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ABSTRACT

Training certifiably robust neural networks is an important but challenging task.
While many algorithms for (deterministic) certified training have been proposed,
they are often evaluated on different training schedules, certification methods, and
systematically under-tuned hyperparameters, making it difficult to compare their
performance. To address this challenge, we introduce CTBENCH, a unified library
and a high-quality benchmark for certified training that evaluates all algorithms
under fair settings and systematically tuned hyperparameters. We show that (1)
almost all algorithms in CTBENCH surpass the corresponding reported performance
in literature in the magnitude of algorithmic improvements, thus establishing
new state-of-the-art, and (2) the claimed advantage of recent algorithms drops
significantly when we enhance the outdated baselines with a fair training schedule,
a fair certification method and well-tuned hyperparameters. Based on CTBENCH,
we provide new insights into the current state of certified training and suggest future
research directions. We are confident that CTBENCH will serve as a benchmark
and testbed for future research in certified training.

1 INTRODUCTION

As a crucial component of trustworthy artificial intelligence, adversarial robustness (Szegedy et al.,
2014; Goodfellow et al., 2015), i.e., resilience to small input perturbations, has established itself
as an important research area. While initially the community focused on heuristic methods to craft
adversarial examples and defenses against these, it turned out that such defenses are often brittle
and can be evaded by adaptive adversaries (Athalye et al., 2018; Tramèr et al., 2020). Thus, neural
network certification has emerged as a method for providing provable guarantees on the robustness of
a given network (Gehr et al., 2018; Wong & Kolter, 2018; Zhang et al., 2018; Singh et al., 2019).

Two families of neural network certification methods have been proposed: complete methods (Katz
et al., 2017; Tjeng et al., 2019) which compute the exact bounds but are extremely computationally
expensive, and convex-relaxation based methods (Zhang et al., 2018; Singh et al., 2019) which
provide approximate bounds but are more scalable. State-of-the-art (SOTA) verifiers (Xu et al., 2021;
Ferrari et al., 2022; Zhang et al., 2022) combine both approaches, by using convex relaxations to
speed up the solving of complete methods via Branch-and-Bound (Bunel et al., 2020).

However, the scalability of neural network certification is still a major challenge since the compu-
tational complexity of SOTA verifiers grows exponentially with network size. To tackle this issue,
certified training (Mirman et al., 2018; Gowal et al., 2018) was proposed in order to train neural
networks that are amenable to certification. Such methods are typically categorized into two groups:
(1) training with a sound upper bound of the robust loss (Zhang et al., 2020; Shi et al., 2021), and (2)
training with an unsound surrogate loss that aims to approximate the exact robust loss (Müller et al.,
2023; Mao et al., 2023; De Palma et al., 2024). The latter group has been shown to be more effective.

While certified training has made significant advances, there is currently no benchmark that can be
used to fairly evaluate the effectiveness of the different certified training methods. Specifically, the
literature often compares against previous methods using quoted numbers due to high computational
costs, although the verifier and certification budget differ. These unfair comparisons ultimately
hinder the community from drawing reasonable conclusions on the effectiveness of certified training
methods. In addition, existing works systematically under-tune hyperparameters, in order to show
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effectiveness against baselines, thus establishing a weaker SOTA. Further, there is no unified codebase
for these methods, making future development and comparison difficult.

IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
6.0

6.6

7.2
Certified Error (%)

Literature

Ours

Figure 1: Reduction in certified error on MNIST
ϵ = 0.3 (lower is better).

This work: a unified library and high-quality
benchmark for certified training We address
these challenges, for the first time unifying
SOTA certified training methods into a single
codebase called CTBENCH. This enables a fair
comparison between certified training methods
and re-establishes a much stronger SOTA by
fixing problematic implementations and system-
atically tuning hyperparameters. As shown in
Figure 1, these steps lead to significant improve-
ments uniformly. In addition, we show that the
claimed advantage of recent SOTA reduces sig-
nificantly when we apply the same budget and
hyperparameter tuning to all methods. Based on
our released model checkpoints, we provide an extensive analysis of the model properties, high-
lighting many new insights on its loss landscape, mistake patterns, regularization strength, model
utilization, and out-of-distribution generalization. We are confident that CTBENCH will serve as a
benchmark and testbed for future work in certified training.

2 RELATED WORK

We now briefly review key developments most related to our work.

Benchmarking Certified Robustness Li et al. (2023) provides the first benchmark for certified
robustness, covering not only deterministic certified training but also randomized certified training
and certification methods. However, it is outdated and thus provides little insight into the current
SOTA methods. For example, it reports 89% and 51% best certified accuracy for MNIST ϵ = 0.3
and CIFAR-10 ϵ = 2

255 in its evaluation, respectively, while recent methods have achieved more than
93% and 62% (Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024).

Certified Training DIFFAI (Mirman et al., 2018) and IBP (Gowal et al., 2018) apply box relaxation
to upper bound the worst-case loss for training. Efforts have been made towards applying more
precise approximations: Wong et al. (2018) and Balunovic & Vechev (2020) apply DEEPZ (Singh
et al., 2018), while Zhang et al. (2020) incorporate linear relaxations (Zhang et al., 2018; Singh
et al., 2019). While these approximations are more precise (Baader et al., 2024), they often lead to
worse training results, attributed to non-smoothness (Lee et al., 2021), discontinuity and sensitivity
(Jovanović et al., 2022) of the loss surface. Some recent work (Balauca et al., 2024) aim to mitigate
these problems, however, the most effective training approximation is still the least precise box
relaxation. In this regard, the focus of the community has shifted towards improving IBP: Shi et al.
(2021) propose a new regularization and initialization paradigm to speed up IBP training; De Palma
et al. (2022) apply IBP regularization to make adversarial training certifiable; Müller et al. (2023),
Mao et al. (2023) and De Palma et al. (2024) propose unsound but more effective IBP-based surrogate
losses for training; Mao et al. (2024) propose to use wider models instead of deeper models for
IBP-based methods. These methods achieve universal advantages and are thus the focus of our work.

