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ABSTRACT

How can we learn generative models to sample data with arbitrary logical compo-
sitions of statistically independent attributes? The prevailing solution is to sample
from distributions expressed as a composition of attributes’ conditional marginal
distributions under the assumption that they are statistically independent. This pa-
per shows that standard conditional diffusion models violate this assumption, even
when all attribute compositions are observed during training. And, this violation
is significantly more severe when only a subset of the compositions is observed.
We propose COIND to address this problem. It explicitly enforces statistical inde-
pendence between the conditional marginal distributions by minimizing Fisher’s
divergence between the joint and marginal distributions. The theoretical advan-
tages of COIND are reflected in both qualitative and quantitative experiments,
demonstrating a significantly more faithful and controlled generation of samples
for arbitrary logical compositions of attributes. The benefit is more pronounced for
scenarios that current solutions relying on the assumption of conditionally inde-
pendent marginals struggle with, namely, logical compositions involving the NOT
operation and when only a subset of compositions are observed during training.
Our code is available at https://github.com/sachit3022/compositional-generation/

1 INTRODUCTION
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Figure 1: Generative Modeling of Logical Compositions. (a-c) Consider the task of generating
MNIST samples for any logical composition of digits and colors by learning on observational data of
different supports. (d) Standard diffusion models fail to generate data with arbitrary logical compo-
sitions of attributes. We generate data from simple unseen compositions (row 2), and more complex
logical compositions (rows 3,4) through COIND, even under non-uniform and partial support.

Many applications of generative models, including image editing (Kim et al., 2022; Brooks et al.,
2022), desire explicit and independent control over statistically independent attributes. For example,
in face generation, one might want to control the amount of hair, smile, etc., independently. Con-
sider the illustrative task in Fig. 1 of generating realistic samples of colored handwritten digits with
explicit and independent control over the composition of color and digit. For example, “generate
an image of digit 4 while excluding the colors green and pink”. This composition can be logically
expressed as “4∧¬[Green∨Pink]”, where ∧, ∨, and ¬ represent the three primitive logical operators
AND, OR, and NOT, respectively.

Existing solutions (Liu et al., 2023; Du et al., 2020; Nie et al., 2021) realize this goal by mapping the
logical expressions into a probability distribution involving the conditional marginal distributions
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p(image | digit = 4), p(image | color ̸= Green), and p(image | color ̸= Pink), and sampling
from it. These marginal distributions are obtained either by learning separate energy-based models
for each compositional attribute (Du et al., 2020; Nie et al., 2021) or by factorizing the attributes’
learned joint distribution Liu et al. (2023). Both approaches, however, are predicated on the critical
assumption that the conditional marginal distributions are statistically independent of each other.

Employing the approaches mentioned above, for instance Liu et al. (2023), to our illustrative ex-
ample, we observe that when the conditional diffusion model is learned on data with non-uniform
(Fig. 1b) or partial (Fig. 1c) support of the compositional attributes, the models fail to generate re-
alistic samples (columns 3 and 5 of row 2 in Fig. 1d) or generate realistic samples with logically
inaccurate compositions (columns 3 and 5 of rows 3 and 4 in Fig. 1d). This is true even for simple
unseen logical compositions of attributes (AND in row 2 of Fig. 1d) or for complex logical com-
positions (rows 3 and 4 of Fig. 1d involving a NOT operation). Such failure under partial support
was also observed by Du et al. (2020). Surprisingly, note that even when all compositions of the
attributes are observed, the model fails to generate realistic samples (column 1 of row 2 in Fig. 1d).

These observations naturally raise the following research questions that this paper seeks to answer:

– (RQ1) Why do standard classifier-free conditional diffusion models fail to generate data with
arbitrary logical compositions of attributes? We hypothesize that violating the assumption that the
conditional marginal distributions are statistically independent of each other will result in poor image
quality, diminished control over the generated image attributes, and, ultimately, failure to adhere to
the desired logical composition. We verify and confirm our hypothesis through a case study in § 3.

– (RQ2) How can we explicitly enable conditional diffusion models to generate data with arbitrary
logical compositions of attributes? We adopt the principle of independent causal mechanisms (Pe-
ters et al., 2017) to express the conditional data likelihood in terms of the constituent conditional
marginal distributions to ensure that the model does not learn non-existent statistical dependencies
from the training data.

Summary of contributions.
1. In Section 3, we show that conditional diffusion models trained to maximize the likelihood

of the observed data do not learn independent conditional marginal distributions. Instead,
the models learn non-existent statistical dependencies induced by unknown confounding
factors.

2. Through causal modeling, we derive a training objective, COIND, comprising the standard
score-matching loss and a conditional independence violation loss required to enforce the
conditional independence relations necessary for enabling logical compositions in condi-
tional diffusion models.

3. Strong inductive biases, in the form of the conditional independence relations in COIND,
enable arbitrary logical compositionality in conditional diffusion models with fine-grained
control over conditioned attributes and diversity for unconditioned attributes. COIND
achieves these goals while being monolithic and is scalable with the number of attributes.

2 LOGICAL COMPOSITIONALITY IN DIFFUSION MODELS

We study the problem of generating data with attributes that satisfy a given logical relation between
them. We consider the case where the attributes are statistically independent of each other. However,
not all attribute compositions may be observed during training. To study this problem, we first
model the underlying data-generation process using a suitable causal model that relates data and
their independently varying attributes.

Notations. We use bold lowercase and uppercase characters to denote vectors (e.g., a) and matri-
ces (e.g., A) respectively. Random variables are denoted by uppercase Latin characters (e.g., X).
The distribution of a random variable X is denoted as p(X), or as pθ(X) if the distribution is param-
eterized by a vector θ. We adopt non-standard terminology where marginals denote the conditionals
p(X | Ci) rather than integrated marginals, p(Ci) emphasizing their functional role as modular com-
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ponents in our compositional framework. Correspondingly, joint refers to p(X | C), acknowledging
this deliberate departure from probabilistic conventions due to a lack of better terminology.

X

C1 C2 . . . Cn

XC1 XC2 XCn

(a) True underly-
ing causal model

X
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Figure 2: (a) C1, C2, . . . , Cn vary
freely and independently in the un-
derlying causal graph. (b) How-
ever, they become dependent dur-
ing training due to unknown and
unobserved confounding factors.

Data Generation Process. The data generation process con-
sists of observed data X (e.g., images) and its attribute vari-
ables C1, C2, . . . , Cn (e.g., color, digit, etc.). To have explicit
control over these attributes during generation, they should
vary independently of each other. In this work, we limit our
study to only those causal graphs in which the attributes are not
causally related and can hence vary independently, as shown
in Fig. 2a. Each Ci assumes values from a set Ci and their
Cartesian product C = C1 × · · · × Cn is referred to as the at-
tribute space. Each attribute Ci generates its own observed
component XCi = fCi(Ci), which together with unobserved
exogenous variables UX form the composite observed data
X = f(XC1 , . . . ,XCi ,UX) (see Fig. 2a). We do not restrict
f much except that it should not obfuscate individual observed
components in X (Wiedemer et al., 2024). A simple example
of f is the concatenation function. We also assume that all fCi

are invertible and therefore it is
possible to estimate C1, . . . , Cn from X . These assumptions together ensure that C1, . . . , Cn are
mutually independent given X despite being seemingly d-connected.

Problem Statement. When the training data is sampled according to the causal graph in Fig. 2a,
all attribute compositions are equally likely to be observed. We refer to this scenario as uniform
support. Although the attributes can vary independently, sometimes they may not do so in the train-
ing dataset due to unobserved confounding such as sample selection bias (Storkey, 2008), leading
to an attribute shift. In such cases, the underlying causal model during training modifies as shown
in Fig. 2b, where blue dashed curves denote the unobserved confounding. In practice, all attribute
compositions may be observed with unequal probabilities. We refer to this scenario as non-uniform
support. In some cases, this dependence could lead to the training samples consisting of only a
subset of all attribute compositions as shown in Fig. 1c, i.e., Ctrain ⊂ C. We refer to this scenario
as partial support. We aim to learn conditional diffusion models under these scenarios to generate
samples with attributes that satisfy a given logical compositional relation between them.

The attribute space in our problem statement has the following properties. (1) Every possible value
that Ci can assume is present in the training set, and open-set attribute compositions do not fall
under this definition. (2) For every ordered tuple c ∈ Ctrain, there is another c′ ∈ Ctrain such that c and
c′ differ on only one attribute. Similar assumptions were discussed in (Wiedemer et al., 2024).

Preliminaries on Score-based Models. In this work, we train conditional score-based mod-
els (Song et al., 2021) using classifier-free guidance (Ho & Salimans, 2022) to generate data cor-
responding to a given logical attribute composition. Score-based models learn the score of the ob-
served data distributions ptrain(X) and ptrain(X | C) through score matching (Hyvärinen & Dayan,
2005). Once the score of a distribution is learned, samples can be generated using Langevin dynam-
ics. For logical attribute compositional generation, the given attribute composition is decomposed
in terms of two primitive logical compositions: (1) AND operation (e.g., C1 = c1 ∧ C2 = c2 gen-
erates data where attributes C1 and C2 takes values c1 and c2 respectively), and (2) NOT operation
(e.g., C1 = ¬c1 generates data where the attribute C1 takes any value except c1). Liu et al. (2023)
proposed the following modifications during sampling to enable AND and NOT logical operations
between the attributes, assuming that the diffusion model learns the conditional independence rela-
tions from the underlying data-generation process, i.e., p(C1, . . . , Cn|X) =

∏n
i=1 p(Ci|X).

Logical AND (∧) operation: Since pθ(C1 ∧ C2 | X) = pθ(C1 | X)pθ(C2 | X) samples are
generated for the logical composition C1 ∧ C2 by sampling from the following score:

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X) (1)

Logical NOT (¬) operation: Following the approximation pθ(¬C2 | X) ∝ 1
pθ(C2|X) , the score to

sample data for the logical composition C1 ∧ ¬C2 can be expressed as,

∇X log pθ(X | C1 ∧ ¬C2) = ∇X log pθ(X) +∇X log pθ(X | C1)−∇X log pθ(X | C2) (2)
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Note that the scores to sample from these primitive logical compositions involve conditional
marginal likelihood terms X | Ci. Therefore, to perform logical composition, it is critical to accu-
rately learn the conditional marginals of the attributes.

Evaluation We evaluate the distributions learned by the model based on their accuracy in gen-
erating images with attributes that align with the desired compositions for a logical relation. For
example, to evaluate AND (∧) composition, consider sampling an arbitrary digit and color, repre-
sented as C = (4,Cyan). We generate images X̂ by sampling from Eq. (1), and subsequently infer
attributes, (ĉ1, ĉ2) = (ϕC1

(X̂), ϕC2
(X̂)). We then verify if (ĉ1, ĉ2) ⊆ {4} × {Cyan}, and this pro-

cess is averaged over all combinations in C to obtain CS. Further details regarding the Conformity
Score including the formal definition can be found in App. D.6.

