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ABSTRACT

This work introduces the notion of Forward-Backward Markov Decision Pro-
cess (FB-MDP) for multi-task control problems. In this context, we devise a
novel approach called Forward-Backward Multi-Objective Reinforcement Learn-
ing (FB-MORL). Specifically, we analytically characterize its convergence to-
wards a Pareto-optimal solution and also empirically evaluate its effectiveness.
For the latter, we consider a use case in wireless caching and perform several ex-
periments to characterize performance in that context. Finally, an ablation study
demonstrates that FB-MDP is instrumental to optimize rewards for systems with
forward-backward dynamics. The outcomes of this work pave the way for further
understanding of multi-objective RL algorithms for FB-MDPs.

1 INTRODUCTION

Reinforcement Learning (RL) is very important in the field of artificial intelligence, as it enables in-
telligent agents to learn from experience and adapt to complex, dynamic environments (Mnih et al.,
2013; Lillicrap et al., 2016; Schulman et al., 2017). Moreover, recent breakthroughs in deep rein-
forcement learning (DRL) – namely, RL leveraging deep neural networks – led to intelligent policies
that exceed human-level performance in wide variety of domains (Mnih et al., 2015; Jaderberg et al.,
2018; Rigoli et al., 2021).

Existing RL algorithms mainly address sequential decision-making problems modeled as a forward
Markov decision process or controlled forward dynamics. However, there are several sequential
tasks whose environment cannot be exclusively captured by this type of dynamics, as they also
encompass states that evolve according to a backward dynamics. The pricing and hedging of a Eu-
ropean option can be framed as a backward dynamics problem, showing the application of these
dynamics in determining optimal investment and risk management strategies (Chessari et al., 2023).
Such dynamics provide a trajectory that starts from the current state and follows a specific ac-
tion to transition to a preceding state. Moreover, the backward dynamics admits a final known
state, in contrast to the forward dynamics with is based on an initial state. Dynamics in a form of
(controlled) backward stochastic differential equation (BSDE) have wide applications in stochastic
control (Zhang, 2017) and (differential) game theory (Hamadène & Lepeltier, 2000; Grun, 2012;
Zhang, 2022), as well as in mathematical finance (El Karoui et al., 1997; Bouchard et al., 2018;
Hientzsch, 2019). In the context of stochastic optimal control, Pontryagin’s maximum principle
and Feynman-Kac representation of Partial Differential Equations (PDEs) are a few examples of
using BSDE (Yong & Zhou, 1999), whereas pricing problems and hedging theory are sample ap-
plications in the domain of mathematical finance (Ma & Yong, 1999). There are also problems that
can be modeled based on a controlled forward-backward dynamics, or alternatively, as a Forward-
Backward Markov decision process (FB-MDP). In the latter case, both the forward and backward
process coexist and conflict with each other through the action space at the same time. Here, we
present a motivating example of backward MDPs in the context of computation offloading (Zabihi
et al., 2023). Imagine a mobile computing unit that processes offloaded tasks using its computa-
tional resources while buffering them as needed. The average time for successful computation is
influenced by factors such as the probability of buffer overflow and the processing time of buffered
tasks. In the case of overflow, tasks are re-offloaded at this unit. Consequently, it results in a back-
ward MDP linked to action parameters including buffer and computation capacity (see Appendix E
for more details).
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Controlled forward-backward dynamics have been extensively studied in the context of stochastic
differential equations. However, these dynamics have not been adequately addressed in the domain
of Markov processes and problems based on reinforcement learning. The primary challenge arises
from the interplay and conflict between the forward and backward processes within the action space.
More specifically, an optimal policy needs to jointly consider both forward and backward processes.
However, this contradicts the causal nature of the forward dynamics and the backward dynamics
evolving in a time-reversed trajectory.

Motivated by such a challenge, we introduce the notion of FB-MDPs for multi-task problems en-
tailing conflicting forward and backward rewards. Accordingly, we propose a novel multi-objective
RL algorithm called Forward-Backward Multi-Objective Actor-Critic (FB-MOAC), which is built
upon the Advantage Actor-Critic (A2C) framework (Grondman et al., 2012). Moreover, we conduct
a rigorous convergence analysis of FB-MOAC by specifying the conditions to achieve convergence-
on-mean. To the best of our knowledge, this is the first study presenting an RL algorithm for a
class of FB-MDPs, coupled with a comprehensive analysis of its convergence and performance in a
selected use case. In summary, the contributions of this work are the following.

(1) We formalize a forward-backward multi-task Markov decision process, recognize a class of
action-coupled FB-MDP for which we derive the backward Bellman’s and Pareto-optimality equa-
tions, and develop FB-MOAC, a multi-objective RL algorithm for such settings.

(2) We provide a novel theoretical framework based on which we analytically characterize FB-
MOAC with a convergence-on-mean guarantee towards Pareto-optimal solutions.

(3) We assess the performance of FB-MOAC through an experimental evaluation in the context of
wireless caching, inclusive of an ablation study.

Notation: ∥A∥ is the induced matrix norm of A. We use In, 1n, 0 and em to denote the identity matrix
of size n×n, a n-dimensional vector with all elements equal to one, a vector with all elements equal
to zero, and a vector with all elements being zero except the m-th element that is one, respectively.
We use |S| to shows the cardinality of the set S, and [ · ] to indicate the components of row vectors.

2 PRELIMINARIES

We introduce next the notion of Pareto optimality and forward-backward Markov decision processes.

2.1 PARETO OPTIMALITY

We briefly introduce the notion of Pareto optimality for a multi-objective optimization (MOO) prob-
lem. Accordingly, consider the following unconstrained problem:

Q1 : min
x∈X

[
f1(x), . . . , fr(x)

]
,

where fj : RN → R, X is the feasible set, and r is the number of objectives. Then, x∗ ∈ X is
called a Pareto optimal solution of Q1, if there is no other solution y ∈ X so as to dominate x∗, i.e.,
fi(y) ≤ fi(x

∗) for all i ∈ {1, . . . , r} and there is one j such that fj(y) < fj(x
∗).

If there exists a vector α ∈ [0, 1]r with
∑r

j=1 αj = 1 so that
∑r

j=1 αj∇fj(x̂) = 0, then x̂ is a
Pareto optimal solution and [f1(x̂), . . . , fr(x̂)] is a Pareto front for MOO Q1.

The following Lemma (Schäffler et al., 2002; Ma et al., 2020) provides guidance on jointly reducing
all objectives of MOO Q1.

Lemma 2.1. Assume a multi-valued multivariate function f = (f1, . . . , fr), fj : Rn → R for
j ∈ {1, . . . , r}. Define q(·) =

∑r
j=1 α

∗
j∇fj(·), then −q(·) is a descent direction for all functions

{fj(·)}r1, where {α∗
j} are the solution of the following optimization problem:

Q2 : min
{αj}r1

∥∥∥ r∑
j=1

αj∇fj(·)
∥∥∥2

, s.t.

r∑
j=1

αj = 1, αj ≥ 0 j ∈ {1, . . . , r}.

Accordingly, the optimal solution of problem Q2 can be obtained using the following Corollary.
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Corollary 2.1. The solution of Q2, for ∇f(·)⊤∇f(·) being invertible and with all αj ≥ 0 is:

α∗ =
(
1⊤
r

(
∇f(·)⊤∇f(·)

)−1
1r

)−1 (
∇f(·)⊤∇f(·)

)−1
1r, (1)

where ∇f(·) is an n × r matrix with ∇f(·) =
[
∇f1, . . . ,∇fr

]
(·). For the case αj < 0 for

j ∈ S0 ∈ {1, . . . , r}, we set ∇f(·) = [∇fk(·)]k ∈{1,...,r}\S0
.