3 BACKGROUND

We now introduce the necessary background for our work, both training concepts and algorithms.

3.1 TRAINING FOR ROBUSTNESS

We present the mathematical notations on adversarial and certified training here. We consider a neural
network classifier fθ(x) that estimates the log-probability of each class and predicts the class with
the highest estimated log-probability.
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L = (1− τ)LPGD
+τLIBP

Figure 2: Conceptual overview of core algorithms built into CTBENCH.

Adversarial Training A classifier fθ(x) is said to be adversarially robust with radius ϵ w.r.t.
L∞ perturbation if fθ(x + δ) = y for all ∥δ∥∞ ≤ ϵ, where y is the ground truth label of x. For
brevity, we will omit the perturbation type in the rest of the paper. Finding an adversarially robust
classifier is formally defined to solve a min-max problem θ = argminθ Ex,y max∥δ∥≤ϵ L(x+ δ). In
this regard, adversarial training solves the inner maximization problem by generating adversarial
examples during training, and the outer minimization problem by optimizing the empirical loss of
adversarial examples.

Certified Training A classifier fθ(x) is said to be certifiably robust if it is adversarially robust
and there exists a sound verifier that certifies the robustness. A verifier typically computes an upper
bound on the margin fi(x+ δ)− fy(x+ δ) and certifies its robustness if the upper bound is negative
for all i ̸= y. Certified training thus replaces the inner maximization problem with an upper bound
and minimizes the upper bound during training instead.

Metrics The main metric for certified training is certified accuracy, defined to be the ratio of
certifiably robust samples in the dataset. The ratio of correctly classified samples in the dataset is
thus called natural accuracy. For reference, we include adversarial accuracy as well, defined to
be the ratio of adversarially robust samples in the dataset. We apply one of the most widely used
SOTA certification methods, MN-BAB (Ferrari et al., 2022), as the verifier. To compute adversarial
accuracy, we apply the strong AUTOATTACK (Croce & Hein, 2020) for adversarial training, and a
combination of PGD attack and branch-and-bound attack from MN-BAB for certified training.

3.2 ALGORITHMS IN CTBENCH

Here, we briefly introduce the core algorithms built into CTBENCH. Concepts behind these algorithms
are visualized in Figure 2.

PGD and EDAC Projected Gradient Descent (PGD) (Madry et al., 2018) is the most widely
recognized adversarial training method. Starting from a random initialization, PGD solves the inner
maximization problem by iteratively taking a step towards the gradient direction and clipping the
result into the valid perturbation set. Then, it uses the generated adversarial input x′ to compute the
worst case loss as L(x′). Croce & Hein (2020) find that PGD remains effective against strong attacks,
thus is popular as an integrated part of many certified training methods (Müller et al., 2023; Mao
et al., 2023; De Palma et al., 2024). To further improve adversarial robustness, Zhang et al. (2023)
improves adversarial generalization via an extra-gradient method called EDAC, which remains one of
the SOTA methods in adversarial training. These methods achieve good but uncertifiable adversarial
robustness, hence we use them as adversarial robustness baselines in CTBENCH.

IBP Interval Bound Propagation (IBP) (Gowal et al., 2018) uses interval analysis to approximate
the output range of each layer. For example, for the toy network y = 2 − ReLU(x1 + x2) with
input bounds x1, x2 ∈ [−1, 1], it first computes the output range of the first layer as x1 + x2 ∈
[−1, 1] + [−1, 1] ⊆ [−2, 2], the second layer as ReLU([−2, 2]) ⊆ [0, 2] and then final layer as
2− [0, 2] ⊆ [0, 2], thus proving y ≥ 0 for all possible x1, x2 ∈ [−1, 1]. Similarly, IBP computes the
layer-wise bounds and then derives the worst-case loss based on the output bounds of the final layer.
To stably train models with IBP, Shi et al. (2021) propose to rescale the parameter initialization
to ensure constant growth of IBP bounds and a specialized regularization to control the activation
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status of neurons. They also show that adding a batch norm (Ioffe & Szegedy, 2015) layer before
every ReLU can improve IBP training. These training tricks are adopted by every IBP-based method
introduced below. For brevity, we refer to this variant as IBP in the rest of the paper unless otherwise
stated, since it improves the original IBP universally with tricks that facilitate training.

CROWN-IBP CROWN-IBP (Zhang et al., 2020) tightens the imprecise interval analysis with
linear relaxations of ReLU layers based on IBP bounds and only solves the linear constraints for the
final layer output based on CROWN (Zhang et al., 2018), avoiding prohibitive costs during training.
To further reduce the cost of solving the bounds for each class, Xu et al. (2020) propose a loss fusion
trick to only solve for the final loss, thus reducing the asymptotic complexity by a factor equal to
the number of classes. For brevity, we refer to this variant as CROWN-IBP in the rest of the paper
unless otherwise stated, since the original CROWN-IBP cannot scale to datasets with many classes.

SABR Since IBP is often criticized for the increasingly strong regularization w.r.t. input radius
imposed on the neural network, SABR (Müller et al., 2023) proposes to use IBP only for a carefully
chosen small box inside the original input box for IBP training. More specifically, it first conducts a
PGD attack in the full input box to find an adversarial input, and then takes the surrounding small box
with radius λϵ around the adversarial input as the input box for IBP training, where λ is a pre-defined
ratio. For exceptional cases (specifically CIFAR-10 ϵ = 2

255 ), SABR further shrinks the output box
of every ReLU towards zero by a pre-defined constant to further reduce the regularization.

TAPS and STAPS Observing that IBP relaxation error grows exponentially w.r.t. model depth
(Müller et al., 2023; Mao et al., 2024), TAPS (Mao et al., 2023) proposes to split the network into two
subparts, using IBP for the first subpart and PGD for the other. This way, the over-approximation
from IBP and the under-approximation from PGD partially cancel out, yielding a more precise
approximation of the worst-case loss. Further, TAPS uses a separate PGD attack to estimate the
bounds for every class to align better with the certification objective. STAPS (Mao et al., 2023)
combines TAPS with SABR by using the adversarial small box for TAPS training, thus further
reducing regularization.

