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ABSTRACT Future telecommunications will increasingly integrate AI capabilities into network infrastruc-
tures to deliver seamless and harmonized services closer to end-users. However, this progress also raises
significant trust and safety concerns. The machine learning systems orchestrating these advanced services
will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and
make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge
that most explainable AI research is stakeholder-agnostic while, in reality, the explanations must cater for
diverse telecommunications stakeholders, including network service providers, legal authorities, and end
users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established
frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a
goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal
automata that can be universally represented and easily manipulated by logic programs and verifiably
learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches
focus on correlation rather than causation, and we emphasise that understanding causal learning can further
enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for
trustworthy services in 6G. This review offers a timely resource for academic researchers and industry
practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in
6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies
showcasing practical applications. By identifying and analysing these challenges in the context of 6G case
studies, this work aims to inform future research, transform industry practices, and highlight unresolved
gaps in this rapidly evolving field.

INDEX TERMS 6G, explainable AI, reinforcement learning, trust, stakeholders, causal learning.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION

NEVER before has telecommunication infrastructure
been responsible for such a diverse range of services

in human history, enabling transformative use cases that
extend connectivity, intelligence, and immersive experiences

across industries. To meet such dynamic service demands
(bandwidth, coverage, latency, energy), the network needs to
perform large-scale multi-objective optimisation over highly
variable environments with partially observable dynamics
that are constrained with limited resources. As such,
6G will require advanced artificial intelligence, especially
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Reinforcement Learning (RL), to efficiently and dynamically
manage heterogeneous infrastructure, optimize communi-
cation protocols, and orchestrate network resources in
real-time [1].
However, the integration of ubiquitous AI in 6G introduces

unprecedented challenges. For the first time on a large
scale and in real-time, human well-being becomes deeply
intertwined with 6G services. This extensive use of AI in
6G can potentially cause significant harm to human agency,
safety, privacy, fairness, and social and environmental well-
being [2], [3]. Ensuring the above principles requires the AI
in 6G to be understandable for any stakeholders and in any
context of the AI value chain, which can be addressed with
proper XAI techniques.

B. REVIEW OF EXISTING RELATED SURVEYS
Extensive efforts have been put into proposing and applying
novel XAI techniques for different AI-powered processes
in 6G [4]. Review papers have also been published sum-
marizing the benefits and challenges of XAI in 6G. For
example, [5] covered a broad range of XAI application
areas in 6G, including technical areas of 6G network
(e.g., intelligent radio, trust and security, privacy, resource
management, edge AI, Zero Touch Network and Service
Management), AI-powered 6G use cases (e.g., intelligent
health and wearable, industry 5.0, connected autonomous
vehicles, smart grid 2.0, multi-sensory XR applications
and smart governance) and XAI-related research projects
and research challenges. Reference [6] reviews the XAI
with a specific focus on O-RAN in 6G, including topics
such as the deployment of XAI pipelines in O-RAN,
potential applications of XAI in existing AI-driven O-RAN
solutions, XAI for O-RAN use cases (Quality-of-Experience
Optimization, traffic steering, user access management etc.),
and research projects and standards on XAI for O-RAN. We
identify the following gaps in the literature:

• Gap 1: Existing reviews primarily focus on stakeholder-
agnostic XAI methodologies [6] or briefly address
only the dimensions of “who” and “why” [5]. Limited
discussion is present on “what” and “how,” specifi-
cally concerning stakeholder-specific requirements and
approaches.

• Gap 2: the reviewed XAI techniques often target a
single ML/AI process that does not involve sequential
learning as in reinforcement learning (RL), which is
widely adopted to perform sequential decision-making
for real-time 6G network optimization. This is basically
due to the highly variable environments with partially
observable dynamics that are constrained with limited
resources to meet a large number of dynamic demands.

• Gap 3: the reviewed XAI techniques often focus
on learning correlations between input data features
and the outcomes of the AI models. This curbs the
causal understanding of the network’s decision-making
processes.

C. MAIN CONTRIBUTIONS AND ORGANISATION OF
PAPER
To address the limitations identified above, we identify the
following research questions that we will try to answer in
this review article:

1) Stakeholders: What stakeholders require what kinds of
interpretability/explainability?

2) Explainable Reinforcement Learning: How can we
explain the sequences of decisions made by an agent
in RL-based approaches, as one of the promising
solutions toward solving complicated 6G optimisation
problems?

3) Causal Understanding for Explainability and
Performance: How can the causal understanding
of deep models help to improve AI/ML pipeline
performance, from reducing variable search space to
transfer learning and improving explainability?

4) Current Challenges: What are the remaining open
challenges?

To demonstrate, we select 1) network slicing (NS) and
2) uncrewed aerial vehicles (UAVs) as two main mission-
critical grounds in 6G where failing to provide explainable
and safe decision-making can lead to catastrophic conse-
quences. The reviewed XAI techniques will be contextualised
in the two use cases from the stakeholder’s perspective in
practice:

• Network slicing is a key enabler for 6G networks,
enabling virtualized and isolated slices managed by
distinct resource policies. Each slice meets specific
Quality-of-Service (QoS) requirements and Service-
level Agreements (SLAs). Employing explainable
decision-making for resource allocation—including
resource block (RB) assignment, user admission control,
and scheduling—offers transparency, aiding service
providers in quickly identifying and mitigating service
delivery issues for end users.

• Drones may be used as mobile base stations (BSs)
and communication relays to enhance connectivity in
complex and dynamic environments, underserved or
disaster-hit areas. The UAV scenario is discussed here
to provide insights into the challenges regarding the
need to understand and control drone behaviour to
ensure effective communication. Critical aspects involve
making autonomous trajectory planning and service
provisioning interpretable, explainable, and transparent
for different stakeholders, thereby ensuring trust and
legal compliance.

The paper organization is shown in Figure 2.

II. BACKGROUND
A key challenge in AI development is ensuring safe
performance in unforeseen real-world situations not encoun-
tered during training or testing. According to EU AI
ethics guidelines, AI systems require human oversight,
accountability, and transparency, necessitating interpretability
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FIGURE 1. Forms of AI understanding methods and application to 6G stakeholder examples.

FIGURE 2. Paper organization.

and explainability for effective human engagement. Such
engagement ranges from formal system verification during
design to audits at runtime. However, we have yet to agree on
clear definitions for related terms, often using interpretability,

explainability, and transparency interchangeably. In this sec-
tion, we focus primarily on interpretability and explainability,
briefly addressing transparency within the context of XAI for
6G.
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A. INTERPRETABILITY, EXPLAINABILITY, AND
TRANSPARENCY OF AI
For clarity, it is worth distinguishing between the two
most prevalent terms: interpretability and explainability [7].
Following Glanois et al. [8], interpretability may be defined
as an inherent model quality describing the extent to which
the inner workings of a model can be examined and
understood. Interpretability is frequently enhanced through
the use of “white-box” architectures, such as sets of first-
order logic rules. Conversely, explainability allows us to
describe an external understanding of model behaviour, based
on active, post hoc, efforts to explain the decision-making
process. Explainability techniques are typically applied to
trained models to provide insights based on externally
observed relations rather than internal mechanisms. An
example is feature importance analysis, where input variables
are systematically altered and the resulting impact on
model outputs is quantified. Model interpretability and
explainability share the common goal of increasing human
understanding of the AI system and the insights gained
through either approach should ultimately be communicated
in a stakeholder-centered format, referred to in both cases
as an “explanation”.
Although interpretability offers insights which are better

grounded in model internals, it is frequently associated
with reduced model performance (e.g., higher Mean Square
Error [9] in RAN slicing AI model), and methods are often
architecture or application-specific, with limited scalabil-
ity [8]. Explainability methods, conversely, can offer greater
flexibility and broader applicability, making them valuable
for gaining insights in complex scenarios where full internal
interpretability may be neither necessary nor feasible.
Importantly, interpretability and explainability approaches
can be viewed as existing on a spectrum, and are not mutually
exclusive: insightful results may be achieved through apply-
ing explainability methods to partially interpretable models,
for instance [10].

Broadly, interpretability and explainability serve to address
incompleteness in the formalisation of a problem, improving
understanding of how a system will behave in new situations
or concerning auxiliary criteria such as fairness [11].
In this sense, model explanations enable stakeholders
to gain insights into abstract or complex attributes that
are challenging to fully define or directly optimise for.
These may include causality, reliability or scientific knowl-
edge: facets of understanding which may be sufficient to
alleviate ethical, legal and operational concerns about a
system.

1) INTERPRETABILITY AND REINFORCEMENT
LEARNING

For RL, both interpretability and explainability imply a level
of understanding of the reasoning behind agent decisions.
Despite a general consensus that this is desirable, there is,
however, no precise definition of when it is necessary or
what it entails, neither broadly nor for specific use cases.

