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Abstract

This paper proposes a fast and general-purpose image restoration method. The key
idea is to achieve few-step or even one-step inference by conducting consistency
distilling or training on a specific mean-reverting stochastic differential equations.
Furthermore, based on this, we propose a novel linear-nonlinear decoupling training
strategy, significantly enhancing training effectiveness and surpassing consistency
distillation on inference performance. This allows our method to be independent of
any pre-trained checkpoint, enabling it to serve as an effective standalone image-
to-image transformation model. Finally, to avoid trivial solutions and stabilize
model training, we introduce a simple origin-guided loss. To validate the effec-
tiveness of our proposed method, we conducted experiments on tasks including
image deraining, denoising, deblurring, and low-light image enhancement. The
experiments show that our method achieves highly competitive results with only
one-step inference. And with just two-step inference, it can achieve state-of-the-art
performance in low-light image enhancement. Furthermore, a number of ablation
experiments demonstrate the effectiveness of the proposed training strategy. our
code is available at https://github.com/XiaoxuanGong/IR-CM.

1 Introduction

Image restoration is a classic problem in the field of computer vision. It aims to transform low-quality
or noisy images into their corresponding high-quality or noise-free counterparts. In many industrial
applications (such as autonomous driving), there are various complex types of image degradation,
including rain and fog interference, glare interference, low-light conditions, and motion blur etc. This
necessitates high generality in image restoration algorithms. Moreover, there is often a high demand
for real-time performance in practical application scenarios, posing even greater challenges to the
design of algorithms and models.

Common image restoration tasks include image deraining[1, 2, 3, 4, 5, 6], denoising[7, 8, 9, 10, 11],
and deblurring[12, 13, 14, 15] etc. Due to the demands of industrial applications, research on low-light
image enhancement[16, 17, 18, 19, 20, 21] is also gradually increasing. However, these methods are
often heuristic and difficult to apply to general tasks because they typically require domain-specific
prior knowledge for training. A more general approach is the recently proposed IR-SDE[22], which
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does not rely on any prior knowledge. It only requires pairs of high-quality(HQ)/low-quality(LQ)
images for training and achieves good results across multiple image restoration tasks. However, like
most diffusion-based methods, it requires multi-step sampling for inference, making it difficult to
meet the real-time requirements of practical applications.

In recent years, diffusion models have achieved remarkable results in both unconditional image
generation[23, 24, 25, 26] and conditional image generation tasks[27, 28, 20, 29, 22, 30, 21, 31, 32].
In a more general description, diffusion models can be described using stochastic differential equations
(SDEs)[33, 34]. It achieves this by converting the original data distribution into a fixed Gaussian
distribution, then learning the corresponding distribution gradients (score) through a network, and
finally gradually reconstructing the original image using SDE solvers or ODE solvers. Most SDE-
based methods can generate high-quality samples, however they often require many steps of sampling
to accomplish this. Despite the existence of many methods for accelerating sampling[25, 35, 36],
it remains challenging to meet the real-time requirements in industrial applications. Recently, the
consistency model[37] has been proposed. It aims to map any point on the ODE trajectory of the
SDE-based model to its origin. Once trained, the model can achieve one-step inference with some
decrease in model performance. The training of consistency models is divided into two approaches:
consistency distillation(CD) and consistency training(CT). The former involves distilling training
based on the ODE trajectories of a pre-trained SDE model. The latter, while not requiring a pre-
trained SDE model and can be considered as an independent generative model, typically exhibits
lower performance compared to the former[37]. This means that training consistency models often
rely on pre-trained models, which inevitably leads to performance degradation.

The purpose of this paper is to design a universal image restoration model with fast inference. The
proposed model, named IR-CM (Image Restoration Consistency Model), achieves one-step or few-
step fast inference through consistency model training. Due to its versatility and flexibility in different
image transformation tasks, the IR-SDE serves as the foundation for our method. IR-CM can be
trained using consistency distillation (CD) on a pre-trained model, but at the cost of a slight decrease
in performance. Therefore, we focus more on consistency training (CT), enabling IR-CM to become
an independent image restoration model without relying on any pre-trained checkpoint. Furthermore,
to improve the effectiveness of CT, we propose a novel linear-nonlinear decoupling training strategy
and a novel origin-estimated consistency function, these allows the model’s performance to reach or
even surpass that of the original model. Finally, we propose a simple origin-guided loss to stabilize
the training process. In summary, the main contributions of our method are as follows:

• We propose a universal and fast image restoration method that can obtain high-quality
images with one step or few-step sampling. For different tasks, training only requires dataset
replacement, without the need for any additional prior knowledge.

• We have introduced a novel linear-nonlinear decoupling training strategy, enabling our
method to achieve even surpass the performance of the original model without relying on
any pre-trained checkpoint.

• We propose a novel origin-estimated consistency function, which enables our model to have
a more stable initial state and a smaller solution space, and a simple origin-guided loss to
stabilize the training process. This makes our method more robust. The ablative experiments
demonstrated its effectiveness.

• Our method achieves highly competitive performance in multiple tasks (including image
deraining, denoising, deblurring, and low-light image enhancement) with one-step inference.
With two-step inference, our method achieves state-of-the-art performance in low-light
image enhancement task.

