduce loss fragmentation compared to standard
training. Second, comparing different training methods within each group of and , we observe
that certified training consistently has significantly less fragmentation than adversarial training, e.g.,
IBP reduces fragmentation by 3x compared to EDAC, thus finding the worst-case loss is much easier.
This is consistent with the practice where a weak single-step attack is adopted in certified training
(De Palma et al., 2024). Third, comparing models trained at different ϵ (vs and vs), we
observe that further increasing training ϵ does not necessarily reduce fragmentation, yet the trend is
consistent with adversarial training. These observations prove that certified training can further boost
the fragmentation reduction effect of adversarial training, thus introducing more local smoothness
into the model. More results on CIFAR-10 are included in App. C as Figure 7.

5.2 SHARED MISTAKES

We now study the correlation of certified models, specifically: do certified models make shared
mistakes?

We consider models trained by six certified training methods on MNIST at ϵ = 0.1 and ϵ = 0.3
and calculate the distribution of common mistakes they make. Specifically, we count the number
of models that fail to achieve certified robustness for each sample in the test set containing 10k
samples. The observed value is compared with the expected value, defined as the number of failed
models when models with the same certified accuracy make mistakes independently (rounded to
integer if necessary). The result is shown in Table 2. Accordingly, certified models make many
shared mistakes, as the number of samples that cannot be certified robust by any of these models
systematically exceeds the expected value by a large margin. In addition, the number of inputs that
are certified robust by all six models is much larger than the corresponding expected value. These
facts suggest that there could be an intrinsic difficulty score for each input, thus curriculum learning
(Bengio et al., 2009; Ionescu et al., 2016) could be a promising direction to improve certified training.
More results on CIFAR-10 are included in App. C as Table 10. We note that common mistakes are
also observed across different certification methods, as shown in Table 9 in App. C.

5.3 MODEL UTILIZATION

Model utilization represents how much the model capacity is utilized for the task. Since certified
training applies IBP bounds, they systematically deactivate neurons (Shi et al., 2021) to gain precision.
However, it is not yet clear whether more advanced certified training methods deactivate fewer neurons,
thus utilizing the model capacity better.

We define model utilization to be the ratio of neurons activated by the clean input. Figure 4 visualizes
the result for models trained on MNIST at ϵ = 0.1 and ϵ = 0.3. Surprisingly, we find that more
advanced certified training methods, TAPS and MTL-IBP, deactivate more neurons than IBP on
MNIST ϵ = 0.1, while keeping better natural and certified accuracy. More interestingly, these

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10

20

30

40
Utilization [%]

trained at ε = 0.1

trained at ε = 0.3

Figure 4: Model utilization for models trained on MNIST with different methods and ϵ. We note that
standard training has 42.99% utilization.

98.0 98.3 98.6
Cert. Accu. [%]

0.2

0.4

0.6

0.8
Prop. Tightness

(a) MNIST
ϵ = 0.1

93.6 93.8 94.0
Cert. Accu. [%]

0.65

0.75

0.85
Prop. Tightness

(b) MNIST
ϵ = 0.3

55 60 65
Cert. Accu. [%]

0.0

0.5

1.0
Prop. Tightness

(c) CIFAR-10
ϵ = 2

255

35.0 35.3 35.6
Cert. Accu. [%]

0.87

0.92

0.97
Prop. Tightness

(d) CIFAR-10
ϵ = 8

255

Figure 5: Certified accuracy vs. propagation tightness for models trained on MNIST and CIFAR-10.

methods can retain more utilization on ϵ = 0.3 where the model struggles to keep high natural
accuracy for better performance, while IBP has trouble with activating more neurons. Further, we
observe that the advanced adversarial training method EDAC shows similar behavior to TAPS and
MTL-IBP, and gets higher adversarial accuracy than PGD. This suggests that the ability to adaptively
keep necessary utilization could be crucial to both adversarial and certified robustness. Since dying
neurons (Lu et al., 2019) are hard to activate again, future work on better warmup (Shi et al., 2021)
could be beneficial, as their IBP variant still struggles to keep necessary model utilization. More
results on CIFAR-10 are included in App. C as Figure 8.