Consequently, there is a lack of standardised metrics or
benchmarks for assessing the quality or utility of explana-
tions. As Doshi-Velez and Kim [11] critically observe, the
field often appears to default to a “you’ll know it when you
see it” approach.
Despite ambiguity regarding the definition, there exists a

multitude of methods for increasing the interpretability of
RL agents. We broadly categorise these as offering high or
low-level understanding, with the latter further comprising
direct and indirect approaches, and describe a non-exhaustive
selection. Focus is placed on the primary challenge of
understanding decision-making, but it is relevant to note that
interpreting inputs and transition models are also important
topics when considering complex architectures.
High-level interpretability approaches offer broad, gen-

erally top-down perspectives on agent-decision making.
Hierarchical RL decomposes goals into sub-tasks (Feudal
approaches) or sub-policies (policy tree approaches) [12].
This decomposition most effectively contributes to inter-
pretability when discernible sub-behaviours, such as motor
primitives [13], are explicitly learned. Alternatively, high-
level interpretability can be obtained via direct incorporation
of declarative knowledge into RL frameworks [14].
Examples include defining high-level rules to guide
actions [15], and integrating knowledge-based reasoning
paradigms with learning architectures [16]. However, the
interpretability offered by these approaches is constrained:
in HRL, interpretability is limited to the level of abstraction
of the sub-task or policy, and in knowledge-based systems,
it is broadly restricted to the scope of the incorporated
knowledge. As evidenced by these approaches, imposing
high-level interpretability frequently relies on prior knowl-
edge of the desired RL solution and interpretation. This
limits both applicability and performance: policy-tree HRL
approaches, for instance, constrain the policy space and thus
may not reach optimal policies.
Low-level interpretability can be directly achieved by

learning more interpretable architectures for action selection.
Decision trees are a prevalent example: acyclic graphs
pass input variables through decision nodes, which select
subsequent nodes based on feature values until a leaf
node is reached. These trees can represent Q-values or
policies, and recent work on ‘soft decision trees’ relaxes
their classically discrete nature and enables efficient RL
through gradient descent [17]. Alternatively, diverse methods
exist to generate effective RL policies in the form of
symbolic equations, e.g., using genetic programming to
efficiently search a space of function trees [18] or training a
recurrent neural network (RNN) to directly generate policy
equations [19]. Beyond mathematical operators, policies
have been learned as weighted combinations of first-order
logic rules [20]. Recent efforts have increased the flexibility
and scalability of this approach, for instance by weighting
predicates, the building blocks of rules, rather than the rules
themselves [21], or by using logical reasoning modules to
induce separate policies [22].

4104 VOLUME 6, 2025



Indirect approaches use similar underlying architectures
but differ in the manner in which these are obtained. While
direct approaches immediately search for interpretable poli-
cies, indirect approaches aim to replicate non-interpretable
ones, using techniques analogous to policy distillation
or imitation learning. VIPER, an imitation-learning-like
algorithm which compresses DRL policies into decision
trees, demonstrates how this indirect approach can improve
scalability [23]. Similarly, RNN-based equation generation
employs the indirect approach to scale to large action spaces
by sequentially generating action-equations using a neural
network “anchor” policy to select actions for which an
equation is yet to be defined [19].
These low-level methods rely on using fundamentally dif-

ferent model architectures, which are generally deemed to be
interpretable due to characteristics such as comprising fewer
model components, containing transparent and tractable
component interactions, and consisting of components which
can be objectively translated to natural language. However,
these architectural modifications can lead to issues regarding
scalability and performance. Scaling the described methods
rapidly becomes computationally prohibitive, even when an
indirect approach is adopted [8]. Moreover, such scaling
can compromise interpretability as a result of increasing the
number of model components and their interactions. Notably,
few existing low-level interpretability approaches apply their
method to real-world RL problems, instead evaluating in
simple control environments such as “Cart Pole” and the
grid-based “Cliff Walk”.

2) EXPLAINABILITY

Rather than directly deriving explanations from model
internals, explainability approaches apply external methods
to detect and describe input-output relations. This distinction
can be illustrated using a third application of decision trees:
as purely explanatory models [24]. Here, as for indirect
interpretability, the decision tree is distilled from a deep
neural network, with the distinction that it is used solely
to explain action selection, which is still performed by the
original neural network.
Explainability places a strong focus on the presentation

of insights, where saliency maps or textual explanations
are common approaches. Saliency maps highlight the image
regions considered important for an agent’s decision and
can be constructed based on attention, gradients, feature
perturbations, or object segmentation [25]. The result offers
appealingly understandable visuals, but their utility and
accuracy have been challenged. Atrey et al. [25] found their
use in RL to be subjective and insufficiently falsifiable
to be used as an explanatory tool, corroborating earlier
works which raised their potentially misleading nature [26].
Alternative textual approaches frequently involve translating
an agent’s state-action space into human concepts and can
enable interactive explainability. For example, by evaluating
user queries with respect to a policy and transition model

to generate natural language descriptions of expected action
consequences [27].

The need to explicitly define concepts has recently
been addressed with the integration of Large Language
Models (LLMs), e.g., in autonomous driving research [28].
TransGPT [29] represents a state-of-the-art approach where
a multimodal dataset is used to train a model capable
of answering queries about driving actions. However, it
lacks a direct evaluation of explanation accuracy, and the
use of external models to retroactively justify input-output
relations can be seen as a concerning example of how
explainability may generate plausible-sounding explanations
without genuinely improving understanding.
These post-hoc explainability methods offer high scalabil-

ity and certain methods, such as perturbation-based feature
analysis, allow for application to diverse model architectures.
However, this is counterbalanced by a lack of grounding in
model internals and the risk of offering misleading results.
A challenge thus emerges regarding how the accuracy of
post-hoc explanations can be effectively measured.

B. EXISTING CHALLENGES
As suggested by [5], there are multiple challenges and
limitations in using XAI in 6G. There are no standard
quantifiable metrics for XAI [30], where commonly the
explanations consist of visual and textual inputs which can
not be quantified. Efficient metrics seem to be stakeholder
and domain-dependent, although some attempts have been
made to propose general metrics for 6G XAI [3]. It is difficult
to find the right trade-off between interpretability and
performance [31], and between explainability and security
and privacy [32]. Especially, a potential privacy leakage
from XAI is an important challenge [33]. There are legal
challenges related to the explainability of AI in 6G for
regulatory compliance. In the European Union, the GDPR
grants users the right to explanation in algorithmic decision-
making, and failing to comply with the GDPR may result in
fines up to 20 million euros or 4% of the company’s global
revenue. A serious engagement of legal experts is required to
ensure legal compliance. Beyond that, a general engagement
of all stakeholders involved is required to ensure that the
explanations generated are appropriate for each of them.

Appropriate Explanations to Audience:
Interpreting and explaining AI models as well as
improving transparency need to be audience and
stakeholder-centric. It needs to reflect the usage
scenario, the skill level, the operational environment,
the legal requirements and the application context.

III. CHALLENGE 1: REQUIREMENT OF
STAKEHOLDER-CENTERED XAI IN 6G
A. WHY STAKEHOLDER-CENTERED XAI
A stakeholder of an AI system in general can be any person,
group or organization directly or indirectly involved in the

VOLUME 6, 2025 4105
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FIGURE 3. From XAI techniques to stakeholder desiderata satisfaction, a concept model adapted from [34].

AI system. Different stakeholders have different needs and
expectations for the explanations of the same AI system. As a
result, to provide useful and understandable explanations, the
XAI approaches should adapt to the expertise and the social
and cultural background of stakeholders since their cognition
and perception are socio-culturally conditioned [35], [36],
[37], [38].
The literature has proposed different ways of catego-

rizing stakeholders, [39] identifies four main stakeholder
communities with different motivations and requirements
for XAI: developers who build AI applications, primar-
ily concerned with quality assurance, system testing, and
debugging, theorists who advance AI theory, with a focus
on understanding fundamental properties and improving the
state of the art, ethicists who are concerned with fairness,
accountability, and transparency in AI systems such as
policymakers, commentators, and critics, and end users who
require explanations to understand and trust AI outputs, and
to make decisions based on those outputs. Reference [34]
identifies five stakeholder classes: non-expert users who
interact with AI systems, developers who design, program,
and build AI systems, affected parties who are impacted by
AI decisions, often without their direct interaction, deployers
who decide where and how to implement AI systems and
regulators who are responsible for creating legal and ethical
frameworks for AI usage.
From the legal or standardization literature, according

to the Ethics Guidelines for Trustworthy AI [2], the
stakeholders include developers who research, design or
create AI systems, deployers who are public or private
organizations that integrate AI systems into their business
operations and use them to offer products or services, end-
users who interact with the AI system, either directly or
indirectly and the broader society including all others who
are directly or indirectly impacted by AI systems. Based
on this guideline, the EU AI Act [40] identifies additional
stakeholder categories for prescribing legal obligations such
as importers who bring AI systems from third countries into
the EU market, authorised representatives who act on behalf
of providers from third countries within the EU, national
competent authorities who oversee the implementation and
enforcement of the AI Act within member states and the AI
Office which facilitate the development of codes of conduct,
provide guidance, and ensure proper application of the AI
Act.

To understand how XAI approaches can be designed
and evaluated to satisfy such diverse stakeholder needs
and expectations, [34] present a conceptual framework as
shown in Fig. 3. Specifically, explainability techniques are
applied to AI systems to generate explanatory information
tailored to the needs of different stakeholders. The format,
completeness, accuracy and currency [41] of explanatory
information influence how well stakeholders understand
the AI system. The degree of understanding achieved by
stakeholders determines whether their specific needs and
expectations (desiderata) are met. The context affects every
stage, altering how explanatory information is interpreted
and how understanding translates into satisfaction. This
conceptual framework highlights the requirement of being
stakeholder-centered for the XAI approaches.