2 Preliminaries

2.1 Mean-reverting stochastic differential equation

Our method requires a SDE-based model as the base model for consistency training. Specifically,
we choose IR-SDE[22] as the base SDE model due to its excellent generality and applicability. Its
forward process involves gradually transforming high-quality images into corresponding low-quality
versions with fixed-variance Gaussian noise. It can be represented as follows:

dx = θt(µ− x)dx+ σtdw, (1)
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where µ ∈ Rd typically represents the low-quality image, and x(0) ∈ Rd represents its corresponding
high-quality version, θt, σt are time-dependent positive parameters, and they satisfy σ2

t /θt = 2λ2 for
all times t with positive constant λ, and dw represents Brownian motion. In [22], it has been proven
that at each time t, the marginal probability distribution of x can be represented as follows:

pt(x) = N (x(t) |mt, vt), (2)

mt := µ+ (x(0)− µ)e−θ̄t ,

vt := λ2(1− e−2θ̄t),

where θ̄t =
∫ t

0
θkdk. As t increases gradually, mt approaches µ and vt approaches λ2. Thus,

x(0) (the high-quality image) will gradually transform into its corresponding low-quality version µ
accompanied by Gaussian noise with variance λ2.

With the above conclusion, we can naturally sample x(t) by x(t) = mt +
√
vtϵt. Then we can train

a network to estimate the noise ϵt. In the inference phase, the reverse-time process of the IR-SDE can
be represented as follows[34]:

dx =

[
θt(µ− x)− 1

2
σ2
t∇x log pt(x)

]
dt, (3)

∇x log pt(x) =−
x(t)−mt

vt

=− ϵ̂(x, µ, t)
√
vt

,

where∇x log pt(x) is called score function and ϵ̂(x, µ, t) is the noise estimated by network. Then,
similar to other SDE-based models, we can adopt a SDE-solver (or ODE-solver) to reverse the
process to restore the low-quality image x(t) back to the high-quality version x(0) progressively.

2.2 Consistency model

For a solution trajectory {xt}t∈[η,T ] of any PF-ODE such as (3), a consistency function can be defined
as f(xt, t) ≡ xη , where η is a small positive number. This means that when sampling any pair (xt, t)
on the trajectory of the PF-ODE, the output of the consistency function is always the initial point xη

of the trajectory. This property is referred to as self-consistency[37]. The example of the consistency
function in [37] is as follows:

fϕ(xt, t) = cskip(t)xt + cout(t)Fϕ(xt, t), (4)

where cskip(t), cout(t) are differentiable functions, and they satisfy cskip(η) = 1, cout(η) = 0,
Fϕ(xt, t) is a trainable network initialized by a pre-trained noise estimation model. Once training is
complete, we only need to input xT and apply fϕ(xT , T ) = xη to obtain high-quality sample in one
step. There are two training methods for consistency models:

Consistency Distillation (CD) For a discrete time sequence t1 = η < t2 < ... < tN = T , given an
arbitrary point (xtn+1

, tn+1) on PF-ODE trajectory, we can estimate the xtn by following formula:

x̂φ
tn = xtn+1

+ (tn − tn+1)Φ(xtn+1
, tn+1;φ), (5)

where Φ(·) represents the update function of a one step ODE solver applied to the PF-ODE, and φ is
the weights of a pre-trained score matching network. Then the CD loss can represent as follow:

LCD(ϕ, ϕ−;φ) := E
[
λ(tn)d(fϕ(xtn+1

, tn+1), fϕ−(x̂φ
tn , tn))

]
, (6)

where ϕ− represents the exponential moving average (EMA) version of training weights ϕ, it is frozen
during backward, and λ(·) is a positive weighting function, d(·) denotes a distance function, such as
the L1 or L2 distance. This approach essentially involves distillation training on the pre-trained score
matching network, hence referred to as consistency distillation.

Consistency Training (CT) Unlike CD, the CT does not rely on a pre-trained score matching network
and can independently train any SDE-based model. The CT loss is represented as follow:

LCT (ϕ, ϕ
−) := E

[
λ(tn)d(fϕ(xtn+1

, tn+1), fϕ−(xtn , tn))
]
, (7)

Here xtn and xtn+1
are both sampled from the forward process of SDE model.
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3 Method

The key idea of our method lies in employing our proposed two-stage training strategy and the
origin-estimated consistency function to conduct consistency training on the IR-SDE model. We thus
refer to it as an Image Restoration Consistency Model (IR-CM).We begin by describing the novel
origin-estimated consistency function, followed by an explanation of the proposed two-stage training
strategy and the origin-guided loss. The overall architecture is depicted in Fig 1.

3.1 Origin-estimated consistency function

For any SDE-based model, each step of the reverse process is essentially a prediction of the PF-ODE
solution[34]. In other words, any point on the PF-ODE trajectory actually contains information about
the origin. Based on this, according to equations (2) and (3), the origin prediction function at each
point on the PF-ODE trajectory of the IR-SDE is as follows:

x̂(0) = µ(1− eθ̄t) + eθ̄t [x(t)−
√
vtϵ̂ϕ(x, µ, t)] . (8)

During the consistency training phase(both for CD and CT), differ from the formula (4) proposed in
[37], we train using the following origin-estimated consistency function (OECF):

fϕ(xt, t) = cskip(t)x(t) + cout(t)x̂0(x, t;ϕ), (9)

where the x̂0(x, t;ϕ) is obtained by (8). Suppose the pre-trained score model matches the ground
truth, i.e., ∀t ∈ [η, T ] : ϵ̂ϕ(x, µ, t) = ϵ(t) + o(∆t) and cskip(T ) = 0, cout(T ) = 1. For formulas (4)
and (9), cskip(t), x(t), and cout(t) are all same and constant at each time t. Thus, for simplicity in
analysis, we specifically consider the moment t = T . Then substituting equation (2) into equations
(4) and (9) respectively, we obtain:

fϕ(xT , T ) = x(0) +
x(T )−mT −

√
vTx(0)√

vT
+ o(∆t), (10)

fϕOECF (xT , T ) = x(0)− eθ̄T vT o(∆t). (11)

From equation (10), it can be observed that if equation (4) is chosen as the consistency function, the
initial solution will have a significant fixed error. In contrast, using the OECF, the initial solution
will only have a time-dependent higher-order infinitesimal error. Therefore, for a pre-trained score
matching model, the OECF offers a more stable initial state and hence a smaller solution space for all
time t.