3 WHY DO CONDITIONAL DIFFUSION MODELS FAIL TO GENERATE DATA
WITH ARBITRARY LOGICAL COMPOSITIONS OF ATTRIBUTES?

To address (RQ1), we utilize the task of generating synthetic images from the Colored MNIST
dataset for any given combination of color and digit, as introduced in § 1. However, not all the de-
sired compositions may be observed during training. To study the effect of data support, we consider
the three training distributions of attribute compositions defined in § 2: (1) uniform support (Fig. 1a),
(2) non-uniform support (Fig. 1b), and (3) partial support (Fig. 1c). To quantify the dependence in
the observational data we measure Mutual Information (MI) between attributes. Refer to App. D.4
for visual representation and exact formulation.

For each support, we train a diffusion model and evaluate the conditional joint, pθ(X | C) and
marginal, pθ(X | Ci) distributions. During inference, the images are separately sampled from the
joint distribution, ∇X log pθ(X | C), and from the product of the learned marginals as shown in
Eq. (1). We refer to the former method as joint sampling and the latter as marginal sampling. To
measure the accuracy of the attributes in the generated image in accordance to the desired attributes,
we use conformity score (CS) defined in § 2. Tab. 1 compares the joint and the marginal distributions
learned by models trained under various training scenarios. We draw the following conclusions.

Support (MI) Conformity Score JSD ↓
Joint ↑ Marginal ↑

Uniform (0.00) 99.98 98.15 0.16
Non Uniform (0.33) 99.98 86.10 0.30
Partial (1.70) 33.14 7.40 2.75

Table 1: Conformity Scores and Jensen-Shannon
divergence for samples generated from joint and
marginal distributions learned by models under vari-
ous support settings for the Colored MNIST dataset.

Diffusion models struggle to generate unseen attribute compositions. Conformity scores from
joint sampling Tab. 1 reveals that while models trained with uniform and non-uniform support ac-
curately generate samples with correct attribute compositions, those trained with partial support
struggle with unseen attribute compositions. This phenomenon stems from the diffusion models’
objective of maximizing conditional generation likelihood. With full support, models accurately
learn pθ(X | C) ≈ ptrain(X | C). However, partial support leads to inaccurate density learning in
unobserved regions, as the model does not encounter samples for every attribute composition from
ptrain(X | C). Conformity scores further decrease when sampling from the product of marginals.
This discrepancy in CS, when sampled from joint and product of marginals is due to violation of
conditional independence Refer App. B.1 for detailed proof.

We measure CI violation as the disparity between the conditional joint distribution pθ(C | X) and
the product of conditional marginal distributions

∏n
i pθ(Ci | X) learned by the implicit classifier

of diffusion model using Jensen-Shannon divergence (JSD). Note that JSD, measure conditional
independence, whereas MI measure independence between attributes. More details in App. D.7.

Diffusion models violate conditional independence assumption. A positive JSD value suggests
that the model fails to adhere to the independence relations present in the underlying causal model.
Our findings in Tab. 1 indicate that as the training distribution of attribute compositions diverges
from the true underlying distribution – where attributes can vary independently – the trained models
increasingly violate these independence relations, as reflected by the JSD measurements.

Violation in conditional independence originates from the standard training objective of diffusion
models that maximize the likelihood of conditional generation. Under perfect loss, for every ob-
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served composition (C ∈ Ctrain), the model accurately learns ptrain(X | C), i.e., pθ(X | C) ≈
ptrain(X | C) = p(X | C), However, learn incorrect marginals, pθ(X | Ci) ≈ ptrain(X | Ci) ̸=
p(X | Ci). Refer to App. B.2 for complete proof. These incorrect marginals lead to violation in CI.

Diffusion models learn the dependence in the underlying distribution. The violation of con-
ditional independence strongly correlates with the mutual information (MI) between attributes in
training data Pearson’s r = 0.999, p < 0.03. These findings Tab. 1 demonstrate diffusion models
lack inherent compositional bias, instead propagate dependencies as present in their training data.

Based on these observations, we propose COIND to train diffusion models that explicitly enforce
the conditional independence dictated by the underlying causal data-generation process to encourage
the model to learn accurate marginal distributions of the attributes.

4 COIND: ENFORCING CONDITIONALLY INDEPENDENT MARGINAL TO
ENABLE LOGICAL COMPOSITIONALITY

In this section, we propose COIND to answer (RQ2) posed in § 1: How can we explicitly enable
conditional diffusion models to generate data with arbitrary logical compositions of attributes?

In the previous section, we observed that diffusion models do not obey the underlying causal rela-
tions, learning incorrect attribute marginals, and hence struggling to demonstrate logical composi-
tionally as we showed in Fig. 1. To remedy this, COIND uses a training objective that explicitly
enforces the causal factorization to ensure that the trained diffusion models obey the underlying
causal relations. From the causal graph Fig. 2a, along with the assumption of C1 ⊥⊥ . . . ⊥⊥ Cn | X
mentioned in § 2, we have p(X | C) = p(X)

p(C)

∏n
i

p(X|Ci)p(Ci)
p(X) . Note that the invariant p(X | C)

is now expressed as the product of marginals employed for sampling. Therefore, training the diffu-
sion model by maximizing this conditional likelihood is naturally more suited for learning accurate
marginals for the attributes. We minimize the distance between the true conditional likelihood and
the learned conditional likelihood as,

Lcomp = W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(3)

By applying the triangle inequality and leveraging the Wasserstein distance upper bound via Fisher
divergence (Kwon et al., 2022), we derive the following inequality:

Lcomp ≤ K1

√
Lscore +K2

√
LCI (4)

for constants K1,K2 > 0. A complete derivation of this bound is provided in App. B.3.

Distribution matching:
Lscore = Ep(X,C)∥∇X log pθ(X | C)−∇X log p(X | C)∥22 (5)

Conditional Independence:

LCI = E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22 (6)

Practical Implementation. A computational burden presented by LCI in Eq. (6) is that the re-
quired number of model evaluations increases linearly with the number of attributes. To mitigate
this burden, we approximate the mutual conditional independence with pairwise conditional inde-
pendence (Hammond & Sun, 2006). Thus, the modified LCI becomes,

LCI = Ep(X,C)Ej,k∥∇X log pθ(X | Cj , Ck)−∇X log pθ(X | Cj)−∇X log pθ(X | Ck) +∇X log pθ(X)∥22
The weighted sum of the square of the terms in Eq. (4) has shown stability. Therefore, COIND’s

training objective:
Lfinal = Lscore + λLCI (7)

where λ is the hyper-parameter that controls the strength of conditional independence. The reduction
to the practical version of the upper bound (Eq. (4)) is discussed in extensively in App. C. For
guidance on selecting hyper-parameters in a principled manner, please refer to App. C.3. Finally,
our proposed approach can be implemented with just a few lines of code, as outlined in Algorithm 1.
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5 EXPERIMENTS: LEARNING INDEPENDENT MARGINALS ENABLES
LOGICAL COMPOSITIONALITY

COIND encourages diffusion models to learn conditionally independent marginals of attributes, and
thereby improve their logical compositionality capabilities. In this section, we design experiments
to evaluate COIND on two questions: (1) does COIND effectively train diffusion models that obey
the underlying causal model?, and (2) does COIND improve the logical compositionality of these
models? We measure the JSD of the trained models to answer the first question. To answer the
second question, we use two primitive logical compositional tasks: (a) ∧ (AND) composition and
(b) ¬ (NOT) composition. In each case, the generative model is provided with a logical relation
between the attributes, and the task is to generate images with attributes that satisfy this logical
relation. A more detailed description of task construction can be found in App. D.2.

Datasets. We use the following image datasets with labeled attributes for our experiments: (1)
Colored MNIST dataset described in § 1, where the attributes of interest are digit and color,
(2) Shapes3d dataset (Burgess & Kim, 2018) containing images of 3D objects in various envi-
ronments where each image is labeled with six attributes of interest. Refer to App. D.5 for details.

Observed training distributions. We evaluate COIND on four scenarios where we observe dif-
ferent distributions of attribute compositions during training: (1) Uniform support (Fig. 1a). (2)
Non-uniform support (Fig. 1b), (3) Diagonal partial support (Fig. 1c), and (4) Orthogonal partial
support. includes only the attribute compositions along the axes originating from a corner of the
hypercube C, following (Wiedemer et al., 2024).

Baselines. LACE (Nie et al., 2021) and Composed GLIDE (Liu et al., 2023) are our primary
baselines. LACE trains distinct energy-based models (EBMs) for each attribute and combines them
following the compositional logic described in § 2 during sampling. A similar approach was pro-
posed by (Du et al., 2020). However, in our experimental evaluation for LACE, we train distinct
score-based models instead of EBMs. In contrast, Composed GLIDE samples from score-based
models by factorizing the joint distribution into marginals, assuming these models had implicitly
learned conditionally independent marginals of attributes. Additional details about the baselines are
delegated to App. D.3.

Metrics. We assess how accurately the models have captured the underlying data generation pro-
cess using the JSD, defined in § 3. To measure the accuracy of the attributes in the generated image
w.r.t. the input logical composition, we use conformity score (CS) from § 2. In addition to the
conformity score, since the Shapes3d dataset contains unique ground truth images corresponding
to the input logical relation, we directly compare generated samples with reference images, using
variance-weighted R2. For uniform and non-uniform support, the generations for the input logical
relations correspond to attribute compositions that span the attribute space C. In other cases, the
generations for the input logical relations belong to the unseen compositional support, i.e., C \ Ctrain.

Support Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑

Uniform

LACE - 96.40 92.56 83.67
Composed GLIDE 0.16 98.15 99.30 81.64
COIND (λ = 0.2) 0.14 99.73 99.32 84.94
COIND (λ = 1.0) 0.10 99.99 99.33 89.60

Non-uniform
LACE - 82.61 65.16 69.51
Composed GLIDE 0.30 86.10 81.61 70.44
COIND (λ = 1.0) 0.15 99.95 92.41 84.98

Partial
LACE - 10.85 9.03 28.24
Composed GLIDE 2.75 7.40 5.09 33.86
COIND (λ = 1.0) 1.17 52.38 53.28 52.59

(a) Results on Colored MNIST Dataset

10−1 100
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50
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C
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(b) JSD vs CS

Figure 3: Results on Colored MNIST dataset. (a) We compare JSD and CS of COIND against
baselines trained under various settings and on different compositional tasks. (b) Plotting CS against
JSD in the log scale of the models trained under different settings reveals a negative correlation.

