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ABSTRACT

Effective information seeking in multi-turn medical dialogues is critical for ac-
curate diagnosis, especially when dealing with incomplete information. Aligning
Large Language Models (LLMs) for these interactive scenarios is challenging due
to the uncertainty inherent in user-agent interactions, which we formulate as a
Hierarchical Markov Decision Process (H-MDP). While conventional Reinforce-
ment Learning (RL) methods like Group Relative Policy Optimization (GRPO)
struggle with long-horizon credit assignment and Proximal Policy Optimization
(PPO) suffers from unstable value estimation in this context, we propose a novel
uncertainty-aware Adaptive Tree Policy Optimization (ATPO) algorithm. Our
method adaptively allocates the rollout budget to states with high uncertainty,
quantified by a composite metric of Bellman error and action-value variance. This
strategy enables more accurate value estimation, while fostering more efficient
and diverse exploration. To mitigate the high computational cost of tree-based
RL, we introduce two key optimizations: an uncertainty-guided pruning mecha-
nism to minimize the number of rollouts, and an asynchronous search architec-
ture that leverages KV cache reuse to maximize inference throughput. Exten-
sive experiments on three public medical dialogue benchmarks demonstrate that
our algorithm significantly outperforms several strong baselines, culminating in
Qwen3-8B model surpassing the much larger GPT-4o (+0.92% accuracy). 1

1 INTRODUCTION

In recent years, Large Language Models (LLMs) such as GPT-4 Achiam et al. (2023), Gemini
2.5 Comanici et al. (2025), Qwen3 Yang et al. (2025), and DeepSeek-R1 Guo et al. (2025a) have
demonstrated exceptional capabilities across a range of natural language processing tasks, including
open-domain question answering, dialogue generation, and code generation, continuously pushing
the boundaries of AI performance (Chen et al., 2025). These models are increasingly being applied
to downstream domains like education (Chu et al., 2025), law (Siino et al., 2025), and healthcare
(Awasthi et al., 2025). Within the medical field, medical LLMs are consistently achieving state-of-
the-art results on various benchmarks (Sellergren et al., 2025; Li et al., 2025a), such as professional
medical examinations (Jiang et al., 2025) and disease diagnosis tasks (Xu et al., 2025; McDuff
et al., 2025), and show immense potential for providing preliminary medical advice and assisting in
clinical decision-making (Kopka et al., 2025).

However, despite these achievements, a critical aspect has long been overlooked. Current training
and evaluation of medical LLMs predominantly focus on single-turn interaction scenarios, where
models are expected to provide faithful responses based on the user’s initial input. In real-world
medical dialogues, however, the information provided by users is often incomplete, making it diffi-
cult to generate a satisfactory response based solely on the vague or fragmented initial query (Auer-
bach et al., 2024; Wu et al., 2025a). This necessitates the model’s ability to proactively ask clarifying
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questions to gather more essential information. Unfortunately, this capability for dynamic, multi-
turn information gathering is a significant deficiency in current models (Laban et al., 2025).

Previous work has attempted to fill this gap. Some approaches Li et al. (2024); Liu et al. (2025a); Hu
et al. (2024) have used prompt engineering to elicit proactive questioning, but these methods often
fail to fundamentally enhance the model’s multi-turn interactive capabilities and can even lead to
poorer performance than simply responding with incomplete information. Other efforts Liao et al.
(2023); Liu et al. (2025b) have employed supervised fine-tuning (SFT) to improve dynamic inter-
action, yet these models tend to merely imitate the training data. Furthermore, some studies Shi
et al. (2024); Xiong et al. (2024) have extended single-turn preference optimization to the trajectory
level, but they rely on costly preference data and are highly sensitive to distribution shift. While
reinforcement learning offers a promising, goal-driven alternative with stronger generalization (Guo
et al., 2025a), current methods are also flawed. For instance, Group Relative Policy Optimization
Shao et al. (2024) struggles with long-horizon credit assignment, and Proximal Policy Optimiza-
tion Schulman et al. (2017) often suffers from unstable value estimation, hindering effective policy
learning for complex multi-turn dialogues (Feng et al., 2025a).

In this work, we introduce Adaptive Tree Policy Optimization, a novel uncertainty-aware algorithm
illustrated in Figure 1. ATPO employs an adaptive tree search where, for each node, it calculates an
uncertainty metric to decide whether to expand the search further. This metric is a composite of two
key signals: the Bellman error, which prioritizes nodes beneficial for critic training, and the action-
value variance, which encourages sampling diversity. Furthermore, ATPO achieves high training
efficiency by reusing shared prefixes to fully leverage the Key-Value (KV) cache Kwon et al. (2023)
mechanism, combined with an asynchronous execution strategy. We conduct comprehensive evalua-
tions on three Qwen3 models Yang et al. (2025) with different sizes (Qwen3 1.7B, 4B and 8B) using
three multi-turn medical dialogue datasets meticulously adapted from public multiple-choice ques-
tion datasets (MedQA Jin et al. (2020), MedMCQA Pal et al. (2022), and MedicalExam Liao et al.
(2024)). The experimental results demonstrate that our proposed method significantly outperforms
strong competitive RL baselines across all datasets and model sizes, validating its effectiveness and
generalization capabilities.

Our contributions are as follows:

• We propose the Adaptive Tree Policy Optimization algorithm, which adaptively allocates
rollout budgets based on turn-level uncertainty in multi-turn medical dialogues. This
method enhances sampling diversity while simultaneously improving the critic model’s
accuracy.

• We design ATPO to be highly efficient by reusing shared prefixes to fully leverage the KV
cache, and we implement it with an asynchronous execution strategy to achieve substantial
improvements in inference throughput.

• Extensive experiments demonstrate that ATPO not only consistently and significantly out-
performs strong RL baselines, but also achieves this with far greater sample efficiency,
validating its robust generalization and effectiveness.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING IN MULTI-TURN MEDICAL DIALOGUES

Recent efforts have applied reinforcement learning to train medical LLMs for proactive, multi-turn
dialogue. A common approach involves simulating doctor-patient interactions within a multi-agent
framework. For instance, DoctorAgent-RL Feng et al. (2025b) uses such a setup where a “doctor
agent” and “patient agent” (termed the “assistant” and “user”, respectively, in our work) interact,
with the former learning an optimal questioning strategy guided by a comprehensive evaluator. To
better guide this learning process, ProMed Ding et al. (2025) introduces a process reward based on
Shapley Information Gain, which uses cooperative game theory to formally quantify the clinical util-
ity of each question, enabling more targeted policy optimization. In contrast, Savage Conversation
Forests (SCF) Savage (2025) concentrates on the training architecture, which employs a branched
conversation structure to help the model learn how early conversational choices impact downstream
outcomes by exploring multiple dialogue paths simultaneously. Despite these excellent works, a
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Figure 1: Overview of ATPO algorithm. ATPO generates training data via an adaptive tree search.
At each expansion step, it generates candidate child nodes and computes a composite uncertainty
score based on their Bellman error U1 and Q-value variance U2. Nodes with high uncertainty U are
fully expanded, while low-uncertainty nodes are pruned by randomly selecting a single child for the
subsequent rollout. The collected trajectories are then used for policy and critic updates.

robust reinforcement learning algorithm capable of training a model to handle the complexities of
real-world medical dialogues remains to be fully explored.