Intuitively, OECF can effectively enhance the training performance of CD. In practice, we have found
that for CT, OECF also exhibits significant performance improvements compared to equation (4).
The relevant ablative experiment results will be presented in Chapter 4. Note that, unlike CD, the
pre-trained model in CT is only used to initialize the training weights and is not involved in any
training process. In practice, training with randomly initialized weights is also feasible, albeit usually
resulting in slightly longer convergence times.

3.2 Origin-guided loss

In general training, we randomly sample (xt, t) and (xt+1, t + 1) using equation (2), and then
simply apply (6) for CD or (7) for CT, as illustrated in the lower half of Figure 1. However, we
have empirically found that its performance is not ideal, and occasionally, pattern collapse occurs.
Upon further analysis, we discovered that this often occurs when t is not sufficiently small during
the random sampling in the early stages of training. This also leads to the emergence of mediocre
solutions. Below we provide a simple theoretical proof.

Theorem 1. Let cout(t) be monotonic differentiable and satisfy cout(η) = 0, cout(T ) = 1, consider
(9) as consistency function. When t > η, for any y ∈ Rd, there always exists a ϵ̂ϕ(xt, µ, t) such that
fϕ(xt, t) = y.

Proof. Recall (9), there is
y = cskip(t)x(t) + cout(t)x̂0(x, t;ϕ), (12)
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· · ·

HQ image 𝒙𝒙(𝟎𝟎) 𝒙𝒙(𝑻𝑻)
𝒅𝒅 𝒙𝒙 = 𝜽𝜽𝒕𝒕 𝝁𝝁 − 𝒙𝒙 𝒅𝒅𝒕𝒕 + 𝝈𝝈𝒕𝒕𝒅𝒅𝒅𝒅
Image noising process

𝒇𝒇𝝓𝝓(𝒙𝒙𝒕𝒕𝟏𝟏, 𝒕𝒕𝟏𝟏) 𝒇𝒇𝝓𝝓(𝒙𝒙𝒕𝒕𝟐𝟐, 𝒕𝒕𝟐𝟐) 𝒇𝒇𝝓𝝓(𝒙𝒙𝑻𝑻,𝑻𝑻)𝒇𝒇𝝓𝝓(𝒙𝒙𝟎𝟎,𝟎𝟎)

· · ·

𝒙𝒙(𝟎𝟎) 𝒙𝒙(𝑻𝑻)
𝒅𝒅 𝒙𝒙 = 𝜽𝜽𝒕𝒕 𝝁𝝁 − 𝒙𝒙 𝒅𝒅𝒕𝒕 + 𝝈𝝈𝒕𝒕𝒅𝒅𝒅𝒅

Image degradation process

𝒇𝒇𝝓𝝓(𝒙𝒙𝒕𝒕𝟐𝟐, 𝒕𝒕𝟐𝟐) 𝒇𝒇𝝓𝝓(𝒙𝒙𝒕𝒕𝟑𝟑, 𝒕𝒕𝟑𝟑) 𝒇𝒇𝝓𝝓(𝒙𝒙𝑻𝑻,𝑻𝑻)𝒇𝒇𝝓𝝓(𝒙𝒙𝒕𝒕𝟏𝟏, 𝒕𝒕𝟏𝟏)

Linear Fitting Stage: 𝒙𝒙 𝟎𝟎 : = 𝝁𝝁

Nonlinear Fitting Stage: 𝒙𝒙 𝟎𝟎 : = HQ image

≈ +

𝝁𝝁 𝓝𝓝(𝟎𝟎,𝝀𝝀𝟐𝟐)

≈ +

𝝁𝝁 𝓝𝓝(𝟎𝟎,𝝀𝝀𝟐𝟐)

LQ image noise

LQ image noise

𝒇𝒇𝝓𝝓 𝒙𝒙𝒕𝒕, 𝒕𝒕 = 𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒕𝒕)[𝝁𝝁 + 𝒗𝒗𝒕𝒕𝜺𝜺] + 𝒄𝒄𝒐𝒐𝒐𝒐𝒕𝒕�𝒙𝒙𝟎𝟎(𝒙𝒙, 𝒕𝒕;𝝓𝝓)

𝒇𝒇𝝓𝝓 𝒙𝒙𝒕𝒕, 𝒕𝒕 = 𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒕𝒕 [𝝁𝝁 + (𝒙𝒙 𝟎𝟎 − 𝝁𝝁)𝒆𝒆−�𝜽𝜽𝒕𝒕 + 𝒗𝒗𝒕𝒕𝜺𝜺] + 𝒄𝒄𝒐𝒐𝒐𝒐𝒕𝒕�𝒙𝒙𝟎𝟎(𝒙𝒙, 𝒕𝒕;𝝓𝝓)

Figure 1: Two-stage training strategy, where µ is set as the low-quality image to be restored. In Stage
One, by setting x(0) = µ, the forward SDE (1) actually degrades into a simple noise addition process,
upon which consistency training is conducted on x(t) with different levels of noise. In Stage Two,
x(0) is set as the high-quality image and gradually transformed into the corresponding low-quality
image with a fixed level of noise by (1). Consistency training is then performed on each intermediate
state x(t).

then substitute (8) into (12), we obtain:

ϵ̂ϕ(xt, µ, t) = e−θ̂t
y − cskip(t)x(t)

cout(t)vt
+

µ

vt
(e−θ̂t − 1) +

x(t)

vt
, (13)

Note that when t > η, both vt and θ̂t are greater than 0, so the right-hand side of equation (13) is non-
singular. This implies that under loss functions (6) and (7), the consistency function admits arbitrary
non-singular solutions, leading to pattern collapse. In other hand, (6) and (7) only emphasize the
self-consistency between any two points on the PF-ODE trajectory, leading to a lack of determinism
in the training process. This uncertainty indirectly contributes to slower convergence of the model.