MTL-IBP De Palma et al. (2024) formalizes a family of surrogate loss functions that interpolate
between PGD and IBP training. We study MTL-IBP, one of the most effective algorithms in this
family. MTL-IBP linearly interpolates between PGD loss and IBP loss, i.e., L = (1− τ)LPGD +
τLIBP, where τ is the pre-defined IBP coefficient. To recover the re-weighing between PGD and
IBP as SABR does with box shrinking, MTL-IBP uses a larger input radius for a PGD attack in the
same setting (specifically, CIFAR-10 ϵ = 2

255 ).

4 A UNIFIED LIBRARY AND HIGH-QUALITY BENCHMARK FOR CERTIFIED
TRAINING

We now discuss CTBENCH, both the unified library and the corresponding benchmark.

4.1 THE CTBENCH LIBRARY

We implement every algorithm described in Section 3.2 in a unified framework. The training loss
is composed of three components: the natural loss which measures performance on clean inputs,
the robust loss which measures robust performance depending on the concrete algorithms and
regularization losses which are used to stabilize training and improve generalization. Formally, the
training loss is defined as L = (1−wrob)Lnat +wrobLrob + Lreg. We mainly use L1 regularization to
reduce overfitting and the warmup regularization proposed by Shi et al. (2021) to improve certified
training methods. The IBP initialization (Shi et al., 2021) is applied for every certified training
method, while adversarial training is initialized with Kaiming uniform (He et al., 2015). Every
method has a warmup phase where ϵ is increased from 0 to the target value and a fine-tuning phase
where the model continues to train at the targeted ϵ to converge. The learning rate is held constant
during the warmup phase and decayed in the fine-tuning phase with a constant multiplier. We use
CNN7 as the model architecture, in agreement with recent literature (Shi et al., 2021; Müller et al.,
2023; Mao et al., 2023; De Palma et al., 2024).
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Table 1: CTBENCH results with comparison to the literature. We include the natural accuracy of
standard training and adversarial training, and the adversarial accuracy of adversarial training for
reference. The best numbers are in bold and those exceeding the literature results are underlined.

Dataset
ϵ∞ Training Method Source Nat. [%] Cert. [%] Adv. [%]

Std. Nat. Accu. Literature CTBENCH Literature CTBENCH CTBENCH

MNIST

0.1

PGD / / 99.47 / ≈0† 98.97
EDAC / / 99.58 / ≈0† 98.95

IBP Shi et al. (2021) 98.84 98.87 97.95 98.26 98.27
CROWN-IBP Xu et al. (2020) 98.83 98.94 97.76 98.21 98.23

SABR Müller et al. (2023) 99.23 99.08 98.22 98.40 98.47
TAPS Mao et al. (2023) 99.19 99.16 98.39 98.52 98.58

STAPS Mao et al. (2023) 99.15 99.11 98.37 98.47 98.50
MTL-IBP De Palma et al. (2024) 99.25 99.18 98.38 98.37 98.44

99.50

0.3

PGD / / 99.43 / ≈0† 93.83
EDAC / / 99.51 / ≈0† 95.02

IBP Shi et al. (2021) 97.67 98.54 93.10 93.80 94.30
CROWN-IBP Xu et al. (2020) 98.18 98.48 92.98 93.90 94.29

SABR Müller et al. (2023) 98.75 98.66 93.40 93.68 94.46
TAPS Mao et al. (2023) 97.94 98.56 93.62 93.95 94.66

STAPS Mao et al. (2023) 98.53 98.74 93.51 93.64 94.36
MTL-IBP De Palma et al. (2024) 98.80 98.74 93.62 93.90 94.55

CIFAR-10

2
255

PGD / / 88.67 / ≈0† 72.41
EDAC / / 89.18 / ≈0† 72.42

IBP Shi et al. (2021) 66.84 67.49 52.85 55.99 56.10
CROWN-IBP Xu et al. (2020) 71.52 67.60 53.97 57.11 57.28

SABR Müller et al. (2023) 79.24 77.86 62.84 63.61 65.56
TAPS Mao et al. (2023) 75.09 74.44 61.56 61.27 62.62

STAPS Mao et al. (2023) 79.76 77.05 62.98 64.21 66.09
MTL-IBP De Palma et al. (2024) 80.11 78.82 63.24 64.41 67.69

91.27

8
255

PGD / / 78.71 / ≈0† 35.93
EDAC / / 78.95 / ≈0† 42.48

IBP Shi et al. (2021) 48.94 48.51 34.97 35.28 35.48
CROWN-IBP Xu et al. (2020) 46.29 48.25 33.38 32.59 32.77

SABR Müller et al. (2023) 52.38 52.71 35.13 35.34 36.11
TAPS Mao et al. (2023) 49.76 49.96 35.10 35.25 35.69

STAPS Mao et al. (2023) 52.82 51.49 34.65 35.11 35.54
MTL-IBP De Palma et al. (2024) 53.35 54.28 35.44 35.41 36.02

TINYIMAGENET 1
255

PGD / / 46.78 / ≈0† 33.16
EDAC / / 46.79 / ≈0† 33.16

IBP Shi et al. (2021) 25.92 26.77 17.87 19.82 19.84
CROWN-IBP Xu et al. (2020) 25.62 28.44 17.93 22.14 22.31

47.96 SABR Müller et al. (2023) 28.85 30.58 20.46 20.96 21.16
TAPS Mao et al. (2023) 28.34 28.64 20.82 21.58 21.71

STAPS Mao et al. (2023) 28.98 30.63 22.16 22.31 22.57
MTL-IBP De Palma et al. (2024) 37.56 35.97 26.09 27.73 28.49

† None of the first 10 samples are certified due to the time limit of 1000 seconds per sample.