2.2 TREE-BASED REINFORCEMENT LEARNING

To enhance the reasoning capabilities of LLMs, recent reinforcement learning approaches have be-
gun to integrate tree-based search, particularly for single-turn tasks. These methods primarily focus
on three distinct goals. First, some aim to improve value estimation; for example, VinePPO Kazem-
nejad et al. (2024) uses auxiliary “vine” rollouts to compute more accurate Monte Carlo values,
mitigating the impact of inaccurate value estimation. Second, another line of work leverages model
uncertainty to guide exploration, typically by expanding the search tree at tokens with high en-
tropy (Hou et al., 2025; Dong et al., 2025). Third, others refine the search structure itself for better
credit assignment or efficiency, such as SPO Guo et al. (2025b), which defines “segments” based
on low-probability tokens, or TreePO Li et al. (2025b), which uses a fixed N-ary tree for compu-
tational gains. Despite their innovations, these methods are fundamentally limited by their single-
turn, token-level focus. Their operational units (tokens, segments) do not naturally translate to the
macro-level decisions required in multi-turn dialogue. Moreover, their uncertainty metrics are ei-
ther indirect proxies (e.g., token entropy) or absent entirely in methods with fixed structures. Our
approach directly addresses these limitations. We introduce an uncertainty measure based on the
variance of turn-level Q-values, which quantifies the uncertainty over future rewards for different
macro-actions (i.e., conversational turns). This makes our method inherently better suited for the
long-horizon planning challenges of multi-turn interactions.

3 METHODS

3.1 MULTI-TURN DIALOGUES AS A HIERARCHICAL MDP

Similar to ArCHer Zhou et al. (2024), we model multi-turn dialogues as a Hierarchical Markov
Decision Process (H-MDP), which comprises a high-level MDP with a nested low-level MDP. For
the high-level MDP, a macro-action is defined as the full token sequence of the assistant’s response
in a single turn. A micro-action in the low-level MDP is a single token, such that generating a
sequence of micro-actions in the low-level MDP leads to a single macro-action in the high-level
MDP. Formally, each state xk in the high-level MDP consists of the interaction history between the
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user and the assistant prior to the k-th turn, together with the user’s query qk at the k-th turn. The
macro-action yk is defined as a variable-length token sequence representing the assistant’s response
to qk. The low-level MDP models the process of generating a macro-action, where each low-level
action yk,t corresponds to an individual token (i.e., the t-th token in the k-th macro-action). A low-
level state xk, t is defined as the concatenation of the high-level state xk and the partial sequence
yk,<t, namely the tokens that have already been generated in the current turn up to (but excluding)
the t-th token.

3.2 DIALOGUE EXPLORATION VIA TREE EXPANSION

In H-MDP optimization, accurate state-value estimation is crucial for effective policy improvement.
Existing methods either rely on pure Monte Carlo estimates from full trajectories (e.g., GRPO Shao
et al. (2024)), which can be high-variance and lead to unstable training, or solely on a learned
critic (e.g., PPO Schulman et al. (2017)), which may suffer from approximation errors. To strike a
balance between accuracy and efficiency, we propose an exploration strategy based on incremental
tree expansion. This approach efficiently reuses the computation of shared dialogue prefixes (a
detailed analysis of the computational savings is provided in Appendix A.7) and adaptively allocates
the sampling budget to the most promising or uncertain parts of the dialogue space, rather than
repeatedly re-exploring from the root.

In this framework, the multi-turn dialogue process is viewed as the expansion of a search tree. The
initial user query forms the root node, which is at depth 0 and corresponds to state x0. From there,
the tree expands turn-by-turn. At any non-terminal node corresponding to state xk, the assistant
produces a macro-action, which can be either a clarifying question or a definitive answer. In the
case of a clarifying question, the user’s reply completes the state transition to xk+1, resulting in
the creation of a new node at the next depth of the tree. In the case of a definitive answer, the
dialogue terminates along that branch and the node becomes a terminal leaf; for consistency, the
subsequent user feedback in this scenario is considered empty. Thus, the depth of a node corresponds
to the number of turns elapsed in the dialogue, with the root at depth 0, and the nodes at depth k
representing all possible dialogue states after k turns of interaction.

This entire procedure is guided by an uncertainty-aware principle. The core idea is to prioritize the
expansion of nodes exhibiting high uncertainty, as they provide more diverse and informative sam-
ples for driving effective policy updates and improving critic accuracy. In the multi-turn dialogue
setting, this uncertainty can be broadly categorized into two types: Epistemic uncertainty, aris-
ing from the inherent cognitive limitations of the model and manifests as uncertainty in its action.
Aleatoric uncertainty, stemming from the inherent randomness in the environment, such as the
variability in user responses.

3.3 UNCERTAINTY-AWARE TREE EXPANSION MECHANISM

To operationalize our tree expansion strategy, we first quantify the uncertainty of each frontier node.
Consider a specific node at depth k, representing the dialogue state xk. We sample a set of N
candidate macro-actions {yik}Ni=1 from the policy πθ(·|xk). For each candidate action yik, we define
its estimated action-value Q̂(xk, y

i
k) using a one-step lookahead:

Q̂(xk, y
i
k) = r(xk, y

i
k) + γVψ(x

i
k+1), (1)

where xik+1 is the state resulting from action yik, and the next-state value Vψ is given by the critic
model. Based on this, the uncertainty is calculated as:

U1(xk) =

∣∣∣∣∣Vψ(xk)− 1

N

N∑
i=1

Q̂(xk, y
i
k)

∣∣∣∣∣ , (2)

U2(xk) = Vari∈[N ]

[
Q̂(xk, y

i
k)
]
=

1

N

N∑
i=1

Q̂(xk, y
i
k)−

1

N

N∑
j=1

Q̂(xk, y
j
k)

2

, (3)

U(xk) = αU1(xk) + (1− α)U2(xk). (4)
The first term, U1(xk), measures the Bellman error between the critic’s current state-value estimate
Vψ(xk) and the empirical one-step lookahead value averaged over all candidates. It serves as a
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proxy for aleatoric uncertainty; a large error indicates an inaccurate value estimate for the current
state. Note that this error metric is used solely as a heuristic to guide the tree expansion process,
rather than as a target for bootstrapping updates of the critic model. The second term, U2(xk),
quantifies the variance of the action-value estimates. This term captures a blend of both epistemic
and aleatoric uncertainty. High variance can arise from two distinct sources: the policy’s own
indecision leading it to explore a diverse set of candidate actions (epistemic), or the environment’s
inherent randomness where different state transitions yield widely varying Q-values (aleatoric). The
notation Var(·) represents the variance across the N candidate actions. This raw value is subse-
quently normalized using Z-score scaling based on historical samples to create a stable, comparable
metric. The hyperparameter α ∈ [0, 1] balances the contributions of these two uncertainty sources.

With the uncertainty metric U(xk) defined, the expansion process is guided by a threshold-based
rule. When the expansion process reaches a node at depth k, representing one of the possible dia-
logue states after k turns, we compare its calculated uncertainty against a predefined threshold τ : If
U(xk) > τ , the node is considered highly uncertain and all N branches are retained. Conversely, if
U(xk) ≤ τ , the node is deemed sufficiently understood. To conserve computational resources, we
primarily prune the search by randomly selecting only one of the N candidate branches. However,
to maintain a baseline level of sampling diversity, we bypass this pruning with a small probability
(e.g., 10%) and instead expand all N branches.