To address this issue, we additionally introduce the following origin-guided(OG) loss to stabilize the
training process.

LOG = E [∥fϕ(xt+1, t+ 1)− x(0)∥1]
+ λpercE

[
∥Φ(fϕ(xt+1, t+ 1))− Φ(x(0))∥2

]
, (14)

where λperc is a positive constant, and Φ(·) represents a VGG16[38] feature extractor from 2nd
and 5th pooling layers. This is equivalent to performing a consistency computation with the origin
after each random sampling, hence referred to as the origin-guided loss. This effectively avoids the
emergence of mediocre solutions and adds some certain determinism to the training process, resulting
in faster convergence. Then the final loss function is represented as follows:

Lfull = LCD/CT + λOGLOG, (15)

where λOG is a positive constant. The selection of λOG will be discussed in the ablation experiment
section of Chapter 4.

3.3 Linear-nonlinear decoupling training strategy

With the foundation laid in Sections 3.1 and 3.2, we can naturally train IR-CM by a regular CD or
CT process, as illustrated in the lower half of Figure 1. Despite this method offers convenience in
training IR-CM, we have empirically found that its performance is not optimal in practice. Let us
recall the SDE (2) and OECF (9), we obtain:

fϕ(xt, t) = cskip(t)µ︸ ︷︷ ︸
linear state f1

+ cskip(t)
[
(x(0)− µ)e−θ̄t

]
︸ ︷︷ ︸
nonlinear intermediate state f2

+ cskip(t)
√
vtϵ︸ ︷︷ ︸

noise f3

+cout(t)x̂0(x, t;ϕ). (16)
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Algorithm 1: Linear-fitting stage
Input dataset D, model parameter ϕ, OECF
fϕ(·, ·), learning rate ξ, OG Weight λOG;
ϕ− ← ϕ;
while not convergence do

Sample (xLQ,yHQ) ∼ D and
n ∼ U [1, N − 1];

µ← xLQ, x(0)← xLQ;
Sample xtn ∼ N (mtn , vtn) and
xtn+1

∼ N (mtn+1
, vtn+1

);
Lfull(ϕ, ϕ

−)←
LCT (fϕ(xtn , tn), fϕ(xtn+1

, tn+1)) +
λOGLOG(fϕ(xtn+1

, tn+1), yHQ);
ϕ← ϕ− ξ∇Lfull(ϕ, ϕ

−)
ϕ← stopgrad(ϕ)

end

Algorithm 2: NonLinear-fitting stage
Input dataset D, model parameter ϕ, OECF
fϕ(·, ·), learning rate ξ, OG Weight λOG;
ϕ− ← ϕ;
while not convergence do

Sample (xLQ,yHQ) ∼ D and
n ∼ U [1, N − 1];
µ← xLQ, x(0)← yHQ;
Sample xtn ∼ N (mtn , vtn) and
xtn+1

∼ N (mtn+1
, vtn+1

);
Lfull(ϕ, ϕ

−)←
LCT (fϕ(xtn , tn), fϕ(xtn+1

, tn+1)) +
λOGLOG(fϕ(xtn+1

, tn+1), x(0));
ϕ← ϕ− ξ∇Lfull(ϕ, ϕ

−)
ϕ← stopgrad(ϕ)

end

In general training, the model attempts to simultaneously fit the variations of both linear part f1 and
nonlinear part f2. Obviously, this is more challenging than fitting f1 alone. In practice, the model’s
performance at larger values of t is more crucial during training, because any intermediate state for
x(t),∀t ∈ [η, T ) are unknown during inference, thus we can only set t = T for inference. And note
that there is limt→T f2 ≈ 0, therefore, the influence of f2 is negligible when t = T . Based on the
analysis above, we can then eliminate f2 for all t by simply setting x(0) as µ. By doing so, the original
image degradation process is transformed into a purely image noising process (as shown in the upper
half of Figure 1). Since only the linear part f1 and noise f3 are being fitted, the model will achieve
better performance over the entire PF-ODE trajectory, leading to improved inference performance as
well. We refer to this training as the linear-fitting stage and the corresponding pseudocode is shown
in Algorithm 1.

Despite the Linear-fitting stage achieves good performance for one-step inference after training, we
can still further improve the performance by employing appropriate multi-step sampling. However,
the model trained in the Linear-fitting stage cannot perform multi-step sampling inference because
the outputed HQ image is not the origin x(0) = µ of PF-ODE trajectory, making it unable to estimate
any intermediate states xt after one inference. Therefore, after the Linear-fitting stage, we set x(0) to
be the HQ image instead of µ and fine-tune the model (Algorithm 2). Since in the previous stage,
the model has already fitted f1 and f3, this stage mainly focuses on fitting the non-linear part f2.
Therefore, this stage is naturally referred to as the non-Linear-fitting stage. After training in the
non-linear stage, the model’s performance at t = T is almost unchanged, meaning there is no change
in the performance of one-step inference. But the model will be able to perform multi-step sampling
inference (Algorithm 3 in appendix C). In practice, even just two-step sampling inference brings a
noticeable performance improvement. Relevant comparative experiments and ablative experiments
will be presented in Chapter 4.