5.4 REGULARIZATION STRENGTH

Previous work (Mao et al., 2024) has shown that IBP bounds are close to optimal bounds for
IBP-based certified training, and this condition is established via strong constraints on the model
parameters. They quantify this regularization effect by propagation tightness, defined to be the ratio
between the optimal bound radius and the IBP bound radius, approximating the ReLU network locally
with a linear replacement. We now extend the study of propagation tightness to more advanced
certified training methods and investigate how it interacts with certified accuracy. Specifically,
using propagation tightness as the representative of regularization strength, we answer: (1) do more
advanced certified training methods reduce the regularization strength, and (2) how does the input
radius ϵ affect the interaction?

Figure 5 shows the interaction between certified accuracy and propagation tightness for certified
models trained on MNIST and CIFAR-10. When ϵ is small (Figure 5a and Figure 5c), certified
accuracy has a negative correlation with propagation tightness, i.e., more advanced certified training
methods reduce the regularization strength. However, when ϵ is large (Figure 5b and Figure 5d), the
correlation is not clear, and the best model in certified accuracy does not necessarily have the lowest
propagation tightness. Instead, models with similar propagation tightness can have significantly
different certified accuracy. Therefore, we conclude that reducing regularization strength cleverly
is crucial for certified training, and the effect is more pronounced when ϵ is small, while improper
reduction could hurt certified accuracy, especially when ϵ is large.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.5 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-distribution (OOD) generalization is closely related to adversarial robustness (Gilmer et al.,
2019). However, the interaction between certified robustness and OOD generalization is not yet clear.
We thus investigate the OOD generalization of certified models and answer: (1) do certified models
generalize to OOD data, and (2) how does this compare to adversarial training?

We use MNIST-C (Mu & Gilmer, 2019) to evaluate OOD generalization, defined to be the ratio
between OOD accuracy and natural accuracy. MNIST-C includes 15 carefully chosen corruptions,
covering a broad range of corruptions that are not characterized by adversarial robustness while
preserving the semantics. We evaluate models trained with both adversarial training and certified
training under ϵ = 0.1 and ϵ = 0.3, and report the corresponding OOD accuracy of the model trained
via standard training. We note that none of the models has seen these corruptions during training.

Figure 6 depicts the result of OOD generalization for each model on all corruptions. We observe the
following: (1) certified training improves OOD generalization compared to standard training except
on the brightness corruption where both adversarial and certified training fails; (2) certified training
shows different OOD generalization patterns to adversarial training, e.g., certified training boost
generalization on the canny edges corruption while adversarial training wins on the stripe corruption.
In general, we find that certified training either greatly boosts the OOD generalization or significantly
downgrades the OOD generalization depending on the corruption, and the bad cases are usually those
in which adversarial training performs worse than or similarly to standard training. Therefore, we
hypothesize that these corruptions are at odds with adversarial robustness. Further, different training
ϵ does not significantly affect the OOD generalization except few cases, and ranking in certified
accuracy does not show strong relations with the ranking in OOD generalization. Overall, these
results suggest that certified training has the potential to improve OOD generalization to corruptions
that standard training struggles with, and the effect is exaggerated when adversarial training improves
over standard training. More results on CIFAR-10-C (Hendrycks & Dietterich, 2019) are included in
App. C as Figure 9.

6 FUTURE DIRECTIONS

We now summarize directions for future improvements of certified training and its potential appli-
cations. As shown in Section 5.2, certified models make shared mistakes on some hard samples,
thus curriculum learning with some well-defined difficulty ranking could facilitate training, where
optimization has been known to be particularly hard (Jovanović et al., 2022). Moreover, in Section 5.3
we showed that even the most trainable method, IBP, struggles to keep necessary model utilization
on large ϵ. Therefore, future work is still required to improve the learning process of certified
training. Despite the challenges, in Section 5.5 we find that certified models can have surprising and
qualitatively different behavior on OOD generalization, which could be a promising application for
certified training beyond certified robustness.

7 CONCLUSION

We introduced CTBENCH, a unified library and high-quality benchmark for deterministic certified
training on L∞ robustness. Based on CTBENCH, we extensively evaluated certified models trained
via state-of-the-art methods, analyzing their regularization strength and utilities. Our analysis reveals
that certified training schemes can reduce loss fragmentation, adaptively keep model utilization, make
shared mistakes, and generalize well on data with certain corruptions. We are confident that the
insights and tools provided by CTBENCH will facilitate future research on certified training and its
applications.