2.2 FORWARD-BACKWARD MARKOV DECISION PROCESS

An FB-MDP is expressed by a tuple (S,Y,A, Pf (·), Pb(·), r(·)), where: S and Y are the forward
and backward state spaces, respectively; A is the action space; Pf (·) : S ×A×S → [0, 1] is the for-
ward transition probability, which describes the forward dynamics; Pb(·) : Y×A×Y → [0, 1] is the
backward transition probability, which expresses the backward dynamics; and r(·) : S × Y ×A →
Rm is the immediate multivariate reward function, where m ∈ N denotes the dimension of the
reward function. Being at the forward state st ∈ S and performing the action at ∈ A, the
forward transition probability probabilistically determines the next forward state of the system
st+1 ∼ Pf (·|st, at). Moreover, in an anti-causal way, being at the backward state yt ∈ Y and per-
forming the action at ∈ A, the previous backward state of the system follows: yt−1 ∼ Pb(·|yt, at).
Notice that the initial forward state s1 and final backward state yT are known. Furthermore, the for-
ward and backward transition probabilities are coupled, as they depend on a common action space.

In this paper, we introduce a class of FB-MDPs with forward rewards rf (·) : S × A → R|Sf | and
backward rewards rb(·) : Y × A → R|Sb|, where Sf and Sb are the sets of indexes of forward and
backward rewards, respectively. Moreover, the backward and forward rewards are coupled merely
within the action space. We term this class of processes as action-coupled FB-MDPs. The aim
of this FB-MDP problem is thus to optimize the following multi-objective discounted cumulative
reward from the Pareto-optimality perspective:

max
{at∈A}t∈[1,T ]

E

{
T∑

t=1

γt−1
[
rf (st, at), r

b(yT−t+1, aT−t+1)
]}

, (2)

where T ∈ N is the optimization finite horizon, γ ∈ (0, 1] the discount factor, and the expectation
is with respect to the different realizations of the forward-backward trajectory τ : s1 → a1 → s2 →
. . . → aT , yT → aT → yT−1 → . . . → a1 → y1.

3 FORWARD-BACKWARD MULTI-OBJECTIVE RL ALGORITHM

Note that the backward states{yT−t+1}t∈[1,T ] cannot be revealed before actions{at}t∈[1,T ] are de-
signed, and actions should be optimized by considering both the forward and backward rewards. To
tackle this and solve problem (2), we devise a forward-backward step-wise mechanism explained
in Table (1). According to this mechanism and due to the Markov property, the probability of the

Table 1: Forward-Backward Step-wise Mechanism
Step 1 Forward Evaluation

Consider a θ-parametric stochastic policy distribution πθ(·|st).
Generate action at ∼ πθ(·|st) and evaluate st+1 ∼ Pf (·|st, at), for t ∈ [1, T − 1].

Step 2 Backward Evaluation
Evaluate yT−t ∼ Pb(·|yT−t+1, aT−t+1) for t ∈ [1, T − 1] based on the generated
actions of the previous step.

Step 3 Forward-Backward Optimization
Optimize the policy distribution πθ(·|·) based on the evaluated forward and backward
rewards using a multi-objective optimization.
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trajectory τ :
forward direction︷ ︸︸ ︷

s1 → a1 → s2 → . . . at . . .→ sT → aT

↕ ↕ ↕
a1 ← y1 ← . . . at . . .← yT−1 ← aT ← yT︸ ︷︷ ︸

backward direction

is determined by:
Pθ(τ ) := P(s1, a1, . . . , st, at, yT , . . . , y1)

= P(s1)
T−1∏
t=1

Pf (st+1|st, at)︸ ︷︷ ︸
Pf (τ)

×P(yT )

T−1∏
t=1

πθ(at|st)Pb(yT−t|yT−t+1, aT−t+1)︸ ︷︷ ︸
P′
θ
(τ)

= Pf (τ ) P′
θ(τ ). (3)

Therefore, problem (2) can be reformulated as following policy distribution optimization:

O2 : max
πθ(·|st)

EPθ(τ)

{
T∑

t=1

γt−1
[
rf (st, at), r

b(yT−t+1, aT−t+1)
] ∣∣∣ θ}

s.t.
{

st+1 ∼ Pf (·|st, at), yt−1 ∼ Pb(·|yt, at), at ∼ πθ(·|st)
}
. (4)

The multivariate objective of O2 can thus be expressed as:

J(θ) :=
[
EPθ(τ)

T∑
k=1

γk−1rf (sk, ak)︸ ︷︷ ︸
Jf (θ)

, EPθ(τ)

T∑
k=1

γk−1rb(yT−k+1, aT−k+1)︸ ︷︷ ︸
Jb(θ)

]
.

To maximize J(θ), we need its gradient with respect to θ, i.e., ∇θJ(θ) = ∂J(θ)
∂Pθ(τ )

∂Pθ(τ )
∂θ . We then

compute the gradient of J(θ) component-wise. For the forward cumulative rewards Jf (θ), we have
(Grondman et al., 2012):

∇θJf (θ) = E

{
T∑

k=1

∇θ log πθ(ak|sk)Af (sk, ak)
∣∣∣ θ}, (5)

where Af (·, ·) : S×A → R|Sf |, Af (sk, ak) := rf (sk, ak)+γV f (sk+1)−V f (sk) is the forward ad-
vantage multivariate function and V f (·) : S → R|Sf |, V f (sk) := E

{∑T
k′=k γ

k′−krf (sk′ , ak′)
∣∣sk}

is the forward state-value multivariate function. We then have the following lemma which charac-
terizes the optimal backward trajectories.
Lemma 3.1. For the backward cumulative reward Jb(θ), we can get:

∇θJb(θ) = EPθ(τ)

{
T−1∑
k=0

∇θ log πθ(aT−k|sT−k)Ab(yT−k, aT−k)
∣∣∣ θ} (6)

where Ab(·, ·) : Y ×A → R|Sb| is the backward advantage multivariate function:
Ab(yT−k, aT−k) := r

b(yT−k, aT−k) + γV b(yT−k−1)− V b(yT−k),

and V b(·) : Y → R|Sb| is the backward state-value multivariate function:

V b(yT−k) := E
{ T−1∑

k′=k

γk′−krb(yT−k′ , aT−k′)
∣∣yT−k

}
,

which adheres to the following backward Bellman’s equation:
V b(yT−k) = E

aT−k ∼ πθ(·|sT−k)yT−k−1∼Pb(·|yT−k,aT−k)

{
rb(yT−k, aT−k) + γV b(yT−k−1)

∣∣ θ}. (7)

Furthermore, a Bellman Pareto-optimality equation can be derived as:[
V f∗

(s), V b∗ (y)
]
= max

a

[
E

s+∼Pf (·|s,a)

{
rf (s, a) + γV f∗ (

s+
)}

, E
y−∼Pb(·|y,a)

{
rb(y, a) + γV b∗

(
y−

)}]
, (8)

for (s, y, a) ∈ S × Y × A, where
(
V f∗

(s), V b∗(y)
)

is a Pareto front, s+ ∈ S is the forward state
following s, and y− ∈ Y is the backward state preceding y.
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Proof. Please refer to Appendix B.

Remarks. The formulations of Lemma 3.1 differs from their counterparts in forward dynamics.
Specifically, Eq. (7) exhibits a forward dynamics with a dependency on the backward transition
probability as well as on the policy distribution that itself relies on the forward state rather than the
backward state. Moreover, the Bellman’s Pareto-optimality equation Eq. (8) describes an optimum
solution for the action-coupled FB-MDPs and necessitates the usage of a multi-objective optimiza-
tion. It is noteworthy that this Lemma is specifically applicable to the action-coupled FB-MDPs.

According to Eqs. (5) and (6), we need to evaluate the policy distribution πθ(·|·) and the state-value
functions V f (·) and V b(·) to compute the gradient of J(θ). For the policy distribution πθ(·|·), we
establish an actor agent represented by a θ-parameterized NN. For the forward state-value func-
tion V f (·), we set a forward-critic agent represented by a ϕ-parametric NN, and denoted as V f

ϕ (·).
Moreover, we use a backward-critic agent with a ψ-parametric NN for backward state-value func-
tion indicated by V b

ψ(·). We must now align the evaluation and update procedures for actor and
critic agents with the proposed forward-backward mechanism in Table (1). In this regard, πθ(·|·)
and V f

ϕ (·) are evaluated during the forward-evaluation step of the proposed mechanism, V b
ψ(·) is

evaluated during the backward-evaluation step, and their values are leveraged to compute ∇θJ(θ)
and update πθ(·|·) during the forward-backward optimization step.