Due to the importance of batch norm in certified training, we consider it as a native part of CTBENCH.
Specifically, the best practice so far is to set batch norm statistics based on the clean input and use
this for computing IBP bounds. However, we find several problematic implementations of batch
norm in the literature: (1) when gradient accumulation is involved, the batch norm statistics are not
updated correctly, as sub-batch statistics are applied for training; (2) batch norm statistics change
more than once before taking a gradient step, as typically running statistics is used for conducting a
PGD attack and thus evaluating Lrob, while Lnat is evaluated with batch statistics. The first problem
makes gradient accumulation ineffective since the quality of batch statistics depends highly on the
batch size, and the second problem prevents training with wrob ∈ (0, 1). To address the first problem,
we propose to use full batch statistics during gradient accumulation, which leads to slim overheads
but allows arbitrary gradient accumulation. To address the second problem, we conduct a PGD attack
with the batch statistics as well and evaluate everything with the current batch statistics. This way,
the batch norm statistics are set once per batch just like standard training, allowing training with the
combination of Lnat and Lrob. Further, Wu & Johnson (2021) find that running statistics lag behind
the population statistics and propose to use the population statistics for testing. We adopt this strategy
in CTBENCH, since it only needs to compute Lnat and is much cheaper than the computation of Lrob.

We find that models trained with the hyperparameters reported in the literature frequently show strong
overfitting patterns. To remediate this, we conduct a magnitude search for L1 regularization until the
train and validation performance roughly match. To further aid generalization, we apply Stochastic
Weight Averaging (Izmailov et al., 2018) for methods that cannot provide metrics for model selection,
e.g., MTL-IBP. A more detailed description of the implementation can be found in App. B.
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PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10−1

100

101
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evaluated at ε = 0.1

evaluated at ε = 0.3

trained at ε = 0.1

trained at ε = 0.3

trained at ε = 0

Figure 3: Ratio of unstable neurons for models trained on MNIST with different methods and ϵ.

4.2 THE CTBENCH BENCHMARK

Table 1 shows the result of CTBENCH using the methodology described in Section 4.1. We find that
CTBENCH achieves consistent improvements in both certified and natural accuracies. In particular, it
establishes new SOTA by a margin matching algorithmic advances everywhere except CIFAR-10
ϵ = 8

255 , where we have 0.03% lower certified accuracy compared to De Palma et al. (2024) but 0.93%
higher natural accuracy. This proves the effectiveness of our implementation and the importance
of setting batch norm statistics properly in certified training. We also observe the following: (1)
when ϵ is large, the claimed advantage of recent SOTA over IBP drops significantly, from 7.54%
relative certified error reduction to 2.42% on MNIST ϵ = 0.3 and from 1.34% relative increase in
certified accuracy to 0.45% on CIFAR-10 ϵ = 8

255 ; (2) when the model has sufficient capacity, e.g., on
MNIST ϵ = 0.1, certified training can get close to the natural accuracy of standard training (99.18%
for MTL-IBP vs 99.50% for standard training), and they also get similar adversarial accuracy to
adversarial training (98.58% for TAPS vs 98.95% for EDAC), with boosted certified accuracy
(98.52% for TAPS vs almost 0% for EDAC); (3) when ϵ is large, certified training even gets better
adversarial accuracy than PGD training (94.66% for TAPS vs 93.83% for PGD on MNIST ϵ = 0.3
and 36.11% for SABR vs 35.93% for PGD on CIFAR-10 ϵ = 8

255 ), but there is still a gap between
the adversarial accuracy of the SOTA adversarial training methods and that of the SOTA certified
training methods, as well as natural accuracy.

5 EVALUATING AND UNDERSTANDING CERTIFIED MODELS

We now preform an extensive evaluation on models trained with CTBENCH, providing insights into
the current state of certified training. Further experimental results are provided in App. C.

5.1 LOSS FRAGMENTATION

ReLU networks are known to have a fragmented loss surface, due to the activation switch of neurons.
Fragmentation leads to a non-smooth loss surface and increases the difficulty of finding the worst-case
loss via gradient-based methods like PGD. Due to its connection to adversarial robustness, in this
section, we investigate the fragmentation of loss surfaces in certified models. Specifically, we answer:
(1) do certified models have less fragmentation, thus easing adversarial search, and (2) how does the
fragmentation change w.r.t. ϵ?

Fragmentation is closely related to the number of unstable neurons, i.e., neurons that switch activation
status in the neighborhood, as all fragments are defined by a group of unstable neurons. Vice versa,
in most cases, a switching neuron introduces at least one fragmentation since every activation pattern
defines a local linear function. Therefore, we can quantify the fragmentation by the ratio of unstable
neurons. Since the exact ratio is NP-complete to compute, we use a heuristic but effective method
to estimate it: first, a group of inputs is sampled in the input box; second, these inputs are fed into
the model to get the corresponding activation pattern; finally, we count the ratio of unstable neurons
observed in the sampled activations. This method always establishes a lower bound of the true ratio

6
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Table 2: Observed count of common mistakes of models on MNIST against their expected values
assuming independence across model mistakes.

# models succeeded
0 1 2 3 4 5 6

ϵ = 0.1
obs. 93 25 21 30 32 56 9743
exp. 0 0 0 1 37 900 9062

ϵ = 0.3
obs. 452 73 53 51 80 111 9180
exp. 0 0 2 39 445 2698 6816

and gets arbitrarily close when sample size is large enough. In our experiments, we sample the noise
50 times from a standard Gaussian clipped to [−1, 1] and rescale it by ϵ. This sampling focuses more
on the neighborhood of the clean input and the boundary of the input box, where new fragments
appear most likely. We find this sampling process extremely effective, as the ratio of unstable neurons
observed is very close to the upper bounds derived by IBP for certified models.