Table 3a compares COIND against the baselines on ∧ and ¬ composition tasks. “¬ Color” task cor-
responds to image generation for a logical composition with ¬ operator acting on the color attribute.
Similarly, the ¬ operator acts on the digit attribute in the “¬ Digit” task. From the results, we make
the following observations:
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In practical scenarios of non-uniform and partial support, JSD increases with non-uniform support
and worsens further with partial support due to incorrect marginals, as discussed in § 3. As such, we
conjecture that scaling the datasets without inductive biases (conditional independence of marginals
in this case) is insufficient for arbitrary logical compositional generation. Even methods like LACE,
which train separate diffusion models for each attribute, fail. This suggests that softer inductive
biases, such as learning separate marginals for each attribute without considering the desired inde-
pendence relations, are insufficient for logical compositionality.

Logical AND (∧) and NOT (¬) compositionality deteriorates as dependence between marginals
increases. The negative correlation between JSD and CS, noted in § 3 and illustrated in Fig. 3b,
is evident across different methods and observed support settings for ∧ compositions. This strong
negative correlation suggests that violations of conditional independence significantly impair the
logical compositionality of standard diffusion models.

By enforcing conditional independence between the attributes during training, COIND achieves
lower JSD and improves both ∧ and ¬ compositionality in non-uniform and partial support. The
results in Fig. 3 demonstrate that enforcing conditional independence between the marginals is
vital for enabling arbitrary logical compositions in conditional diffusion models.

Method Entropy
LACE 1.82
C GLIDE 1.71
COIND 2.63

Table 2: Entropy of uncon-
trolled attribute in genera-
tion

COIND generates diverse samples. It is desirable for gener-
ated samples to exhibit diverse values for attributes that are not ex-
plicitly controlled; otherwise, the model may reinforce undesirable
stereotypes. Therefore, when conditioning on digit, COIND gen-
erates diverse colors of samples, as quantified by the Shannon en-
tropy Tab. 2. Unlike methods that explicitly optimize for diversity,
COIND achieves this as a complementary benefit by breaking depen-
dencies induced by unknown confounders (see App. D.8 for details).

Support Method JSD ↓ ∧ Composition ¬ Composition

R2 ↑ CS ↑ R2↑ CS↑

Uniform
LACE - 0.97 91.19 0.85 50.00
Composed GLIDE 0.302 0.94 83.75 0.91 48.43
COIND (λ = 1.0) 0.215 0.98 95.31 0.92 55.46

Orthogonal
LACE - 0.88 62.07 0.70 30.10
Composed GLIDE 0.503 0.86 51.56 0.61 34.63
COIND (λ = 1.0) 0.287 0.97 91.10 0.92 53.90

(a) Results on Shapes3D Dataset

Expected
Composed

GLIDE LACECOIND

Uniform
∧ comp.

Partial
∧ comp.

Partial
¬ comp.

(b)

Figure 4: Results on Shapes3d dataset. (a) We compare JSD, R2, and CS of COIND against the
baselines trained with uniform and partial support on the Shapes3d dataset for ∧ and ¬ composition
tasks. (b) Samples generated by COIND match the expected image in all cases.
COIND is scalable with attributes. Results on the Shapes3D (Table 4a) demonstrate that COIND
successfully composes even 6 attributes, showcasing strong compositional ability compared to base-
lines, specifically huge improvements on orthogonal support.

Generating Real-World Face Images using COIND we evaluate COIND on the CelebA dataset,

Method JSD ↓ “smiling male” “smiling”∧“male”

CS ↑ FID ↓ CS ↑ FID ↓
LACE - - - 24.20 80.40
Composed GLIDE 2.44 2.51 61.21 10.55 95.41
COIND (λ = 100) 1.82 8.63 43.97 8.79 43.76

Table 3: Results on CelebA dataset. COIND out-
performs the baselines on both CS and FID across
various compositionality tasks.

we evaluate COIND on the CelebA
dataset, generating face images with con-
trolled ”smiling” and ”gender” attributes.
To evaluate its capability on unseen composi-
tions, we sample the training data such that
the model does not observe any “male smiling”
celebrities, equivalent to the orthogonal sup-
port.

Tab. 3 compares COIND against baselines in
terms of CS and FID. (1) COIND outperforms the baseline by > 4× in joint. (2) COIND gen-
erates realistic faces, closer to smiling male celebrities in the held out set, as measured by FID and
displayed in Fig. 5(γ = 1). In App. E.3, we show that COIND extends to Text-to-Image models by
fine-tuning Stable Diffusion (Rombach et al., 2022).
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Figure 5: COIND allows us to vary the
amount of “smile” without affecting the
gender-specific attributes. However, Com-
posed GLIDE associates the smile attribute
with the gender attribute due to their associ-
ation in the training data.

COIND provides fine-grained control over at-
tributes. In addition to merely generating sam-
ples with conditioned attributes, COIND can also
control the amount of attributes in the sample.
To achieve this, we introduce an attribute strength
factor γ and modify the RHS of Eq. (1) as
∇X log pθ(X | gender) + γ∇X log pθ(X |
smiling)− γ∇X log pθ(X). Fig. 5 shows the result
of increasing γ to increase the amount of smiling in
the generated image. Refer to App. E.2 for more
analysis on FID and CS of COIND.

6 RELATED WORK

Our work concerns compositional generalization in generative models, where the goal is to gener-
ate data with unseen attribute compositions expressed through logical relations between attributes.
One class of approaches achieves logical compositionality by combining distinct models trained for
each attribute (Du et al., 2020; Liu et al., 2021; Nie et al., 2021; Du et al., 2023). In contrast, we
are interested in monolithic diffusion models that learn logical compositionality. Besides being ex-
pensive and scaling linearly with the number of attributes, these models fail under practical partial
support scenarios. Liu et al. (2023) studied logical compositionality broadly without differentiat-
ing between attribute supports and proposed methods to represent logical compositions in terms of
marginal probabilities obtained through factorization of the joint distribution. However, these fac-
torized sampling methods fail since the underlying generative model learns inaccurate marginals. In
comparison, COIND is trained to obey the independence relations from the underlying causal graph.
Also, (Cho et al., 2024) note that diffusion models lack the conditional independence needed for
controllability and address this with a hyperparameter during sampling. We argue that, even with
disentangled features, learning accurate marginals tackles the root cause more effectively than such
post-hoc adjustments. Encouragingly, Okawa et al. (2023) shows that compositional abilities emerge
multiplicatively, and Liang et al. (2024) highlights factorization in diffusion models, suggesting they
naturally exhibit compositional capabilities. However, these studies focus on generating from the
joint distribution—a special case of logical compositionality—and are limited to binary attributes.
Our work extends these ideas to more general compositions. Lastly, (Wiedemer et al., 2024) studies
compositional generalization for supervised learning and provides sufficient conditions for compo-
sitionality. Our empirical observations in generative models are consistent with their theoretical
results, suggesting that their findings could perhaps be extended to conditional diffusion models.

7 CONCLUSION

Diffusion models struggle to generate data for arbitrary attribute compositions, even when all com-
positions are observed during training. Existing methods represent logical relations in terms of the
learned marginal distributions, assuming that the diffusion model learns the underlying conditional
independence relations. We showed that this assumption does not hold in practice and worsens
when only a subset of these attribute compositions are observed during training. To mitigate this
problem, we proposed COIND to train diffusion models by maximizing conditional likelihood in
terms of the marginals that are obtained from the underlying causal graph using the principle of in-
dependent causal mechanisms. Our causal modeling provides COIND a natural advantage in logical
compositionality by ensuring it learns accurate marginals. Our experiments on synthetic and real
image datasets highlight the theoretical benefits. COIND shows that adequate inductive biases such
as conditional independence between marginals are necessary for effective logical compositionality.
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A PRELIMINARIES OF SCORE-BASED MODELS

Score-based models Score-based models (Song et al., 2021) learn the score of the observed data
distribution, Ptrain(X) through score matching (Hyvärinen & Dayan, 2005). The score function
sθ(x) = ∇x log pθ(x) is learned by a neural network parameterized by θ.

Lscore = Ex∼ptrain

[
∥sθ(x)−∇x log ptrain(x)∥22

]
(8)

During inference, sampling is performed using Langevin dynamics:

xt = xt−1 +
η

2
∇x log pθ(xt−1) +

√
ηϵt, ϵt ∼ N (0, 1) (9)

where η > 0 is the step size. As η → 0 and T → ∞, the samples xt converge to pθ(X) under
certain regularity conditions (Welling & Teh, 2011).

Diffusion models Song & Ermon (2019) proposed a scalable variant that involves adding noise
to the data Ho et al. (2020) has shown its equivalence to Diffusion models. Diffusion models are
trained by adding noise to the image x according to a noise schedule, and then neural network, ϵθ is
used to predict the noise from the noisy image, xt. The training objective of the diffusion models is
given by:

Lscore = Ex∼ptrainEt∼[0,T ] ∥ϵ− ϵθ (xt, t)∥2 (10)

Here, the perturbed data xt is expressed as: xt =
√
ᾱtx +

√
1− ᾱtϵ where ᾱt =

∏T
i=1 αi, for a

pre-specified noise schedule αt. The score can be obtained using,

sθ(xt, t) ≈ − ϵθ(xt, t)√
1− ᾱt

(11)

Langevin dynamics can be used to sample from the sθ(xt, t) to generate samples from p(X). The
conditional score (Dhariwal & Nichol, 2021) is used to obtain samples from the conditional distri-
bution pθ(X | C) as:

∇Xt
log p(Xt | C) = ∇Xt

log pθ(Xt)︸ ︷︷ ︸
Unconditional score

+γ∇Xt
log pθ(C | Xt)︸ ︷︷ ︸

noisy classifier

where γ is the classifier strength. Instead of training a separate noisy classifier, Ho & Salimans have
extended to conditional generation by training ∇Xt

log pθ(Xt | C) = sθ(Xt, t, C). The sampling
can be performed using the following equation:

∇Xt log p(Xt | C) = (1− γ)∇Xt log pθ(Xt) + γ∇Xt log pθ(Xt | C) (12)

However, the sampling needs access to unconditional scores as well. Instead of modelling
∇Xt log pθ(Xt), ∇Xt log pθ(Xt|C) as two different models Ho & Salimans have amortize train-
ing a separate classifier training a conditional model sθ(xt, t, c) jointly with unconditional model
trained by setting c = ∅.

In the general case of classifier-free guidance, a single model can be effectively trained to accom-
modate all subsets of attribute distributions. During the training phase, each attribute ci is randomly
set to ∅ with a probability puncond. This approach ensures that the model learns to match all possible
subsets of attribute distributions. Essentially, through this formulation, we use the same network to
model all the possible subsets of conditional probability.