Since the update mechanism of actor policy πθ(·|·) depends on the forward and backward state-value
functions, i.e., V f

ϕ (·) and V b
ψ(·), we need to set some losses to tune these state-value functions. In

the line with Bellman’s equation V f (sk) = Esk+1,ak|sk{rf (sk, ak)+γV f (sk+1)} and Temporal Dif-
ference (TD)-learning (Grondman et al., 2012), the following forward-critic losses are considered
to update parameter ϕ:

Af
ϕ,i(sk, ak)

2 =
(
V f
ϕ,i(sk)− rfi (sk, ak)− γV f

ϕ,i(sk+1)
)2

, i ∈ Sf , (9)

where {Af
ϕ,i(·) : S × A → R}i∈Sf

are parametric representations for the forward advantage func-
tions. Conversely, we set the following backward-critic losses to update parameter ψ based on the
derived Bellman’s equation Eq. (7):

Ab
ψ,i(yT−k, aT−k)

2 =
(
V b
ψ,i(yT−k)− rbi (yT−k, aT−k)− γV b

ψ,i(yT−k−1)
)2

, i ∈ Sb, (10)

where {Ab
ψ,i(·) : Y × A → R}i∈Sb

are parametric representations for the backward advantage
functions.

Recalling Eqs. (5), (6), (9) and (10), which indicate how the policy distribution and for-
ward/backward state-value functions should be updated, a multi-objective loss needs to be addressed
for each of them. One straightforward approach to cope with this issue, namely the scalarization
technique, is to obtain a single-objective loss by considering a preference function (or scales) for
different losses. However, the Pareto solutions cannot be necessarily obtained via this method (Kir-
lik & Sayın, 2014). As a consequence, a trial-and-error approach might be needed to tune the
scalarization settings, which makes this approach sensitive to the selected setup. Instead, we use a
scalar-independent multi-objective optimization method (Schäffler et al., 2002) to devise a forward-
backward RL algorithm. Accordingly, we leverage Lemma 2.1 to formulate forward/backward critic
agents and a multi-objective actor agent shared between forward and backward critics. It is detailed
in the next sections.

3.1 FORWARD/BACKWARD CRITIC AGENTS

In the light of Lemma 2.1, we formulate a multi-objective forward-critic loss Kf (ϕ) as well as a
multi-objective backward-critic loss Kb(ϕ). Considering Eqs. (10) and (9), we thus set:

Kf (ϕ) =
∑
j∈Sf

T∑
k=1

β∗
f,jA

f
ϕ,j(sk, ak)

2, Kb(ψ) =
∑
j∈Sb

T−1∑
k=0

β∗
b,jA

b
ψ,j(yT−k, aT−k)

2, (11)

where the vectors β∗
f and β∗

b are optimized by
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β∗
f = argmin

βj ≥ 0∑
j∈Sf

βj =1

∥∥∥∥ ∑
j∈Sf

βj∇ϕ
T∑

k=1

Af
ϕ,j(sk, ak)

2

∥∥∥∥2

, β∗
b = argmin

βj ≥ 0∑
j∈Sb

βj =1

∥∥∥∥ ∑
j∈Sb

βj∇ψ
T−1∑
k=0

Ab
ψ,j(yT−k, aT−k)

2

∥∥∥∥2

.

(12)

Then, the forward-critic and backward-critic agents are updated by the TD-learning with the follow-
ing stochastic gradient descent (SGD) rules (Grondman et al., 2012):

ϕ← ϕ− µf∇ϕKf (ϕ), ψ ← ψ − µb∇ψKb(ψ), (13)

where µf and µb are the learning rates of the forward and backward agents, respectively.

3.2 ACTOR AGENT

To derive the actor loss, we follow the same strategy with a minor modification. According to Eqs.
(5) and (6), the following forward and backward gradients are first set:

∇θ Ĵf
j (θ,ϕ) = −

T∑
k=1

∇θ log πθ(ak|sk)Af
ϕ,j(sk, ak), j ∈ Sf ,

∇θ Ĵb
j (θ,ψ) = −

T∑
k=1

∇θ log πθ(ak|sk)Ab
ψ,j(yk, ak), j ∈ Sb. (14)

Then, the multi-objective actor agent is updated by the following SGD:

θ ← θ − µ
( ∑
j∈Sf

βact,j∇θ Ĵf
j (θ,ϕ) +

∑
j∈Sb

βact,j∇θ Ĵb
j (θ,ψ)

)
, (15)

where µ is the learning rate of actor agent, and {βact,j} are obtained by:

βact,j = argmin
βj ≥ 0∑

j∈Sf∪Sb
βj = 1

∥∥∥∥ ∑
j∈Sf

βj∇θ J̄f
j (θ) +

∑
j∈Sb

βj∇θ J̄b
j (θ)

∥∥∥∥2

, (16)

with

∇θ J̄f
j (θ) := −EϕE

{
T∑

k=1

∇θ log πθ(ak|sk)Af
ϕ,j(sk, ak)

∣∣∣ θ} , j ∈ Sf ,

∇θ J̄b
j (θ) := −EψE

{
T∑

k=1

∇θ log πθ(ak|sk)Ab
ψ,j(yk, ak)

∣∣∣ θ} , j ∈ Sb. (17)

Note that, as opposed to the critic losses, we theoretically leverage the expected gradient ∇θJ̄f
j (θ)

and ∇θJ̄b
j (θ) to optimize βact in Eq. (16) [see Eq. (12)]. However, to estimate each of them,

we practically employ Monte Carlo Sampling (MCS) accompanied with a exponential moving av-
erage applied to ∇θĴf

j (θ,ϕ) and ∇θĴb
j (θ,ψ), respectively. More specifically, we first imple-

ment Nmcs distinct backward and forward critic networks with learned parameters {ψl}Nmcs

l=1 and
{ϕl}Nmcs

l=1 , respectively, and we then use the approximations Eϕ{F (ϕ)} ≈ 1
Nmcs

∑Nmcs

l=1 F (ϕl) and

Eψ{G(ψ)} ≈ 1
Nmcs

∑Nmcs

l=1 G(ψl) with F (·) and G(·) representing the relevant objectives of in-
terest. In addition, we consider different episodes of the algorithm and take an exponential average
over them with a smoothing factor γmov. Notice that this moving average approximates the inner
expectation in Eq. (17). We name this approach episodic MCS-average standing for MCS of the
actor stochastic objectives and the moving average.

Figure 3 and Algorithm 1 in Appendix D overviews the proposed Forward-Backward Multi-
Objective Actor-Critic (FB-MOAC) algorithm and shows its pseudo-code, respectively.

4 EVALUATION

4.1 ANALYTICAL RESULTS

We prove that the FB-MOAC algorithm is guaranteed to find (i) a Pareto-optimal solution with a
convergence rate of O(1/K) for the strongly-convex and Lipschitz smooth case and (i) a locally

6



Under review as a conference paper at ICLR 2024

Pareto-optimal solution with a convergence rate of O(1/
√
K) for the Lipschitz-smooth case, where

K is the number of policy updates. The related proofs are available in Appendix C. These results
are aligned with those for single-optimization algorithms for forward-MDPs (Fu et al., 2021).

4.2 EXPERIMENTAL RESULTS

We conduct experiments for the following objectives: evaluate the FB-MOAC algorithm on two real-
world FB-MDP problems with conflicting forward and backward reward; characterize the impact of
the backward optimization procedure on learning.

4.2.1 EVALUATION ON FORWARD-BACKWARD MULTI-TASK PROBLEMS

Hybrid Delivery Scheme: Here, we exploit a forward-backward multi-task problem in the context
of wireless caching to empirically evaluate the developed FB-MOAC RL algorithm. Notice that
this problem is in contrast to numerous conventional RL problems, as it incorporates a coupled
forward-backward dynamics, a model often absent in the standard RL problems. For this, we adapt
the system model presented in (Amidzadeh et al., 2022). Note that, we use this problem not only
because its environment relies on a FB-MDP, but also because it represents a real-world sequential
decision-making task.