The uncertainty-driven expansion continues along the retained branches until all dialogues terminate
or the total number of leaf nodes (i.e., the tree width) reaches a predefined budget. Once this budget
is met, no further nodes are expanded, and all current leaf nodes proceed to the rollout phase until
termination.

3.4 VALUE TRACEBACK, TREE DECOMPOSITION AND MODEL OPTIMIZATION

Following the completion of the tree expansion process, we compute the state-values and advantages
for all nodes within the generated tree via a recursive backward pass starting from the leaf nodes.
First, we calculate the target value V̂ (xk) for each state xk, which serves as a robust empirical
estimate of the Monte Carlo return from that state and can be used as the value target for subsequent
critic updates:

V̂ (xk) =


r(xk, yk), if leaf node,

1

B(xk)

B(xk)∑
i=1

[
r(xk, y

i
k) + γV̂ (xik+1)

]
, otherwise.

(5)

If a state is terminal, its target value equals the immediate reward; otherwise, it is the average one-
step TD target over all child branches. Here, B(xk) denotes the number of child nodes, which
according to the expansion rule is either N for fully expanded nodes or 1 for pruned nodes, and the
superscript i indexes the i-th branch among these children.

With the target values established, we compute the estimated advantage for each macro-action yik
using the standard one-step temporal-difference formulation:

Â(xk, y
i
k) = r(xk, y

i
k) + γ Vψ(x

i
k+1)− Vψ(xk). (6)

The reason we use the critic’s value estimates instead of the target values V̂ (·) is that, when only
one branch is retained, V̂ (xk) equals its one-step return, resulting in a zero advantage; whereas the
critic’s estimates preserve non-zero learning signals.

Once values and advantages have been computed for all nodes, the expanded tree is decomposed
into a set of independent trajectories for model optimization. Each unique path from the root to a
leaf node constitutes one trajectory, so a tree with M leaf nodes directly yields M such trajectories.
The number of turns in the j-th trajectory, denoted by K(j), can vary across trajectories because
different dialogues may terminate after different numbers of turns. The policy πθ is then updated by
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maximizing the following PPO-style objective, aggregated over all tokens from all trajectories:

J(θ) = Ex0∼D,{yk∼πθ(xk),xk+1∼P (·|xk,yk)}K−1
k=0

 1

M
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k )
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(j)
k ) for 1 ≤ t ≤ L(y

(j)
k ).

In this objective, the expectation E(·) is taken over initial user queries x0 sampled from the dataset
D, along with subsequent states and actions. The term ρ

(j)
k,t denotes the probability ratio between the

current policy πθ and the reference policy πref for generating the t-th token in the k-th turn of the
j-th trajectory. Consistent with our hierarchical MDP formulation, the advantage Â(xk, y

(j)
k,t) for

each token is set equal to the macro-action’s advantage Â(xk, y
(j)
k ), thereby uniformly distributing

the turn-level credit across the tokens generated in that turn. The update is normalized by two
factors: C(x(j)k ), the visit count of the state across all trajectories, which prevents over-optimizing
on frequently visited nodes; and L(y(j)k ), the length of the response, which ensures the turn-level
advantage is properly scaled for each token. The min(·) and clip(·) constrain the policy update to
stabilize training.

Finally, the critic model, parameterized by ψ, is trained to predict the target state values. The critic
consists of the LLM backbone and a linear value head. Its value estimate Vψ(xk) is obtained as the
average of the predictions over the final h special tokens. The critic is trained by minimizing the
following mean squared error loss:

L(ψ) = 1

M

M∑
j=1

1

K(j) · h

K(j)∑
k=1

L(x
(j)
k )∑

t=L(x
(j)
k )−h+1

1

2

[
Vψ(x

(j)
k,t)− V̂ (x

(j)
k )

]2
, (8)

where Vψ(x
(j)
k,t) is the value predicted at the t-th token position of the input, with L(x(j)k ) denoting

the total number of tokens of state x(j)k . This loss trains the critic to make the predictions at the final
h token positions for state x(j)k match the ground-truth target value V̂ (xk).

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Environment and Task Description. We establish a multi-turn clinical case reasoning environment
with two LLM-based agents: a User Simulator and an Assistant Agent. (1) User Simulator: Im-
plemented using Qwen3-8B, it is instructed to answer the Assistant’s questions strictly based on a
given set of atomic facts (an example is provided in Appendix A.9), refusing to respond to any out-
of-scope queries. The prompt for user simulator is provided Appendix A.8. To ensure reliability,
we continuously monitor its behavior during training and verify it with GPT-4o, achieving 100%
accuracy in following instructions and rejecting irrelevant queries, with a hallucination rate of only
1.2%, demonstrating high fidelity. This verification was performed using the user simulator quality
monitoring prompt (see Appendix A.8). (2) Assistant Agent: The Assistant Agent is tasked with
resolving a clinical case question by selecting the correct answer from a list of options. It begins
with an initial context and can iteratively query the User Simulator for additional information. The
process terminates when the agent either commits to a final answer or the pre-defined turn limit is
reached. An interaction example between the Assistant Agent and the User Simulator is provided in
Appendix A.1.

Baselines. We compare our ATPO with several baselines to evaluate its effectiveness:
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1) Zero-shot Prompting: To benchmark performance, we evaluate several base models (Qwen3-
1.7B, Qwen3-4B, and Qwen3-8B) under two distinct settings. The first is a Direct single-turn setting,
where the agent must respond using only the initial context. The second is an interactive MEDIQ Li
et al. (2024) setting, which allows the agent to interact with the User Simulator for up to 8 turns in
total, including the final answering turn. Prompts for both settings are provided in Appendix A.8.

2) SFT: To establish a stronger baseline, we fine-tune the Qwen3 instruct models to encourage
multi-turn information-seeking behavior instead of directly producing an answer in the first turn.
Using the MEDIQ validation dataset as the source of atomic facts, questions, and answer options,
we employ the expert model Gemini-2.5-Pro in a self-play setup, where it role-plays both user and
assistant to generate 1, 269 multi-turn dialogues (the prompt is provided in code repository as it is
too long to display in the paper). We ensure no information leakage during this process and retain
only dialogues with a correct final answer. The resulting dataset is used to train the models with
supervised fine-tuning and dynamic fine-tuning (DFT Wu et al. (2025b)).

3) SFT+RL: We compare our algorithm with standard RL post-training methods under the same
environment, using rewards solely based on the correctness of the final answer. Critic-based Meth-
ods: PPO (MDP) treats text generation as a standard MDP, assigning a unique value to each token.
PPO (H-MDP) adopts a hierarchical formulation, estimating a single value per turn and propagating
the corresponding advantage to all tokens in that turn. Critic-free Methods: We implement GRPO,
which assigns a single advantage to an entire trajectory and shares it across all tokens. We also
adopt TreePO (Guo et al., 2025b; Li et al., 2025b), where we construct a binary search tree in which
each non-terminal node expands into two child nodes, constrained only by a maximum depth cor-
responding to the dialogue turn limit, without any pruning. After the search completes, we perform
a backward pass to compute the aggregate return for each node as its target value V̂ (xk). The ad-
vantage is calculated as Â(xk, yk) = r(xk, yk) + γV̂ (xk+1)− V̂ (xk), and is assigned to all tokens
generated in that sequence for policy optimization.