Figure 3 shows the result of certified models trained at ϵ = 0.1 and ϵ = 0.3 on MNIST, respectively.
We evaluate the fragmentation of every model at both ϵ = 0.1 and ϵ = 0.3. First, we observe that
both adversarial training and certified training greatly reduce loss fragmentation compared to standard
training. Second, comparing different training methods within each group of and , we observe
that certified training consistently has significantly less fragmentation than adversarial training, e.g.,
IBP reduces fragmentation by 3x compared to EDAC, thus finding the worst-case loss is much easier.
This is consistent with the practice where a weak single-step attack is adopted in certified training
(De Palma et al., 2024). Third, comparing models trained at different ϵ ( vs and vs ), we
observe that further increasing training ϵ does not necessarily reduce fragmentation, yet the trend is
consistent with adversarial training. These observations prove that certified training can further boost
the fragmentation reduction effect of adversarial training, thus introducing more local smoothness
into the model. More results on CIFAR-10 are included in App. C as Figure 7.

5.2 SHARED MISTAKES

We now study the correlation of certified models, specifically: do certified models make shared
mistakes?

We consider models trained by six certified training methods on MNIST at ϵ = 0.1 and ϵ = 0.3
and calculate the distribution of common mistakes they make. Specifically, we count the number
of models that fail to achieve certified robustness for each sample in the test set containing 10k
samples. The observed value is compared with the expected value, defined as the number of failed
models when models with the same certified accuracy make mistakes independently (rounded to
integer if necessary). The result is shown in Table 2. Accordingly, certified models make many
shared mistakes, as the number of samples that cannot be certified robust by any of these models
systematically exceeds the expected value by a large margin. In addition, the number of inputs that
are certified robust by all six models is much larger than the corresponding expected value. These
facts suggest that there could be an intrinsic difficulty score for each input, thus curriculum learning
(Bengio et al., 2009; Ionescu et al., 2016) could be a promising direction to improve certified training.
More results on CIFAR-10 are included in App. C as Table 10. We note that common mistakes are
also observed across different certification methods, as shown in Table 9 in App. C.

5.3 MODEL UTILIZATION

Model utilization represents how much the model capacity is utilized for the task. Since certified
training applies IBP bounds, they systematically deactivate neurons (Shi et al., 2021) to gain precision.
However, it is not yet clear whether more advanced certified training methods deactivate fewer neurons,
thus utilizing the model capacity better.

We define model utilization to be the ratio of neurons activated by the clean input. Figure 4 visualizes
the result for models trained on MNIST at ϵ = 0.1 and ϵ = 0.3. Surprisingly, we find that more
advanced certified training methods, TAPS and MTL-IBP, deactivate more neurons than IBP on
MNIST ϵ = 0.1, while keeping better natural and certified accuracy. More interestingly, these
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PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10

20
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40
Utilization [%]

trained at ε = 0.1

trained at ε = 0.3

Figure 4: Model utilization for models trained on MNIST with different methods and ϵ. We note that
standard training has 42.99% utilization.
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Figure 5: Certified accuracy vs. propagation tightness for models trained on MNIST and CIFAR-10.

methods can retain more utilization on ϵ = 0.3 where the model struggles to keep high natural
accuracy for better performance, while IBP has trouble with activating more neurons. Further, we
observe that the advanced adversarial training method EDAC shows similar behavior to TAPS and
MTL-IBP, and gets higher adversarial accuracy than PGD. This suggests that the ability to adaptively
keep necessary utilization could be crucial to both adversarial and certified robustness. Since dying
neurons (Lu et al., 2019) are hard to activate again, future work on better warmup (Shi et al., 2021)
could be beneficial, as their IBP variant still struggles to keep necessary model utilization. More
results on CIFAR-10 are included in App. C as Figure 8.

5.4 REGULARIZATION STRENGTH

Previous work (Mao et al., 2024) has shown that IBP bounds are close to optimal bounds for
IBP-based certified training, and this condition is established via strong constraints on the model
parameters. They quantify this regularization effect by propagation tightness, defined to be the ratio
between the optimal bound radius and the IBP bound radius, approximating the ReLU network locally
with a linear replacement. We now extend the study of propagation tightness to more advanced
certified training methods and investigate how it interacts with certified accuracy. Specifically,
using propagation tightness as the representative of regularization strength, we answer: (1) do more
advanced certified training methods reduce the regularization strength, and (2) how does the input
radius ϵ affect the interaction?

Figure 5 shows the interaction between certified accuracy and propagation tightness for certified
models trained on MNIST and CIFAR-10. When ϵ is small (Figure 5a and Figure 5c), certified
accuracy has a negative correlation with propagation tightness, i.e., more advanced certified training
methods reduce the regularization strength. However, when ϵ is large (Figure 5b and Figure 5d), the
correlation is not clear, and the best model in certified accuracy does not necessarily have the lowest
propagation tightness. Instead, models with similar propagation tightness can have significantly
different certified accuracy. Therefore, we conclude that reducing regularization strength cleverly
is crucial for certified training, and the effect is more pronounced when ϵ is small, while improper
reduction could hurt certified accuracy, especially when ϵ is large.
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5.5 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-distribution (OOD) generalization is closely related to adversarial robustness (Gilmer et al.,
2019). However, the interaction between certified robustness and OOD generalization is not yet clear.
We thus investigate the OOD generalization of certified models and answer: (1) do certified models
generalize to OOD data, and (2) how does this compare to adversarial training?

We use MNIST-C (Mu & Gilmer, 2019) to evaluate OOD generalization, defined to be the ratio
between OOD accuracy and natural accuracy. MNIST-C includes 15 carefully chosen corruptions,
covering a broad range of corruptions that are not characterized by adversarial robustness while
preserving the semantics. We evaluate models trained with both adversarial training and certified
training under ϵ = 0.1 and ϵ = 0.3, and report the corresponding OOD accuracy of the model trained
via standard training. We note that none of the models has seen these corruptions during training.