B. STAKEHOLDERS OF AI IN 6G
AI in 6G concerns more than just network providers but also
end users and legal authorities. Based on the literature [5],
[40], [42], [43], we summarize the stakeholder specifications
of XAI in Table 1 with three main stakeholder groups.

1) LEGAL AUTHORITIES

Legal authorities include legal regulators who need XAI to
create, implement and enforce AI laws and regulations [44],
and legal auditors (a third-party “notified body” or internal
“authorised representative”) who need XAI to audit the
AI systems for legal compliance [40] (e.g., “Forensic
Analyst” in Fig. 1). For example, when drafting AI laws and
regulations, legal regulators need to specify what constitutes
an adequate explanation or transparency for AI decisions.
Understanding what XAI techniques could offer helps them
set realistic and enforceable standards that AI service
providers must meet. As a result, the legal auditors must
examine the explanatory information by XAI techniques
against those legal principles to report compliance and give
recommendations. When AI-related mistakes happen, legal
authorities need XAI to identify who is accountable for the
erroneous decisions.
While the legal frameworks for 6G-specific XAI are still

in a nascent stage, legal authorities can consider the existing
general regulations to derive legal principles on agency,
privacy, security, and safety for XAI in 6G. Examples may
include AI-specific regulations such as the EU AI Act [40]
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TABLE 1. Stakeholder-centered XAI specifications summarized based on literature (Who: relationship with AI, Why: the reason for XAI, What: explanatory information, How:
XAI approaches to generate explanatory information).

and General Data Protection Regulation [45], telecom-
munications regulations such as ITU standards and FCC
guidelines, ethical guidelines and soft law such as OECD
AI Principles [46], IEEE Ethically Aligned Design [47],
sector-specific regulations such as financial and healthcare
regulations regarding the use of AI, national AI strategies,
and international collaborations and frameworks such as
Global Partnership on AI [48].
The requested information by legal auditors to understand

AI in 6G can be in the form of a well-documented
quality management system containing written policies,
procedures and instructions such as regulatory compliance
strategies, design and development procedures, data man-
agement systems, risk management, post-market monitoring,
incident reporting, communication protocols with authorities,
and record-keeping (Article 17, EU AI Act [40]).

2) END USERS

End users are the consumers of AI-powered services within
the 6G network and require understandable explanations to
build trust in AI decisions that directly affect them (e.g.,
“Consumer” and “Business User” in Fig. 1). Gaining a user’s
trust relies on three pillars [49], i.e., ability, benevolence, and
integrity, in addition to the user’s propensity to trust. Ability
refers to the functional performance of AI systems, which
can be reflected by explanatory information such as accuracy
and confidence in AI predictions. Benevolence means the
extent to which the AI systems are seen as genuinely
concerning the end users’ welfare, which can be influenced
by explanatory information such as decision trees in safety,
security or privacy-concerned scenarios [50], [51], [52]. And
lastly, integrity refers to the user’s belief that AI systems

consistently follow a set of principles or values, which is
closely related to legal conformity.
Considering the diverse backgrounds and preferences

of end-users, [42] identified 12 end-user-friendly explana-
tory forms in four categories: Feature-based explanations
(e.g., feature attribution, feature shape, feature interaction),
Example-based explanations (e.g., similar examples, typical
examples, counterfactual examples), Rule-based explanations
(e.g., decision rules, decision trees) and Supplementary
information (e.g., input, output, dataset information,
performance metrics). To facilitate this, interactive user
interfaces can be developed to enable users to explore and
customize the variety of explanatory information forms at
different depths [53], [54].

3) SERVICE PROVIDERS

Service providers are those who deploy, operate, and
maintain AI services in 6G and need explainability to under-
stand, predict, control, debug and improve the AI-enabled
components of their systems (e.g., “Network Engineer”
in Fig. 1). For example, network service providers may
1) work on the data mining and intelligent control layers
using XAI to diagnose causes of incorrect decisions by
AI models [55], 2) use XAI to enhance the performance
of the network, manage operational risks, and understand
the relationships between the input data or the training
parameters and the learning efficiency, as well as signal the
presence of biases, and 3) use XAI to better understand
network maintenance and monitoring [5]. In addition, service
providers also need explainability to facilitate end-user trust
and legal compliance.
As a result, service providers are responsible for not

only generating explanatory information for their own (e.g.,
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saliency maps, feature importance scores, counterfactual
explanations, attention visualizations, and surrogate mod-
els [43]) but also presenting that information in ways
understandable and legally compliant for end users and
legal auditors. To generate low-level explanatory information
(e.g., mainly visual, numerical or statistical features that
require the expertise of the AI systems to understand) for
improving the AI services, service providers may directly
adopt the existing XAI approaches for general AI [43]
or adapt them in the 6G application context. To generate
high-level explanatory information (mainly natural language
that requires minimal expertise of the AI systems), service
providers may adopt legally compliant quality management
systems and comprehensive documentation practices for
legal auditors and design personalized interactive user
interfaces for end users.

4) DISCUSSION

Table 1 presents significant responsibilities for the 6G
service providers, including but not limited to, 1) commu-
nicating the XAI capabilities to others (legal authorities and
end users), 2) collecting XAI needs or expectations of others,
3) generating the appropriate explanatory information for
others. Moreover, the needs of XAI vary across network
layers (i.e., edge, RAN, core, and cloud):

• At the edge, where resource-constrained AI models
operate on end-user devices and base stations, explain-
ability is crucial for end users to understand local
AI-driven decisions (e.g., personalized AI services).
Legal auditors may require localized compliance checks
on AI privacy and security.

• Within the RAN, explainability is essential for service
providers to diagnose performance bottlenecks and
optimize AI-based network orchestration. Legal regula-
tors may also need explanations for spectrum allocation
fairness, ensuring non-discriminatory AI-driven network
policies.

• In the core network, where AI-driven traffic manage-
ment, authentication, and policy enforcement occur,
interpretability needs are broader. Service providers may
require detailed insights into AI decisions affecting rout-
ing, congestion control, and security monitoring, relying
on surrogate models, counterfactual explanations, and
dependency graphs. Legal auditors may focus on AI
accountability in cybersecurity, necessitating forensic-
level XAI capabilities to trace automated decisions
affecting network access control, encryption policies,
and service differentiation.

• At the cloud layer, where AI models are trained and
orchestrated at scale, explainability is vital for both
service providers (e.g., debugging global AI models,
ensuring fairness, and improving network automation
strategies) and legal authorities (e.g., ensuring compli-
ance with regulatory frameworks). Explainability at this
level typically involves comprehensive documentation,

model interpretability reports, and traceability
mechanisms.

As such, here we identify a lack of a common and
formal specification language on explainability to capture the
actual requirements across network layers and stakeholder
communities for the verification of XAI techniques.

IV. CHALLENGE 2: EXPLAINING REINFORCEMENT
LEARNING IN 6G
Various approaches and taxonomies are proposed in the
literature discussing the explainability of RL as reviewed
in [8], [24], [56], [57], [58]. A more RL-oriented review
study is given by [24] where interpretability/explainability
concerning different levels of RL is discussed: (1) feature
importance in taking action for a given input state, (2)
influential past experiences of MDP and reward (objec-
tive) components affecting the learning process for current
behaviour, and (3) long-term policy over time capturing
an abstraction or summarisation of the agents’ behaviour
about subtasks and planning during training to achieve the
goal. A comprehensive study is provided by [8] on explor-
ing/exploiting interpretable models for different components
of RL including (1) inputs used by agents for learning and
decision-making, (2) transition model of MDP, (3) preference
models of reward function, and (4) value function and policy
directly or indirectly. An overview of the state-of-the-art
models with their interpretability purpose is listed in Table 2.

A. DIRECT FUNCTIONAL EXPLANATIONS
Direct model explanations are challenging for deep neural
networks (DNN) due to the large functional space they
operate in. Attempts to use generalised functional descriptors
to collapse the dimensionality of the DNN into more tractable
expressions suffer from several issues:

1) Mapping to a discontinuous functional space
2) Loss of information
3) Human bias in interpretability
4) Lack of prior target function space resulting in large

function search space

For example, one might be motivated to use general
functional approximators (e.g., Gaussian Processes [59],
Hyper-geometric functions such as Meijer-G, Fox-H [60])
via Kolmogorov–Arnold Superposition Theorem (KST) to
model the activation functions as they can (with the right
parameters) be approximated to most functions. The combi-
nation of these approximators is a form that is the same as
itself, reducing the function complexity of combining many
activation functions. What we are effectively doing is asking
for a DNN to be represented in some kind of parametric
model space, where changing the parameters equates to
searching on a discontinuous function landscape - see
Fig. 4A. We are bound to lose information in the projection
process. There may be many functional representations that
satisfy some kind of information loss function, and hence
we are likely to use cognitive bias to select functions that are
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FIGURE 4. Forms of XRL: (a) agent model projection to function space, (b) capture agent’s behaviour to meet the objectives and sub-goals/subtasks with temporal
abstraction, and (c) reward or policy inference approaches.

more familiar to us or are easier to analyse/interpret. Finally,
unless we know what the target function will look like
(e.g., we know from prior convex optimisation solutions),
the search space can be extremely large.
A further critical challenge is how such direct modelling

approaches would work for more complex neural networks
such as convolution, recurrent, transformer, and RL archi-
tectures (e.g., actor-critic, double duelling). It is worth
noting there are more complementary data-driven models
where a projection is made to a self-organising-map (SOM)
with temporal-difference (TD) error used to control for the
process [61], but the SOM is used more for improved
performance than explainability. Nonetheless, these methods
in general are limited to relatively small neural networks
with prior explainable model beliefs.