Implementation Details. For RL experiments, we use the SFT-trained Qwen3-1.7B, Qwen3-4B,
and Qwen3-8B models as the initial policy for the Assistant Agent. The reward function is based
solely on final-answer correctness: +3 for a correct answer, 0 for an incorrect answer, and −1 for
an invalid format. The training data contains 14, 256 samples, with 66% (9, 400) drawn from the
MEDIQ training dataset and 34% (4, 856) constructed from the MedMCQA training dataset.

Policy learning rate 1 × 10−6, critic learning rate 1 × 10−5, KL penalty weight β = 0.01, and
discount factor γ = 1. The critic is initialized from the actor’s weights and warmed up for 5 steps.
Method-specific settings include a group size of 32 for GRPO, and for ATPO, an expansion size
N = 4 with a total expansion budget of 128. In ATPO (U1), the uncertainty threshold is τ = 0.5; in
ATPO (U1 + U2), we set α = 0.3 and τ = 1.5.

Our TreePO and ATPO implementations build upon the VeRL (Sheng et al., 2025) Agentic RL
framework, integrating tree search, reward computation, and advantage estimation into a single
concurrent phase. This design eliminates the need for a multi-stage pipeline by producing ready-
to-train trajectories directly from the search process. In ATPO, throughput is further improved by
executing the assistant model’s answer generation, its interaction handling with the user model, and
the value estimation by the critic model in a fully asynchronous manner within the sampling phase.
Together with efficient prefix sharing and the vLLM KV cache, this design achieves decoding speeds
of up to 2,500 tokens/sec/GPU on a 1.7B model with TreePO. Both our implementation and the
associated datasets are available at https://github.com/Quark-Medical/ATPO.

4.2 RESULTS

Evaluation Setup. We conduct evaluations on three Qwen3 models Yang et al. (2025) of different
sizes (Qwen3-1.7B, Qwen3-4B, and Qwen3-8B), along with GPT-4o and Gemini-2.5-Pro as a strong
baseline to assess the effectiveness of our method. Experiments are performed on three multi-turn
medical dialogue datasets adapted from public multiple-choice question datasets: MedQA, obtained
directly from the MEDIQ Li et al. (2024) test set; MedMCQA, constructed from its original training
data Pal et al. (2022); and MedicalExam, sourced directly from AIE Liao et al. (2024). Each sample
is reformulated into a set of atomic facts, a concise initial context, an atomic question that excludes
factual details, and several answer options with exactly one correct choice (details in Appendix A.2).
The primary evaluation metric is final-answer accuracy, defined as the percentage of test cases where
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Table 1: Performance comparison (%) on MedicalExam, MedQA, and MedMCQA. Bold indicates
the best performance, underlined the second-best (excluding GPT-4o and Gemini-2.5-Pro).

Model Method Type Method Name MedicalExam MedQA MedMCQA

Qwen3-1.7B

Prompt Direct 35.07± 1.12 34.05± 0.38 32.54± 0.49
MEDIQ 34.00± 2.26 34.20± 0.75 32.35± 1.73

SFT DFT 29.07± 1.46 28.38± 0.80 21.08± 0.90
SFT 32.27± 4.77 33.42± 0.95 28.10± 2.32

SFT+RL

PPO (MDP) 39.33± 4.01 38.64± 1.17 35.37± 0.80
PPO (H-MDP) 39.33± 2.79 39.08± 1.85 34.89± 1.00
GRPO 42.93± 1.80 41.17± 0.64 36.57± 3.26
TreePO 43.33± 1.56 42.05± 1.03 38.47± 2.00
ATPO (U1) 45.73 ± 1.53 42.54± 0.39 38.66± 0.66
ATPO (U1 + U2) 43.20± 1.85 42.87 ± 0.77 39.93 ± 1.05

Qwen3-4B

Prompt Direct 48.13± 0.87 44.94± 0.35 41.53± 0.39
MEDIQ 45.87± 1.20 40.11± 0.60 31.64± 1.41

SFT DFT 43.07± 1.61 41.72± 1.27 33.28± 1.68
SFT 48.93± 2.14 47.15± 1.01 39.18± 1.22

SFT+RL

PPO (MDP) 50.13± 2.80 50.60± 0.90 42.50± 0.84
PPO (H-MDP) 52.40± 2.24 48.58± 1.48 43.32± 2.22
GRPO 53.87± 2.08 51.17± 1.08 43.84± 0.78
TreePO 56.13± 0.99 53.74± 0.56 45.22± 0.65
ATPO (U1) 56.80± 1.28 53.15± 0.55 46.23 ± 1.25
ATPO (U1 + U2) 59.73 ± 2.61 55.47 ± 0.99 45.93± 1.13

Qwen3-8B

Prompt Direct 52.40± 0.37 45.22± 0.34 46.16± 1.04
MEDIQ 51.87± 3.69 46.03± 0.75 41.60± 0.91

SFT DFT 51.86± 3.63 48.80± 1.30 42.20± 0.83
SFT 55.87± 0.30 53.75± 1.18 46.87± 1.74

SFT+RL

PPO (MDP) 59.20± 3.84 57.38± 0.84 50.00± 0.81
PPO (H-MDP) 59.07± 3.15 57.81± 1.29 51.98± 0.67
GRPO 60.93± 1.86 57.92± 0.68 51.12± 1.29
TreePO 65.33± 3.09 61.81± 0.90 54.74 ± 1.99
ATPO (U1) 65.52± 3.12 62.57± 0.41 53.22± 1.30
ATPO (U1 + U2) 65.87 ± 3.72 64.07 ± 0.43 53.66± 1.52

GPT-4o Prompt MEDIQ 64.00± 3.53 63.15± 0.82 53.03± 0.89
Gemini-2.5-Pro Prompt MEDIQ 74.33± 2.53 68.69± 0.61 63.31± 1.37

the Assistant Agent’s chosen option matches the ground-truth answer. For statistical robustness, we
report the mean and standard deviation of five independent runs.

Main Findings. From Table 1, we observe that in the zero-shot setting, the MEDIQ prompting strat-
egy performs worse than the Direct single-turn prompt, consistent with the finding in MEDIQ Li
et al. (2024) that prompting LLMs to ask questions can reduce accuracy. Supervised fine-tuning
brings only modest gains in final-answer accuracy while being crucial for enabling multi-turn in-
formation seeking and providing a solid foundation for subsequent reinforcement learning. We
further explored the limits of SFT by distilling knowledge from much larger models like GPT-4o
and Gemini-2.5-Pro. As detailed in Appendix A.3, this distillation approach also failed to yield sig-
nificant improvements (Table 2), reinforcing the notion that simply imitating expert trajectories is
insufficient for generalization and that a goal-driven reinforcement learning approach is necessary.

Our proposed ATPO achieves the highest accuracy in most settings, even surpassing GPT-4o at the
8B scale (e.g., exceeding GPT-4o on MedQA by 0.92%). This demonstrates the strong effectiveness
of the method. Further, the results show that both uncertainty metrics are valuable and complemen-
tary: ATPO (U1 + U2) generally outperforms ATPO (U1), which in turn achieves higher accuracy
than TreePO. Combining U1 and U2 yields the best results, with absolute gains over TreePO on
MedQA of 0.82%, 1.73%, and 2.26% for the 1.7B, 4B, and 8B models, respectively. This per-
formance improvement is partly driven by the enhanced quality of the dialogues. As shown in
Appendix A.4, the proportion of effective questions asked by the assistant steadily increases during
ATPO training (Figure 4), allowing it to gather crucial information more efficiently and solve tasks
in fewer turns.