Figure 6 depicts the result of OOD generalization for each model on all corruptions. We observe the
following: (1) certified training improves OOD generalization compared to standard training except
on the brightness corruption where both adversarial and certified training fails; (2) certified training
shows different OOD generalization patterns to adversarial training, e.g., certified training boost
generalization on the canny edges corruption while adversarial training wins on the stripe corruption.
In general, we find that certified training either greatly boosts the OOD generalization or significantly
downgrades the OOD generalization depending on the corruption, and the bad cases are usually those
in which adversarial training performs worse than or similarly to standard training. Therefore, we
hypothesize that these corruptions are at odds with adversarial robustness. Further, different training
ϵ does not significantly affect the OOD generalization except few cases, and ranking in certified
accuracy does not show strong relations with the ranking in OOD generalization. Overall, these
results suggest that certified training has the potential to improve OOD generalization to corruptions
that standard training struggles with, and the effect is exaggerated when adversarial training improves
over standard training. More results on CIFAR-10-C (Hendrycks & Dietterich, 2019) are included in
App. C as Figure 9.

6 FUTURE DIRECTIONS

We now summarize directions for future improvements of certified training and its potential appli-
cations. As shown in Section 5.2, certified models make shared mistakes on some hard samples,
thus curriculum learning with some well-defined difficulty ranking could facilitate training, where
optimization has been known to be particularly hard (Jovanović et al., 2022). Moreover, in Section 5.3
we showed that even the most trainable method, IBP, struggles to keep necessary model utilization
on large ϵ. Therefore, future work is still required to improve the learning process of certified
training. Despite the challenges, in Section 5.5 we find that certified models can have surprising and
qualitatively different behavior on OOD generalization, which could be a promising application for
certified training beyond certified robustness.

7 CONCLUSION

We introduced CTBENCH, a unified library and high-quality benchmark for deterministic certified
training on L∞ robustness. Based on CTBENCH, we extensively evaluated certified models trained
via state-of-the-art methods, analyzing their regularization strength and utilities. Our analysis reveals
that certified training schemes can reduce loss fragmentation, adaptively keep model utilization, make
shared mistakes, and generalize well on data with certain corruptions. We are confident that the
insights and tools provided by CTBENCH will facilitate future research on certified training and its
applications.

REPRODUCIBILITY STATEMENT

We release the complete codebase of CTBENCH, including the implementation of all certified training
methods and the model checkpoints for the benchmark. The codebase is available at ANONYMIZED
(available in the supplementary material). A complete description of the experiment setup and
hyperparameters is provided in App. B.
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Figure 6: Out-of-distribution generalization evaluated on MNIST-C for models trained on MNIST
at ϵ = 0.3 (top), ϵ = 0.1 (middle) and standard training (bottom).
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A DISCUSSION

A.1 DECOMPOSITION OF IMPROVEMENTS

Decomposition of the universal modifications we made such as batch norm fixes and the hyperparam-
eter tuning is not always possible, as these modifications allow additional vectors of hyperparameter
for tuning. For example, we fix batch norm statistics in one batch rather than reset it multiple times as
done in some original implementations, allowing wrob to be tuned within [0, 1], while in the literature
wrob has to be fixed to 1. Therefore, we cannot formally decompose the effects of hyperparameter
tuning and batch norm behaviors, as they are closely dependent on each other.

The PreciseBN (Wu & Johnson, 2021) that we adopt, which is to set batch norm statistics based on
the entire training dataset at test time, does not change the training at all, since at every training step
batch norm layers are set by batch statistics. Therefore, this only smooths the test time performance
and potentially improves the final performance. While this is good for monitoring the learning
curve, the final performance improvement is minimal in our experiments, and in most cases almost
no improvement on the final model is observed. This is expected since batch norm statistics also
converge when the model converges.

The literature results are run with three different random seeds, and only the best results among
them are reported. This prevents us from substituting our fine-tuned hyperparameter to the original
implementation because merely using the same hyperparameters even based on the original imple-
mentation hardly reproduces the same number as reported in the literature. In contrast, we run every
experiment with the same fixed random seed to allow fair and faithful comparison. Nevertheless, we
can showcase the effect for one setting: IBP on MNIST ϵ = 0.3. The literature reports 93.1% certified
accuracy, while the same hyperparameter results in 93.18% in our implementation. Further tuning the
hyperparameters as in the CTBench benchmark gets 93.8%. While this proves the effectiveness of
both the implementation and our hyperparameter tuning, we would like to note that based on previous
arguments, this does not faithfully decompose the effect of hyperparameter tuning and batch norm
changes, and such decomposition efforts are doomed to fail.

In summary, while decomposition is beneficial, there are practical concerns preventing us from
formally decomposing the effects. However, since this work introduces a library and benchmark
rather than precisely decomposing the effect of each beneficial change, this does not undermine the
contribution of this work.

A.2 LIMITATIONS

The main limitation of CTBENCH is that we only consider deterministic certified training, while
randomized certified robustness (Cohen et al., 2019) has also made substantial progress. Moreover,
we only consider the adversarial robustness, while other types of robustness, such as robustness
against patch attacks (Salman et al., 2022) is also important. Finally, we only focus on L∞ robustness,
and leave the discussion about other norms as future work.

A.3 BROADER IMPACTS

This work focuses on certified defenses against adversarial attacks, which is a crucial component of
trustworthy artificial intelligence. The proposed benchmark CTBENCH will facilitate future research
on certified training and its applications. The insights and tools provided by CTBENCH will help
researchers to develop more robust and reliable machine learning models. The potential harm of this
work are as follows:

• Certified models can provide a fake security when the models are applied against non-adversarial
perturbations.

• Certification methods are computationally expensive, which will consume more energy and thus
possibly harm the environment.
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B EXPERIMENT DETAILS

B.1 DATASET

We use the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) and TINYIMAGENET
(Le & Yang, 2015) datasets for our experiments. All are open-source and freely available with
unspecified license. The data preprocessing mostly follows De Palma et al. (2024). For MNIST, we
do not apply any preprocessing. For CIFAR-10 and TINYIMAGENET, we normalize with the dataset
mean and standard deviation and augment with random horizontal flips. We apply random cropping
to 32× 32 after applying a 2 pixel zero padding at every margin for CIFAR-10, and random cropping
to 64× 64 after applying a 4 pixel zero padding at every margin for TINYIMAGENET. We train on
the corresponding train set and certify on the validation set, as adopted in the literature (Shi et al.,
2021; Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024).