B. SYMBOLIC EXPLANATIONS
Traditional RL methods are inherently limited by the
assumption that tasks follow a Markov process, where
the future state depends only on the current state and
action, not on the sequence of events that preceded it. This
assumption renders traditional RL methods ineffective for
non-Markovian tasks, as they cannot naturally incorporate
the necessary historical context without making policy
learning practically intractable due to the exponential growth
in state-space complexity. Reward Machines (RMs) present
a compelling approach to address these challenges by
explicitly modelling the structure of tasks. By breaking down
tasks into a series of sub-goals and transitions, RMs facilitate
the learning of policies that are more interpretable but also
better aligned with human-understandable objectives. This
task decomposition allows for the accommodation of non-
Markovian tasks by integrating memory into the learning
process. We summarise below the key aspects of this neuro-
symbolic approach to RL.

1) REWARD MACHINE-BASED RL

Reward machines (RM) are finite-state automata enabling
temporal high-level abstractions that represent the reward
function and the structure of RL tasks in a compact form in
terms of a finite number of states and transitions between
them that are independent of the RL state and action
spaces, rendering them more applicable towards autonomy
of ultra-large networks. In the context of RL, automata have
been generally used to represent hierarchies of decisions
made by agents [62], [63], memory of the trajectories in
partially observable environments [64], reward functions
and the structure (RM) of an agent’s task [65], [66], and
encoded policies by a neural network [67]. This will induce
more interpretability for the policy taken and the level of
learning task performed by the agent. More specifically, RMs
are exploited toward encoding sub-goals of a goal-oriented
episodic RL task by two types of abstraction [68], [69]. The
first one makes an abstraction of the original state space
into the automaton set of states by recognising the level of
task completion in terms of the initial launch (initial state),
sub-goals achieved (accept state), those yet to be achieved
(incomplete state) and not achieved by the end of the episode
(reject state). The second one abstracts the actions into
the set of sub-goals labelling the transition edges as local
objectives toward the subsequent automaton state. Once the
agent observes the next visible state of the environment, the
automaton state transition occurs when the observables (if
any) contributing to the sub-goals of the task are perceived
by the agent. The abstractions made by this automata
enable simpler learning of the whole task by learning easier
subtasks, better exploration by quick transition to abstract
states, generalisation to different similar or related tasks by
sharing common subtasks, and deal with partial observability
of environment and non-Markovian rewards by providing an
external memory for the agent.
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TABLE 2. Overview of the XRL methodologies.

To learn the RM described above, a sub-goal automata
learning task is first formed by considering the automata
model and a set of observation traces extracted from the
traces of visible states and actions. Second, the automata
learning task is represented by Answer Set Programs
(ASP) [70] which is a declarative logical programming
language to express knowledge and reasoning in the
representational form of logical programs inherited from
computational logic. ASP consists of a group of statements
characterising the objects of a domain and their relations,
and the set of possible outcomes of ASP, called answer sets,
are the semantics of the program and reflect the agent’s
beliefs related to this program. Accordingly, various tasks
can be reduced to finding the corresponding ASP program
and their solutions as the answer sets of the respective ASP
programs. ASP solutions can be learnt by the Inductive
Logic Programming (ILP) system [71] and are so referred
to as Inductive learning of ASP (ILASP) [72], [73]. ILP
enables model developers to develop more verifiable machine
learning algorithms by practising logical programs as a
universal representation that are much easier to manipulate
by pure clausal logic changes. The agent in question in
Fig. 4B applies an ILASP system [72], [73] to perform
learning by forming three components: (i) background

knowledge, (ii) hypotheses set, and (iii) examples from the
ASP representation of the automata model and observation
traces, respectively. Third, the inductive solution to the
ILASP learning task is released in the form of hypotheses
or rules that comply with the background knowledge and
cover the context-dependent examples. This solution is the
minimal automaton, i.e., with a minimum number of states
and a limited number of edges between states, capturing the
sub-goal structure of tasks. The sub-goal automata learned
in this way are referred to as Inductive Sub-goal Automata
(ISA) and can be further exploited by RL algorithms to learn
the policy conducting the agent to achieve the goal [69] using
Q-learning. This can be performed in either a hierarchical
manner (HRL) or a direct RL manner. The hierarchical way
is carried out by first learning the policy over the set of
available options in an automaton state, followed by learning
the policy of an option (for an outgoing edge) that satisfies
a sub-goal of the task. However, in the direct way, a single
option policy is learned in a given automaton state that might
not satisfy a sub-goal of the task but ultimately reach the
goal of the task, and hence globally sounds to yield the best
and fastest policy to achieve the goal.
In addition to exploiting RM for RL, it can also be

interleaved with RL for iterative refinement of RM from

4110 VOLUME 6, 2025



the experience of an RL agent. This can be done by first
checking if the current visible, terminal, and goal states of
the environment observed by the agent are correctly validated
by the current state of the automaton, and if not, then add
it to the respective set of observation traces (goal, dead
end, and incomplete) for subsequent relearn of the RM.
If the accuracy of the relearned RM is still unsatisfactory,
then another state is iteratively added to the automata set
of states to enlarge the hypotheses space that captures the
rule of automata. It should be mentioned that this way of
learning RM is not scalable to the number of automata states
and edges. The RM approach is also extended to the case
where perceptions of high-level propositional events from the
environment are noisy (probabilistic) [74]. Another extension
is to the multi-agent scenario where RMs of subtasks are
individually learned in a decentralised way to cooperatively
guide the policy of agents toward a common goal [75].
Application in 6G Exploiting RMs toward symbolic RL

for next-generation 6G applications is a promising way to
address the high computational burden imposed by very
large state spaces when performing joint optimisation over
different layers of communication network as well as joint
communication, control, computing, sensing and localisation
(3CSL) required for broader connectivity over space-air-
ground networking [76]. In this context, RMs can be
leveraged within each layer toward layer-wise interpretability
of the policies used to meet the respective goals of each layer
and also in higher layers to hierarchically explain the orches-
tration of the functionalities performed interactively among
layers. This can also be extended to capture the structure
of the sub-goals when addressing RL-based optimisation for
3CSL. Additionally, RMs enable an interpretable framework
to deal with the partial observability of the communication
environment by capturing the memory of visible states of
the network, as well as the structure of tasks while taking
the reward function and policies into account for sequential
decision-making. Further discussions on the way RM can be
exploited toward this end for the network slicing use case
are provided in Section VI-A.

2) NEUROSYMBOLIC APPROACH

Neurosymbolic (NeSy) AI tries to bridge the gap between the
low-level connectionist approach of the “Neuro” component
for statistical learning from raw data and the high-level
cognitive and human-like approach of the “Symbolic”
component for reasoning [77], [78], [79]. The integration
of these two different areas of AI enables more efficient
learning of data structure and knowledge representation
from data as well as reasoning and explaining the learned
experience in a form that is understandable and interpretable
by humans. The various approaches with which these two
components interact with or incorporate each other give rise
to different categories of NeSy AI, as described in [80].
One categorisation proposed by [81], studies this integration
based on learning for reasoning [82], [83], reasoning for
learning [84], [85], or joint learning and reasoning. Further

details and discussions on the current trends of such integra-
tion and their respective challenges and future opportunities
can be found in [80], [86].
In Learning for reasoning, the Neuro component guides

the reasoning process by approximating the symbolic com-
putation [87], assigning probability distribution on the base
knowledge [88], learning relational reasoning with Relational
networks (RNs) [89], learning first-order logical rules in the
form of weighted non-linear logic operators called logical
neural networks (LNN) [90], learning symbolic representa-
tion of unstructured data, structured knowledge graphs to
further improve the reasoning process by shrinking the search
space of the symbolic system. However, in reasoning for
learning, the symbolic component guides the Neuro part in
various settings by catering high-level symbolic knowledge
to a neural network that is involved in learning and decision-
making with the ultimate goal of enhancing interpretability
and reasoning, especially when dealing with mislabelled,
noisy, ambiguous data or complex applications of dynamic
environments [91], [92], [93] or facilitating efficient learning
for the Neuro component [94]. As this requires manual
engineering of the symbolic knowledge for the downstream
task, known as symbol grounding problem, there is a need
for a joint reasoning and learning where a combination of
neural network training and inference of symbolic knowledge
from data is performed by intermittent interaction between
the learning and reasoning [85], [95], [96].
In the context of RL, [97] provides a comprehensive