Once trained, the model can generate samples conditioned on specific attributes, such as ci
and cj , by setting all other conditions to ∅. The conditional score is then computed as,
∇Xt log pθ(Xt|ci, cj) = xt, c

i,j), where ci,j represents the condition vector with all values other
than i and j set to ∅. This method allows for flexible and efficient sampling across various attribute
combinations.

Estimating Guidance Once the diffusion model is trained, we investigate the implicit classifier,
pθ(C|X), learned by the model. This will give us insights into the learning process of the diffusion
models. (Li et al., 2023) have shown a way to calculate pθ(Ci = ci | X = x), borrowing equation
(5), (6) from (Li et al., 2023).

pθ(Ci = ci | x) =
p(ci) pθ(x | ci)∑
k p(ck) pθ(x | ck)

12
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pθ(Ci = ci | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i)∥2]}
ECi

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci)∥2]}]
(13)

Likewise, we can extend it to joint distribution by

pθ(Ci = ci, Cj = cj | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i,j)∥2]}
ECi,Cj

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci,j)∥2]}]
(14)

Practical Implementation The authors Li et al.. have showed many axproximations to compute
Et,ϵ. However, we use a different approximation inspired by Kynkäänniemi et al. (2024), where we
sample 5 time-steps between [300,600] instead of these time-steps spread over the [0, T].

B PROOFS FOR CLAIMS

In this section, we detail the mathematical derivations for case study from § 3 in App. B.1, relate the
origin of the conditional independence violation to the loss function of vanilla diffusion models in
App. B.2, and then derive the final loss function of COIND in App. B.3.

B.1 PROOF FOR THE CASE STUDY IN § 3

In this section, we prove that failure of compositionality in diffusion models is due to the violation
of conditional independence.

The causal graph shown in Fig. 2a provides us with the following conditional independence relation:

p(C | X) =
∏
i

p(Ci | X) (CI relation)

This CI relation is used by several works (Liu et al., 2023; Nie et al., 2021), including ours, to derive
the expression for the joint distribution p(X | C) in terms of the marginals p(X | Ci) for logi-
cal compositionality. As a reminder, logical compositionality is preferred over simple conditional
generation as it (1) provides fine-grained control over the attributes, (2) facilitates NOT relations on
attributes, and (3) is more interpretable. The joint likelihood is written in terms of the marginals
using the CI relation and the causal factorization as,

p(X | C) =
p(X)

p(C)

∏
i

(
p(X | Ci)p(Ci)

p(X)

)
(JM relation)

JM relation is obtained by applying bayes’ on all terms of CI. Note that CI relation is crucial for JM
relation to hold. Applying ∇X(·) to the equation will result in the score form of JM relation which
we call is SJM equation, given as:

∇X log pθ(X | C) = ∇X log pθ(X) +
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ( SJM relation)

Sample from joint likelihood using the score of LHS of SJM relation, referred to as joint sampling
in § 3. Similarly, we sample using the score of RHS of SJM relation, referred to as marginal sam-
pling in § 3. If the learned generative model satisfies the JM relation, then there should not be any
difference in the CS between joint sampling and marginal sampling. However, in Tab. 1, we see a
drop in CS, implying JM relation is not satisfied in the learned model.

JM relation must hold in the learned generative model if CI relation is true in the learned genera-
tive model. Therefore, we check if the CI relation holds in the generative model by measuring JSD
between LHS and RHS of CI relation as shown in Eq. (32). The results Tab. 1 confirm that the CI re-
lation does not hold in the learned model. This is a significant finding since existing works (Liu et al.,
2023; Nie et al., 2021) blindly trust the model to satisfy CI relation, leading to severe performance
drop when the training support is non-uniform or partial.

The CI relation is violated in the learned model because the standard training objective is not suitable
for compositionality, as it does not account for the incorrect ptrain(X | Ci). The proof is detailed in
the next section App. B.2. Therefore, we proposed COIND to ensure the JM relation was satisfied
by explicitly learning the marginal likelihood according to the causal factorization.
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B.2 STANDARD DIFFUSION MODEL OBJECTIVE IS NOT SUITABLE FOR LOGICAL
COMPOSITIONALITY

This section proves that the violation in conditional independence in diffusion models is due to
learning incorrect marginals, ptrain(X | Ci) under Ci ⊥̸⊥ Cj . We leverage the causal invariance
property: ptrain(X | C) = ptrue(X | C), where ptrain is the training distribution and ptrue is the true
underlying distribution.

Consider the training objective of the score-based models in classifier free formulation Eq. (8). For
the classifier-free guidance, a single model sθ(x, C) is effectively trained to match the score of all
subsets of attribute distributions. Therefore, the effective formulation for classifier-free guidance
can be written as,

Lscore = Ex∼ptrainES

[
∥∇x log pθ(x | cS)−∇x log ptrain(x | cS)∥22

]
(15)

where S is the power set of attributes.

From the properties of Fisher divergence, Lscore = 0 iff pθ(X | cS) = ptrain(X | cS), ∀S. In the
case of marginals, pθ(X | Ci) i.e. S = {Ci} for some 1 ≤ i ≤ n,

pθ(X | Ci) = ptrain(X | Ci)

=
∑
C−i

ptrain(X | Ci, C−i)ptrain(C−i | Ci)

=
∑
C−i

ptrue(X | Ci, C−i)ptrain(C−i | Ci)

̸=
∑
C−i

ptrue(X | Ci, C−i)ptrue(C−i) = ptrue(X | Ci)

=⇒ pθ(X | Ci) ̸= ptrue(X | Ci) (16)

Where C−i =
∏n

j=1
j ̸=i

Cj , which is every attribute except Ci. Therefore, the objective of the score-

based models is to maximize the likelihood of the marginals of training data and not the true marginal
distribution, which is different from the training distribution when Ci ⊥̸⊥ Cj .

B.3 STEP-BY-STEP DERIVATION OF COIND IN § 4

The objective is to train the model by explicitly modeling the joint likelihood following the causal
factorization from Eq. (JM relation). The minimization for this objective can be written as,

Lcomp = W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(17)

where W2 is 2-Wasserstein distance. Applying the triangle inequality to Eq. (17) we have,

Lcomp ≤ W2 (p(X | C), pθ(X | C))︸ ︷︷ ︸
Distribution matching

+W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
︸ ︷︷ ︸

Conditional Independence

(18)

(Kwon et al., 2022) showed that under some conditions, the Wasserstein distance between
p0(X), q0(X) is upper bounded by the square root of the score-matching objective. Rewriting
Equation 16 from (Kwon et al., 2022)

W2 (p0(X), q0(X)) ≤ K
√
Ep0(X) [||∇X log p0(X)−∇X log q0(X)||22] (19)

Distribution matching Following Eq. (19) result, the first term in Eq. (18), replacing p0 as p and
q0 as pθ will result in

W2 (p(X | C), pθ(X | C)) ≤ K1

√
Ep0(X) [||∇X log p(X | C)−∇X log pθ(X)||22]

= K1

√
Lscore (20)
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Conditional Independence Following Eq. (19) result, the second term in Eq. (18), replacing p0
as pθ and q0(X) as pθ(X)

pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X)

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤

√√√√E∥∇X log pθ(X | C)−∇X log
pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
∥22

Further simplifying and incorporating ∇X log pθ(Ci) = 0 and ∇X log pθ(C) = 0 will result in

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤ K2

√√√√√E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22︸ ︷︷ ︸
LCI

= K2

√
LCI (21)

Substituting Eq. (20), Eq. (21) in Eq. (18) will result in our final learning objective

Lcomp ≤ K1

√
Lscore +K2

√
LCI (22)

where K1,K2 are positive constants, i.e., the conditional independence objective LCI is incorporated
alongside the existing score-matching loss Lscore.

Note that Eq. (21) is the Fisher divergence between the joint pθ(X | C) and the causal factorization
pθ(X)
pθ(C)

∏
i
pθ(X|Ci)pθ(Ci)

pθ(X) from Eq. (JM relation). From the properties of Fisher divergence (Sánchez-

Moreno et al., 2012), LCI = 0 iff pθ(X | C) = pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X) and further implying,∏

i pθ(Ci | X) = ptrain(C | X)

When Lcomp = 0: Pθ(X | C) = Ptrain(X | C) = P (X | C), and
∏

i pθ(Ci | X) = ptrain(C |
X). This implies that the learned marginals obey the causal independence relations from the data-
generation process, leading to more accurate marginals.

C PRACTICAL CONSIDERATIONS

To facilitate scalability and numerical stability for optimization, we introduce two approximations
to the upper bound of our objective function Eq. (4).

C.1 SCALABILITY OF LCI

A key computational challenge posed by Eq. (6) is that the number of model evaluations grows
linearly with the number of attributes. The Eq. (6) is derived from conditional independence formu-
lation as follows:

pθ(C | X) =
∏
i

pθ(Ci | X). (23)

By applying Bayes’ theorem to all terms, we obtain,
pθ(X | C)pθ(C)

pθ(X)
=
∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
(24)

Note that this formulation is equal to the causal factorization. From this, by applying logarithm and
differentiating w.r.t. X , we derive the score formulation.

∇X log pθ(X | C) = ∇X log
∑
i

pθ(X | Ci)−∇X log pθ(X) (25)
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The L2 norm of the difference between LHS and RHS of the objective in Eq. (25) is given by, which
forms our LCI objective.

LCI = ∥∇X log pθ(X | C)−
(
∇X log

∑
i

pθ(X | Ci)−∇X log pθ(X)

)
∥22 (26)

Due to the
∑

i, in the equation, the number of model evaluations grows linearly with the number
of attributes (n). This O(n) computational complexity hinders the approach’s applicability at scale.
To address this, we leverage the results of (Hammond & Sun, 2006), which shows conditional in-
dependence is equivalent to pairwise independence under large n to reduce the complexity to O(1)
in expectation. This allows for a significant improvement in scalability while maintaining computa-
tional efficiency. Using this result, we modify Eq. (23) to:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X). ∀i, j
Accordingly, we can simplify the loss function for conditional independence as follows:

LCI = Ep(X,C)Ej,k∥∇X [log pθ(X|Cj , Ck)− log pθ(X|Cj)− log pθ(X|Ck) + log pθ(X)]∥22.
(27)

In score-based models, which are typically neural networks, the final objective is given as:

LCI = Ep(X,C)Ej,k∥sθ(X, Cj , Ck)− sθ(X, Cj)− sθ(X, Ck) + sθ(X,∅)∥22 (28)

where sθ(·) := ∇X log pθ(·) is the score of the distribution modeled by the neural network. We
leverage classifier-free guidance to train the conditional score sθ(X, Ci) by setting Ck = ∅ for all
k ̸= i, and likewise for sθ(X, Ci, Cj), we set Ck = ∅ for all k ̸∈ {i, j}.