B.2 MODEL ARCHITECTURES

We follow Shi et al. (2021); Müller et al. (2023) and use a CNN7 with Batch Norm for our main
experiments. CNN7 is a convolutional network with 7 convolutional and linear layers. All but the last
linear layer are followed by a Batch Norm and ReLU layer. This architecture is found to achieve
uniformly better results across settings (Shi et al., 2021), and thus is adopted by the literature (Shi
et al., 2021; Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024). For TINYIMAGENET, the
stride of the last convolution is doubled to reduce the cost.

B.3 TRAINING DETAILS

Initialization Adversarial training methods are initialized by Kaiming uniform (He et al., 2015),
while certified training methods are initialized by IBP initialization (Shi et al., 2021).

Training Schedule We mostly follow the training schedule of (De Palma et al., 2024), but in some
cases a shorter schedule to reduce cost. Specifically, the warmup phase is 20 epochs for MNIST
ϵ = 0.1 and ϵ = 0.3, 80 epochs for CIFAR-10 ϵ = 2

255 , 120 epochs for CIFAR-10 ϵ = 8
255 and

80 epochs for TINYIMAGENET ϵ = 1
255 . In addition, for CIFAR-10 and TINYIMAGENET, we use

standard training for 1 additional epoch at the beginning. We apply the IBP regularization proposed
by (Shi et al., 2021), with weight equals 0.5 on MNIST and CIFAR-10, and 0.2 on TINYIMAGENET,
during the warmup phase. In total, we train 70 epochs for MNIST ϵ = 0.1 and ϵ = 0.3, 160 epochs
for CIFAR-10 ϵ = 2

255 , 240 epochs for CIFAR-10 ϵ = 8
255 , and 160 epochs for TINYIMAGENET

ϵ = 1
255 .

Optimization We use Adam (Kingma & Ba, 2015) with a learning rate of 0.0005. The learning
rate is decayed by a factor of 0.2 at epoch 50 and 60 for MNIST ϵ = 0.1 and ϵ = 0.3, at epoch 120
and 140 for CIFAR-10 ϵ = 2

255 , at epoch 200 and 220 for CIFAR-10 ϵ = 8
255 , and at epoch 120 and

140 for TINYIMAGENET ϵ = 1
255 . We use a batch size of 256 for MNIST, and 128 for CIFAR-10

and TINYIMAGENET. Gradients of each step are clipped to 10 in L2 norm. No weight decay is
applied and L1 regularization only on weights of linear and convolution layers is used.

B.4 TUNING SCHEME

We conduct a hyperparameter tuning for each method to ensure the best performance, and reduce
the search space whenever appropriate based on human knowledge. The search space for each
hyperparameter is as follows:

• L1 regularization: {1× 10−6, 2× 10−6, 5× 10−6, 1× 10−5, 2× 10−5, 5× 10−5}. We include
3× 10−6 specifically for CIFAR-10 ϵ = 2

255 , as this is the value reported by De Palma et al. (2024).

• wrob: {0.7, 0.8, 0.9, 1.0}. Surprisingly, wrob not equal to 1 can improve both certified and natural
accuracy by a large margin when ϵ is small.

• Train ϵ: we use 2x train ϵ for MNIST ϵ = 0.1, and tune within {1x, 1.25x, 1.5x} specifically for
CIFAR-10 ϵ = 2

255 . For others, we use the test ϵ for training.
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Table 3: Best hyperparameter for MNIST ϵ = 0.1.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 1× 10−5 1× 10−5 2× 10−6 2× 10−6 1× 10−6 1× 10−6 1× 10−6 1× 10−5

wrob 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7
Train ϵ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ϵ shrink ratio / / / / 0.4 / 0.4 /
Classifier size / / / / / 3 1 /
TAPS gradient scale / / / / / 4 4 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.02

Table 4: Best hyperparameter for MNIST ϵ = 0.3.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 5× 10−6 5× 10−6 1× 10−6 1× 10−6 2× 10−6 2× 10−6 2× 10−6 1× 10−6

wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Train ϵ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
ϵ shrink ratio / / / / 0.8 / 0.8 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 3 1 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.5

• ϵ shrink ratio for SABR and STAPS: we mostly keep the value in the literature. When we observe
large certifibility gap, we increase the shrink ratio by 0.1 until the performance fails to increase
consistently.

• Classifier size for TAPS and STAPS: we keep the value in the literature for TAPS, and include
only 1 ReLU layer in the classifier for STAPS universally.

• TAPS gradient scale: {1, 2, 3, 4, 6, 8}.

• ReLU shrink ratio for SABR and STAPS: we keep the value in the literature, thus shrinking the
output box of each ReLU by multiplying 0.8 on CIFAR-10 ϵ = 2

255 and do not apply this in other
settings.

• IBP coefficient for MTL-IBP: {0.01, 0.02, 0.05} for MNIST ϵ = 0.1, CIFAR-10 ϵ = 2
255 and

TINYIMAGENET ϵ = 1
255 , and {0.4, 0.5, 0.6} for MNIST ϵ = 0.3, CIFAR-10 ϵ = 8

255 .

• Attack Strength: we use 3 restarts everywhere for the attack. By default, we use 10 steps for MNIST
ϵ = 0.1, 5 steps for MNIST ϵ = 0.3, 8 steps for CIFAR-10 ϵ = 2

255 , 10 steps for CIFAR-10
ϵ = 8

255 , and 1 step for TINYIMAGENET ϵ = 1
255 . However, we find MTL-IBP benefits from

using only 1 step everywhere, while more steps will hurt certified accuracy, thus we only use 1 step
specifically for MTL-IBP except CIFAR-10 ϵ = 2

255 , consistent to De Palma et al. (2024). We
further only use 2x attack ϵ for MTL-IBP on CIFAR-10 ϵ = 2

255 .