ATPO also exhibits markedly higher sample efficiency, as shown in Figure 2 (a). For instance,
on MedQA with Qwen3-4B, ATPO (U1 + U2) achieves approximately 52.7% accuracy while using
only 55% of the training turns required by TreePO (A detailed analysis of the computational costs of
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Figure 2: Analysis of the ATPO algorithm on Qwen3-4B. (a) Training efficiency and performance
comparison of various algorithms, plotting accuracy against the number of generated turns. (b), (c)
Return variance and critic loss for ATPO and baseline methods. (d), (e) Distribution of branching
nodes and returns by depth for samples from ATPO at a representative training step. (f), (g) Stability
analysis of ATPO with and without visit-count-based down-weighting.

various algorithms is provided in A.5). This advantage stems from ATPO’s adaptive rollout budget
allocation mechanism. Moreover, unlike TreePO’s fixed branching, which causes an exponential
growth of nodes concentrated in early turns, ATPO’s uncertainty-based pruning enables deeper and
more balanced exploration across all dialogue depths (as shown in Figures 2 (d), (e)), making it
more suitable for long-horizon tasks. Additionally, hierarchical modeling proves beneficial in multi-
turn dialogue: PPO (H-MDP) slightly but consistently surpasses PPO (MDP), scoring higher in 5
out of 9 evaluation settings. Among critic-free methods, the tree-based approach demonstrates clear
superiority, with TreePO substantially outperforming GRPO. This indicates that, for complex multi-
turn tasks, structuring credit assignment via a search tree is more effective than relying on a single
trajectory-level advantage.

4.3 ABLATION AND ANALYSIS

We conducted several ablation experiments on ATPO, which provide the following key insights.

The dual uncertainty metrics enhance both sampling diversity and critic optimization. Figure 2 (b)
shows that guiding node expansion with U1 + U2 produces a high variance of sample returns, com-
parable to GRPO and markedly higher than TreePO, while using only U1 reduces diversity. At the
same time, Figure 2 (c) indicates that the critic’s value loss under U1 + U2 is substantially lower
than PPO (both MDP and H-MDP), with U1 alone ranking second. These results highlight that
uncertainty-aware tree search benefits value function learning. This advantage partly stems from
intelligent budget allocation (Figures 2 (d), (e)): U1 alone drives aggressive early exploration, con-
centrating expansions at shallow depths (3–4) and causing steep local drops in node values, whereas
U1 + U2 achieves deeper coverage and maintains a more uniform value variance, enabling a more
globally effective search.

We also find that down-weighting policy updates by node visit count is crucial for training stability.
An ablation study compares the default ATPO (policy advantage down-weighted) with two variants:
EXP 1 (no policy down-weighting) and EXP 2 (down-weighting both policy advantage and value
loss). EXP 1 results in uncontrolled entropy growth and excessive policy clipping (Figures 2 (f),
(g)), since ignoring visit counts leads to disproportionate policy updates on frequently visited nodes,
causing the policy to diverge rapidly from its reference state. In contrast, EXP 2 induces rapid en-
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tropy collapse. High-visit nodes provide the most reliable value estimates due to abundant samples,
and underweighting the value loss on these nodes destabilizes the critic, increasing value variance in
early layers over time. As a result, the policy learns to distrust its flawed value function, abandons
multi-turn exploration, and regresses to suboptimal single-turn strategies.

Moreover, to assess the generalization of our method, we evaluated the assistant model trained
with ATPO using an unseen user simulator. Specifically, for evaluation, we replaced the Qwen3-8B
simulator used during training with the Llama-3.3-70B-Instruct model. As detailed in Appendix A.6,
the assistant maintains similar performance across all test sets (Table A.6), providing strong evidence
that our method does not overfit to the conversational patterns of a specific simulator and possesses
robust generalization capability.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present ATPO, a novel adaptive tree search method that intelligently guides explo-
ration in multi-turn dialogues through state-uncertainty evaluation. By selectively expanding nodes
that maximize sampling diversity and benefit critic optimization, ATPO achieves superior perfor-
mance with markedly fewer exploration steps, surpassing strong RL baselines such as TreePO and
GRPO across several clinical dialogue benchmarks, and even outperforming GPT-4o on MedQA
with the Qwen3-8B model. Beyond its success in multi-turn medical dialogue, ATPO can also be
applied to a wide range of scenarios, including multi-turn open-ended dialogue and tool use.

Future work could pursue several promising directions. First, replacing the current fixed-threshold
expansion mechanism with a learnable, soft control policy may reduce hyperparameter tuning ef-
fort and enable the expansion strategy to adapt dynamically as the policy evolves. This idea could
be further extended to adaptively determine the number of nodes to expand based on uncertainty
metrics, rather than relying on random selection. Second, refining credit assignment within the Hi-
erarchical MDP (H-MDP) framework could yield additional gains. A more sophisticated approach
to distributing high-level advantages to low-level token actions, moving beyond uniform cloning,
may allow for more precise policy optimization and improved performance.
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A APPENDIX

A.1 INTERACTION PROCESS BETWEEN ASSISTANT AGENT AND USER SIMULATOR

Figure 3 presents an example of the interaction flow in our multi-turn clinical reasoning environment.
The process starts from an incomplete initial user query representing a clinical case. The Assistant
Agent receives this query along with a set of answer options. The initial information is intentionally
limited; attempting to answer directly at this stage often leads to incorrect results. Therefore, the
Assistant Agent must actively ask targeted questions to the User Simulator in order to obtain the
missing key facts. The User Simulator responds strictly within the scope of predefined atomic facts,
refusing to provide any information beyond this scope. This iterative exchange continues until the
Assistant Agent commits to a final answer or the predefined turn limit is reached.

An 8-month-old boy is brought to the office by his mother for recurrent infections.
Problem: What is the most likely cause of this patient’s condition?
Options: {'A': 'Adenosine deaminase deficiency', 'B': 'Hypoxanthine-guanine phosphoribosyl 
transferase (HGPRT) deficiency', 'C': 'HIV infection', 'D': 'Purine nucleoside phosphorylase 
deficiency'}

<think>
The patient is an 8-month-old with recurrent infections, a classic sign of immunodeficiency. The d
ifferential diagnoses provided include Severe Combined Immunodeficiency (SCID) variants (A, 
D), a metabolic disorder (B), and an acquired immunodeficiency (C, HIV). Before investigating ra
re genetic causes, it is crucial to rule out vertically transmitted HIV, which can present similarly. T
herefore, my first question will be about the mother's health and testing during pregnancy.
</think>
Question: Was the mother tested for any infectious diseases, such as HIV, during her pregnancy?

The mother denies any history of infection during her pregnancy and was tested negative for HIV.

<think>
The mother's negative HIV status makes congenital HIV (Option C) highly unlikely. The focus no
w shifts to primary immunodeficiencies like Adenosine deaminase deficiency (A) and Purine nucl
eoside phosphorylase deficiency (D), both of which can cause SCID. A key radiological finding in
many forms of SCID is the absence of a thymic shadow due to a lack of T-

cells. Asking about imaging is the most direct way to investigate this possibility and differentiate f
rom other causes of infection.
</think>
Question: Has the patient undergone any imaging tests, such as a chest X-ray?

Yes, a chest X-ray reveals an absent thymic shadow and fails to show any lung pathology.