C.2 SIMPLIFICATION OF THEORETICAL LOSS

In Eq. (4), we showed that the 2-Wassertein distance between the true joint distribution p(X | C)
and the causal factorization in terms of the marginals p(X | Ci) is upper bounded by the weighted
sum of the square roots of Lscore and LCI as Lcomp ≤ K1

√Lscore + K2

√LCI. In practice, how-
ever, we minimized a simple weighted sum of Lscore and LCI, given by Lfinal = Lscore + λLCI as
shown in Eq. (7) instead of Eq. (4). We used Eq. (7) to avoid the instability caused by larger gra-
dient magnitudes (due to the square root). Eq. (7) also provided the following practical advantages:
(1) the simplicity of the loss function that made hyperparameter tuning easier, and (2) the similarity
of Eq. (7) to the loss functions of pre-trained diffusion models allowing us to reuse existing hyper-
parameter settings from these models. We did not observe any significant difference in conclusion
between the models trained on Eq. (4) and Eq. (7) as shown in Tabs. 4 and 5. Both approaches
significantly outperformed the baselines.

Support Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑
LACE - 96.40 92.56 83.67
Composed GLIDE 0.16 98.15 99.30 81.64

Uniform Theoretical COIND Eq. (4) 0.12 98.44 100.00 81.25
COIND (λ = 0.2) 0.14 99.73 99.32 84.94
COIND (λ = 1.0) 0.10 99.99 99.33 89.60
LACE - 82.61 65.16 69.51
Composed GLIDE 0.30 86.10 81.61 70.44

Non-uniform Theoretical COIND Eq. (4) 0.17 96.88 93.75 72.66
COIND (λ = 1.0) 0.15 99.95 92.41 84.98
LACE - 10.85 9.03 28.24
Composed GLIDE 2.75 7.40 5.09 33.86

Partial Theoretical COIND Eq. (4) 1.11 23.44 64.84 53.12
COIND (λ = 1.0) 1.17 52.38 53.28 52.59

Table 4: Results on Colored MNIST to directly minimize the upper bound (K1 = 1,K2 = 0.1)
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Support Method JSD ↓ ∧ Composition ¬ Composition

R2 ↑ CS ↑ R2↑ CS↑
LACE - 0.97 91.19 0.85 50.00
Composed GLIDE 0.302 0.94 83.75 0.91 48.43

Uniform Theoretical COIND Eq. (4) 0.270 0.98 92.19 0.92 64.06
COIND (λ = 1.0) 0.215 0.98 95.31 0.92 55.46

LACE - 0.88 62.07 0.70 30.10
Composed GLIDE 0.503 0.86 51.56 0.61 34.63

Partial Theoretical COIND Eq. (4) 0.450 0.93 78.13 0.88 51.56
COIND (λ = 1.0) 0.287 0.97 91.10 0.92 53.90

Table 5: Results on Shapes3D with the objective of directly minimizing the upper bound Eq. (4)
(K1 = 1, K2 = 0.1)

C.3 CHOICE OF HYPERPARAMETER λ

Effect of λ on the Learned Conditional Independence.

COIND enforces conditional independence between the marginals of the attributes learned
by the model by minimizing LCI defined in Eq. (28). Here, we investigate the ef-
fect of LCI on the effectiveness of logical compositionality by varying its strength
through λ in Eq. (7). Figure 6 plots JSD and CS (∧) as functions of λ for mod-
els trained on the Colored MNIST dataset under the diagonal partial support setting.

0 5 10
λ
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2.86

JS
D

0.35

18.52

36.69

54.86

C
S

(∧
)

Figure 6: Effect of λ on logi-
cal compositionality under di-
agonal partial support on the
Colored MNIST dataset.

When λ = 0, training relies solely on the score matching loss, re-
sulting in higher conditional dependence between Ci | X . As λ
increases, CS improves since ensuring conditional independence
between the marginals also encourages more accurate learning of
the true marginals. However, when λ takes large values, the model
learns truly independent conditional distribution C | X but effec-
tively ignores the input compositions and generates samples based
solely on the prior distribution pθ(X). As a result, CS drops.

The value for the hyperparameter λ is chosen such that the gradi-
ents from the score-matching objective Lscore and the conditional
independence objective LCI are balanced in magnitude. One way
to choose λ is by training a vanilla diffusion model and setting λ =
Lscore

LCI
. As a rule of thumb, we recommend the simplified setting:

λ = Lscore × 4000. We used two values for λ in our experiments and noticed that they gave similar
results, indicating that the approach was stable for various values of λ.

D EXPERIMENT DETAILS

D.1 COIND ALGORITHM

To compute pairwise independence in a scalable fashion, we randomly select two attributes, i and j,
for a sample in the batch and enforce independence between them. As the score in Eq. (11) is given
by ϵθ(xt,t)√

1−ᾱt
. The final equation for enforcing LCI will be:

LCI =
1

1− ᾱt

∥∥ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)
∥∥2
2

We follow Ho et al. (2020) to weight the term by 1 − ᾱt. This results in an algorithm for COIND,
requiring only a few modifications of lines from (Ho & Salimans, 2022), highlighted below. Prac-
tical Implementation In our experiments, we have used puncond = 0.3 and for Shapes3D instead
of enforcing Ci ⊥⊥ Cj | X , for all i, j enforcing Ci ⊥⊥ C−i | X for all i have led to slightly better
results.
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Algorithm 1 COIND Training
1: repeat
2: (c,x0) ∼ ptrain(c, x)

3: ck ← ∅ with probability puncond ▷ Set element of index,k i.e, ck to ∅ with puncond∀k ∈ [0, N ]

probability
4: i ∼ Uniform({0, . . . , N}), j ∼ Uniform({0, . . . , N} \ {i}) ▷ Select two random attribute indices
5: t ∼ Uniform({1, . . . , T})
6: ϵ ∼ N (0, I)
7: xt =

√
ᾱtx0 +

√
1− ᾱtϵ

8: ci, cj , ci,j ← c

9: ci ← {ck = ∅ | k ̸= i}, cj ← {ck = ∅ | k ̸= j}, ci,j ← {ck = ∅ | k ̸∈ {i, j}}, c∅ ← ∅

10: LCI = ||ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)||22
11: Take gradient descent step one

∇θ[∥ϵ− ϵθ(xt, t, c)∥2 +λLCI ]
12: until converged

D.2 DETAILS OF LOGICAL COMPOSITIONALITY TASK

We designed the following task to evaluate two primitive logical compositions. (1) AND Composi-
tion ∧, (2) NOT Composition ¬
AND Composition To evaluate the ∧ composition, we apply the ∧ operation over all the attributes
to generate a respective image. Consider an image from the Shapes3D dataset (see Figure Fig. 7).
The image is generated by some function, f , with the input c = [ 6 8 4 6 2 11 ]. The
following image can be queried using the logical expression C1 = 6 ∧ . . . ∧ C6 = 11. We follow
Equation Eq. (1) to sample from the above logical composition. To reiterate, for the ∧ composition
task on Shapes3D, the sampling equation is given by ∇Xpθ(X | C1 = 6 ∧ . . . ∧ C6 = 11):

∇X log pθ(X) +
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] (29)

Similarly, to evaluate the AND composition for the Colored MNIST dataset, we perform the ∧
operation over digit C1 and color C2.

Figure 7: Image from
Shapes3d with attributes
c = [6, 8, 4, 6, 2, 11]

NOT Composition To evaluate the ¬ compositions, the image is
queried as an AND on all the attributes except the object attribute,
which is queried by its negation. For example, consider the same im-
age from Figure Fig. 7, where the object sphere (C5 = 2) can be ex-
pressed as C5 = ¬[0 ∨ 1 ∨ 3], because the object class can only take
four possible values. Therefore, the same image can be described as
C1 = 6 ∧ . . . ∧ C5 = ¬[0 ∨ 1 ∨ 3] . . . ∧ C6 = 11. The only possible
generation that meets these criteria is the image displayed as expected.

The sampling equation for a test image with attributes
C1, C2, C3, C4, C5, C6 can be written as C1 = 6 ∧ C2 = 8 ∧ C3 =
4 ∧ C4 = 6 ∧ C5 = ¬[0 ∨ 1 ∨ 3] ∧ C6 = 11. Following Eq. (2), the
sampling equation is written as follows:

∇X log pθ(X|C1 = 6)+∇X log pθ(X|C2 = 8)+∇X log pθ(X|C3 = 4)

+∇X log pθ(X|C4 = 6)+∇X log pθ(X|C6 = 11)−∇X log pθ(X|C5 = 0)

−∇X log pθ(X|C5 = 1)−∇X log pθ(X|C5 = 3)−∇X log pθ(X)

Similarly, for Colored MNIST, we perform two kinds of negation operations: one on digit and
another on color. In Section § 2, we have shown negation on color 4 ∧ ¬[Green ∨ Pink], along with
its sampling equation. A similar logic can be followed for negation on color; an example of negation
on digit is ¬[3 ∨ 4] ∧ Pink.

For ∧ and ¬, evaluations are strictly restricted to unseen compositions under orthogonal partial
support for Shapes3D and under diagonal partial support for Colored MNIST. This approach allows
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us to explore how effectively the model handles logical operations through unseen image generation.
Additionally, we evaluate compositions observed during training with less frequency under non-
uniform support.

D.3 TRAINING DETAILS, ARCHITECTURE, AND SAMPLING

Training Composed GLIDE & COIND We train the diffusion model using the DDPM noise
scheduler. The model architecture and hyperparameters used for all experiments are detailed in
Tab. 6.

Training LACE The LACE method involves training multiple energy-based models for each
attribute and sampling according to logical compositional equations. However, we use score-based
models instead. We follow the architecture outlined in Tab. 6 for each attribute to train multiple
score-based models. For Colored MNIST, which has two attributes, we create two models—one
for each attribute—using the same architecture as other methods, effectively doubling the model
size. Similarly, for Shapes3D with six attributes, we develop six models. We reduce the Block Out
Channels for each attribute model to fit these into memory while keeping all other hyperparameters
consistent. Since we train a single model per attribute, we do not match the joint distribution,
preventing us from evaluating it and measuring the JSD.

Sampling To generate samples for a given logical composition, we sample from equations from
App. D.2 using DDIM (Song et al., 2020) with 150 steps.