REPRODUCIBILITY STATEMENT

We release the complete codebase of CTBENCH, including the implementation of all certified training
methods and the model checkpoints for the benchmark. The codebase is available at ANONYMIZED
(available in the supplementary material). A complete description of the experiment setup and
hyperparameters is provided in App. B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

PGD

EDAC

IBP

CROWN-IBP

SABR

TAPS

STAPS

MTL-IBP

27 58 98 47 90 78 98 96 98 99 99 97 95 70 90

19 61 99 47 90 86 98 96 98 99 99 97 94 75 87

10 81 94 42 94 64 96 91 94 98 99 96 36 53 79

10 82 95 42 94 70 96 92 93 98 99 96 40 54 79

7 81 96 40 94 71 97 92 94 99 99 97 47 56 81

10 81 96 41 94 66 97 92 94 98 99 97 18 51 78

10 80 97 41 93 72 97 92 94 99 99 97 48 55 82

10 81 96 42 94 71 97 92 94 98 99 97 42 54 79

PGD

EDAC

IBP

CROWN-IBP

SABR

TAPS

STAPS

MTL-IBP

15 59 99 30 88 83 95 96 98 99 98 99 96 72 89

19 61 99 31 90 88 95 96 98 99 98 99 93 75 87

7 80 98 33 94 74 98 93 94 99 99 98 46 58 82

7 79 97 33 94 76 97 93 94 99 99 98 54 57 82

10 77 97 35 94 81 98 94 94 99 99 99 68 60 83

9 77 97 42 95 78 97 94 95 99 99 98 62 60 83

10 78 97 36 95 86 98 94 95 99 99 99 86 61 85

10 80 99 28 95 88 97 94 95 99 99 100 73 66 86

b
ri

gh
tn

es
s

ca
n
ny

ed
ge

s
d
ot

te
d

li
n
e

fo
g

gl
as

s
b
lu

r
im

p
u
ls

e
n
oi

se
m

ot
io

n
b
lu

r
ro

ta
te

sc
al

e

sh
ea

r
sh

ot
n
oi

se
sp

at
te

r
st

ri
p
e

tr
an

sl
at

e
zi

gz
ag

Standard 30 64 99 16 44 54 87 96 98 99 91 96 94 73 89

Figure 6: Out-of-distribution generalization evaluated on MNIST-C for models trained on MNIST
at ϵ = 0.3 (top), ϵ = 0.1 (middle) and standard training (bottom).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In Proc. of ICML, 2018.

Maximilian Baader, Mark Niklas Mueller, Yuhao Mao, and Martin Vechev. Expressivity of reLU-
networks under convex relaxations. In Proc. ICLR, 2024.

Stefan Balauca, Mark Niklas Müller, Yuhao Mao, Maximilian Baader, Marc Fischer, and Martin
Vechev. Overcoming the paradox of certified training with gaussian smoothing, 2024.

Mislav Balunovic and Martin T. Vechev. Adversarial training and provable defenses: Bridging the
gap. In Proc. of ICLR, 2020.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proc. of ICML, 2009.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res., 2020.

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Proc. of ICML, 2019.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In Proc. of ICML, 2020.

Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M. Pawan Kumar, and Robert
Stanforth. IBP regularization for verified adversarial robustness via branch-and-bound, 2022.

Alessandro De Palma, Rudy R Bunel, Krishnamurthy Dj Dvijotham, M. Pawan Kumar, Robert
Stanforth, and Alessio Lomuscio. Expressive losses for verified robustness via convex combinations.
In Proc. of ICLR, 2024.

Claudio Ferrari, Mark Niklas Müller, Nikola Jovanovic, and Martin T. Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In Proc. of ICLR, 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin T. Vechev. AI2: safety and robustness certification of neural networks with abstract
interpretation. In Proc. of S&P, 2018.

Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin D. Cubuk. Adversarial examples are a natural
consequence of test error in noise. In Proc. of ICML, 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Proc. of ICLR, 2015.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of
interval bound propagation for training verifiably robust models. 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proc. of ICCV, 2015.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In Proc. of ICLR, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proc. ICML, 2015.

Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu, Dim P. Papadopoulos, and
Vittorio Ferrari. How hard can it be? estimating the difficulty of visual search in an image. In Proc.
of ICLR, 2016.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Proc. of UAI, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nikola Jovanović, Mislav Balunović, Maximilian Baader, and Martin Vechev. On the paradox of
certified training. In Proc. of ICML, 2022.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In CAV (1), volume 10426 of Lecture
Notes in Computer Science, pp. 97–117. Springer, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of ICLR,
2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge, 2015.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2010.

Sungyoon Lee, Woojin Lee, Jinseong Park, and Jaewook Lee. Towards better understanding of
training certifiably robust models against adversarial examples. In Proc. NeurIPS, 2021.

Linyi Li, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks. In SP, pp.
1289–1310. IEEE, 2023.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization: Theory
and numerical examples, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proc. of ICLR, 2018.

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. Connecting certified and
adversarial training. In Proc. of NeurIPS, 2023.

Yuhao Mao, Mark Niklas Mueller, Marc Fischer, and Martin Vechev. Understanding certified training
with interval bound propagation. In Proc. of ICLR, 2024.

Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
provably robust neural networks. In Proc. of ICML, 2018.

Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision, 2019.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. Certified training: Small
boxes are all you need. In Proc. of ICLR, 2023.

Hadi Salman, Saachi Jain, Eric Wong, and Aleksander Madry. Certified patch robustness via smoothed
vision transformers. In Proc. of CVPR, 2022.

Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified robust training
with short warmup. In Proc. of NeurIPS, 2021.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast and
effective robustness certification. In Proc. of NeurIPS, 2018.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain for
certifying neural networks. In Proc. of POPL, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proc. of ICLR, 2014.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In Proc. of ICLR, 2019.

Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. In Proc. of NeurIPS, 2020.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proc. of ICML, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
defenses. In Proc. of NeurIPS, 2018.

Yuxin Wu and Justin Johnson. Rethinking "batch" in batchnorm, 2021.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. In Proc. of NeurIPS, 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In Proc. of ICLR, 2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Proc. of NeurIPS, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
Proc. of ICLR, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
General cutting planes for bound-propagation-based neural network verification, 2022.

Minxing Zhang, Michael Backes, and Xiao Zhang. Generating less certain adversarial examples
improves robust generalization, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DISCUSSION

A.1 DECOMPOSITION OF IMPROVEMENTS

Decomposition of the universal modifications we made such as batch norm fixes and the hyperparam-
eter tuning is not always possible, as these modifications allow additional vectors of hyperparameter
for tuning. For example, we fix batch norm statistics in one batch rather than reset it multiple times as
done in some original implementations, allowing wrob to be tuned within [0, 1], while in the literature
wrob has to be fixed to 1. Therefore, we cannot formally decompose the effects of hyperparameter
tuning and batch norm behaviors, as they are closely dependent on each other.

The PreciseBN (Wu & Johnson, 2021) that we adopt, which is to set batch norm statistics based on
the entire training dataset at test time, does not change the training at all, since at every training step
batch norm layers are set by batch statistics. Therefore, this only smooths the test time performance
and potentially improves the final performance. While this is good for monitoring the learning
curve, the final performance improvement is minimal in our experiments, and in most cases almost
no improvement on the final model is observed. This is expected since batch norm statistics also
converge when the model converges.

The literature results are run with three different random seeds, and only the best results among
them are reported. This prevents us from substituting our fine-tuned hyperparameter to the original
implementation because merely using the same hyperparameters even based on the original imple-
mentation hardly reproduces the same number as reported in the literature. In contrast, we run every
experiment with the same fixed random seed to allow fair and faithful comparison. Nevertheless, we
can showcase the effect for one setting: IBP on MNIST ϵ = 0.3. The literature reports 93.1% certified
accuracy, while the same hyperparameter results in 93.18% in our implementation. Further tuning the
hyperparameters as in the CTBench benchmark gets 93.8%. While this proves the effectiveness of
both the implementation and our hyperparameter tuning, we would like to note that based on previous
arguments, this does not faithfully decompose the effect of hyperparameter tuning and batch norm
changes, and such decomposition efforts are doomed to fail.