<think>
The dialogue has established two critical facts: 1) The mother is HIV negative, ruling out 
congenital HIV infection (Option C). 2) A chest X-ray revealed an absent thymic shadow. The 
combination of recurrent infections in early infancy and an absent thymic shadow is a classic 
presentation of Severe Combined Immunodeficiency (SCID). Adenosine deaminase (ADA) 
deficiency (Option A) is a well-known cause of autosomal recessive SCID and perfectly matches 
this clinical picture. Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficiency 
(Option B) presents with neurological and behavioral issues, not immunodeficiency. Purine 
nucleoside phosphorylase deficiency (Option D) is another, rarer cause of immunodeficiency. 
Based on the hallmark finding of an absent thymus, ADA deficiency is the most probable 
diagnosis.
</think>
Final Answer: A

Figure 3: Schematic diagram of the interaction flow between the Assistant Agent and the User
Simulator in the multi-turn clinical reasoning environment. The process starts from an incomplete
initial user query, after which the Assistant Agent asks targeted questions and the User Simulator
responds strictly within the scope of predefined atomic facts, until a final answer is produced or the
turn limit is reached.

A.2 TEST DATASETS

MedicalExam: This test set is curated from a collection provided by Liao et al. (2024), comprising
five distinct data sources: MedQA, MedMCQA, MMLU, SelfExam, and QMAX. The original data
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from MedMCQA and MMLU lacked the atomic facts. To address this, we employed Gemini-2.5-
pro to decompose the original problems into our required structure, consisting of an atomic question,
atomic facts, and several answer options, using the prompt detailed in Appendix A.8. The final
curated set contains 150 samples.

MEDQA: This dataset is derived from the medical dialogues test set provided by MEDIQ ( Li et al.
(2024)). We preprocessed this data by filtering out all samples where the atomic facts were empty.
The final test set contains a total of 1, 268 samples.

MedMCQA: This test set was constructed from the official validation set of MedMCQA ( Pal et al.
(2022)). We first selected samples where the question description exceeded 150 characters in length.
For these selected samples, we then utilized an LLM to synthesize the corresponding atomic facts
and question. This process resulted in a final test set of 536 samples.

A.3 DISTILLATION EXPERIMENT AND ANALYSIS

Since prompting GPT-4o alone yields results close to the best performance across all benchmarks,
a natural idea is to leverage high-quality multi-turn dialogue data generated by GPT-4o or Gemini-
2.5-Pro for model distillation. Therefore, we used the same self-play prompts to have both GPT-
4o and Gemini-2.5-Pro strictly simulate dialogues based on the data from the RL training dataset
(14,256 samples). Then, we perform SFT on the Qwen3-8B model separately using the dialogue
data generated by the two models (i.e., distilling the correct dialogue outputs from GPT-4o and
Gemini-2.5-Pro separately), and test the performance. As shown in Table 2, even with additional
data and extended SFT training time, the model performance shows almost no improvement. This
further confirms that the primary role of the SFT stage is to teach the model the question–answer
format, and it does not require a particularly large dataset to achieve adequate training. However,
it should be noted that the model obtained after SFT training (i.e., the starting checkpoint for RL
training) can affect the data obtained during RL sampling, thereby influencing the subsequent RL
training Ding et al. (2025); Guo et al. (2025a). It is also evident that SFT training alone, even with
large-scale data, fails to give the model strong generalization ability, making RL training necessary
for improving its generalization capabilities.

Table 2: The performance of Qwen3-8B distilled from the respective multi-turn dialogue outputs of
GPT-4o and Gemini-2.5-Pro.

Model Dialogue Simulator MedicalExam MedQA MedMCQA

Qwen3-8B GPT-4o 57.33± 2.26 53.25± 0.72 46.04± 1.31

Gemini-2.5-Pro 58.67± 0.08 51.51± 1.33 48.06± 0.94

A.4 ANALYSIS OF MODEL EFFECTIVE QUESTION RATE WITH ATPO TRAINING PROGRESS

To further investigate the improvement in dialogue quality brought by ATPO training, we plotted
the variation curve of the proportion of effective questions (defined as questions that elicit valid re-
sponses from the user) across multi-turn dialogues as training progresses. As illustrated in Figure 4,
the proportion of effective questions increases steadily throughout the training process, demonstrat-
ing that the assistant’s queries become more answerable for the user. This allows the assistant to
gather more useful information and accomplish tasks in fewer dialogue turns, thereby enhancing
the overall user experience. An example illustrating the change in dialogue quality before and after
ATPO training for the Qwen3-8B model is provided in Figure 5.

A.5 COMPARATIVE ANALYSIS OF THE COMPUTATIONAL REQUIREMENTS OF DIFFERENT
ALGORITHMS

To assess whether ATPO’s performance gains over other algorithms are simply attributable to greater
computational resources, we conducted a detailed evaluation of resource usage across methods.
Specifically, we measured the time required by each algorithm to achieve the same test-set accuracy,
taking the best performance of PPO as the benchmark. The results are presented in Table 3. As
shown, ATPO achieves the target accuracy in the shortest time, whereas GRPO requires the longest.
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Figure 4: The variation curve of the proportion of effective questions for various scale models across
multi-turn dialogues as ATPO training progresses.

Since all algorithms were executed on identical hardware, shorter training time directly translates to
reduced computational resource consumption. Therefore, the superior performance of ATPO cannot
be attributed to increased computational resources, but rather to its algorithmic effectiveness. Fur-
thermore, in our experiments, we observed that with continued training, PPO’s curve had already
converged without further improvement, while GRPO and TreePO even experienced entropy ex-
plosion and crashed. Additionally, we computed the proportion of total training time spent in the
rollout stage for each algorithm, as well as the computational distribution within this stage, as sum-
marized in Table 4. ATPO exhibits the highest rollout-stage proportion, approximately 45% of the
total time, in contrast to other methods, which are nearly identical at about 25%. Moreover, more
than half of the computation in ATPO’s rollout stage is used for value estimation, which is sensible
as ATPO frequently estimates node values during rollout to dynamically allocate the rollout budget.
However, these costs are meaningful, as it produces high-quality sampling data, thereby accelerat-
ing model convergence. This is corroborated by Figure 2(a), where ATPO’s convergence curve is
steeper than those of other algorithms. In contrast, for other methods, rollout-stage computation is
dominated by sequence generation, producing lower-quality sampled data that slows convergence.
In summary, while ATPO allocates more time to the rollout stage, its emphasis on value estima-
tion produces higher-quality data, resulting in faster convergence, reduced total training time, and
ultimately lower overall computational resource consumption compared to competing algorithms.

Method Total Time (hour) Proportion of Rollout Time

PPO 3.02 26.16%

ATPO (U1+U2) 2.22 45.05%

ATPO (U1) 2.98 41.95%

TreePO 3.15 24.13%

GRPO 4.86 25.72%

Table 3: The total time required for different algorithms to reach comparable performance, and the
proportion of time spent on the rollout phase.
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Initial Info
A 60-year-old man presents to his local walk-in clinic with 1 week of fever, chills, night sweats, 
anorexia, malaise, progressive shortness of breath, and sharp chest pain.
Problem: Which of the following organisms is the most likely causative agent?
Options: {'A': 'Staphylococcus aureus', 'B': 'Escherichia coli', 'C': 'Haemophilus aphrophilus', 'D': 
'Streptococcus bovis'}

<think>
The patient's symptoms of fever, chills, night sweats, and progressive shortness of breath with che
st pain are suggestive of a serious infection, possibly endocarditis. The differential diagnosis base
d on the options includes both typical and atypical organisms. To differentiate, I need to know if th
e patient has any underlying conditions that might predispose him to these infections. For example, 
prosthetic valves are a major risk factor for infective endocarditis.
</think>
Question: Does the patient have any known chronic medical conditions or a history of surgical 
procedures?