Hyperparameter Colored MNIST Shapes3D

COIND & Composed GLIDE LACE COIND & Composed GLIDE LACE

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 2.0× 10−4 2.0× 10−4 2.0× 10−4 2.0× 10−4

Num Training Steps 50000 100000 100000 100000
Train Noise Scheduler DDPM DDPM DDPM DDPM
Train Noise Schedule Linear Linear Linear Linear
Train Noise Steps 1000 1000 1000 1000
Sampling Noise Schedule DDIM DDIM DDIM DDIM
Sampling Steps 150 150 150 150
Model U-Net U-Net U-Net U-Net
Layers per block 2 2 2 2
Beta Schedule Linear Linear Linear Linear
Sample Size 28x3x3 28x3x3 64x3x3 64x3x3
Block Out Channels [56,112,168] [56,112,168] [56,112,168,224] [56,112,168]
Dropout Rate 0.1 0.1 0.1 0.1
Attention Head Dimension 8 8 8 8
Norm Num Groups 8 8 8 8
Number of Parameters 8.2M 8.2M × 2 17.2M 8.2M × 6

Table 6: Hyperparameters for Colored MNIST and Shapes3D used by COIND, Composed GLIDE,
and LACE

CelebA To generate CelebA images, we scale the image size to 128 × 128. We use the latent
encoder of Stable Diffusion 3 (SD3) to encode the images to a latent space and perform diffusion in
the latent space. The architecture is similar to the Colored MNIST and Shapes3D, except that Block
out Channels are scaled as [224, 448, 672, 896]. We use a learning rate of 1.0× 10−4 and train the
model for 500,000 steps on one A6000 GPU.

FID Measure To evaluate both the generation quality and how well the generated samples align
with the natural distribution of ’smiling male celebrities’, we use the FID metric (Seitzer, 2020).
Notably, we calculate the FID score specifically on the subset of ’smiling male celebrities,’ as our
primary objective is to assess the model’s ability to generate these unseen compositions. We generate
3000 samples to evaluate FID.

T2I: Finetuning SDv1.5 We finetune SDv1.5 with the data constructed from CelebA, where the
labels are converted to text. For example, a label of (male=1, smiling=1) is converted to a “photo of
a smiling male celebrity.”

19



Published as a DeLTa Workshop Paper at ICLR 2025

D.4 ANALYTICAL FORMS OF SUPPORT SETTINGS

The attribute space observed during training Ctrain covers C in the following sense:

Definition 1 (Support Cover). Let C = C1 × · · · × Cn be the Cartesian product of n finite sets
C1, . . . , Cn. Consider a subset Ctrain ⊂ C. Let Ctrain = {(c1j , . . . , cnj) : cij ∈ Ci, 1 ≤ i ≤ n, 1 ≤
j ≤ m} and C̃i = {cij : 1 ≤ j ≤ m} for 1 ≤ i ≤ n. The Cartesian product of these sets is
C̃train = C̃1 × · · · × C̃n. We say Ctrain covers C iff C = C̃train.

Some of the support settings which cover the attribute space are given below.

Below are the analytical expressions for the densities under the various support settings that we
considered in the paper. Let ni be the number of categories for the attribute Ci. For non-uniform
and diagonal partial support settings, we assume that ni = nj = n, ∀i, j, i ̸= j.

• Uniform setting: p(Ci = c1) =
1
ni

and p(Ci = c1, Cj = c2) = p(Ci = c1)p(Cj = c2) =
1

ninj
.

• Orthogonal support setting: p(Ci = c1, Cj = c2) =

{
1

ni+nj−1 , c1 = 0 or c2 = 0

0, otherwise

• Non-uniform setting: p(Ci = c1, Cj = c2) =

{
a, c2 ≤ c1 ≤ c2 + 1

b, otherwise
, where 1

n2 ≤ b < a ≤
1

2n−1 .

• Diagonal partial support setting: p(Ci = c1, Cj = c2) =

{
1

2n−1 , c2 ≤ c1 ≤ c2 + 1

0, otherwise
.

D.5 DATASETS

Colored MNIST Dataset In Section § 1, we introduced the Colored MNIST dataset. Here, we
will detail the dataset generation process. We selected 10 visually distinct colors 1, taking the value
C2 ∈ [0, 9]. The dataset is constructed by coloring the grayscale images from MNIST by converting
them into three channels and applying one of the ten colors to non-zero grayscale values.

The training data is composed of three types of support:

• Uniform Support: A digit and a color are randomly selected to create an image.

• Diagonal Partial Support: A digit is selected, and during training, it is only assigned one
of two colors, C2 ∈ {d, d + 1}, except for 9, which only takes one color. This creates a
dataset where compositions observed during training are along the diagonal of the C space,
meaning each digit is seen only with its corresponding colors.

• Non-uniform Support: All compositions are observed, but combining a digit and its cor-
responding colors occurs with a higher probability (0.5). The remaining color space is
distributed evenly among other colors, resulting in approximately a 0.25 probability for
each corresponding color and a 0.0625 probability for each remaining color.

Shapes3D Full support for Shapes3D consists of all samples from the dataset. For orthogonal
support, we use the composition split of Shapes3D as described by Schott et al.., whose code is
publicly available 2.

D.6 CONFORMITY SCORE (CS)

In Section 3, we described the Conformity Score (CS) to quantify the accuracy of the generation per
the prompt. To provide a formal definition

1https://mokole.com/palette.html
2https://github.com/bethgelab/InDomainGeneralizationBenchmark
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Conformity Score (CS) To formally define CS: For a logical relation, R. This relation is defined
as a boolean function over the attribute space C, such that R : C → {0, 1}. This induces a constrained
attribute space given by R = {(c1, . . . , cn) | R(c1, . . . , cn) = 1} ⊆ C. The CS is defined as:

CS(R, θ) := EC∼p(C)EU∼p(U) [1RC
((ϕCi

(gθ(R(C), U)))
n
i=1)] (30)

where R(C) can represent various logical operations such as ∧, ¬, and ∨ on the attribute space C.
Here, gθ(R(C), U) denotes a generative model parameterized by θ, which samples according to the
logical relations specified above. The variable U represents exogenous noise in the diffusion model.
The functions ϕCi are attribute-specific classifiers that infer attributes from the generated images.
The term 1RC

, is an indicator function, equals 1 if the inferred attributes (ϕCi(gθ(R(C), U)))ni=1 ⊆
RC .

To measure the CS, we train a single ResNet-18 (He et al., 2016) classifier with multiple classifica-
tion heads, one corresponding to each attribute, and trained on the full support. This classifier esti-
mates the attributes in the generated image, x, and extracts these attributes as ϕ(x) = [ĉ1, . . . , ĉn].
These attributes are matched against the input prompt that generated the image to obtain accuracy.

To explain further, for example, if the prompt is to generate “4 ∧ ¬[Green ∨ Pink]”, the generated
sample will have a CS of 1 if ĉ1 = 4 and ĉ2 ̸∈ {Green,Pink}. We average this across all the prompts
in the test set, which determines the CS for a given task.

The effectiveness of the classifier in predicting the attributes is reported in Table 8.

Feature Attributes Possible Values Accuracy

C1 Digit 0-9 98.93
C2 color 10 values 100

(a) Colored MNIST Dataset

Feature Attributes Possible Values Accuracy

C1 Gender {0,1} 98.2
C2 Smile {0,1} 92.1

(b) CelebA Dataset

Feature Attributes Possible Values Accuracy

C1 floor hue 10 values in [0, 1] 100
C2 wall hue 10 values in [0, 1] 100
C3 object hue 10 values in [0, 1] 100
C4 scale 8 values in [0, 1] 100
C5 shape 4 values in [0-3] 100
C6 orientation 15 values in [-30, 30] 100

(c) Shapes3D Dataset

Figure 8: Independent attribute, their possible values, and the classifier accuracy in estimating them
for different datasets

D.7 COMPUTING JSD

We are interested in understanding the causal structure learned by diffusion models. Specifically,
we aim to determine whether the learned model captures the conditional independence between
attributes, allowing them to vary independently. This raises the question: Do diffusion models learn
the conditional independence between attributes? The conditional independence is defined by:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X) (31)

We aim to measure the violation of this equality using the Jensen-Shannon divergence (JSD) to
quantify the divergence between two probability distributions:

JSD = Epdata [DJS (pθ(C | X) || pθ(Ci | X)pθ(Cj | X))] (32)

The joint distribution, pθ(Ci, Cj | X), and the marginal distributions, pθ(Ci | X) and pθ(Cj | X),
are evaluated at all possible values that Ci and Cj can take to obtain the probability mass function
(pmf). The probability for each value is calculated using Equation Eq. (14) for the joint distribution
and Equation Eq. (13) for the marginals.

Practical Implementation For the diffusion model with multiple attributes, the violation in con-
ditional mutual independence should be calculated using all subset distributions. However, we focus
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on pairwise independence. We further approximate this in our experiments by computing JSD be-
tween the first two attributes, C1 and C2. We have observed that computing JSD between any
attribute pair does not change our examples’ conclusion.

D.8 MEASURING DIVERSITY IN ATTRIBUTES

To achieve explicit control over certain attributes during the generation process, these attributes must
vary independently. Therefore, an ideal generative model must be able to produce samples where all
except the controlled attributes take diverse values. This diversity can be measured by the entropy of
the uncontrolled attributes in the generated samples, where higher entropy suggests greater diversity.
Therefore, the accurate generation of controlled and diverse uncontrolled attributes indicates that the
model has successfully learned the correct marginal likelihood of the controlled attributes.

For example, consider the generation of colored MNIST digits. In this case, controllability means
that the model has learned that digit and color attributes are independent. When prompted to generate
a specific digit (controlled attribute), the model should generate this digit in all possible colors
(uncontrolled attribute) with equal likelihood, implying maximum entropy for the color attribute
and diverse generation. We measure this entropy by generating samples xi ∼ pθ(X | c1 = 4) and
passing them through a near-perfect classifier to obtain the color predictions p(Ĉ2) = p(ϕ2(x

i)).
The diversity is then quantified as: H = Eĉ2∼p(Ĉ2)

[log2 p(ĉ2)]

Ensuring diversity through explicit control has applications in bias detection and mitigation in gen-
erative models. For example, a biased model may generate images of predominantly male doctors
when asked to generate images of “doctors”. Ensuring diversity in uncontrolled attributes like gen-
der or race can limit such biases.

E COIND FOR FACE IMAGE GENERATION

In § 5, we demonstrated that COIND outperforms baseline methods on the unseen logical com-
positionality task using synthetic datasets. In App. E.1, we showcase the success of COIND in
generating face images from the CelebA dataset (Liu et al., 2015), where COIND demonstrates su-
perior control over attributes compared to the baseline. COIND also allows us to adjust the strength
of various attributes and thus provides more fine-grained control over the compositional attributes,
as shown in App. E.2. Finally, in App. E.3, we extend COIND to text-to-image (T2I) models widely
used in practice to generate face images by providing the desired attributes as logical expressions of
text prompts.