In summary, while decomposition is beneficial, there are practical concerns preventing us from
formally decomposing the effects. However, since this work introduces a library and benchmark
rather than precisely decomposing the effect of each beneficial change, this does not undermine the
contribution of this work.

A.2 LIMITATIONS

The main limitation of CTBENCH is that we only consider deterministic certified training, while
randomized certified robustness (Cohen et al., 2019) has also made substantial progress. Moreover,
we only consider the adversarial robustness, while other types of robustness, such as robustness
against patch attacks (Salman et al., 2022) is also important. Finally, we only focus on L∞ robustness,
and leave the discussion about other norms as future work.

A.3 BROADER IMPACTS

This work focuses on certified defenses against adversarial attacks, which is a crucial component of
trustworthy artificial intelligence. The proposed benchmark CTBENCH will facilitate future research
on certified training and its applications. The insights and tools provided by CTBENCH will help
researchers to develop more robust and reliable machine learning models. The potential harm of this
work are as follows:

• Certified models can provide a fake security when the models are applied against non-adversarial
perturbations.

• Certification methods are computationally expensive, which will consume more energy and thus
possibly harm the environment.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXPERIMENT DETAILS

B.1 DATASET

We use the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) and TINYIMAGENET
(Le & Yang, 2015) datasets for our experiments. All are open-source and freely available with
unspecified license. The data preprocessing mostly follows De Palma et al. (2024). For MNIST, we
do not apply any preprocessing. For CIFAR-10 and TINYIMAGENET, we normalize with the dataset
mean and standard deviation and augment with random horizontal flips. We apply random cropping
to 32× 32 after applying a 2 pixel zero padding at every margin for CIFAR-10, and random cropping
to 64× 64 after applying a 4 pixel zero padding at every margin for TINYIMAGENET. We train on
the corresponding train set and certify on the validation set, as adopted in the literature (Shi et al.,
2021; Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024).

B.2 MODEL ARCHITECTURES

We follow Shi et al. (2021); Müller et al. (2023) and use a CNN7 with Batch Norm for our main
experiments. CNN7 is a convolutional network with 7 convolutional and linear layers. All but the last
linear layer are followed by a Batch Norm and ReLU layer. This architecture is found to achieve
uniformly better results across settings (Shi et al., 2021), and thus is adopted by the literature (Shi
et al., 2021; Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024). For TINYIMAGENET, the
stride of the last convolution is doubled to reduce the cost.

B.3 TRAINING DETAILS

Initialization Adversarial training methods are initialized by Kaiming uniform (He et al., 2015),
while certified training methods are initialized by IBP initialization (Shi et al., 2021).

Training Schedule We mostly follow the training schedule of (De Palma et al., 2024), but in some
cases a shorter schedule to reduce cost. Specifically, the warmup phase is 20 epochs for MNIST
ϵ = 0.1 and ϵ = 0.3, 80 epochs for CIFAR-10 ϵ = 2

255 , 120 epochs for CIFAR-10 ϵ = 8
255 and

80 epochs for TINYIMAGENET ϵ = 1
255 . In addition, for CIFAR-10 and TINYIMAGENET, we use

standard training for 1 additional epoch at the beginning. We apply the IBP regularization proposed
by (Shi et al., 2021), with weight equals 0.5 on MNIST and CIFAR-10, and 0.2 on TINYIMAGENET,
during the warmup phase. In total, we train 70 epochs for MNIST ϵ = 0.1 and ϵ = 0.3, 160 epochs
for CIFAR-10 ϵ = 2

255 , 240 epochs for CIFAR-10 ϵ = 8
255 , and 160 epochs for TINYIMAGENET

ϵ = 1
255 .

Optimization We use Adam (Kingma & Ba, 2015) with a learning rate of 0.0005. The learning
rate is decayed by a factor of 0.2 at epoch 50 and 60 for MNIST ϵ = 0.1 and ϵ = 0.3, at epoch 120
and 140 for CIFAR-10 ϵ = 2

255 , at epoch 200 and 220 for CIFAR-10 ϵ = 8
255 , and at epoch 120 and

140 for TINYIMAGENET ϵ = 1
255 . We use a batch size of 256 for MNIST, and 128 for CIFAR-10

and TINYIMAGENET. Gradients of each step are clipped to 10 in L2 norm. No weight decay is
applied and L1 regularization only on weights of linear and convolution layers is used.