survey of such categorisation for NeSy integration in
different aspects of RL algorithms, including environment
state space, agent policy, and reward function. The NeSy
RL has been proposed to address the challenges of deep RL
(DRL) related to data-inefficient learning, poor generalisation
to similar tasks, lack of high-level processes for various
types of reasoning, and low human-comprehensibility for the
sequence of actions taken by the agent [82]. Accordingly,
deep symbolic RL (DSRL) was introduced by [82] in an
end-to-end architecture to learn low-dimensional high-level
symbolic state representations from the high-dimensional
raw data in the back-end for subsequent front-end symbolic
reasoning. DSRL is further extended by [83] to take into
account common sense priors for the assignment of rewards
and the aggregation of Q values. This is shown to achieve
faster learning and also higher accuracy than just Q-learning
and DSRL especially when trained on a simple environment
and tested on more complicated environments. This extension
can also offer a better balance between generalisation and
specialisation. Reference [98] makes use of LNNs to train an
RL policy that can directly render interpretability by neural
training of logical functions. In addition to the representation
perspective, NeSy RL is applied for safe exploration of the
state and action space to allow efficient verification of the
learned policies [99].
Reference [100] proposes a relational deep RL framework

that leverages the relational reasoning of RNs and key-value
attention mechanisms to further build and aid autonomous
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RL agents that can learn out-of-distribution tasks expressed
by temporal logic instructions. A neurosymbolic rela-
tional RL approach, called deep explainable relational RL
(DERRL), is proposed by [101] where deep neural networks
learn symbolic relational representations (in the form of
logic programs) of policies to extract interpretable policies
while enabling scalability under structural changes in the
environment. A similar approach is used by [102] for a
hierarchical RL (HRL) where high-level symbolic relational
representations (in the form of ASP) of meta-policies over
options are learned by an ILASP system and further used
to guide a pre-trained DRL agent. Reference [22] also
considers learning a task-level relational reasoning module
for HRL. This can be considered as the hierarchical extension
of [20] where neural logic machines (NLM) [103] are
exploited to reason about policies in DRL by combining
differentiable ILP (DILP) and policy gradient methods.
Another direction of NeSy RL research is to extract and
exploit a finite state machine (automata) structure for reward
shaping, especially for sparse and non-Markovian reward
functions, toward a more effective DRL algorithm by
changing the reward with respect to different learning stages
over time [104], [105], [106]. More details about NeSy RL
can be found in surveys [8], [86], [97].
Application in 6G NeSy AI has been exploited in the

context of 6G for the following use cases:

1) zero-touch network and service management (ZSM) to
capture the dynamics of wireless Internet of Everything
(IoE) environment for autonomous management of
communication and computational service decisions
using a directed acyclic graph (DAG)-based Bayesian
networks as an explicit explainer for the neural
network-based multivariate regression [107],

2) intent-based semantic communication to consider
semantic and effectiveness of transmitted messages,
without affecting their reliability, for integration of
time-sensitive autonomous systems in future gener-
ation of communication networks. This will enable
developing intelligent end-nodes that can efficiently
and reliably communicate through a combination of
knowledge representation and reasoning with machine
learning. A Generative Flow network approach with
DNN encoder and decoder structure is used by [108]
to learn the probabilistic structure of the observed data
at the receiver emanating from an optimal transmit
message in form of a compact objective function.

3) provisioning-aware radio resource allocation by a
gNB to meet QoS requirements [109]. More specifi-
cally, a Bayesian Graph Neural Network explainability
approach is used to address an RL-based minimisa-
tion of the physical radio resource over-provisioning
and under-provisioning while meeting the amount of
requested downlink traffic.

Explaining Reinforcement Learning is
Challenging: RL prospects into the future and
explaining the reasoning is often done through
symbolic mapping to known symbolic knowledge
or belief heatmaps of associated observation-action
pairs.

C. REWARD/VALUE, STATE TRANSITION, AND POLICY
SPACE VERIFICATION & INFERENCE
In many legal and regulatory cases where motivation,
opportunity and capability to act are sufficient to prescribe
responsibility. As such for RL, we may only be interested
in limited explanations of what its motivations (rewards)
are, and/or what state-action mappings (policies) it is set to
do. As a primary party (e.g., network service provider), we
would have direct access to the reward or value function and
policy, and we can in real-time display these as a function
of time and events to assess performance.
For the reward/value function, the explanations can be

provided by decomposing the reward function, also resulting
in the decomposition of the value function, into several
components that can provide intuitions about the contribution
of various objectives to the final composite reward [110]. A
similar idea was also considered for the decomposition of
the value function in the context of cooperative multi-agent
RL to account for the individual contributions of each agent
in the joint value function, assuming it can be approximated
by factorization of less complex functions, referred to as
Value function factorisation (VFF) [111]. Various algorithms
based on VFF include the value decomposition network
(VDN) [111], the Mixture of Q-values (QMIX) [112],
and the Transformation of Q-values (QTRAN) [113]. The
decomposed variants of these algorithms, referred to as
D-VDN, D-QMIX, and D-QTRAN, are further proposed
in [114] by incorporating RDF into the VFF to capture
the contribution of distinct reward components in the
approximated individual value function of each agent. This
adaptation was additionally improved in the complexity
of the reward components per agent by a multi-headed
architecture that performs multi-task learning of all reward
components [114]. A use case of these algorithms was also
studied to improve the key performance indicators (KPIs) of
codec adaptation in XR traffic.
This approach avoids trying to explain what the agent is

doing precisely but rather explains what motivates (rewards)
the agent to behave in a certain way (policy). In many
cases, we may wish to understand state transitions to better
understand the agent-environment interactions rather than
just the agent’s internal design (e.g., reward and policy).
This extrinsic explainability is essential to check the agent
is not only designed well but also interacts well. This
has been designed as explainable Q-learning for linear
controller systems so far and can be expanded to data-driven
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problems [115]. Expanding some of these techniques to high
dimensional states for 6G could be a challenge at the resource
optimization level.
What becomes more challenging is if we are a secondary

party (e.g., ORAN orchestrator) and we must verify what the
policy and reward space is for a rApp/xApp. For example,
an innovator inserts a suspicious ORAN app and we must
verify whether the declared certificate is true. Here, we
can use a variety of inference or inverse learning methods
to verify. For example, we may set up a verification RL
model that uses the declared policy or reward to check the
error between them [116] - see Fig. 4C. If the agent in
question declares what policy and/or reward functions it uses,
the ORAN would verify the declared model in question is
performing in accordance with expectations by minimizing
the error feedback. In an undeclared case, or when the above
is not true, the ORAN would use general functions (e.g.,
polynomials) to try to infer what potential functions are
being used via an inverse reinforcement (IRL) policy or
reward learner module. Either way, the difference in output
can be feedback to the verification network as state (S) and
rewards (R).
Another approach in XRL is through feature impor-

tance where the most influential state features affecting
the action taken by the RL agent at each time instant
are recognised. This explanation can provide insight to
service providers and end users about the critical input
contexts for making decisions. A use case for this type
of XRL is in radio resource management (RRM) for V2X
communication in the context of autonomous vehicular
networks [117] toward automotive transportation. In this
setting, vehicles communicate with the help of a roadside
unit (RSU) and optimise real-time power control using a
multi-agent DRL. The space for each agent comprises the
transmit power in the previous time slots, direct channel
gain to other vehicles, interference gains of the current and
previous time slots, and the signal to interference in the
previous time slot, which constitute a state space of overall
2K + 2 dimension for a total number of K vehicles. The
explainability approach in this study is based on SHAP
(SHapley Additive exPlanations) values for computing and
ranking the feature importance scores to reduce the size
of state space and retraining the model using the most
significant state features that globally contribute to the
agent’s decision, and hence explaining the allocated power
at each time slot. The experimental results in [117] show
that under the high mobility regime – which results in
low correlation between fading coefficients of successive
time slots– features of previous time slots have negligible
influence in the agent’s output and hence reducing the
size of state space by almost 70%. However, this might
not always be the case, and hence the characteristics
of the communication environment might allow for more
important state features to appear as the number of vehicles
increases, which renders the feature importance method
computationally infeasible.

Most of the discussions provided on the explainability
techniques for RL are model-based such as decision-tree
(DT), reward machine, structured causal models, graph-based
abstractions for the policy and transition model of MDP,
and reward decomposition. It should be noted that these
models still need to be learned with interpretable methods
in most cases to capture the trajectory of experiences in an
RL task. The most famous model-free techniques which are
not specific to (but can be also used in) RL are the feature
importance-based techniques such as SHAPLY that computes
the highly influential state feature for a given action taken
at each time step. Other model-free techniques include post-
hoc explainability techniques such as linear interpretable
model-agnostic explanations (LIME), saliency maps, and
conversion of policy into interpretable formats. The model-
free approaches that can be considered more specific to RL
are the “interpretable off-policy evaluation” and “influence
functions” to identify the most influential experiences of an
agent with respect to the estimates of value function [24].

V. CHALLENGE 3: CAUSAL UNDERSTANDING FOR
IMPROVING EXPLAINABILITY AND PERFORMANCE
The explainability approaches discussed in the previous
sections can be inadequate as they only expose variable
correlations and thus misinterpret confounding factors and
complex causal chains present in those dynamic envi-
ronments. Causal analysis shows a promising pathway
addressing this. Causal analysis can not only help to optimise
the AI models but also produce a deeper understanding of
both the AI models and the dynamics of the networks.