Problem Setup We choose the CelebA dataset to evaluate COIND’s ability to generate real-world
images. We choose the binary attributes “smiling” and “gender” as the attributes we wish to control.
During training, all combinations of these attributes except gender = “male” and smiling = “true”
are observed, similar to the orthogonal support. During inference, the model is tasked to generate
images with the attribute combination gender = “male” and smiling = “true”, which was not observed
during training.

Metrics Similar to the experiments on the synthetic image datasets in § 5, we assess the accuracy
of the generation w.r.t. the input desired attribute combination CS (conformity score). We also
measure the violation of the learned conditional independence using JSD. In addition to CS, we
compute FID (Fréchet inception distance) between the generated images and the real samples in
the CelebA dataset where gender = “male” and smiling = “true”. A lower FID implies that the
distribution of generated samples is closer to the real distribution of the images in the validation
dataset.

E.1 COIND CAN SUCCESSFULLY GENERATE REAL-WORLD FACE IMAGES

Tab. 3 shows the quantitative results of COIND and Composed GLIDE trained from scratch in the
tasks of joint sampling and ∧ composition. Similar to our observations from previous experiments,
COIND achieves better CS in both tasks by learning accurate marginals as demonstrated by lower
JSD. When sampled from the joint likelihood, COIND achieves a nearly 4× improvement in CS over
the baseline, while it achieves > 10% improvement in CS over the baseline, for ∧ compositionality.
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E.2 COIND PROVIDES FINE-GRAINED CONTROL OVER ATTRIBUTES
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Figure 9: By adjusting γ, COIND allows us to the vary the amount of “smile” in the generated
images. However, Composed GLIDE associates the smile attribute with the gender attribute due to
their association in the training data. Hence, the images generated by Composed GLIDE contain
gender-specific attributes such as long hair and earrings.

So far, we studied the capabilities of COIND to dictate the presence and absence of attributes in the
task of controllable image generation. However, there are applications where we desire fine-grained
control over the attributes. Specifically, we may want to control the amount of each attribute in the
generated sample. We can mathematically formulate this task by revisiting the formulation of logical
expressions of attributes in terms of the score functions of marginal likelihood. As an example, the
∧ operation can be written as,

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X)

Here, to adjust the amount of attribute added to the generated sample, we can weigh the score
functions using some scalar γ, as follows,

∇X log pθ(X | C1) + γ∇X log pθ(X | C2)− γ∇X log pθ(X) (33)

where γ controls for the amount of C2 attribute.
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Figure 10: Effect of γ on FID and CS: Varying the amount of smile in a generated image through
γ does not affect the FID of COIND. However, the smiles in the generated images become more
apparent, leading to easier detection by the smile classifier and improved CS.

Fig. 9 shows the effect of increasing γ to adjust the amount of smiling in the generated image. Ide-
ally, we expect increasing γ to increase the amount of smiling without affecting the gender attribute.
When γ = 0 (top row), both COIND and Composed GLIDE generate images of men who are not
smiling. As γ increases, we notice that the samples generated by COIND show an increase in the
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amount of smiling, going from a short smile to a wider smile to one where teeth are visible. Note
that the training dataset did not include any images of smiling men or fine-grained annotations for
the amount of smiling in each image. This conclusion is strengthened by Fig. 10b that shows an
increase in CS when γ increases. CS increases when it is easier for the smile classifier to detect the
smile. COIND provides this fine-grained control over the smiling attribute without any effect on the
realism of the images, as shown by the minimal changes in FID in Fig. 10a.

In contrast, the images generated by Composed GLIDE show an increase in the amount of smiling
while adding gender-specific attributes such as long hair and makeup. We conclude that, by strictly
enforcing a conditional independence loss between the attributes, COIND provides fine-grained
control over the attributes, allowing us to adjust the intensity of the attribute in the image without
additional training. As shown in Tab. 3, COIND outperforms the baselines for generating unseen
compositions. Tuning γ further improves the generation.

E.3 FINETUNING T2I MODELS WITH COIND IMPROVES LOGICAL COMPOSITIONALITY

“smiling male” “smiling” AND “male” “smiling” NOT “female”

Composed
GLIDE

COIND

Figure 11: Samples generated after fine-tuning SDv1.5 on CelebA. The first row shows images gen-
erated by SDv1.5 fine-tuned on CelebA, while the second row shows images generated by SDv1.5
fine-tuned with COIND. Columns indicate samples generated from the respective prompts indicated
above.

We proposed COIND to improve control over the attributes in an image through logical expressions
of these attributes. Since larger pre-trained diffusion models such as Stable Diffusion (Rombach
et al., 2022) have become more accessible, we seek to incorporate the benefits of COIND in these
models. This section shows that text-to-image (T2I) models can be fine-tuned to generate images
using logical expressions of text prompts. Specifically, we use Stable Diffusion v1.5 (SDv1.5) to
generate face images from the CelebA dataset where smiling and gender attributes can be controlled.
We consider both joint and marginal sampling, similar to our case study in § 3. For joint sampling,
we provide SDv1.5 with the prompt “photo of a smiling male celebrity”. In the marginal sampling,
we provide the values for smiling and gender attributes using separate prompts – “Photo of a smiling
celebrity” ∧ “Photo of a male celebrity”. Then, we sample from these marginal likelihoods resulting
from these prompts following Eq. (1). To evaluate ¬ capabilities, we use the prompts “Photo of a
smiling celebrity” ¬ “Photo of a female celebrity” and follow Eq. (2).

Support Method JSD ↓ Joint ∧ Composition ¬ Composition

CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

Orthogonal Composed GLIDE 0.57 56.57 58.31 14.19 73.53 11.02 115.95
COIND (λ = 1.0) 0.37 58.57 58.19 49.15 61.16 18.80 86.31

Table 7: Results on SDv1.5 fine-tuning. COIND outperforms the baseline on all the metrics.
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Discussion

1. In Tab. 7, COIND improves performance across all metrics – achieving 3.46× and 2× im-
provement in CS over Composed GLIDE in ∧ and ¬ composition tasks. The images generated
by COIND have better FID than those from the baseline.

2. Visual inspection of the generated samples for the same random seed provides insights into
how Composed GLIDE and COIND perceive the prompts. Images in columns 1, 3, and 5 of
Fig. 11 were generated with the same random seed. Similarly, those in columns 2 and 4 share
the random seed. We note the following observations:

– Both Composed GLIDE and COIND generated images with the desired attributes when
sampled from the joint likelihood using “photo of a smiling male celebrity”. The images
generated by these models from the same random seed were also visually similar. This
shows that both models can aptly set attributes in the generated images and have identical
stochastic profiles, leading to unspecified attributes that assume similar values.

– When the attributes were passed as the ∧ expression “smiling” ∧ “male”, COIND gen-
erated images that were visually similar to those with matching random seeds generated
from joint sampling. This implies that COIND learned accurate marginals that help it to
correctly model the joint likelihood.

– When tasked with generating images for “smiling” ∧ “male”, Composed GLIDE gener-
ated images of smiling persons with gender-specific attributes such as thinner eyebrows,
commonly seen in photos of female celebrities. These gender-specific features increase
when the task is to generate images of “smiling” ¬ “female”. In contrast, COIND gen-
erates images of smiling celebrities while adding attributes such as a beard. Thus, we
conclude that COIND offers better control over the desired attributes without affecting
correlated attributes.

F DISCUSSION ON COIND

F.1 COMPOSITIONAL VS MONOLITHIC MODELS

Our findings echo the prior observations (Du & Kaelbling, 2024) that composite models consisting
of separate diffusion models trained on individual factors (e.g., LACE) demonstrate better ∧ compo-
sitionality under partial support than sampling from factorized distributions learned by monolithic
models (e.g., Composed GLIDE). However, we found that monolithic models can be significantly
improved by enforcing the conditional independence constraints necessary for enabling logical com-
positionality. For instance, COIND achieved a 2.4× better CS on Colored MNIST with diagonal
partial support and a 1.4× improvement on orthogonal partial support on Shapes3D compared to
LACE.

F.2 CONNECTION TO COMPOSITIONAL GENERATION FROM FIRST PRINCIPLES

Compositional generation from first principles Wiedemer et al. (2024) have shown that restricting
the function to a certain compositional form will perform better than a single large model. In this
section, we show that, by enforcing conditional independence, we restrict the function to encourage
compositionality.

Let c1, c2, . . . , cn be independent components such that c1, c2, . . . , cn ∈ R. Consider an injective
function f : Rn → Rd defined by f(c) = x. If the components, c are conditionally independent
given x the cumulative functions, F must satisfy the following constraint:

FCi,Cj ,...,Cn|X=x(ci, cj , . . . , cn) =
∏
i

FCi|X=x(ci) (34)
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F−1
Ci,Cj ,...,Cn|X=x(x) = inf{ci, cj , . . . , cn | F (ci, cj , . . . , cn) ≥ x}, where F−1

ci,cj ,...,Cn|X=x is a
generalized inverse distribution function.

f(ci, cj , . . . , cn) = (f ◦ F−1
ci,cj ,...,Cn|X=x)(

∏
i

FCi|X=x(ci))

= (f ◦ F−1
ci,cj ,...,Cn|X=x ◦ e)(

∑
i

logFCi|X=x(ci))

= g(
∑
i

ϕi(ci))

Therefore, we are restricting f to take a certain functional form. However, it is difficult to show
that the data generating process, f , meets the rank condition on the Jacobian for the sufficient sup-
port assumption Wiedemer et al. (2024), which is also the limitation discussed in their approach.
Therefore, we cannot provide guarantees. However, this section provides a functional perspective of
COIND.

F.3 LIMITATIONS

This paper considered compositions of a closed set of attributes. As such, COIND requires pre-
defined attributes and access to data labeled with the corresponding attributes. Moreover, COIND
must be enforced during training, which requires retraining the model whenever the attribute space
changes to include additional values. Instead, state-of-the-art generative models seek to operate
without pre-defined attributes or labeled data and generate open-set compositions. Despite the seem-
ingly restricted setting of our work, our findings provide valuable insights into a critical limitation of
current generative models, namely their failure to generalize for unseen compositions, by identifying
the source of this limitation and proposing an effective solution to mitigate it.

G ADDITIONAL RESULTS AND DISCUSSION ON COIND

G.1 LEARNING UNDER NON-UNIFORM p(Ci)
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(C
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(a) Gaussian support

Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑
LACE - 89.22 58.59 57.81
Composed GLIDE 0.27 91.74 88.91 78.39
COIND (λ = 1.0) 0.16 99.61 98.51 83.03

(b) Quantitative results for Gaussian support
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Figure 12: Results on Gaussian support: When the independent attributes have non-uniform cat-
egorical distributions, the joint distribution of attribute combinations is not uniform. Even in this
case, COIND learns pθ(Ci | Cj) accurately.