4 Experiments

4.1 Comparative Experiment

In this section, we will validate the effectiveness of our proposed method on five tasks: image
de-raining, image denoising, image deblurring, low-light image enhancement, and nighttime glare
removal. The implementation details are described in Appendix A. Specifically, we will compare our
method with some of the state-of-the-art methods on PSNR, SSIM[39], LPIPS[40] metrics and NFE.
The NFE (Number of Function Evaluations) refers to the number of function evaluations required to
generate an image or data. In other words, it is the number of evaluations needed at each step of the
diffusion process. Notably, like other SDE-based models, we prioritize perceptual scores LPIPS over
distortion scores PSNR and SSIM. And our metric settings are same as other mentioned baseline
methods. For PSNR metric, we perform the calculation in the luminance space (Y channel). For
SSIM metric, it refer to [39], and for LPIPS metric, it refer to [40]. All comparison experiments were
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input JORDER MAXIM PReNet Restormer IR-SDE Ours GT

Figure 2: Qualitative comparison results on R100L dataset (upper row) and R100H dataset (bottom
row). More visual results are available in appendix D.

input Transweather Ours GTMAXIM

Figure 3: Qualitative comparison results on Raindrop dataset.

Methods Metrics
Methods / Metrics PSNR↑ SSIM↑ LPIPS↓ NFE↓

JORDER[3] 26.25 0.83 0.197 1
MAXIM[4] 30.81 0.90 0.133 1
PReNet[1] 29.46 0.90 0.128 6

Restormer[5] 31.46 0.90 0.086 1
IR-SDE[22] 31.65 0.90 0.047 100

CNN-baseline 29.12 0.88 0.153 1
IR-CM-CD (ours) 29.75 0.88 0.064 1
IR-CM-CT (ours) 30.47 0.92 0.016 1
IR-CM-CT (ours) 30.71 0.92 0.015 2

Table 1: Quantitative comparison results on
R100H dataset. The optimal results are indicated
by bold underlining.

Methods Metrics
Methods / Metrics PSNR↑ SSIM↑ LPIPS↓ NFE↓

JORDER[3] 36.61 0.97 0.028 1
MAXIM[4] 38.06 0.98 0.048 1
PReNet[1] 37.48 0.98 0.020 6

Restormer[5] 38.99 0.98 0.013 1
IR-SDE[22] 38.30 0.98 0.014 100

CNN-baseline 33.17 0.96 0.068 1
IR-CM-CD (ours) 34.21 0.96 0.035 1
IR-CM-CT (ours) 36.18 0.98 0.009 1
IR-CM-CT (ours) 37.06 0.98 0.005 2

Table 2: Quantitative comparison results on
R100L dataset. The optimal results are indicated
by bold underlining.

conducted using the original resolution of each dataset (for ease of presentation, the image sizes were
adjusted in Figures 2–5).

4.1.1 Image deraining

We validate the effectiveness of the proposed IR-CM based on two datasets: R100L and R100H[41].
A total of 2000 images are used for training, while 200 images are reserved for testing. Our method is
qualitatively and quantitatively compared with some of the state-of-the-art image deraining methods
including IR-SDE[22], JORDER[3], Restormer[5], PReNet[1], and MAXIM[4]. The comparison
results are shown in Table 1, Table 2 and Figure 2. More visual results are available in appendix
D. To further validate the effectiveness of our method in real-world rainy scenarios, we conducted
comparative experiments on the Raindrop[42] dataset containing 1119 pairs of real-world rainy/non-
rainy images. The results are shown in Table 3 and Figure 3.

The IR-CM model we proposed surpasses the baseline IR-SDE model and achieves optimal per-
formance on both SSIM and LPIPS metrics in scenarios of either one-step or two-step reasoning.
Furthermore, the comparison results with the CNN-baseline demonstrate that our approach improves
network performance while ensuring real-time capabilities. Note that our IR-CM is based on IR-SDE
for CD or CT, thus IR-CM-CD represents consistency distillation based on pre-trained IR-SDE model
as teacher model. And IR-CM-CT only initializes the model using pre-trained IR-SDE checkpoint of
faster convergence and does not use any teacher model during the CT process. Of course, random
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methods / metrics PSNR↑ SSIM↑ LPIPS↓ NFE↓
MAXIM(2022) 31.87 0.935 0.079 1

Transweather(2021) 34.55 0.950 0.051 1
Refusion(2023) 32.61 0.938 0.048 100

IR-CM(1-step)(ours) 32.06 0.934 0.043 1
IR-CM(2-step)(ours) 32.89 0.936 0.041 2

Table 3: Quantitative comparison with some of image deraining methods on Raindrop dataset. The optimal
results are indicated by bold underlining.

Methods Metrics
Methods / Metrics PSNR↑ SSIM↑ LPIPS↓ NFE↓
DeepDeblur[43] 29.08 0.91 0.135 1

DBGAN[15] 31.18 0.92 0.112 1
DeblurGAN-v2[14] 29.55 0.93 0.117 1

MAXIM[4] 32.86 0.94 0.089 1
IR-SDE[22] 30.70 0.90 0.064 100
DiffIR[44] 33.20 0.963 - 4

IR-CM-CD (ours) 28.96 0.90 0.089 1
IR-CM-CT (ours) 29.72 0.95 0.013 1
IR-CM-CT (ours) 29.87 0.95 0.012 2

Table 4: Quantitative comparison results on Go-
Pro dataset. The optimal results are indicated by
bold underlining.