The related environment is a cellular network assisted by two distinct types of serving nodes, namely
base-stations (BSs) and helper-nodes (HNs). These nodes are spatially distributed across the net-
work with intensities λbs and λhn, respectively. It also includes mobile users that request content
from the cellular network, spatially distributed with an intensity λue. Each user requests a file out of
N distinct contents with different popularity. The cellular system operates over time-slots with in-
dex t ∈ {1, . . . , T}, where T is the total duration within which the network operation is considered.
At each time-slot, the requests of users from the network can be modeled based on time-varying
dynamics, and the purpose of the network is to satisfy as many users as possible through both the
BSs and HNs. For this, the network applies multicast and unicast transmission schemes on the HNs
and BSs, respectively. The HNs proactively cache most popular files and cooperatively broadcast
the cached files across the network at the beginning of each time-slot using some controlling pa-
rameters, denoted by the vector pMC(t). However, a multicast outage may occur with probability
{OMC

n (pMC(t), t)}Nn=1, resulting in certain users not being satisfied in receiving their requested
content. These unsatisfied users then request the content through the BSs to be served by the unicast
transmission. The unicast unit then exploits the controlling parameters pUC(t) to satisfy requesting
users. Similarly, an unicast outage may occur with probability OUC(pUC(t), t). Users not satisfied
by this hybrid transmission scheme (i.e., the combination of multicast and unicast) will have their
requested contents deferred to the next time-slot. Therefore, at each time-slot there is a distribution
of users accounting for the repeated requests and a distribution describing the new preferences. This
leads to a time-varying model for the request probability of content n denoted by qn(t):

qn(t) = bn(t)

N∑
m=1

(1−Otot
m (t− 1))qm(t− 1) + qn(t− 1)Otot

n (t− 1), n ∈ {1, . . . , N}, (18)

where Otot
n (t) = OMC

n (pUC(t), t) OUC(pUC(t), t) is the total outage probability, and bn(t), as a
priori information, stands for a network-wide content popularity (Sadeghi et al., 2018) of file n.
Note that Eq. (18) represents a forward dynamics, with the forward state vector s(t) = q(t) and
the action vector a(t) =

[
pMC(t),pUC(t)

]
affecting Otot

n (·).
A file request is repeated across several time-slots until successful reception, resulting in an expected
latency Ln(t) for successful reception of file n. For this quantity, a time-varying dynamics can be
derived by the law of total expectation as follows:

Ln(t) = Otot
n (t)

(
d(t) + Ln(t+ 1)

)
+
(
1−OMC

n (pMC(t), t)
)1
2
d(t), Ln(T ) = 0, n ∈ {1, . . . , N}, (19)

where d(t) is the duration of time-slot t in seconds. Note that Eq. (19) represents a backward
dynamics, with the backward state vector y(t) = L(t) and the action vector a(t). Thus, Eqs.
(18) and (19) together can be modeled by a FB-MDP, and should be jointly considered to derive an
optimal content delivery scheme. Further, it portrays a coupled process as the forward and backward
dynamics are coupled with each other through the multicast and unicast parameters a(t) (which is
the common action vector).
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Hyper-parameter Value
Learning rates of
Actor and Critics: 2×10−4

Number of MCS NMCS: 4
Smoothing factor γmov: 0.95
Number of neurons
in hidden layers
of Actor and Critics: 100

(a) (b) (c)
Figure 1: FB-MOAC Hyper-parameters. Performance results of FB-MOAC on (b) the hybrid scheme and (c)
the multicast scheme.

Three widely-used network performance metrics (Li et al., 2018) (terminologically interpreted as
reward functions) are considered to design an optimum policy: quality-of-service (QoS) rQoS(·),
total bandwidth consumption rBW(·) and overall expected latency rLat(·). For the QoS, the total
intensity of unsatisfied UEs is:

rQoS(t) =

N∑
n=1

qn(t)O
tot
n (t), (20)

whereas the total bandwidth consumption is:

rBW(t) = WMC
(
pMC(t), t

)
+WUC

(
pUC(t), t

)
, (21)

where WMC
(
pMC(t), t

)
and WUC

(
pUC(t), t

)
represent the total bandwidth consumption for the

multicast and unicast transmission, respectively. Finally, the overall expected latency is:

rLat(t) =

N∑
n=1

qn(t)Ln(t), (22)

with Ln(t) obtained through Eq. (19). Clearly rQoS(t) and rBW(t) relate to the forward state, and
constitute a forward bivariate reward function rf (t) = [rQoS(t), rBW(t)]. Since rLat(t) relates to
the backward state, it instead constitutes a backward reward function rb(t) = rLat(t).

Consequently, a forward-backward multi-task problem, called hybrid experiment, with three com-
peting objectives is formulated, and we thus apply Algorithm 1 to find a dynamic solution.

Multicast Delivery Scheme: Here, we further introduce another FB-MDP problem. In this sce-
nario, the network exclusively applies the multicast unit without using unicast transmissions. As
such, the probability of unicast outage becomes one: OUC(pUC(t), t) = 1 and no bandwidth is
consumed by this unit: WUC

(
pUC(t), t

)
= 0. Accordingly, the forward and backward dynamics

presented in Eqs. (18) and (19) will change. This gives rise to a new problem, called the multicast
experiment, with distinct system models, action parameters, reward functions, and MDPs.

4.2.2 SETUP AND HYPER-PARAMETERS

We consider the following settings for the considered system environment (Amidzadeh et al., 2022).
The number of files is N = 100, the spatial intensities of BSs, HNs and users are λbs = 10,
λhn = 100 and λue = 105, respectively, in points/km2. The desired rate of transmission is set
to 1 Mbps, this quantity affects the multicast and unicast outage probability. The total number of
time-slots is T = 256 and the discount factor γ = 0.96.

As for the FB-MOAC algorithm, three separate sets of NNs represent the multi-objective actor,
forward-critic and backward-critic agents. Moreover, we use NMCS many NNs for the forward-critic
agent as well as for the backward-critic one. The multi-objective forward-critic network outputs two
values representing the reward-specific state-value functions V f

ϕ,j(·) which are related to the QoS
rQoS(·) and total bandwidth consumption rBW(·). On the other hand, the backward-critic network
outputs one value representing the state-value functions V b

ψ(·) which is related to the overall latency
rLat(·). For each NN, one hidden layer is considered and the rectified linear unit (ReLU) activation
function is used for the neuron connectivities. The other hyper-parameters are in Table 1a.
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(a) (b) (c)
Figure 2: (a) Test result of FB-MOAC and random approaches on the hybrid and multicast schemes. Ablation
of the (b) backward optimization and (c) the episodic MCS-average.

4.2.3 RESULTS

Figures 1b-1c illustrate the learning results of FB-MOAC algorithm for the hybrid and multicast
environments as a function of episodes. The performance metrics are normalized so as to fit in one
image. The results clearly shows that all of the considered performance metrics constantly improve,
eventually evolving into a stable solution. They also highlight that the actor and forward/backward
critic multi-objective agents are effectively learned.

We also consider two baseline schemes for comparison purposes: a widely-used rule-based ap-
proach; Least Frequently Used (LFU) strategy for the multicast experiment, and a learning-based
algorithm for the hybrid experiment that replaces the backward MDP with a forward one. The LFU
is widely utilized in the context of wireless caching (Ahmed et al., 2013). It keeps the most fre-
quently requested contents in the caches of HNs. For the learning-based strategy, we consider this
fact that optimizing the outage probability and controlling d(t) reduce the expected latency based on
Eq. (19). Hence, we consider the overall outage probability and bandwidth consumption as forward
rewards, ignore the backward reward and control d(t) to obtain a solution policy. Since the solution
of this strategy can be obtained by a forward RL algorithm, we term this strategy as F-MOAC.

Figure 2a illustrates the test results of FB-MOAC algorithm and the baseline approaches; LFU
and F-MOAC for the hybrid and multicast experiments as a function of episodes. Clearly, FB-
MOAC solution outperforms the F-MOAC policy for the hybrid scheme in terms of all considered
forward and backward rewards. Although the LFU strategy outperforms the FB-MOAC solution for
the multicast experiment from latency and bandwidth perspectives, it cannot provide an acceptable
solution since 80 percent of the requests will experience outage based on its QoS value, whereas
only 1 percent of the requests will be lost for the FB-MOAC policy. These results indicate that the
FB-MOAC algorithm can provide a stable and remarkably efficient solution.