The patient cannot answer this question.

<think>
The patient cannot provide a history of chronic conditions. I need to gather other clinical data. The 
physical exam findings, particularly from the cardiovascular system, are crucial for diagnosing 
infective endocarditis. A new or changing heart murmur is a key sign.
</think>
Question: What were the findings on the patient's physical examination, specifically the cardiac 
auscultation?

The findings on the patient's physical examination, specifically the cardiac auscultation, include a 
holosystolic heart murmur III/VI and mild cardiomegaly.

<think>
The presence of a new heart murmur strongly supports the diagnosis of infective endocarditis. The 
options are all potential pathogens. To differentiate them, especially between S. aureus (common 
in IV drug users) and S. bovis (often associated with right-sided endocarditis and specific risk 
factors), I need to know the patient's social history, specifically regarding substance use.
</think>
Question: Does the patient have a history of intravenous drug use?

<think>
The patient's inability to answer the question about IV drug use is a significant limitation. I have a 
new heart murmur, but without a clear source for the infective agent, I need to look for other signs. 
The patient's symptoms of fever, chills, and night sweats suggest a systemic inflammatory 
response. I will ask about other signs of inflammation, such as splenomegaly, which can be 
associated with certain types of endocarditis.
</think>
Question: Were there any abnormal findings on the patient's abdominal examination?

The patient cannot answer this question.

The patient cannot answer this question.

The patient cannot answer this question.

<think>
I have a patient with a new heart murmur and systemic signs of infection (fever, night sweats), but 
I cannot confirm a history of IV drug use or splenomegaly. The differential is still broad. I need to 
know the results of laboratory tests, specifically blood cultures, which are the definitive way to 
identify the causative organism.
</think>
Question: Were any blood cultures performed, and if so, what were the results?

<think>
The patient is unable to provide key information from the history, physical exam, and lab work. 
This makes a definitive diagnosis challenging. However, based on the information available, the 
presence of a new heart murmur in a patient with systemic infection strongly points towards 
infective endocarditis. Option A, Staphylococcus aureus, is a very common cause. Option D, 
Streptococcus bovis, is often associated with right-sided endocarditis and specific risk factors like 
colorectal cancer, which were not mentioned. Given the lack of specific risk factors for the other 
options and the high prevalence of S. aureus, it is the most likely causative agent.
</think>
Final Answer: A

Befo
re T
rain

ing

<think>
The patient presents with systemic symptoms (fever, chills, night sweats) and respiratory 
symptoms (shortness of breath, chest pain). This combination is highly suggestive of infective 
endocarditis. To differentiate between the options, which are all potential causes of endocarditis, I 
need to know the patient's underlying cardiac conditions. A prosthetic valve or pre-existing 
valvular heart disease would be a critical piece of information.
</think>
Question: Does the patient have any known history of heart problems, such as heart valve disease 
or a history of heart surgery?

The patient has a holosystolic heart murmur III/VI and echocardiography reports the presence of 
vegetations involving the mitral valve.

Yes, the patient has non-tender erythematous lesions on the palms and soles.

<think>
The presence of a heart murmur and vegetations confirms infective endocarditis. The options are 
specific organisms. To differentiate them, I need to look for classic signs of endocarditis. Osler's 
nodes are a key physical finding. I will ask about the patient's physical examination findings.
</think>
Question: Were there any abnormal findings on the patient's physical examination, particularly on 
the skin or fingers?

<think>
The patient has a history of colorectal cancer. This is a major risk factor for infective endocarditis 
caused by Streptococcus bovis (now classified as Enterococcus gallinarum, but historically 
referred to as S. bovis). The clinical picture is now very clear: a 60-year-old man with a history of 
colorectal cancer presenting with signs of infective endocarditis (fever, heart murmur, Osler's 
nodes, mitral valve vegetations). This classic triad strongly points to S. bovis. Staph aureus (A) is 
less likely given the history of malignancy. E. coli (B) is typically associated with left-sided 
endocarditis in IV drug users. H. aphrophilus (C) is an oral bacterium and a cause of subacute 
bacterial endocarditis, but not typically associated with this constellation of findings.
</think>
Final Answer: D

After Training

Yes, the patient has a significant past medical history, including a recent colonoscopy that reported 
an ulcerative lesion suggestive of colorectal cancer.

<think>
The patient has Osler's nodes (non-tender erythematous lesions on palms and soles), which are a 
classic sign of infective endocarditis, particularly associated with streptococcal organisms. The 
combination of mitral valve vegetations and Osler's nodes makes a Streptococcus species more 
likely. Now I need to differentiate between the streptococcal options. Streptococcus bovis is 
strongly associated with right-sided endocarditis, often involving the tricuspid valve, and is linked 
to underlying malignancy. I should ask about risk factors for right-sided endocarditis.
</think>
Question: Does the patient have any significant past medical history, such as cancer?

Atomic Facts
1. Blood pressure: 100/80 mm Hg
2. Heart rate: 84/min
3. Elevated respiratory rate
4. Holosystolic heart murmur III/VI
5. Palms and soles show non-tender erythematous lesions
6. Personal medical history includes frequent visits to the ER for lower gastrointestinal 
bleeding in the last month
7. Recent colonoscopy reported an ulcerative lesion suggestive of colorectal cancer
8. No recent dental procedures
9. Denies the use of psychoactive drugs
10. Chest plain film shows clear lungs and mild cardiomegaly
11. Echocardiography reports the presence of vegetations involving the mitral valve

Figure 5: Comparison of model dialogue quality before and after ATPO training.

Method Rollout TFLOPs Proportion of
Generation TFLOPs

Proportion of
Value Estimation TFLOPs

PPO 444, 915.23 100% 0%

ATPO (U1+U2) 639, 410.69 37.99% 62.01%

ATPO (U1) 817, 173.44 42.38% 57.62%

TreePO 916, 408.62 100% 0%

GRPO 4, 708, 526.96 100% 0%

Table 4: Rollout computation required by various algorithms to reach comparable performance,
along with the respective proportions allocated to generation and to value estimation.
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A.6 TESTED WITH DIFFERENT USER SIMULATORS

We employed Qwen3-8B as the user simulator in both the training and testing phases. However,
relying on a single simulator may lead the assistant model to overfit to its specific tone or response
format, potentially limiting generalization to unseen simulators. To assess this risk, we replaced
the user simulator at test time with the Llama-3.3-70B-Instruct model, and re-evaluated the perfor-
mance of Qwen3-1.7B, Qwen3-4B, and Qwen3-8B trained with ATPO (U1 + U2). As shown in
Table 5, the assistant’s performance after replacement remains almost unchanged, with no signifi-
cant differences. These results indicate that the assistant model did not overfit to the tone or response
style of the training user simulator and can perform effectively with an unseen simulator, thereby
demonstrating strong generalization capability.