In our experiments, we considered the uniform support setting as an example where the attribute
variables are independent of each other in the training data, i.e., C1 ⊥⊥ C2 | X during training.
However, uniform support is not the only scenario that can arise from independent attribute variables.
In this section, we show that COIND can learn accurate marginals irrespective of the distribution of
Ci.

We designed an experiment using the Colored MNIST images where the attributes C1 and C2 as-
sume values from a non-uniform categorical distribution that resembles a discrete Gaussian distri-
bution. The resulting joint distribution of the attributes, which we refer to as Gaussian support, is
illustrated in Fig. 12a. We trained COIND and baselines on this dataset and evaluated on ∧ and
¬ compositionality tasks. Apart from comparing the CS of baselines and COIND on these com-
positionality tasks, we also evaluate if COIND accurately learns p(Ci) by comparing the learned
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pθ(Ci | Cj) against the true p(Ci | Cj). Intuitively, this verifies if COIND generates images with
uncontrolled attributes matching their distribution in the training dataset.

Fig. 12b quantitatively compares COIND against Composed GLIDE on CS in both ∧ and ¬ compo-
sitionality tasks. Like our previous experiments, COIND outperforms Composed GLIDE w.r.t. CS
in all tasks. In Fig. 12c, we verify if COIND has learned pθ(C2 | C1) accurately by comparing it
against the true distribution p(C2 | C1). pθ(C2 | C1 = c∗) = pϕ(C2 | X)pθ(X | C1 = c∗) is ob-
tained as the histogram density of the attributes that appear in the generated images when C1 = c∗.
We observe that the learned distribution pθ(C2 | C1 = 4) is close to the true distribution, forming a
bell shape.

G.2 CONFORMITY SCORE FOR EACH ATTRIBUTE COMBINATION
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Figure 13: Heatmap showing CS for each at-
tribute combination in the ∧ compositional-
ity task in Colored MNIST generation with
partial support (row 10 in Fig. 3a)

In all our experiments, we report CS as the primary
metric to evaluate if the generative model produced
images with accurate attributes. However, CS is the
average accuracy across all unseen attribute combi-
nations. Not all attribute combinations may be gen-
erated with equal accuracy. For instance, Fig. 13
shows the CS for each attribute combination in the
∧ compositionality task in Colored MNIST image
generation with partial support setting (row 10 in
Fig. 3a). As a reminder, COIND achieved 55% CS
on unseen attribute combinations in this task. We
can see that COIND can successfully generate all
seen attribute combinations that appear on the diag-
onal. Some unseen attribute combinations achieve
> 90% CS, while others have nearly 0% CS.

We do not observe the model struggling to generate
images with any specific attribute or digit, although
some colors have a generally lower CS than others.
For example, colors 2 and 3 have zero CS with more
digits than others. On the other hand, colors 4, 5, and
6 have high CS with all digits. We hypothesize that
this disparity in CS could depend on the nature of
attributes and the similarity between the values they
can take.

G.3 FAILURE EXAMPLES OF COIND

Here, we examine some samples generated by COIND where it failed to include the desired at-
tributes. We show these failure cases from each dataset, i.e., Colored MNIST, Shapes3d, and
CelebA datasets. Samples from Colored MNIST and Shapes3d datasets are taken from the par-
tial support setting, while the ones from the CelebA dataset are taken from the orthogonal support
setting. Fig. 14a shows some failure samples from the Colored MNIST dataset. The images in the
first row contain digits with colors leaking from the nearby seen attribute combination. Those in the
second row correspond to ¬ approximation and have wrong attributes due to the approximation in
the probabilistic formulation in Eq. (2). Some images, like those in the third row, are unrealistic,
although they may contain the desired attributes. We observe similar failures in Shapes3d samples
shown in Fig. 14b where the COIND deviates from the desired compositions (column 1). Some
failed samples from the CelebA dataset are shown in Fig. 14c. The samples correspond to the task
of “smile” ∧ “male”. In the top image, it is hard to distinguish if the subject is smiling or laughing.
In some samples, we observed only a weak or soft smile. This could be because a smile is difficult
to control due to its limited spatial presence in an image.
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Figure 14: Some samples generated by COIND where it could not enforce the desired attributes.

Support Configuration CS

Uniform Vanilla 100
Uniform COIND(λ = 1) 100
Non-uniform Vanilla 100
Non-uniform COIND(λ = 1) 100

Diagonal partial Vanilla 65.27
Diagonal partial COIND(λ = 1) 73.35

(a) Colored MNIST

Support Configuration R2 CS

Uniform Vanilla 0.99 100
Uniform COIND(λ = 1) 0.99 100

Orthogonal partial Vanilla 0.97 95.88
Orthogonal partial COIND(λ = 1) 0.99 99.57

(b) Shapes3D

Table 8: Overall Performance Metrics for Conditional generation

G.4 COIND ALSO IMPROVES CONDITIONAL GENERATION

Given an ordered n-tuple from the attribute space not observed during training, can COIND generate
images corresponding to this sampled from joint distribution, Pθ(X|C)? To answer this question,
we train COIND and the baselines on Colored MNIST and Shapes3d datasets. Tab. 8 shows the
results. As expected, the vanilla model, under full support, generates samples corresponding to the
joint distribution. However, as demonstrated in § 3, models trained on partial support fail to generate
samples for unseen attribute compositions. In addition to the improved performance on logical
compositionality, enforcing conditional independence explicitly improves conditional generation as
well and produces better results on partial support compared to vanilla diffusion models for both
Colored MNIST and Shapes3D datasets.

H 2D GAUSSIAN: WORKINGS OF COIND IN CLOSED FORM

The underlying data is generated by two independent attributes, C1 and C2. The observed variable
X is defined as:

X = f(C1) + f(C2) (35)
where f(ci) = ci + σϵ, and ϵ ∼ N (0, I) represents Gaussian noise. For simplicity, C1 and C2 are
binary variables taking values in {−1,+1}. The function f(C1) results in a mixture of Gaussians
with means [−1 0] and [+1 0]. These are represented along the x-axis in Figure 15a. Similarly,
f(C2) produces a mixture of Gaussians with means:[0 −1] and [0 +1]. These are displayed
along the y-axis in Figure 15a. The combination of C1 and C2 independently generates as Eq. (35)
This results in a two-dimensional Gaussian mixture, as illustrated in Figure 15. We consider orthog-
onal support, where attribute combinations of (C1, C2) ∈ {(−1,−1), (−1,+1), (+1,−1)}, and the
model is tasked to generate unseen combination of (+1,+1). Also as a reminder that assumptions
mentioned in § 2 are satisfied. (1) C1, C2 independently generate X , and (2) all possibles values for
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Figure 15: COIND respects underlying independence conditions thereby generating true data distri-
bution (d).

every attribute are present at-least observed during training. Let score is given by s+1,+1 represents
∇X log p(X | C1 = 1, C2 = 1) and likewise s1,∅ represents ∇X log p(X | C1) To sample for the
unseen compositions of (1,1) we use Eq. (1) to

s1,1(x) = s1,∅(x) + s∅,1(x)− s∅,∅(x) (36)

Training diffusion model (score) objective involves computing score functions from the training
data, which will give us the following terms in closed form. For example s1,∅(x) is training using
only +1,−1 combinations present during training. which is nothing but a gaussian at +1,−1 and
the score of the gaussian is given in closed form.

s1,∅(x) =
µ1,−1 − x

σ2

s∅,1(x) =
µ1,−1 − x

σ2

s∅,∅(x) is a mixture of gaussian with means around 3 Gaussians present during training. The score
of the mixture gaussian as:

s∅,∅(x) =

∑
i N (x;µi, σ

2I)
[
µi−x
σ2

]∑
i N (x;µi, σ2I)

Now leveraging Langevin dynamics Eq. (9) will generate the Fig. 15c as the distribution of
P (X | C1 = +1, C2 = +1) is incorrect ( strong red blob between the (+1,−1), (−1,+1)
instead of gaussian at (+1,+1)). This is due to incorect modelling of the distributions
s1,∅(x), s∅,1(x), s∅,∅(x). However, COIND does not explicitly model s1,∅, instead learn joint
s−1,−1(x), s+1,−1(x), s−1,+1(x) as Gaussians and then combine them using pairwise conditional
independence conditions given as:

s−1,−1(x) = s+1,∅(x) + s∅,+1(x)− s∅,∅(x)

s+1,−1(x) = s+1,∅(x) + s∅,−1(x)− s∅,∅(x)

s−1,+1(x) = s−1,∅(x) + s∅,+1(x)− s∅,∅(x)

s+1,1(x) = s+1,∅(x) + s∅,+1(x)− s∅,∅(x)

= s+1,−1(x) + s−1,+1(x)− s−1,−1(x)

=
[µ+1,−1 + µ+1,−1 − µ−1,−1]− x

σ2

This shows the workings of COIND and also demonstrates that conditional independence constraints
are necessary to learn the underlying distribution and alos with these constraints, diffusion models
generate incorrect interpolation for unseen data distributions as shown in Fig. 15c.

I EXTENSION TO GAUSSIAN SOURCE FLOW MODELS

Diffusion models can be viewed as a specific case of flow-based models where: (1) the source dis-
tribution is Gaussian, and (2) the forward process follows a predetermined noise schedule.(Lipman
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et al., 2024). Can we reformulate COIND in terms of velocity rather than score, thereby generaliz-
ing it to accommodate arbitrary source distributions and schedules? When the source distribution
is gaussian, score and velocity are related by affine transformation as detailed in Tab. 1 of (Lipman
et al., 2024).

stθ(x,C1, C2) = atx+ btu
t
θ(x,C1, C2) (37)

replacing stθ(·) into Eq. (28)

LCI = Ep(X,C),t∼U [0,1]Ej,k∥stθ(x,Cj , Ck)− stθ(x,Cj)− stθ(x,Ck) + stθ(x)∥22
= Ep(X,C),t∼U [0,1]Ej,k

[
b2t∥ut

θ(x,Cj , Ck)− stθ(x,Cj)− ut
θ(x,Ck) + ut

θ(x)∥22
]

However we can ignore b2t , weighting for the time step t.

LCI = Ep(X,C),t∼U [0,1]Ej,k

[
∥ut

θ(x,Cj , Ck)− ut
θ(x,Cj)− ut

θ(x,Ck) + ut
θ(x)∥22

]
(38)

Therefore, if the source distribution is gaussian and for any arbitrary noise schedule, constraint in
score translates directly to velocity constraint as given as Eq. (38).
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