4.2.4 ABLATION STUDY

We perform an ablation study to assess the benefit of the backward evaluation/optimization of FB-
MOAC algorithm. For this, we disable the backward evaluation of the algorithm and only take into
account the forward actor and critic losses. The study is to show that the backward reward does
not increase simply as a result of optimizing the forward rewards, hence the objectives are conflict-
ing. Figure 2b shows the learning result of FB-MOAC with only forward evaluation/optimization
procedure for the hybrid experiments. It is apparent that the expected latency does not improve
highlighting the importance of the backward evaluation/optimization procedure of FB-MOAC.

We perform an addition ablation study by disabling the episodic MCS-average mechanism of FB-
MOAC. Figure 2c shows the learning performance of the hybrid experiment in this case. The result
shows that the sample efficiency remarkable worsens when episodic MCS-average is not employed.

5 CONCLUSION

In this article, we developed a novel multi-objective RL algorithm, called FB-MOAC, for a class
of forward-backward Markov decision process (FB-MDP) containing multiple tasks that conflict
with each other. We then performed an convergence analysis on FB-MOAC algorithm under differ-
ent assumptions. We evaluated FB-MOAC in multi-task experiments with FB-MDP environments.
The extensive experiments and ablation study demonstrated the effectiveness of the solution of FB-

9



Under review as a conference paper at ICLR 2024

MOAC in deriving an optimal dynamic policy. Our work provides a novel mechanism of solving
multi-task sequential-decision problems with controlled forward-backward dynamics.
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SUPPLEMENTARY MATERIAL

A RELATED WORK

Forward-Backward MDPs Our paper has some similarity with prior research on RL algorithms
(Edwards et al., 2018; Goyal et al., 2019; Wang et al., 2021; Archibald et al., 2023). These stud-
ies hypothesize that creating a virtual backward trajectory in relation to a forward MDP enhances
the sample-efficiency of RL algorithms. Specifically, they employ the generated backward trajec-
tories to augment the training dataset for learning forward MDP problems. Edwards et al. (2018)
train a backwards dynamics to explore in a reverse direction from known goal states. The derived
backward paths are then used to augment the replay buffer and contribute to the learning proce-
dure of considered RL algorithm. Similarly, Goyal et al. (2019) learn an artificial backward model,
called backtracking model, from the experiences performed by the agent interacting with the orig-
inal forward dynamics. The backtracking model then enriches the training dataset by alternative
trajectories leading a high value state. Lai et al. (2020); Wang et al. (2021) introduce learnable
backward dynamics together with a novel reverse policy to generate paths towards the target states.
In particular, they provide informed data augmentation for the training dataset by backpropagating
through reverse paths Archibald et al. (2023) use the stochastic maximum principle, rather than dy-
namic programming framework, to obtain the optimum policy for a continuous RL problem with
controlled forward dynamics or Forward Stochastic Differential Equation (FSDE). This approach
results in a BSDE that needs to be jointly considered with the forward process in order to optimize
the policy. Our model of interest is characterized based on both backward and forward rewards, in
contrast with the studies (Edwards et al., 2018; Goyal et al., 2019; Lai et al., 2020; Wang et al., 2021)
where backward dynamics are artificially constructed based on a forward MDP, and distinct from
the approach discussed in (Archibald et al., 2023) where backward dynamics pertains to an FSDE
problem. These rewards correspond to actual controlled backward and forward dynamics which
compete with each other within the action space in both targeting directions of time. Consequently,
our investigation is centered around a class of FB-MDPs of multi-task problems with conflicting
forward and backward rewards.

Stochastic policy RL algorithms Here, we mention some relevant works (Qiu et al., 2021; Xu et al.,
2020; Fu et al., 2021; Yang et al., 2018; Khodadadian et al., 2022) that explore the characterization of
stochastic policy RL algorithms, such as Actor-Critic (AC) and Policy Gradient approaches (Sutton
& Barto, 2018). Qiu et al. (2021) conduct a rigorous convergence analysis on the AC algorithm.
Notably, their analysis is limited to a linear representation of the state-value function. Xu et al.
(2020) provide a comprehensive characterization of the convergence rate and sample complexity
of the Natural Actor-Critic (NAC) algorithm (Peters & Schaal, 2008). Their analysis relies on the
transition probability of the considered MDP to be ergodic. Fu et al. (2021) analyze the convergence
of the AC algorithm under the assumption that the considered family of Neural Networks (NNs)
are closed under the Bellman operator. Lastly, Khodadadian et al. (2022) perform a meticulous
convergence analysis of the Natural Policy Gradient algorithm (Kakade, 2002). However, their
investigation assumes that the initialization value of the state-value function is sufficiently close to
the optimal value function. All the aforementioned works address the convergence of stochastic
policies of single-objective RL algorithms for forward MDP problems. In contrast, this work targets
multi-task problems involving a FB-MDP. In this context, we carry out a rigorous convergence
analysis as a solid foundation to characterize multi-objective and forward-backward RL algorithms.
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B PROOF OF LEMMA 3.1

Proof. For the convenience, we indicate the conditional expectation E{·|θ} simply by E{·}. We
then have:

∇θJb(θ)
a
= ∇θ EPf (τ)

{
EP′

θ
(τ)

{
T−1∑
k=0

γkrb(yT−k, aT−k)

}}

b
= EPf (τ)

{
EP′

θ
(τ)

{
T−1∑
k=0

γkrb(yT−k, aT−k)
T−1∑
k=0

∇θ log πθ(aT−k|sT−k)

}}

c
= EPf (τ)

{
T−1∑
k=0

EP′
θ
(τ)

{
∇θ log πθ(aT−k|sT−k)

T−1∑
k′=k

γk′−krb(yT−k′ , aT−k′ )

}}

d
= EPf (τ)

{
T−1∑
k=0

E
aT−k ∼ πθ(·|sT−k)yT−k ∼Pb(·|yT−k+1,aT−k+1)

{
∇θ log πθ(aT−k|sT−k)E

{T−1∑
k′=k

γk′−krb(yT−k′ , aT−k′)
∣∣yT−k, aT−k

}
︸ ︷︷ ︸

Qb(yT−k,aT−k)

}}

e
= EPf (τ)

{
T−1∑
k=0

E
aT−k ∼ πθ(·|sT−k)yT−k ∼Pb(·|yT−k+1,aT−k+1)

{
∇θ log πθ(aT−k|sT−k)

(
Qb(yT−k, aT−k)− V b(yT−k)

)}}

f
= EPf (τ)

{
EP′

θ
(τ)

{
T−1∑
k=0

∇θ log πθ(aT−k|sT−k)
(
rb(yT−k, aT−k) + γV b(yT−k−1)− V b(yT−k)

)
︸ ︷︷ ︸

:=Ab(yT−k,aT−k)

}}

= EPθ(τ)

{
T−1∑
k=0

∇θ log πθ(aT−k|sT−k)Ab(yT−k, aT−k)

}
. (23)

where V b(·) : Y → R|Sb|, Qb(·, ·) : Y ×A → R|Sb| and Ab(·, ·) : Y ×A → R|Sb| are the backward
state-value, backward action-value, and backward advantage multivariate functions, respectively,
and we have:

V b(yT−k) := E

{
T−1∑
k′=k

γk′−krb(yT−k′ , aT−k′)
∣∣yT−k

}
. (24)

For (a), we regarded that the backward reward rb(·, ·) does not depend on forward states {sk}Tk=1, for
(b), we used ∇θP′

θ(τ ) = P′
θ(τ )∇θ log P′

θ(τ ), and ∇θ log P′
θ(τ ) =

∑T−1
k=0 ∇θ log πθ(aT−k|sT−k)

based on Eq. (3). For (c), we considered the anti-causality; the current action does not af-
fect the future of backward rewards, for (d), the definition of action-value functions is ap-
plied, for (e), including a bias term, here V b(yT−k), does not change the result due to
EaT−k∼πθ(·|sT−k) {∇θ log πθ(ak|sk)} = 0 and for (f) we derive the Bellman’s equation for the
backward action-value function as follows:

Qb(yT−k, aT−k)

=

∫
E

{yT−k}k
{aT−k}k

{
T−1∑
k′=k

γk′−krb(yT−k′ , aT−k′ )

∣∣∣yT−k, aT−k, yT−k−1

}
Pb(yT−k−1|yT−k, aT−k)dyT−k−1

a
=

∫ (
rb(yT−k′ , aT−k′ ) + γ E

{yT−k}k
{aT−k}k

{
T−1∑

k′=k+1

γk′−krb(yT−k′ , aT−k′ )

∣∣∣yT−k−1

})
Pb(yT−k−1|yT−k, aT−k)dyT−k−1

= E
yT−k−1∼Pb(·|yT−k,aT−k)

{
rb(yT−k, aT−k) + γV b(yT−k−1)

}
(25)

where for (a) we considered that aT−k becomes independent from {aT−k′−1}T−1
k′=k as {sT−k′−1}T−1

k′=k
are not included in the inner expectation. The same strategy can be done to obtain the Bellman’s
equation for the backward state-value function as follows:

V b(yT−k) = E
aT−k ∼ πθ(·|sT−k)yT−k−1∼Pb(·|yT−k,aT−k)

{
rb(yT−k, aT−k) + γV b(yT−k−1)

∣∣ θ}.
Note that no distinct forward and backward Bellman optimality equations do exist for the FB-MDPs.
However, a Bellman Pareto-optimality equation can be instead found. For this, we consider this
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fact that the forward and backward value functions become stationary when forward and backward
transition probabilities are stationary. Then, by recalling the notion of Pareto-optimality and Pareto
front, we define Pareto-optimal forward and backward value functions as follows:[
Qf∗

(s, a), Qb∗(y, a)
]
= max

π(·|·)

[
Qf (s, a), Qb(y, a)

]
,

[
V f∗

(s), V b∗(y)
]
= max

π(·|·)

[
V f (s), V b(y)

]
,

for all (s, y, a) ∈ S × Y × A. Then, based on Eq. (25) and the Bellman’s equation for the forward
action-value function, we can get:

[
Qf∗

(s, a), Qb∗(y, a)
]
=

[
E

s+∼Pf (·|s,a)

{
rf (s, a) + γV f∗ (

s+
)}

, E
y−∼Pb(·|y,a)

{
rb(y, a) + γV b∗ (y−)}] ,

where y− is the backward state preceding y and s+ is the forward state following s. By consider-
ing both forward and backward equations, we now obtain the following Bellman Pareto-optimality
equation:

[
V f∗

(s), V b∗(y)
]
= max

a

[
E

s+∼Pf (·|s,a)

{
rf (s, a) + γV f∗ (

s+
)}

, E
y−∼Pb(·|y,a)

{
rb(y, a) + γV b∗ (y−)}] ,

This equation, termed as Bellman Pareto-optimality equation, provides a base to formulate forward-
backward dynamic programming algorithms and motivates the usage of multi-objective optimization
frameworks.

C CONVERGENCE ANALYSIS OF FB-MOAC ALGORITHM

In this paper, we perform a comprehensive study of the convergence properties of the novel FB-
MOAC algorithm. Our investigation commences with the establishment of some foundational as-
sumptions and the introduction of preliminary theorems and corollaries. Subsequently, we study the
convergence analysis for two distinct scenarios, specifically pertaining to the backward and forward
expected losses: (1) Strong Convexity and Lipschitz Smoothness Case. We explore the conver-
gence behavior when the losses exhibit both strong convexity and Lipschitz smoothness properties.
(2) Lipschitz Smoothness Case. We investigate convergence when the losses are solely Lipschitz
smooth. Through a rigorous examination of these cases, we thus intend to provide a comprehensive
understanding of the convergence characteristics of FB-MOAC algorithm.

We also need to emphasize that stochastic nature of FB-MDP affects the values of ϕ,ψ and θ, based
on the SGD rules (15) and (13), so they are treated as random variables.

We now make the following assumptions.

Assumption 1: The forward and backward state-value functions are unbiased:

Eϕ{V f
ϕ,j(s)} = V f

j (s), j ∈ Sf , s ∈ S

Eψ{V b
ψ,j(y)} = V b

j (y), j ∈ Sb, y ∈ Y,

According to this assumption and Eqs. (14) and (17) we can get:

∇θJ̄f
j (θ) = Eϕ E

{
∇θĴf

j (θ,ϕ)
∣∣ θ,ϕ} = −

T∑
k=1

Eϕ E
{
∇θ log πθ(ak|sk)Af

ϕ,j(sk, ak)
∣∣ θ}

= −E

{
T∑

k=1

∇θ log πθ(ak|sk)Af
j (sk, ak)

∣∣∣ θ} = ∇θJf
j (θ)

Likewise, it can be shown that:

∇θJ̄b
j (θ) = −E

{
T∑

k=1

∇θ log πθ(ak|sk)Ab
j(yk, ak)

∣∣∣ θ} = ∇θJb
j (θ)

15
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Assumption 2.1: The forward and backward multi-objective expected losses are differentiable and
strongly convex with parameters γf and γb, respectively, w.r.t θ:

∇2
θJ

f
j (θ)− γfI ⪰ 0, j ∈ Sf

∇2
θJ

b
j (θ)− γbI ⪰ 0, j ∈ Sb.

Assumption 2.2: The forward and backward multi-objective expected losses are differentiable and
Lipschitz smooth functions with constants Lf and Lb, respectively, w.r.t θ:∥∥∥∇θJf

j (θ
′)−∇θJf

j (θ)
∥∥∥ ≤ Lf∥θ′ − θ∥, j ∈ Sf .∥∥∥∇θJb

j (θ
′)−∇θJb

j (θ)
∥∥∥ ≤ Lb∥θ′ − θ∥, j ∈ Sb.

Notice that Assumptions 2 is made for the expected losses (Jf
j (θ), J

b
j (θ)) and not for the stochastic

losses (Ĵf
j (θ,ϕ), Ĵ

b
j (θ,ψ)).

Assumption 3: Consider the following stochastic forward/backward gradient

∇Ĵ fb(θ,ϕ,ψ) =
[[
∇θĴ

f
j (θ,ϕ)

]
j∈Sf

,
[
∇θĴb

j (θ,ψ)
]
j∈Sb

]
,

then, its conditional covariance is bounded by a positive semi-definite matrixB:

E
{
∇Ĵ fb(θ,ϕ,ψ)⊤∇Ĵ fb(θ,ϕ,ψ)

∣∣ θ}−∇J fb(θ)⊤∇J fb(θ) ⪯ B,

where

∇J fb(θ)(θ,ϕ,ψ) =
[[
∇θjf (θ)

]
j∈Sf

,
[
∇θJb

j (θ)
]
j∈Sb

]
,

Note that the assumptions outlined in this context align with the conventions found in the literature
related to the convergence analysis (Qiu et al., 2021; Zhou et al., 2022).

Now, we have the following theorem.

Theorem C.1. Consider forward/backward expected losses, i.e., {Jf
j (·)}j∈Sf

and {Jb
j (·)}j∈Sb

,
and forward/backward stochastic losses, i.e., {Ĵf

j (·, ·)}j∈Sf
and {Ĵb

j (·, ·)}j∈Sb
, complying with

Assumptions 2.1, 2.2 and 3, and βact being the solution of Eq. (16). Moreover, consider SGDes (12)
and (15) characterized by iteration number i and actor learning rate {µi}i∈I with

µi ≤ min

{
1

max{Lf , Lb}
,

1

max{Lf , Lb}∥B∥
E
{ 1

1⊤ (∇J fb(θi)⊤∇J fb(θi))−1 1

}}
,

which generate sequences {ϕi}i∈I , {ψi}i∈I and {θi}i∈I , we then get:

E Jf
j (θ

i+1) ≤ E Jf
j (θ

i), j ∈ Sf

and
E Jb

j (θ
i+1) ≤ E Jb

j (θ
i), j ∈ Sb.