Methods Metrics
Methods / Metrics PSNR↑ SSIM↑ LPIPS↓ NFE↓

DnCNN[7] 31.52 0.87 0.101 1
FFDNet[8] 32.36 0.89 0.103 1
IR-SDE[22] 29.48 0.81 0.071 100

Denoising-SDE[22] 28.98 0.75 0.088 22
Denoising-ODE[22] 32.39 0.88 0.055 22

CNN-baseline 25.02 0.78 0.102 1
IR-CM-CD (ours) 24.98 0.78 0.085 1
IR-CM-CT (ours) 25.61 0.82 0.048 1
IR-CM-CT (ours) 27.56 0.88 0.027 2

Table 5: Quantitative comparison results on Mc-
Master dataset with noise level σ = 25. The opti-
mal results are indicated by bold underlining.

weight initialization is also an option. In practice, we found that when given enough training time,
the performance of both approaches is quite similar.

4.1.2 Image deblurring

We validated the effectiveness of the proposed IR-CM model for image deblurring task based on the
GoPro[43] dataset. A total of 2103 images are used for training, while 1111 images are reserved for
testing. Our method is qualitatively and quantitatively compared with some of the milestone image
deblurring methods including DeepDeblur[43], DeblurGAN-v2[14], DBGAN[15], MAXIM[4],
DiffIR[44] and of course IR-SDE[22]. The comparison results are shown in Table 4 and Figure 4.
More visual results are available in appendix D.

Our proposed method achieves optimal performance on SSIM and LPIPS metrics, surpassing the IR-
SDE baseline model as well. This strongly demonstrates the effectiveness of our proposed consistency
training approach. Notably, like other SDE-based models, we prioritize perceptual scores LPIPS over
distortion scores PSNR and SSIM.

4.1.3 Image denoising

Note that the last term in (1) is a Gaussian process. Hence, we can consider a special case where
µ = x(0). In this case, the IR-SDE degenerates into a pure additive noise process. This implies that
any point along the PF-ODE trajectory can serve as a noisy image to be processed. In this scenario,
we can only apply the conventional consistency training approach and cannot utilize the proposed
linear-nonlinear decoupled training strategy because x(0) must be set as the HQ image and x(t)
represents the corresponding low-quality (LQ) image.

Similar to [22], we collected approximately 5000 HQ images from the DIV2K[45], Flickr2K[45],
and BSD500[46] datasets for training, and subsequently tested on the McMaster[47] dataset. To
demonstrate the competitiveness of our method against state-of-the-art approaches, we compare it
with DnCNN[7], FFDNet[8], as well as the special denoising methods proposed in [22], namely
Denoising-SDE and Denoising-ODE. Our method achieves the optimal result in perceptual scores.
Comparative experimental results are shown in Table 5, and visual results are available in appendix
D.
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input DeepDeblur DBGAN DeblurGANv2 MAXIM IR-SDE Ours GT

Figure 4: Qualitative comparison results on GoPro dataset. More visual results are available in
appendix D.

input DiffLL GlobalDiff Retinexformer LLFlow IR-SDE Ours GT

Figure 5: Qualitative comparison results on LOLv2 dataset. More visual results are available in
appendix D.

Methods Metrics
Methods / Metrics PSNR↑ SSIM↑ LPIPS↓ NFE↓

DiffLL[21] 28.86 0.88 0.207 10
GlobalDiff[20] 28.82 0.90 0.095 500

Retinexformer[16] 27.71 0.86 0.097 1
LLFlow[17] 26.02 0.93 0.099 1
IR-SDE[22] 27.05 0.90 0.087 100

CNN-baseline 23.16 0.81 0.156 1
IR-CM-CD (ours) 26.33 0.89 0.098 1
IR-CM-CT (ours) 27.61 0.93 0.027 1
IR-CM-CT (ours) 30.20 0.95 0.021 2

Table 6: Quantitative comparison results on
LOLv2 dataset. The optimal results are indicated
by bold underlining.

Components Metrics
Group OECF OGL LLDT PSNR SSIM LPIPS

1 × × × 23.06 0.82 0.144
2 × ✓ × 23.62 0.88 0.094
3 ✓ × × 23.99 0.86 0.120
4 ✓ ✓ × 25.04 0.91 0.059
5 × × ✓ 23.96 0.84 0.121
6 × ✓ ✓ 25.01 0.89 0.072
7 ✓ × ✓ 24.45 0.86 0.101
8 ✓ ✓ ✓ 27.61 0.93 0.027

Table 7: Ablation experiment results on LOLv2
dataset. OECF: origin-estimated consistency func-
tion, OGL: origin-guided loss, LLDT: linear-
nonlinear decoupling training strategy.