B.4 TUNING SCHEME

We conduct a hyperparameter tuning for each method to ensure the best performance, and reduce
the search space whenever appropriate based on human knowledge. The search space for each
hyperparameter is as follows:

• L1 regularization: {1× 10−6, 2× 10−6, 5× 10−6, 1× 10−5, 2× 10−5, 5× 10−5}. We include
3× 10−6 specifically for CIFAR-10 ϵ = 2

255 , as this is the value reported by De Palma et al. (2024).

• wrob: {0.7, 0.8, 0.9, 1.0}. Surprisingly, wrob not equal to 1 can improve both certified and natural
accuracy by a large margin when ϵ is small.

• Train ϵ: we use 2x train ϵ for MNIST ϵ = 0.1, and tune within {1x, 1.25x, 1.5x} specifically for
CIFAR-10 ϵ = 2

255 . For others, we use the test ϵ for training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: Best hyperparameter for MNIST ϵ = 0.1.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 1× 10−5 1× 10−5 2× 10−6 2× 10−6 1× 10−6 1× 10−6 1× 10−6 1× 10−5

wrob 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7
Train ϵ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ϵ shrink ratio / / / / 0.4 / 0.4 /
Classifier size / / / / / 3 1 /
TAPS gradient scale / / / / / 4 4 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.02

Table 4: Best hyperparameter for MNIST ϵ = 0.3.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 5× 10−6 5× 10−6 1× 10−6 1× 10−6 2× 10−6 2× 10−6 2× 10−6 1× 10−6

wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Train ϵ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
ϵ shrink ratio / / / / 0.8 / 0.8 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 3 1 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.5

• ϵ shrink ratio for SABR and STAPS: we mostly keep the value in the literature. When we observe
large certifibility gap, we increase the shrink ratio by 0.1 until the performance fails to increase
consistently.

• Classifier size for TAPS and STAPS: we keep the value in the literature for TAPS, and include
only 1 ReLU layer in the classifier for STAPS universally.

• TAPS gradient scale: {1, 2, 3, 4, 6, 8}.

• ReLU shrink ratio for SABR and STAPS: we keep the value in the literature, thus shrinking the
output box of each ReLU by multiplying 0.8 on CIFAR-10 ϵ = 2

255 and do not apply this in other
settings.

• IBP coefficient for MTL-IBP: {0.01, 0.02, 0.05} for MNIST ϵ = 0.1, CIFAR-10 ϵ = 2
255 and

TINYIMAGENET ϵ = 1
255 , and {0.4, 0.5, 0.6} for MNIST ϵ = 0.3, CIFAR-10 ϵ = 8

255 .

• Attack Strength: we use 3 restarts everywhere for the attack. By default, we use 10 steps for MNIST
ϵ = 0.1, 5 steps for MNIST ϵ = 0.3, 8 steps for CIFAR-10 ϵ = 2

255 , 10 steps for CIFAR-10
ϵ = 8

255 , and 1 step for TINYIMAGENET ϵ = 1
255 . However, we find MTL-IBP benefits from

using only 1 step everywhere, while more steps will hurt certified accuracy, thus we only use 1 step
specifically for MTL-IBP except CIFAR-10 ϵ = 2

255 , consistent to De Palma et al. (2024). We
further only use 2x attack ϵ for MTL-IBP on CIFAR-10 ϵ = 2

255 .

We report the best hyperparameter for each method respectively in Table 3, Table 4, Table 5, Table 6,
and Table 7.