Proof. According to the update rule Eq. (15), we have:

θi+1 = θi − µi

[
∇Ĵ f(θi,ϕi),∇Ĵb(θi,ψi)

]
βi

act = θ
i − µi∇Ĵ fb(θi,ϕi,ψi)βi

act.

Based on Assumption 2.2, we then obtain:

Jf
j (θ

i+1)− Jf
j (θ

i) ≤ −µi∇Jf
j (θ

i)⊤∇Ĵ fb(θi,ϕi,ψi)βi
act +

µ2
iLf

2
βi
act

⊤∇Ĵ fb(θi,ϕi,ψi)⊤∇Ĵ fb(θi,ϕi,ψi)βi
act.

By taking the expectation on both sides of the recent equation, it then reads:

E
{
Jf
j (θ

i+1)− Jf
j (θ

i)

}
≤ −µiE

{(
ej −

µiLf

2
βi

act

)⊤
∇J fb(θi)

⊤∇J fb(θi)βi
act

}
+

µ2
iLf

2
∥B∥, (26)

where was obtained based on

Eϕi,ψi E
{
βi

act
⊤∇Jf (θi)

⊤∇Ĵ fb(θi,ϕi,ψi)βi
act

∣∣ θi,ϕi,ψi
}
= βi

act
⊤∇Jf (θi)

⊤∇J fb(θi)βi
act
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according to Assumption 1, as well as based on Assumption 3 and βi
act

⊤
Bβi

act ≤ ∥B∥ ∥βi
act∥2 ≤

∥B∥. On the other hand, from Eq. (16), for all βi
act,j ≥ 0, it reads:

βi
act =

(
1⊤

(
∇J fb(θi)

⊤∇J fb(θi)
)−1

1

)−1(
∇J fb(θi)

⊤∇J fb(θi)
)−1

1.

By substituting this into Eq. (26), we get:

E
{
Jf
j (θ

i+1)− Jf
j (θ

i)

}
a

≤− µi

2
E

{
1

1⊤
(
∇J fb(θi)⊤∇J fb(θi)

)−1

1

}
+

µ2
iLf

2
∥B∥ ≤ 0,

where we used µi max{Lf , Lb} ≤ 1 for (a). Considering that the denominator of RHS of the re-
cent equation is positive due to the positive-definiteness of

(
∇J fb(θi)⊤∇J fb(θi)

)−1
, the statement

follows. The same analysis can be done to infer E
{
Jb
j (θ

i+1)− Jb
j (θ

i)

}
≤ 0

Remarks. Theorem C.1 guarantees all the forward and backward expected losses
{
E Jf

j (θ)
}
j∈Sf

and
{
E Jb

j (θ)
}
j∈Sb

continually reduce as the algorithm iteration increases. It thus enables us to
jointly improve all of the cumulative rewards, either forward or backward, with each iteration, on
average.
Corollary C.1. Consider the framework of Lemma C.1, we then get:

E
{
βi
act

⊤∇J fb(θi)
⊤∇J fb(θi)βi

act

}
≤

2

µi
E

 ∑
j∈Sf∪Sb

βi
act,j

(
J fb
j (θi)− J fb

j (θi+1)
)+ µi max{Lf , Lb}∥B∥.

Proof. Based on Eq. (26) and µi max{Lf , Lb} ≤ 1, the statement follows.

C.1 CONVERGENCE ANALYSIS FOR THE CASE OF STRONGLY-CONVEX AND SMOOTHNESS

Theorem C.2. Consider the framework of Theorem C.1, and assume forward-backward multi-
objective optimization O2 with a θ-parametric policy distribution πθ(·|·) being optimized by SGDs
(15) and (13) with generated sequences {θi}i∈I , {ϕi}i∈I and {ψi}i∈I , and actor learning rate
{µi}i∈I complying with assumptions of Theorem C.1. Furthermore, assume there exists a Pareto
optimal solution θ∗ of O2 dominating θi for the objectives {J fb

j (·)}j∈Sf∪Sb
with i ∈ I. Then, we

have:

E∥θi+1 − θ∗∥ ≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥+

(
1 + max{Lf , Lb}

)
µ2
i ∥B∥. (27)

Proof. Based on SGD update (15), we obtain:

E∥θi+1 − θ∗∥2 = E∥θi − θ∗ − µi∇Ĵ fb(θi,ϕi,ψi)βi
act∥2 ≤ E∥θi − θ∗∥2

− 2µiE
{
E
{ ∑

j∈Sf∪Sb

βi
act,j∇Ĵ

fb
j (θi,ϕi,ψi)⊤

(
θi − θ∗

) ∣∣ θi,ϕi,ψi
}}

+ E
{
µ2
iβ

i
act

⊤∇Ĵ fb(θi,ϕi,ψi)
⊤∇Ĵ fb(θi,ϕi,ψi)βi

act

}
a
≤ E∥θi − θ∗∥2 − 2µiE

{ ∑
j∈Sf∪Sb

βi
act,j∇J

fb
j (θi)⊤

(
θi − θ∗

)}
+ E

{
µ2
iβ

i
act

⊤∇Ĵ fb(θi,ϕi,ψi)
⊤∇Ĵ fb(θi,ϕi,ψi)βi

act

}
b
≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥2 + 2µiE

{ ∑
j∈Sf∪Sb

βi
act,j

(
J fb
j (θ∗)− J fb

j (θi)
)}

+ µ2
iE

{
E
{
βi
act

⊤∇Ĵ fb(θi,ϕi,ψi)
⊤∇Ĵ fb(θi,ϕi,ψi)βi

act

∣∣ θi,ϕi,ψi
}}

c
≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥2 + µ2

i ∥B∥+ 2µiE
{ ∑

j∈Sf∪Sb

βi
act,j

(
J fb
j (θ∗)− J fb

j (θi+1)
)}

d
≤
(
1−max{γf , γb}µi

)
E∥θi − θ∗∥2 +

(
1 + max{Lf , Lb}

)
µ2
i ∥B∥,
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where (a) was achieved considering Eϕ,ψE{∇Ĵ fb(θ,ϕ,ψ)|θ,ϕ,ψ} = ∇J fb(θ) based on As-
sumption 1, (b) was obtained based on Assumption 2.1, (c) according to Assumption 3 and Corollary
C.1, and for (d) we exploited θ∗ being a dominating Pareto optimum.

Accordingly, we can get:

Corollary C.2. Consider the SGD approach (15) with generated sequence {θn}n∈I and actor
learning rate {µn}n∈I complying with assumptions of Theorem C.1. Set µn so that limn→∞ µn =
0, then limn→∞ E∥θn − θ∗∥2 = 0.

Proof. We use the result provided in Turinici (2021). As such, based on Theorem C.2 we have:

∆n+1 − ϵ ≤
(
1−max{γf , γb}µn

)
(∆n − ϵ)− µn

(
max{γf , γb}ϵ− (1 + max{Lf , Lb})µn∥B∥

)
a

≤
(
1−max{γf , γb}µn

)
(∆n − ϵ).

where ∆n = E∥θn − θ∗∥2 and ϵ > 0. For (a), we considered that max{γf , γb}ϵ −
(
1 +

max{Lf , Lb}
)
µn∥B∥ ≥ 0 for large n. Hence, for max{γf , γb}µn ≤ 1 it reads:

[∆n+1 − ϵ]+ ≤
(
1−max{γf , γb}µn

)
[∆n − ϵ]+,

where [x]+ = x+ |x|. By iterating, we get:

[∆n+k − ϵ]+ ≤
k−1∏
i=0

(
1−max{γf , γb}µn+i

)
[∆n − ϵ]+.

Considering that limk→∞
∏k−1

i=0

(
1−max{γf , γb}µn+i

)
= 0, we have: limm→∞[∆m− ϵ]+. Since

it holds for any value ϵ > 0, the statement follows.

Remarks. The results of Theorem C.2 and Corollary C.2 guarantees that a convergence-in-mean
towards a Pareto optimal solution can be achieved by choosing a proper actor learning rate. More
specifically, a convergence-in-mean with the rate of O(1/|I|) can be achieved for the learning rate
being set to µi = O(1/i).