We report the best hyperparameter for each method respectively in Table 3, Table 4, Table 5, Table 6,
and Table 7.

Table 5: Best hyperparameter for CIFAR-10 ϵ = 2/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 2× 10−5 5× 10−6 1× 10−6 1× 10−6 1× 10−6 2× 10−6 5× 10−6 3× 10−6

wrob 1.0 1.0 1.0 1.0 0.7 1.0 1.0 0.9
Train ϵ 2/255 2/255 2/255 2/255 3/255 2/255 3/255 2/255
ϵ shrink ratio / / / / 0.1 / 0.1 /
Classifier size / / / / / 5 1 /
TAPS gradient scale / / / / / 5 5 /
ReLU shrink ratio / / / / 0.8 / 0.8 /
IBP coefficient / / / / / / / 0.01
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Table 6: Best hyperparameter for CIFAR-10 ϵ = 8/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 1× 10−6 1× 10−6 0 0 0 0 0 0
wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Train ϵ 8/255 8/255 8/255 8/255 8/255 8/255 8/255 8/255
ϵ shrink ratio / / / / 0.7 / 0.9 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 2 2 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.5

Table 7: Best hyperparameter for TINYIMAGENET ϵ = 1/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 5× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 5× 10−5

wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7
Train ϵ 1/255 1/255 1/255 1/255 1/255 1/255 1/255 1/255
ϵ shrink ratio / / / / 0.4 / 0.6 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 8 4 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.05

B.5 CERTIFICATION DETAILS

We combine IBP (Gowal et al., 2018), CROWN-IBP (Zhang et al., 2020), and MN-BAB (Ferrari
et al., 2022) for certification running the most precise but also computationally costly MN-BAB only
on samples not certified by the other methods. The timout for each input is set to 1000 seconds.

B.6 COMPUTATION

We train and certify MNIST ϵ = 0.1, MNIST ϵ = 0.3 and CIFAR-10 ϵ = 8
255 models on a single

NVIDIA GeForce RTX 2080 Ti with Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz and 530GB
RAM. We train and certify CIFAR-10 ϵ = 2

255 and TINYIMAGENET ϵ = 1
255 models on a single

NVIDIA L4 with Intel(R) Xeon(R) CPU @ 2.20GHz CPU and 377 GB RAM. The training and
certification time for each method is reported in Table 8.

C ADDITIONAL RESULTS

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10−1

100

101

102
Unstable (%)

evaluated at ε = 2/255

evaluated at ε = 8/255

trained at ε = 2/255

trained at ε = 8/255

trained at ε = 0

Figure 7: Ratio of unstable neurons for models trained on CIFAR-10 with different methods and ϵ.
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Table 8: Training and certification time for each method on different datasets and ϵ.

Dataset ϵ Method Train Time (seconds) Certification Time (seconds)

MNIST

0.1

PGD 1.5× 104 /
EDAC 3.1× 104 /

IBP 2.1× 103 2.5× 103

CROWN-IBP 5.6× 103 1.8× 103

SABR 1.8× 104 6.0× 103

TAPS 3.8× 104 6.0× 103

STAPS 2.5× 104 6.9× 103

MTL-IBP 6.8× 103 6.8× 103

0.3

PGD 1.1× 104 /
EDAC 2.2× 104 /

IBP 2.6× 103 3.2× 104

CROWN-IBP 5.4× 103 2.6× 104

SABR 9.7× 103 5.2× 104

TAPS 7.1× 103 4.7× 104

STAPS 1.4× 104 5.1× 104

MTL-IBP 5.5× 103 4.4× 104

CIFAR-10

2
255

PGD 2.8× 104 /
EDAC 1.3× 105 /

IBP 1.2× 104 1.3× 105

CROWN-IBP 2.7× 104 1.9× 105

SABR 2.4× 104 1.6× 105

TAPS 1.1× 105 1.1× 105

STAPS 4.5× 104 3.0× 105

MTL-IBP 3.6× 104 2.7× 105

8
255

PGD 6.4× 104 /
EDAC 1.3× 105 /

IBP 1.1× 104 1.9× 104

CROWN-IBP 2.1× 104 2.0× 104

SABR 4.1× 104 6.5× 104

TAPS 3.3× 104 4.0× 104

STAPS 9.9× 104 4.2× 104

MTL-IBP 2.2× 104 5.6× 104

TINYIMAGENET 1
255

PGD 1.0× 105 /
EDAC 2.0× 105 /

IBP 6.7× 104 4.9× 103

CROWN-IBP 2.0× 105 1.3× 104

SABR 1.1× 105 1.8× 104

TAPS 2.8× 105 1.5× 104

STAPS 3.3× 105 2.6× 104

MTL-IBP 1.5× 105 5.1× 103

Table 9: Observed count of common mistakes of certification algorithms (MN-BAB (Ferrari et al.,
2022) and OVAL (De Palma et al., 2022)) on MNIST against their expected values assuming
independence across certification mistakes.

neither certify one certifies both certify

ϵ = 2/255
obs. 3549 15 6436
exp. 1264 4585 4151

ϵ = 8/255
obs. 6454 9 3537
exp. 4171 4575 1254

Table 10: Observed count of common mistakes on CIFAR-10 against their expected values assuming
independence across model mistakes.

# models succeeded
0 1 2 3 4 5 6

ϵ = 2
255

obs. 2350 653 520 564 708 894 4311
exp. 35 330 1296 2704 3163 1965 507

ϵ = 8
255

obs. 5206 679 487 388 387 585 2268
exp. 766 2457 3283 2339 937 200 18
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PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10

30

50

70
Utilization [%]

trained at ε = 2/255

trained at ε = 8/255

Figure 8: Model utilization for models trained on CIFAR-10 with different methods and ϵ. We note
that standard training has 35.79% utilization.
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Figure 9: Out-of-distribution generalization evaluated on CIFAR-10-C for models trained on CIFAR-
10 at ϵ = 8/255 (top), ϵ = 2/255 (middle) and standard training (bottom).
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