Table 5: Best hyperparameter for CIFAR-10 ϵ = 2/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 2× 10−5 5× 10−6 1× 10−6 1× 10−6 1× 10−6 2× 10−6 5× 10−6 3× 10−6

wrob 1.0 1.0 1.0 1.0 0.7 1.0 1.0 0.9
Train ϵ 2/255 2/255 2/255 2/255 3/255 2/255 3/255 2/255
ϵ shrink ratio / / / / 0.1 / 0.1 /
Classifier size / / / / / 5 1 /
TAPS gradient scale / / / / / 5 5 /
ReLU shrink ratio / / / / 0.8 / 0.8 /
IBP coefficient / / / / / / / 0.01

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Best hyperparameter for CIFAR-10 ϵ = 8/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 1× 10−6 1× 10−6 0 0 0 0 0 0
wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Train ϵ 8/255 8/255 8/255 8/255 8/255 8/255 8/255 8/255
ϵ shrink ratio / / / / 0.7 / 0.9 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 2 2 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.5

Table 7: Best hyperparameter for TINYIMAGENET ϵ = 1/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 5× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 5× 10−5

wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7
Train ϵ 1/255 1/255 1/255 1/255 1/255 1/255 1/255 1/255
ϵ shrink ratio / / / / 0.4 / 0.6 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 8 4 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.05

B.5 CERTIFICATION DETAILS

We combine IBP (Gowal et al., 2018), CROWN-IBP (Zhang et al., 2020), and MN-BAB (Ferrari
et al., 2022) for certification running the most precise but also computationally costly MN-BAB only
on samples not certified by the other methods. The timout for each input is set to 1000 seconds.

B.6 COMPUTATION

We train and certify MNIST ϵ = 0.1, MNIST ϵ = 0.3 and CIFAR-10 ϵ = 8
255 models on a single

NVIDIA GeForce RTX 2080 Ti with Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz and 530GB
RAM. We train and certify CIFAR-10 ϵ = 2

255 and TINYIMAGENET ϵ = 1
255 models on a single

NVIDIA L4 with Intel(R) Xeon(R) CPU @ 2.20GHz CPU and 377 GB RAM. The training and
certification time for each method is reported in Table 8.

C ADDITIONAL RESULTS

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10−1

100

101

102
Unstable (%)

evaluated at ε = 2/255

evaluated at ε = 8/255

trained at ε = 2/255

trained at ε = 8/255

trained at ε = 0

Figure 7: Ratio of unstable neurons for models trained on CIFAR-10 with different methods and ϵ.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Training and certification time for each method on different datasets and ϵ.

Dataset ϵ Method Train Time (seconds) Certification Time (seconds)

MNIST

0.1

PGD 1.5× 104 /
EDAC 3.1× 104 /

IBP 2.1× 103 2.5× 103

CROWN-IBP 5.6× 103 1.8× 103

SABR 1.8× 104 6.0× 103

TAPS 3.8× 104 6.0× 103

STAPS 2.5× 104 6.9× 103

MTL-IBP 6.8× 103 6.8× 103

0.3

PGD 1.1× 104 /
EDAC 2.2× 104 /

IBP 2.6× 103 3.2× 104

CROWN-IBP 5.4× 103 2.6× 104

SABR 9.7× 103 5.2× 104

TAPS 7.1× 103 4.7× 104

STAPS 1.4× 104 5.1× 104

MTL-IBP 5.5× 103 4.4× 104

CIFAR-10

2
255

PGD 2.8× 104 /
EDAC 1.3× 105 /

IBP 1.2× 104 1.3× 105

CROWN-IBP 2.7× 104 1.9× 105

SABR 2.4× 104 1.6× 105

TAPS 1.1× 105 1.1× 105

STAPS 4.5× 104 3.0× 105

MTL-IBP 3.6× 104 2.7× 105

8
255

PGD 6.4× 104 /
EDAC 1.3× 105 /

IBP 1.1× 104 1.9× 104

CROWN-IBP 2.1× 104 2.0× 104

SABR 4.1× 104 6.5× 104

TAPS 3.3× 104 4.0× 104

STAPS 9.9× 104 4.2× 104

MTL-IBP 2.2× 104 5.6× 104

TINYIMAGENET 1
255

PGD 1.0× 105 /
EDAC 2.0× 105 /

IBP 6.7× 104 4.9× 103

CROWN-IBP 2.0× 105 1.3× 104

SABR 1.1× 105 1.8× 104

TAPS 2.8× 105 1.5× 104

STAPS 3.3× 105 2.6× 104

MTL-IBP 1.5× 105 5.1× 103

Table 9: Observed count of common mistakes of certification algorithms (MN-BAB (Ferrari et al.,
2022) and OVAL (De Palma et al., 2022)) on MNIST against their expected values assuming
independence across certification mistakes.