Remarks. The result of Corollary C.2 can be verified in a distinct quantitative way. More specif-
ically, for the learning rate µi being sufficiently small, the evolution of SGD equation 15 can be
regarded in a continuous time flow with parameter t. As such, based on 27, the dynamics of
∆i = E∥θi − θ∗∥ can be expressed by the following inequality:

∆τ ≤ ∆0 exp
(
−max{γf , γb}

∫ τ

0

µsds
)
+
(
1 + max{Lf , Lb}

)
∥B∥

∫ τ

0

µ2
t exp

(
−max{γf , γb}

∫ τ

t

µsds
)
dt.

Then, it can be confirmed that for the selection µt =
c0
t , we can get limτ→∞ ∆τ → 0 yielding:

lim
i→∞

E∥θi − θ∗∥ → 0.

C.2 CONVERGENCE ANALYSIS FOR THE CASE OF SMOOTHNESS

Assuming strong-convexity for the expected losses may not be a reasonable assumption, particularly
when the NN architecture of the actor agent exhibits non-linearity. Motivated by this fact, we per-
form a convergence analysis without imposing the strong-convexity assumption, focusing solely on
the smoothness condition as defined in Assumption 2.2. In light of this approach, we thus have the
following theorem.

Theorem C.3. Consider forward/backward expected losses, i.e., {Jf
j (·)}j∈Sf

and {Jb
j (·)}j∈Sb

,
and forward/backward stochastic losses, i.e., {Ĵf

j (·, ·)}j∈Sf
and {Ĵb

j (·, ·)}j∈Sb
, complying with

Assumptions 2.2 and 4, and βact being the solution of Eq. (16). Moreover, consider SGDs (12) and
(15) characterized by iteration number i and actor learning rate {µi}i∈I with

µi ≤ min

{
1

max{Lf , Lb}
,

1

max{Lf , Lb}∥B∥

(
1⊤

(
∇J fb(θi)⊤∇J fb(θi)

)−1

1

)−1
}
,
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and 0 < µ|I| ≤ . . . ≤ µi ≤ . . . ≤ µ1, which generate sequences {ϕi}i∈I , {ψi}i∈I and {θi}i∈I .
Then, we get:

min
i∈I

E
{
∥∇J fb(θi)βi

act∥2
}
≤ max{Lf , Lb} ∥B∥

|I|
∑
i∈I

µi

2− µi max{Lf , Lb}

+
2

|I| µ|I|

∑
j∈Sf∪Sb

E
{
J fb
j (θ1)− J fb

j (θ|I|)
}
. (28)

where J fb(θ) =
[[
Jf
j (θ)

]
j∈Sf

,
[
Jb
j (θ)

]
j∈Sb

]
.

Proof. Based on Eq. (26), we can get:

∑
j∈Sf∪Sb

βi
ac,j

(
J fb
j (θi+1)− J fb

j (θi)
)
≤ µi

(µi

2
max{Lf , Lb} − 1

)
βi

act
⊤∇J fb(θi)

⊤∇J fb(θi)βi
act

+
µ2
i

2
max{Lf , Lb}∥B∥.

Therefore, we have:

E
{
∥∇J fb(θi)βi

ac∥2
}
≤ 1

µi(1− µi
2
max{Lf , Lb})

E
{ ∑

j∈Sf∪Sb

βi
act,j

(
J fb
j (θi)− J fb

j (θi+1)
)}

+
µi max{Lf , Lb}

2− µi max{Lf , Lb}
∥B∥.

By using the result of Theorem C.1, βact,j ≤ 1 for j ∈ Sf ∪Sb, and applying telescopic cancellation,
the statement follows.

Remarks. Note that the result of Theorem C.3 implies the converges to a locally Pareto optimal so-
lution (Zhou et al., 2022) provided a suitable dynamics for the learning rate is chosen. Specifically, it
suggests a convergence with the rate of O(1/

√
|I|) for the learning rate being set to µi = O(1/

√
i).

Remarks. Notice that the selection µi = O(1/i) cannot lead to a convergence due to the second
term in the RHS of Eq. (28). This is contrast to the findings in Section C.1, where a convergence
rate of O(1/|I|) can be achieved for the strongly-convex and Lipschitz smooth case.

D FB-MOAC ALGORITHM

Figure 3: Illustration of the proposed FB-MOAC algorithm.
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Algorithm 1: Pseudo-Code of FB-MOAC.
for episode = 1 to Emax do

Input: Initial forward-backward states (s1, yt), actor, forward-critic and backward-critic agents
parameterized by θ, ϕ and ψ.

Forward Evaluation:
for t = 1 to T do

Select action at following πθ(·|st), interact with the environment.
Observe new forward state st+1 and forward immediate rewards {rfj (st, at)}j∈Sf .
Computes {Af

ϕ,j(st, at)}j∈Sf using forward state-value functions {V f
ϕ,j(st)}j∈Sf using Eq. (9).

Compute log
(
πθ(at|st)

)
.

end
Backward Evaluation:
for t = 1 to T do

Based on the chosen action of step Forward-Evaluation, aT−t, observe new backward state yT−t

and backward immediate rewards {rbj(yT−t, aT−t)}j∈Sb .
Computes {Ab

ψ,j(yT−t, aT−t)}j∈Sb using backward state-value functions {V b
ψ,j(yT−t)}j∈Sb

based on Eq. (10).
end

Forward-Backward Optimization:
Forward/Backward Critic Update:
Obtain β∗

f and β∗
b based on Eq. (12).

Compute multi-objective forward-critic loss Kf (ϕ) and backward-critic loss Kb(ψ), and apply the
rules:

ϕ← ϕ− µf∇ϕKf (ϕ), ψ ← ψ − µb∇ψKb(ψ).

Forward-Backward Optimization:
Obtain β∗ based on Eq. (16) and the outcomes of episodic MCS-average.
Compute stochastic forward and backward gradients∇θĴf

j (θ,ϕ) and∇θĴb
j (θ,ψ) using Eq. (14).

Apply the SGD rule:

θ ← θ − µ
( ∑
j∈Sf

βact,j∇θĴf
j (θ,ϕ) +

∑
j∈Sb

βact,j∇θĴb
j (θ,ψ)

)
,

end

E MOTIVATING EXAMPLES OF FB-MDPS

Example 1: The first example is in the domain of computation offloading (Zabihi et al., 2023). Let
us consider a resource-constrained mobile device that needs to carry out computational intensive
tasks. Instead of running the tasks locally, the mobile devices instead offloads them to an edge
server, which processes them according to its computational capacity. The edge server has a buffer
to store the tasks that cannot be immediately processed, which happens when there is no spare
computational capacity. Assume that the average processing time of a buffered task at time t is
equal to d(t), and the buffer overflows with probability O(t). The aim is to calculate the average
time T(t) for an offloaded task to be successfully computed. By the law of total expectation, we can
thus obtain:

T (t) = O(t)(τ + T (t+ 1)) + (1−O(t))d(t),

where τ is the transmission time to prepare and re-offload the task. Therefore, the experienced
computation time depends on its value in future and the system parameters O(t) and d(t). This thus
portrays a backward MDP as the parameters O(t) and d(t) depend on the system action parameters,
including, the buffer size, the computation capacity, and the task priority.

Example 2: The second example is in the context of cache-aided transmission schemes (Nomikos
et al., 2022). It can be shown that for error-prone transmission approaches which operate in time-
slotted fashion and serves users by N different contents, the environment leads to a controlled
forward-backward dynamics. By denoting the error probability for reception of file n at time-slot t
with On(t), and the content popularity of file n with qn(t), the request probability of file n can be
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found by:

Pn(t) = qn(t)

N∑
n=1

pn(t− 1) (1−On(t)) + pn(t− 1)On(t).

This was obtained by assuming this fact that a user repeats its request if it cannot successfully receive
the file. Note that this equation leads to a controlled forward dynamics as the error probability
depends on system action parameters. Moreover, the average latency Ln(t) experienced by a typical
user to successfully receive file n can be expressed by:

Ln(t) = dn(t) (1−On(t)) + (τ(t) + Ln(t+ 1))On(t).

where dn(t) is the average reception delay for file n if it is successfully served, and τ(t) is duration
of time-slot t. This equation leads to a controlled backward dynamics as the parameter dn(t) and
On(t) depend on the system action parameters.
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