Model User Simulator MedicalExam MedQA MedMCQA

Qwen3-1.7B
Qwen3-8B 43.20± 1.85 42.87± 0.77 39.93± 1.05

Llama-3.3-70B-Instruct 43.07± 1.53 43.15± 0.60 40.07± 1.39

Qwen3-4B
Qwen3-8B 59.73± 2.61 55.47± 0.99 45.93± 1.13

Llama-3.3-70B-Instruct 61.20± 2.76 56.47± 0.94 47.76± 1.06

Qwen3-8B
Qwen3-8B 65.87± 3.72 64.07± 0.43 53.66± 1.52

Llama-3.3-70B-Instruct 67.07± 3.35 63.93± 1.01 55.60± 1.21

Table 5: Performance of different models tested with different user simulators.

A.7 ANALYSIS OF THE COMPUTATIONAL SAVINGS OF TREE SEARCH

ATPO performs sampling based on a tree structure, which can reduce the computational cost during
the sampling process. Here, we provide a brief theoretical analysis of the potential savings gained
through tree expansion, following the computation statistics methodology in VeRL (Sheng et al.,
2025).

For an LLM of a given size, let ϕ denote the number of parameters in the linear projections and
θ denote the number of parameters in the attention mechanism. For a specific turn in a multi-turn
dialogue, denote the input length of the current turn as x and the output length as y.

If we sample one data instance at a time, using the KV cache, the prefill stage on the input incurs a
computational cost:

Cprefill = 2ϕx+ 4θx2.

During decoding, we benefit from cached K and V , yielding a computational cost:
Cdecode = 2ϕy + 2θ(2x+ y + 1).

When sampling N instances of equal length, the total computational cost without tree expansion
becomes:

Cindependent = N ·
(
2ϕx+ 4θx2

)
+N · (2ϕy + 2θ(2x+ y + 1)) .

In contrast, with tree expansion, the prefill step is performed only once, followed by decoding N
samples. The total cost becomes:

Ctree = 1 ·
(
2ϕx+ 4θx2

)
+N · (2ϕy + 2θ(2x+ y + 1)) .

The theoretical computational saving is therefore:
∆C = (N − 1) ·

(
2ϕx+ 4θx2

)
.

Since ATPO is grounded in tree-structured sampling, it inherits this cost reduction property.

It is worth noting that TreePO (Li et al., 2025b) provides a rigorous empirical verification of tree-
based sampling efficiency (Section 4.1), showing higher throughput in tokens per second. Compared
to TreePO’s scenario, where the inference chain is divided into multiple segments for tree-based
sampling, our multi-turn setting produces semantically distinct tree nodes, making it naturally more
amenable to tree search.
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A.8 PROMPTS

User Prompt

You are a medical information assistant. Your role is to help doctors by providing informa-
tion strictly from patient data.

INSTRUCTIONS:
1. Search through the provided atomic facts for information that directly answers the

doctor’s question
2. If you find relevant atomic facts, provide the answer using ONLY that information
3. Do NOT add any medical analysis, inference, interpretation, or external knowledge
4. Do NOT make assumptions or draw conclusions beyond what is explicitly stated
5. If no atomic fact directly answers the question, respond with exactly this phrase:

“The patient cannot answer this question.”
Patient atomic facts: {atomic facts}

Doctor’s question: {doctor’s question}

Your response:

Direct Method Prompt

You are an expert medical assistant. Based on the medical case given by user, which includes
initial patient information, a question, and several options, select the single best answer. Your
response must be only the letter of the chosen option (e.g., A, B, C...), without any additional
text, punctuation, or explanation.

Initial information: [initial patient information]

Question: [question]

Options: [options]

Your response:

MEDIQ System Prompt

You are a professional medical assistant, possessing outstanding medical diagnostic reason-
ing and analytical abilities, as well as strong clinical inquiry and patient assessment skills.

Below, the user will provide initial patient information at the beginning of the first turn
of conversation, pose a single-choice question (Problem: question description), and corre-
sponding options (Options: option descriptions). Your task is to, based on the question
description, the option descriptions, the currently available patient information, and your
own knowledge, select the correct option.

Note: The initial patient information provided by the user in the first turn is incomplete.
You can ask the user questions to continuously obtain more patient information until you are
confident enough to select the correct option.

In each turn of dialogue, you must first determine: Based on the question description, the
option descriptions, the currently available patient information, and your own knowledge,
do you have enough confidence to select the correct option?

1. If you are not confident enough, output a specific question in the following format:
Question: [The specific question you want to ask]
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2. If you are confident enough, output your selection in the following format: Final
Answer: [Your chosen option]

Important Notes:
1. In each turn of conversation, you must make a clear decision — either choose an

option or ask a question. Do not be vague. When responding or asking, you must
strictly follow the corresponding format.

2. When choosing an option, you can only choose one from the provided options (e.g.,
A, B, C, etc.), and cannot choose multiple or include any other content.

3. When asking a question, you can only ask one specific question at a time, cannot
repeat questions that have already been asked, and cannot include any other content.

4. Interaction Limit: You have a maximum of 8 turns. This means you can ask at most
7 questions and must provide your Final Answer by the 8th turn at the latest.

Initial information: [initial patient information]

Question: [question]

Options: [options]

Your response:

Atomic Facts Extraction Prompt

You are an honest and knowledgeable medical assistant. I will provide a medical diagnosis
case in JSON format, including relevant patient information and the medical problem that
needs diagnosis. Your task is to analyze the patient information and extract relevant details.
Your final output must be a single, perfectly formatted JSON object.

Extraction Steps
1. Identify the main issue or medical problem described in the information that re-

quires diagnosis, and record it as the “question”.
2. Excluding the “question” information, extract a series of key facts from the remain-

ing information. Each fact should contain only one relevant information point and
must be self-contained.

3. From the extracted key facts, write a short introductory sentence summarizing the
background of the case as “context”. Be careful — the context should include as
few atomic facts as possible, no more than two.

4. The remaining key facts should be documented as “atomic facts”.

Output Format Requirements
1. Your only output must be a complete JSON object written in English.
2. The extracted “question” information must be placed in the “question” field, the

extracted “context” information must be placed in the “context” field, and the ex-
tracted “atomic facts” information must be placed in the “atomic facts” field.

3. Output structure example:
{

“question”: extracted question,
“context”: [extracted context],
“atomic facts”: [atomic fact1, atomic fact2, atomic fact3, ...]

}
Please start extracting information based on the following input: [input]
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User Simulator Quality Monitoring Prompt

You are given:
1. A list of atomic facts (ground truth facts).
2. A multi-turn interaction between a user and an assistant (called ”output” below).

Evaluation criteria:
1. user answered related q: “yes” if the assistant asked a question that is clearly re-

lated to any fact in the atomic facts list and the user provided relevant information
in their answer. If the assistant’s question is unrelated to atomic facts, and the
user responds with something like “The patient cannot answer this question.”, this
is acceptable and should still be marked “yes”. Only mark “no” if the assistant’s
question is strongly related to atomic facts, the user could have answered based on
them, but did not provide such an answer.

2. user hallucinated: “yes” if the user’s answer includes fabricated content not appear-
ing in the atomic facts list; “no” otherwise.

Only output a JSON object with exactly these two keys:
{

“user answered related q”: “yes” or “no”,
“user hallucinated”: “yes” or “no”

}

Do not output anything else.

Atomic facts: [atomic facts]

Conversation output: [output text]

A.9 ATOMIC FACTS DATA EXAMPLE

Atomic Facts Data Example

1. The symptom is precipitated in the morning.
2. The symptom is precipitated during exams.
3. There is no history of loss of consciousness.
4. Her cousin sister has been diagnosed with epilepsy.
5. An EEG was performed and was suggestive of epileptic spikes.
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