A. CAUSAL ANALYSIS
Causal analysis is a statistical framework which allows
system analysis from three different perspectives: obser-
vational, counterfactual, and interventional [118], [119],
[120], [121]. Traditional probabilistic approaches are mostly
focused on the first observational level; observations of the
system variables are used to infer a probabilistic model
of the system, providing some explainability of it. The
counterfactual and interventional levels opened by causal
analysis allow the understanding of how such probabilistic
models would be modified under hypothetical changes in
the variables. The counterfactual level analyses how a past
sample observation would have changed if some system
variables had a different value, while the interventional level
considers how the model would change if some modifications
were forced on it, such as fixing a variable to a certain
value. In that sense, causal analysis does not produce a single
probabilistic model but a continuous stream of probabilistic
models (the observed one as well as any possible variation
of it). Common approaches to hypothetical changes such
as sensitivity analyses offer a correlational understanding
of the changes in variables but are not able to distinguish
confounding factors and since they do not provide complete
probabilistic models they are not able to produce analysis
on specific past samples; i.e., they answer how in average
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TABLE 3. Examples of causal representations for 6G networks.

some variables seem to affect others, while causal analysis
can answer how, for a particular observation, changes in
variables would have affected others. In other words, a
sensitivity analysis offers a static probabilistic model, while
a causal analysis offers probabilistic models for each past
or hypothetical scenario.
Causal analysis uses structural causal models as a main

tool to represent such scenarios. A structural causal model
is defined by a series of structural equations which define
how the different variables of the system relate to each
other and any additional sources of variation such as
exogenous noise. The structural causal model induces a
graphical representation which is visualised using Directed
Acyclic Graphs (DAGs) [118], [119], [120], [121]. These
diagrams offer, among other benefits, a clear visualisation
of the analysed system’s causal structure, showing how
the variables relate to each other. They also make it easy
to understand for example which variables would need to
be intervened to produce changes in specific variables of
interest.
Table 3 shows examples of different causal representations

that can be used when modelling the causality of a 6G
network, the nodes of a graph may represent for example
performance and quality indicators of the 6G network,
allowing the understanding of how the performance indi-
cators cause changes in the quality (see [122, Fig. 6]).
Another possibility is that the causal model represents the
network from the AI model perspective. In this case, the
graph nodes may categorise the information into latent
variables, observations, and interventions (see [123, Fig. 2]).
A different possibility is to perform a causal analysis focused
directly on the AI model. In this case, for RL the graph
nodes may represent the states, actions, and observations
(see [124, Fig. 1]).

Causal discovery techniques [125], [126], [127], [128],
[129] produce such diagrammatic causal representation from
observational and interventional data. Estimation techniques
allow the quantification of the effect of the causal relation-
ships to obtain the complete structural causal model, which
enables the calculation of specific probabilities using causal
inference methods [130], [131].
Recently, causal analysis is increasingly used in connec-

tion to machine learning, to improve the explainability of
such techniques but also to make them more efficient. The
interplay between the two approaches is what is called causal
machine learning [132], [133], [134], [135].

Traditional supervised machine learning works on the
observational or associational level, using the data to learn
from its correlations to solve the supervised tasks. Regarding
its efficiency, this leads to strong limitations such as
the difficulty for such techniques to distinguish between
causal and confounding information [133], [136], [137],
[138], [139]. To overcome this problem, different causal
machine learning approaches can be applied, going from a
causal feature selection that preselects the causally relevant
information for the machine learning models to work on
to causal architectures of machine learning models which
already have as a learning objective the distinction between
causal and non-causal information [140], [141], [142], [143].

On the other side, beyond the efficiency argument,
causal machine learning models are more explainable. The
improvements may come, for example, from using more
explainable features or feature selection [144], or from using
architectures and representations which are explainable per
se [145], [146].

B. CAUSAL ANALYSIS FOR 6G OPTIMISATION AND
EXPLAINABILITY
As was presented in the previous section, causal analysis
allows the creation of models of complex 6G networks that
help understand how their variables relate to each other
causally. Next, we review the key causal analysis approaches,
then detail some use cases and their impact on stakeholder
groups, and finalise by reviewing recent work in causal AI
in communication networks.

1) NATIVE AI NETWORK OPTIMISATION

Prior or real-time causal understanding can be used to
simplify the use of native AI operating in 6G networks
and make it explainable by construction. There are many
examples which we give insight into below.
Transfer Learning in Parallel Channel/Traffic: In chan-

nel estimation and traffic prediction amongst nearby Base
Stations or Radio Units (RUs), transfer learning can be
applied between edge prediction models such as RNNs and
GPs [147]. While traditionally it would be required to train
multiple parallel models naively assuming the independence
of the data sources, causal understanding between channels
or coverage areas allows for reducing their multiplicity. For
example, if the data from a BS/RU is shown to be the
cause of the data for others (e.g., due to users moving
from one spatial location to another), causal directional
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FIGURE 5. Causal learning rApp drives LSTM and probabilistic GP prediction tasks as xApps.

transfer learning could be applied between such sources
of data instead of training multiple independent models or
guessing which direction the causality lies using correlation
approaches. In Fig. 5, we can see that future ORAN xApps
may hold these parallel prediction models in Distributed
Units (DUs), and the causal inference as a non-real-time
rApp may be held in the Centralised Unit (CU) to indicate
which direction the causal transfer learning should take place.
Global Cross-Layer Optimisation: The newly integrated

services (that are previously siloed) such as integrated
sensing and communications [148], [149], [150], shared
native AI-as-a-Service [151], using mobile drone relays
to expand and improve coverage [152], [153], [154], etc.
require cross-layer and cross-module global optimisation,
leading to a dimensionality explosion challenge, especially
for RL. Causal AI can improve efficiency by reducing the
search space in the training of network-wide cross-layer
global models. This can reduce the dimensionality explosion
problem in 6G [155]; if some of these data sources are proven
to be causally redundant or even confounding information,
they can be excluded from the training processes.

Causal Learning is Crucial: causal learning allows
us to understand why something has happened—
leading to more reasoned and efficient downstream
AI/ML implementation.

Causally Informed AI/ML Models: Causality may also
be used in the design and architectures of the AI models
themselves to improve their efficiency and explainability, as
it was mentioned in the previous section. Some examples
in other domains are the following: [145] propose an
autoencoder with an internal causal layer that disentangles
the latent variables. While traditional autoencoders produce
latent variables that may have no semantic or causal
meaning (since they use a commonly incorrect assumption of

uncorrelated latent variables), here the latent variables are the
causal variables of the data (which are learnt together with
the causal model of it). Reference [143] propose a model
with a causal training objective whose aim is to distinguish
in the inputs the causally relevant information to produce the
correct outputs. Similarly is done in the work by [141] in
an RL case. Reference [140] propose models with specific
causal architectures and objectives.

2) CAUSAL AI USE CASES AND STAKEHOLDERS IN 6G
AND XAI TECHNIQUES COMPARISON

In the following, we motivate the use of causal approaches in
6G networks by presenting specific use cases and comparing
them to other explainability methods. We illustrate the advan-
tages of the causal framework through scenarios involving
various stakeholders—legal auditors, service providers, and
end-users—and highlight technical aspects relevant to 6G
networks. The stakeholder groups and related applications,
which we detail below, are as follows:
1) Human forensic post-hoc analysis by service providers

and legal auditors
2) Human real-time analysis for resource management by

service providers and end-users
3) Machine native AI network real-time optimisation
Next, we present example use cases related to them.

Table 4 summarises the following content.
Bayesian Approaches in Spectrum Management:

Reference [156] analysed the use of deep learning in
channel management where the management optimisation
was performed through a Bayesian technique which provides
a certain degree of explainability, since it creates a statistical
model of the system based on the knowledge about it. While
Bayesian approaches focus on the relationship between the
prior knowledge and the posterior estimated from it, causal
models are focused on the causal relationship between the
system variables, independently of our knowledge about
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TABLE 4. Examples of causal AI use cases and stakeholders.

it. Causal analysis does not exhibit a sensitivity to the
priors [157]. This may represent an advantage for certain
explainability aspects. For example, consider a scenario of a
critical service requiring a high-quality connection [158] (i.e.,
ultra-reliable low latency communication, high spectrum
efficiency, etc), such as a vehicle-to-everything intelligent
traffic safety application. In this scenario, a legal auditor
stakeholder may be investigating an accident produced by
the failure of the application due to a failed modelling of
the channel requirements. The auditor should not consider
explanations focused on -and thus highly dependent on-
the prior knowledge observed up to that moment, but
used instead explanations with a focus on the true causal
mechanism of the system and how it affected the outcome.
Thus, a causal approach may fit better the legal auditor
explainability requirements.
In [156], the Bayesian approach is used as a way to

optimise over unknown and latent parameters given some
observed data in a channel estimation use case. In that sense
is a more efficient approach than naive optimisation which
disregards using the modelled priors. However, it is still less
efficient than using in addition the knowledge of the causal
relationship between the variables [159], which would be
disregarded in a standard Bayesian optimisation. This latter
work shows how a causal approach can be in some cases
complementary to other approaches to explainability.
Counterfactual Explanations in Resource