4.1.4 Low-light image enhancement

We compare our method with existing researches for low-light image enhancement tasks on the
LOLv2[48] dataset consisted of 689 pairs training images and 100 pairs testing images. We compare
our proposed method with some recent approaches for low-light image enhancement task, including:
DiffLL[21], GlobalDiff[20], Retinexformer[16], LLFlow[17]. Note that IR-SDE is trained following
the experimental settings described in [22], while IR-CM-CD is based on consistency distillation using
the trained weights of IR-SDE. Our method outperforms the state-of-the-art diffusion-based methods,
DiffLL and GlobalDiff, and requires only two sampling steps. The corresponding quantitative and
qualitative comparison results are shown in Table 6 and Figure 5 respectively. More visual results are
available in appendix D

4.1.5 Runtime Comparation

To validate the superiority of our method in inference real-time performance, we compared it
with several other state-of-the-art (SOTA) methods across three common resolution sizes. The
results are shown in Table8. Compared to the baseline method IR-SDE, our method significantly
reduces inference time by introducing a consistency training process. In some real-time demanding
applications, one-step sampling inference allows for fast predictions while maintaining competitive
performance. On the other hand, two-step sampling inference can substantially improve model
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performance with only a slight trade-off in inference speed. Users can choose the approach based on
their specific requirements. Additionally, a discussion on the model complexity will be provided in
Appendix E.

image size / methods MAXIM Restormer IR-SDE DiffLL GlobalDiff DiffIR IR-CM(1-step) IR-CM(2-step)
256x256 0.092 0.117 7.325 0.087 0.134 0.574 0.073 0.145
600x400 0.297 0.395 27.418 0.309 0.637 2.743 0.273 0.547
1280x720 1.223 1.512 98.731 1.045 1.881 7.155 0.992 1.984

Table 8: Inference time comparison with some of SOTA methods on three typical image sizes. All tests were
conducted using an NVIDIA 2080Ti GPU. The optimal results are indicated by bold underlining.

4.2 Ablation Experiments

4.2.1 Components ablation experiments

The main innovations of this paper lie in the OECF, Origin-guided loss, and the linear-nonlinear
decoupling training strategy proposed in the previous section. To verify the effectiveness of each
component, we conducted a series of ablation experiments using low-light image enhancement as an
example. To ensure fairness, each control group used the same checkpoint for model initialization,
and the total number of epochs was kept consistent during training. And only the performance of
one-step sampling inference was considered. The corresponding results are shown in Table 7. The
effectiveness of the proposed OECF can be demonstrated by group pairs (1, 3), (2, 4), (5, 7), (6,
8). The significant improvement in perceptual scores due to the origin-guided loss is evident from
the comparisons between group pairs (1, 2), (3, 4), (5, 6), (7, 8). Finally, the notable performance
enhancement of the model due to the linear-nonlinear decoupling training strategy can be seen from
the comparisons between groups (1, 5), (2, 6), (3, 7), (4, 8). Note that for groups 5 and 7, we only use
the origin-guided loss during the Linear-fitting stage, and not during the nonlinear-fitting stage.

4.2.2 Selection of origin-guided loss weight

The setting of λOG also affects the performance of IR-CM. If set too low, the model may become
unstable and perform poorly, as discussed in Section 3.2. If set too high, it will affect self-consistency
property, leading to a degradation into a CNN-baseline method. We experimented with multiple values
and empirically found that the best performance is achieved around 0.8. The related experimental
results are discussed in Appendix B.

4.2.3 Linear-fitting stage only & Multiple sampling

In fact, after completing the linear-fitting stage, the model can already perform one-step sampling
inference, however, it cannot perform multi-step sampling as discussed in Section 3.3. To further
evaluate the model’s performance, we tested it under the conditions of linear-fitting stage only, and
with 1-step, 2-step, 4-step, and 6-step sampling. Empirically, we consider 2-step sampling to be the
most cost-effective choice. The related experimental results are discussed in Appendix C.

5 Conclusion

This paper proposes a multi-task image restoration and enhancement method, IR-CM, based on a
consistency training approach, enabling few-step or even one-step sampling inference. Specifically,
we proposed the Origin-estimated Consistency Function (OECF), which provides a more stable initial
state and a smaller solution space for the consistency training process. Furthermore, to make the
training process more robust and prevent trivial solutions, we introduced the Origin-guided Loss (OE
Loss). Based on these, we developed a Linear-Nonlinear Decoupling Training Strategy, which not
only accelerates the training process but, more importantly, enables the model to perform multi-step
sampling inference, further enhancing its performance. Finally, a series of comparative experiments
and ablation studies demonstrated the effectiveness of the proposed method.
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A Implementation details

We chose the same U-Net backbone network as used in IR-SDE[22]. Note that the CNN-baseline
uses the same U-Net backbone, with its time embedding set to a constant, and it directly outputs HQ
images from the input LQ images. For all tasks, we set the training patch-size to be 128 × 128 and
use a batch size of 4. We used the AdamW[49] optimizer with a weight decay set to 0.01 and set
learning rate to 10−5. Our models are trained on two 2080Ti GPUs for 200 epochs for each task, with
the linear-fitting stage and the nonlinear-fitting stage each accounting for 100 epochs. The training
hyperparameters are set as follows: λ = 10, λOG = 0.8, λperc = 0.125.

The θ schedule is defined same as [22]:

θt = 1− f(t)

f(0)
, f(t) = cos(

t/T + s

1 + s
· π
2
)2, (17)

where s = 0.008. And the consistency weights cskip and cout are set as follow:
cskip(t) = 1− cout(t), cout(t) = t/T, (18)

where T is set to 100.

B Selection of origin-guided loss weight

We take the low-light image enhancement task as an example to consider the impact of different λOG

values on the final performance of the model considering only the one-step sampling scenario. The
quantitative experimental results are shown in Table 9.

Metrics/λOG 0 0.2 0.4 0.6 0.8 1.0 1.2
PSNR 22.36 22.11 24.42 26.94 27.61 27.67 27.53
SSIM 0.85 0.87 0.89 0.92 0.93 0.92 0.90
LPIPS 0.136 0.129 0.086 0.044 0.027 0.042 0.075

Table 9: Quantitative comparison results of different λOG. The optimal results are indicated by
bold underlining.