neither certify one certifies both certify

ϵ = 2/255
obs. 3549 15 6436
exp. 1264 4585 4151

ϵ = 8/255
obs. 6454 9 3537
exp. 4171 4575 1254

Table 10: Observed count of common mistakes on CIFAR-10 against their expected values assuming
independence across model mistakes.

models succeeded
0 1 2 3 4 5 6

ϵ = 2
255

obs. 2350 653 520 564 708 894 4311
exp. 35 330 1296 2704 3163 1965 507

ϵ = 8
255

obs. 5206 679 487 388 387 585 2268
exp. 766 2457 3283 2339 937 200 18

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10

30

50

70
Utilization [%]

trained at ε = 2/255

trained at ε = 8/255

Figure 8: Model utilization for models trained on CIFAR-10 with different methods and ϵ. We note
that standard training has 35.79% utilization.

PGD

EDAC

IBP

CROWN-IBP

SABR

TAPS

STAPS

MTL-IBP

94 47 94 93 66 84 92 97 92 91 98 89 98 93 98 96 98 92

96 49 95 93 69 86 92 96 92 91 98 90 98 95 97 96 97 93

88 57 97 94 68 69 95 91 95 77 98 94 98 92 93 92 91 95

89 58 97 95 70 69 96 93 95 88 98 94 98 93 94 93 93 96

86 55 96 94 67 66 94 92 94 81 98 92 98 92 94 93 93 94

88 57 96 93 69 70 94 90 95 77 98 93 98 91 92 92 90 94

87 55 96 94 69 68 95 92 95 78 98 93 98 92 94 93 92 94

87 53 95 93 67 69 94 91 94 79 98 92 98 92 93 94 91 93

PGD

EDAC

IBP

CROWN-IBP

SABR

TAPS

STAPS

MTL-IBP

98 54 92 92 75 91 89 88 86 80 97 86 96 94 91 95 91 90

97 53 92 92 74 90 88 90 86 82 97 86 96 94 93 94 92 90

91 47 91 90 63 76 88 85 90 67 98 86 97 92 89 91 89 88

92 48 94 92 64 74 91 94 93 89 98 89 98 92 96 96 95 91

93 48 93 92 66 82 90 96 92 91 98 87 97 92 97 94 97 90

92 49 94 92 67 80 91 95 93 92 99 89 98 93 96 95 96 92

94 49 94 92 66 82 91 97 92 93 98 88 98 94 98 95 98 91

94 49 94 92 68 83 91 95 92 91 98 89 98 93 96 95 96 92

b
ri

gh
tn

es
s

co
nt

ra
st

d
ef

oc
u
s

b
lu

r
el

as
ti

c
tr

an
sf

or
m fo
g

fr
os

t
ga

u
ss

ia
n

b
lu

r
ga

u
ss

ia
n

n
oi

se
gl

as
s

b
lu

r
im

p
u
ls

e
n
oi

se
jp

eg
co

m
p
re

ss
io

n
m

ot
io

n
b
lu

r
p
ix

el
at

e
sa

tu
ra

te
sh

ot
n
oi

se
sp

at
te

r
sp

ec
kl

e
n
oi

se
zo

om
b
lu

r

Standard 97 72 84 87 89 80 75 41 55 55 86 78 80 93 55 87 59 77

Figure 9: Out-of-distribution generalization evaluated on CIFAR-10-C for models trained on CIFAR-
10 at ϵ = 8/255 (top), ϵ = 2/255 (middle) and standard training (bottom).

19

	Introduction
	Related Work
	Background
	Training for Robustness
	Algorithms in CTBench

	A Unified Library and High-quality Benchmark for Certified Training
	The CTBench library
	The CTBench benchmark

	Evaluating and Understanding Certified Models
	Loss Fragmentation
	Shared Mistakes
	Model Utilization
	Regularization Strength
	Out-of-Distribution Generalization

	Future Directions
	Conclusion
	Discussion
	Decomposition of Improvements
	Limitations
	Broader Impacts

	Experiment Details
	Dataset
	Model Architectures
	Training Details
	Tuning Scheme
	Certification Details
	Computation

	Additional Results