Management: Another relevant application of AI in 6G is
resource management [160]. This includes aspects such as
massive channel access, interference management, hand-off
management, IoT coverage extension, etc. [161] consider
multi-modal traffic classification using deep learning and
apply SHAP techniques [162] for its explainability. These
allow them to explain which set of input features contributes
the most to the confidence probability value associated with
the traffic of a given mobile app. It works by comparing the
outcome of the model with the outcome of a model where a
particular feature is withheld, analysing the average of this
procedure for all the features.
While these explanations rely on some kind of counter-

factuality, their use is very limited. The technique only

analyses the local counter-factuality of the presence or
absence of each feature concerning the particular outcome
observed. In contrast, complete causal models can obtain
the result of any counterfactual question over any outcome.
That is, the counter-factuality is not just a binary question
over the features’ presence but allows the learning of how
any particular value of each feature would have affected
the results. Additionally, in a causal approach, this is done
by relying on a global causal model and not just a local
approximation of it. For example, in the case analysed
in the previous work, we can consider the perspective of
an end-user stakeholder wanting to know why their phone
connection is experiencing problems. Using the techniques
proposed in the article may produce a diagnostic pointing
to the traffic of a specific app, which may lead the user to
deactivate completely the app driving this process.
A complete causal model may produce instead a more

complex counterfactual explanation, which may alternatively
lead to a rebalance of the traffic of various apps, which
may allow keeping all of them active, instead of producing
a single binary change, which may be a more desirable
scenario for the end-user stakeholder.
Requirement Forecasting in Edge Computing: The last

AI application in 6G that will be considered is the edge
computing case. Reference [163] study a scenario where real-
time video streams are shared by vehicles to assist in traffic
manoeuvres. In this scenario, the video streams are shared
by an application running at the edge of the network. The
AI application forecasts the Quality-of-Experience (QoE)
perceived by the users based on QoE and QoS metrics as
well as other information such as cell usage. The authors
show how federated learning outperforms local or centralised
learning. In this work the explainability of the AI models is
produced using fuzzy rules [164]. Given this use case, we
can consider a scenario where a service provider stakeholder
uses the edge-AI models to optimise the QoE based on the
previous data. Common induction algorithms for fuzzy rules
are based on correlations, and thus this scenario may lead to
misidentifying confounders as causes of the QoE. A causal
analysis approach would on one side eliminate such errors,
and on the other side would offer the service provider the
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specific interventions that can be executed to maximise the
QoE when it is forecasted to be below a certain threshold.
This possibility of operating both at the observational and
interventional levels is unique to the causal framework.
Authors such as [165] have shown how to combine causality
with fuzzy rules in such cases.
In summary, the presented cases show how a causal

analysis framework may benefit different stakeholders of the
6G network, from legal auditors to service providers through
end-users. Some of the advantages include the possibility
of asking counterfactual questions over the system analysed,
being able to design specific interventions to increase the
efficiency of the network, and a more robust and complete
global explainability. As was shown, a causal framework can
be applied on certain occasions in combination with other
explainable techniques.

3) RECENT WORK IN CAUSAL AI IN COMMUNICATION
NETWORKS

Reference [166] showed the possibility of increasing the
efficiency of the energy allocation of the communication
channels. They verified the causality between channels and
used this common causal connection to better forecast
their energy requirements. Reference [122] demonstrated
the possibility of improving the user experience of the
users of the network through the causal modelling of the
relationship between performance and quality indicators.
Causal discovery techniques were used to build the DAG of
such variables showing their causal relationships, which were
embedded in a graph attention network. As we mentioned
above, such causal knowledge can also be used to infer which
variables of the network have to be intervened to maximise
the effect on the user experience. Reference [167] analysed
how to use causality for a better operation and maintenance
of the network by better predicting its conditions of use.
Causality was applied to communication data analysis to
select the features to use in an LSTM model to predict future
call volume.
The exponential expansion in the amount of data expected

in 6G networks together with the embedding of machine
learning models at all network levels is leading to a recent
increase in studies specifically targeted to causality and
machine learning for 6G. Reference [168] applied causal
discovery approaches to identify causal factors determining
network performance patterns in mobile wireless networks.
As an example of their results, in their datasets they found
the uplink throughput to be the most relevant causal factor
for the performance and a causal relationship between the
number of reserved signalling resources in the physical
uplink control channel and the uplink throughput. In a
very recent work, [169] developed a very comprehensive
vision of the advantages and principles for a causality-
driven AI-native wireless network, including RL models.
They identified challenges in the current use of AI in
wireless systems, showed the advantages of the use of
causality illustrated by use cases such as dynamic channel

tracking, digital twin modelling, and ISAC, and proposed
a causal inference-based framework for wireless control
problems. In [170], some of the previous authors used causal
representation learning concepts to design reasoning-driven
semantic communication networks. This work also included
proposals for reasoning capacity measures for computing and
communication resources. The authors proposed definitions,
visions, and building blocks of an end-to-end semantic
communication network.
These previous studies justify the need for and advantages

of further work on causality in 6G networks.

Examples of causal analysis applications for AI-
driven 6G decisions include:

• increased performance in channel estimation
and traffic prediction using causality for transfer
learning between the AI estimation/prediction
models;

• improved performance in training global cross-
layer AI models for integrated sensing and
communications by using causality to reduce
the search space of redundant/confounding data
sources;

• causal post-hoc analysis of AI-driven 6G deci-
sions of spectrum management in ultra-reliable
low latency communications;

• better performance of real-time bandwidth man-
agement by estimating counterfactual AI-driven
decisions of channel access;

• better resource forecasting in edge computing
using causal AI for improved estimation of QoE.

VI. XAI IN 6G USE CASES
In this section, we focus on two key 6G use cases—network
slicing and autonomous robotic systems—where XRL and
causal analysis play an essential role in addressing real-
world deployment challenges. These use cases are selected
based on their criticality to 6G infrastructure, their reliance
on AI-driven decision-making, and the pressing need for
interpretability in their operations. Network slicing is key
to 6G’s efficient resource management, but opaque AI
policies can undermine compliance, SLA assurance, and
trust. Similarly, UAV-based robotic systems enhance adaptive
connectivity but require transparent decision-making for
safety and reliability. While many 6G applications benefit
from XAI, these two domains serve as representative
examples where the integration of XRL and causal reasoning
is not only beneficial but essential for real-world viability.

A. NETWORK SLICING
Network slicing, a key enabler for tailored service delivery
in 6G networks, represents a complex resource allocation
challenge that has been significantly enhanced through
AI-driven approaches. As a combinatorial optimization
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problem [171], it has evolved significantly through DRL
applications, demonstrating substantial improvements in var-
ious aspects of network management. Pioneering studies
showcase DRL’s effectiveness: [172] developed an intelligent
slice admission control framework, while [173] and [174]
achieved revenue improvements of up to 54.5% and 17%
respectively through efficient slice orchestration. Recent
advancements have further enhanced this domain, with [175]
proposing a dynamic RAN slicing model that categorizes
services into throughput-oriented, delay-sensitive, and delay-
throughput-tolerant types while addressing system stability
across heterogeneous traffic demands. Complementing this
work, [176], [177] introduced a two-phase approach com-
bining optimization theory and DRL to balance eMBB
data rates with URLLC reliability constraints. This frame-
work effectively manages the challenging trade-off between
service types, demonstrating improved eMBB reliability
while maintaining URLLC performance through dynamic
resource allocation. Additional contributions include the
EXPLORA framework [178], which enhances explainability
in Open RAN systems, and autonomous slicing refinement
algorithm [179], achieving up to 100% user satisfaction and
80% resource utilization.
While RL and DRL have demonstrated significant suc-

cess in addressing sequential decision-making challenges
in network resource management, their inherent opacity
presents substantial implementation barriers. The emerging
XRL approaches provide insights into environmental percep-
tion, motivational factors, and Q-value computations [180],
making them particularly crucial for practical deployment in
network resource management scenarios.
XRL has been pivotal in addressing transparency chal-

lenges in resource allocation. For example, [181] proposes
an XRL framework for 6G networks that enhances both
performance and interpretability. Their framework intro-
duces an intrinsic interpretability approach that combines
SHAP values with an entropy mapper mechanism. The AI
model encompasses average SNR values, traffic volume,
and remaining capacity metrics in its state space, while
determining discrete allocation of Physical Resource Blocks
(PRBs) through its action space. A distinctive feature of their
approach is the composite reward mechanism that integrates
traditional SLA-based rewards with an XAI reward derived
from SHAP importance values and entropy calculations,
guiding DRL agents toward more interpretable resource
allocation decisions. The framework employs multiple XRL
agents to allocate physical resource blocks across different
network slices (URLLC, eMBB, and mMTC) while meeting
specific SLA requirements. The SHAP values generate
probability distributions over state-action pairs, while the
entropy mapper calculates uncertainty metrics for selected
actions, using the inverse maximum entropy as an XAI
reward component. Their experimental results demonstrate
the XRL approach’s superiority over traditional RL baselines,
achieving improved latency performance (1.9 ms versus
3.5 ms at the 50th percentile for URLLC) and reduced

dropped traffic rates (5.2% versus 7.9% for mMTC). This
research represents one of the first initiatives to incorporate
explainability directly into the DRL training process rather
than using it as a post-hoc analysis tool.
The evaluation of XRL techniques in network slicing

requires specific metrics that address both the performance
and the explainability aspects. Current research highlights
four essential metrics for comprehensive assessment: (1)
SLA Violation Rate, which measures how well XRL systems
maintain promised service quality across different slice
types (eMBB, URLLC, mMTC), providing insight into fault
detection and service reliability [5]; (2) Resource Utilization
Efficiency, assessing how optimally network resources are
allocated, with evidence suggesting that better explanations
lead to more efficient resource management; (3) Adaptation
Responsiveness, evaluating how quickly and effectively XRL
systems can reconfigure slices when facing changing network
conditions and traffic patterns [182]; and (4) Explanation-
Action Alignment, measured through SHAP-alignment scores
and the Slice-Trust Index, which quantifies how well the
system’s explanations reflect its actual resource allocation
decisions. The Explainability-SLA Balance (ESB) metric
further enhances the evaluation by measuring the trade-off
between improved transparency and potential performance
impacts [183]. These metrics offer a structured approach
to evaluate XRL techniques in network slicing, addressing
both technical requirements and the growing demand for
trustworthy AI in telecommunication systems.