The results show that the best performance is achieved when λOG is set to 0.8. Although a higher
PSNR score was obtained with λOG = 1.0, we prioritize perceptual scores. Therefore, we chose
λOG = 0.8 as the experimental setting in Section 4.1.

C linear-fitting stage only & Multiple sampling

As shown in Algorithm 3, our method, like most SDE-based methods, can improve model performance
through multi-step sampling. Specifically, if set M = 1, one-step sampling can be achieved. To
further evaluate the model’s performance, we tested it under 1-step, 2-step, 3-step, and 4-step
sampling. Additionally, we evaluated the model’s performance after completing only the linear-fitting
stage (LFS). Similarly, using low-light enhancement as an example, the test results are shown in
Table 10 and Figure 6.

Metrics/NFE 1 2 3 4 LFS only (one-step)
PSNR 27.6139 30.2070 31.4882 31.2916 27.2421
SSIM 0.9301 0.9493 0.9496 0.9490 0.9216
LPIPS 0.02693 0.02080 0.02146 0.02247 0.02803

Table 10: Quantitative comparison results of different sampling step. The optimal results are indicated by
bold underlining.

It can be observed that the optimal perceptual score is achieved when the sampling step is 2. Further
increasing the sampling steps leads to only slight improvements in model performance but implies
longer inference times. In the case of one-step sampling, the performance of LFS only is not
significantly different from that of the two-stage trained model. Considering all factors, we believe
that 2-step sampling inference is the most cost-effective.
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Algorithm 3: Multi-step sampling inference
Input LQ image xLQ, OECF fϕ(·, ·), sequence of time points t1 < t2... < tN ,

inference step M ;
m← 0, n← N , µ← xLQ;
Sample xtn ∼ N (µ, vtn);
while m < M do

x0 ← fϕ(xtn , tn);
n← n/2;
mtn ← µ+ (x0 − µ)e−θ̄tn ;
Sample xtn ∼ N (mtn , vtn);
m← m+ 1

end
Output: x0

input 1-step GT2-step 3-step 4-step

Figure 6: Visual results of different sampling step.

D More visual results

input JORDER MAXIM PReNet Restormer IR-SDE Ours GT

Figure 7: Image deraining visual results on R100H dataset.
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input JORDER MAXIM PReNet Restormer IR-SDE Ours GT

Figure 8: Image deraining visual results on R100L dataset.

input DeepDeblur DBGAN DeblurGANv2 MAXIM IR-SDE Ours GT

Figure 9: Image deblurring visual results on GoPro dataset.
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input IR-SDE ours GT input IR-SDE Ours GT

Figure 10: Image denoising visual results on McMaster dataset with sigma = 25.

input DiffLL GlobalDiff Retinexformer LLFlow IR-SDE Ours GT

Figure 11: Low-light image enhancement visual results on LOLv2 dataset.
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E Model complexity

Our backbone network is a conditional Unet, and its computational complexity is proportional to
the number of convolutional layers and the size of the image. The complexity can be calculated as
follows:

O(S ∗
L−1∑
i=0

(
H

2i
∗ W
2i
∗ Cin,i ∗ Cout,i ∗K2)), (19)

where L is number of convolutional layers, H,W are the height and width of the image, Cin,i, Cout,i

represent the input and output sizes of the convolutional layer respectively, K is the size of the
convolutional kernel, and S denotes the sample steps. From the above formula, it can be seen that
our model has a linear relationship with the height and width of the input image. And it is also
linearly related to the number of sampling steps. This is advantageous for applying our model to
larger-sized images. Additionally, by adjusting the number of sampling steps, a trade-off between
real-time performance and model performance can be achieved.

F Potential societal impact

Our work on conditional image generation tasks, such as image restoration and enhancement, has
several potential societal impacts. These improvements can benefit fields like medical imaging,
where enhanced image quality can aid in better diagnosis and treatment. Additionally, improved
image restoration techniques can be valuable in preserving and restoring historical photographs and
artworks.

However, there are also potential negative impacts to consider. Enhanced image generation techniques
could be misused for creating deceptive content, such as deepfakes, which can have serious ethical
and social implications. Therefore, it is crucial to implement safeguards and ethical guidelines to
prevent misuse and ensure that the technology is used for beneficial purposes.

We are committed to promoting the positive applications of our research while being aware of and
mitigating potential risks.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately reflect the contributions and scope of the paper in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We emphasized in the introduction and abstract that our work is applicable to
conditional image generation tasks, such as image restoration and image enhancement. It is
not suitable for unconditional generation tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In the Chapter 3, we introduced and demonstrated the effectiveness of the three
main contributions of this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Appendix A, we elaborate on the experimental details. Additionally, our
code will be open-sourced after the review process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We are pleased to open-source our code, which will be made available on
https://github.com.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Chapter 4 and Appendix A, we provide detailed explanations of our experi-
mental procedures, including dataset splits and experimental settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiments primarily compared the performance of various existing
methods on specific public datasets. Once the model is trained, these metrics (PSNR, SSIM,
LPIPS) are typically deterministic and do not change due to other random factors. Therefore,
it is unnecessary to report error bars in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix A, we provide detailed information about the GPU models and
memory sizes used in our experiments, as well as the number of training iterations required.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics and ensure strict adherence
to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential negative societal impacts of our method in Appendix
E.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our proposed method poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided clear citations for the public datasets used in our comparative
experiments, as well as for foundational works in the field.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Due to submission size constraints, we only provide our code in the supple-
mentary material. The corresponding datasets, test results, and pretrained models will be
open-sourced in the future.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourced experiments or research involving
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourced experiments or research involving
human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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