RM (discussed in Section IV-B) is another approach to
iently incorporate interpretability into RL tasks, which is
independent of the RL state and action spaces, making them
suitable for guiding RL algorithms in ultra-large networks.
RMs can be exploited for the problem of network slicing
in two (or multiple hierarchical) levels. The higher level
RM in xApp near-real-time RAN intelligent controller (NR-
RIC) explains and guides the policies made for allocation
of PRBs across various slices (eMBB, uRLLC, and mMTC)
over the longer slice-time (of multiple time-slots), and the
lower level RM in real-time RIC explains the decision made
by admission control within a slice to accept or refuse a
service request upon arrival during the shorter time-slot. This
can subsequently guide the PRB scheduling policy over the
admitted requests of the slice to meet the QoS requirements.
The RM approach can provide modular explainability and
also at a long-term policy level as well as reward level to
explain the optimal PRB allocation policy over slices that
can guarantee successful service admissions and minimise
the denial of services in the network and failure due to the
limited resources.
The above XRL application examples deliver substantial

benefits across multiple stakeholder groups. For network
service providers, these methods significantly enhance oper-
ational efficiency by providing transparent, interpretable
insights into resource allocation and admission control
decisions. The intrinsic explainability embedded in these
frameworks allows providers to proactively manage network
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FIGURE 6. Remote wireless control of safety-critical robot/drone using Q-learning in the DU of 6G ORAN, where XRL is used to perform counterfactual reasoning in CU to
ensure stability and performance accuracy - details in [184].

resources, mitigate potential bottlenecks, and ensure compli-
ance with SLAs, ultimately improving resource utilization
and reducing operational costs. Legal auditors gain from
the modular explainability offered by RMs at multiple
hierarchical levels, enabling precise monitoring and auditing
of network decisions, thus facilitating regulatory compli-
ance and strengthening governance in network management
practices. End-users directly benefit through enhanced QoE,
as demonstrated by reduced latency and lower service
denial rates, fostering greater trust in service reliability and
performance.

B. XRL FOR 6G WITH AUTONOMOUS ROBOTIC
SYSTEMS
6G networks are poised to integrate autonomous robotic
systems, such as UAVs, to enhance connectivity in under-
served regions. These UAVs can function as mobile base
stations or communication relays, dynamically extend-
ing network coverage and improving QoS [185], [186].
However, deploying autonomous UAVs at scale requires
efficient decision-making frameworks that are both optimized
for performance and safety, in addition to being transparent
in their operations. XRL addresses these concerns by
ensuring that UAVs make decisions that are interpretable
and trustworthy (with provable sub-linear convergence
properties and control stability guarantees) for various
stakeholders, including service providers, regulators, and
end-users [187], [188]. Such approaches, however, will need
to be adapted to specific 6G contexts to ensure practical
applicability and efficiency.
To ensure seamless service provision, RL-driven UAVs

can dynamically adjust their flight paths for optimal resource
allocation and service efficiency [189], [190]. RL techniques

also facilitate intelligent task offloading and resource alloca-
tion, ensuring timely data transmission without overloading
communication channels [191]. By leveraging DRL and
multi-agent RL (MARL), UAVs can autonomously optimize
their decision-making processes to enhance network relia-
bility [189], [190], [192], [193], [194], [195].
Despite significant advancements in RL-driven UAV

deployment, the incorporation of explainability remains
relatively limited. Several recent studies have explored
different XRL approaches to improve transparency and
trust: [196] employs Evolving Behavior Trees (EBTs) via
genetic programming to enhance system interpretability by
integrating explicit safety behaviours; [197] utilizes SHAP
values to provide post-hoc explanations of decision-making
processes; [198] applies Saliency Maps to identify critical
visual input regions influencing a Deep Q-Network (DQN)
agent’s actions; [199] also uses SHAP-based feature attribu-
tion to enhance transparency; [200] introduces human-UAV
teamwork with interpretability and transparency through
human-agent interaction; [201] explores constrained RL
through probabilistic inference for intrinsic interpretability
in high-stakes deployment scenarios.
An emerging perspective in XRL involves counterfactual

reasoning, which enhances interpretability by identifying
causal relationships in decision-making. This approach
enables forensic diagnostics by answering “what if” ques-
tions, allowing stakeholders to understand the rationale
behind an agent’s choices. Counterfactual reasoning has been
applied in Q-learning for networked control, providing pow-
erful tools for fault diagnosis and prevention [202]. Recent
studies, such as [184], integrate counterfactual reasoning with
dynamic mode decomposition and control algorithms for
state-transition function estimation, improving the robustness
of explanations without requiring hyperparameter tuning.
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Integrating XRL and counterfactual reasoning in 6G UAV
networks benefits key stakeholders in several ways:

• Service Providers XRL enables flexible and optimized
resource management, ensuring high QoS while main-
taining network efficiency. Counterfactual explanations
improve system debugging, facilitating better decision-
making.

• Regulators Explainable UAV trajectory modifications
ensure compliance with network and safety standards,
making regulatory audits more transparent and effective.

• End-Users Enhanced transparency fosters trust in UAV-
assisted communication services, ensuring reliable and
interpretable connectivity solutions.

The synergy between XRL and causal AI within 6G infras-
tructure offers promising avenues for developing intelligent
RAN controllers that can integrate, coordinate, and man-
age AI-enabled subsystems like UAVs [203]. By ensuring
explainability and accountability, these technologies pave
the way for secure, efficient, and stakeholder-friendly UAV
operations for future 6G networks.

VII. CONCLUSION & FUTURE RESEARCH AREAS
Future telecommunications are set to increasingly integrate
critical services into their network infrastructures, raising
significant trust and safety concerns. The AI/ML modules
orchestrating these critical services will inevitably rely on
DRL to process multi-modal requirements datasets and make
semantically modulated decisions. Despite its potential, DRL
presents a critical challenge: its lack of explainability, which
remains a key area of concern for the research community.
First, we reviewed how the explanations must cater for

diverse telecommunications stakeholders, including network
operators, service providers, and end-users, each with unique
goals and operational practices. Second, when DRL lacks
prior models or established frameworks to guide the creation
of meaningful explanations, we reviewed key emerging
research approaches to help tackle this problem for
different parts of the RL. Finally, we demonstrated how
causal explanations can further enhance the framework to
improve 6G services.
As such, we advocate for a stakeholder-centric approach

to XAI, which is especially challenging for XRL where
we have to grapple with concepts such as policy and
reward/value functions. Furthermore, as 6G increasingly
deals with safety-critical areas such as autonomy (robots,
drones, resource controller) and healthcare, explaining causal
and not correlated reasons why something happened becomes
more critical for insurance and liability. Counterfactual
arguments need to be made where possible, and this can
be challenging in RL. We have shown how one design can
remote control drones and use xApp Q-learning at the DU
to operate and create rApp counterfactual arguments at the
CU of 6G ORAN. However, challenges such as trade-off
between performance and explainability, lack of ground-
truth for explanation, integration of XAI systems into the
existing network infrastructure may still affect the real-world

implementation. To this end, companies such as ERICSSON
have tried to come up with solutions for XRL in adjusting
the antenna for better KPIs and coverage region by USs.
In future work, we would like to think that all of these

approaches may be too overwhelming for innovators and
end-users outside the telecommunication and AI industry.
Thankfully the recent advances in LLMs may help them
specify requirements in communications, edge AI, privacy,
and security. Our recent advances in 6G LLMs have
embedded standards, research papers, and best practices in
the LLM as an RAG database and can provide the knowledge
we shared today as part of the 6G design specification for
diverse but important end-user requirements [204].

Conclusion: Emerging techniques in explaining
machine learning, especially RL, need to be tai-
lored to the specific application, the usage context,
and the human stakeholder involved. Future safety-
critical 6G applications require more than correlated
explanations: they need causal arguments and coun-
terfactual reasoning for different stakeholders.
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