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ABSTRACT

Effective information seeking in multi-turn medical dialogues is critical for ac-
curate diagnosis, especially when dealing with incomplete information. Aligning
Large Language Models (LLMs) for these interactive scenarios is challenging due
to the uncertainty inherent in user-agent interactions, which we formulate as a
Hierarchical Markov Decision Process (H-MDP). While conventional Reinforce-
ment Learning (RL) methods like Group Relative Policy Optimization (GRPO)
struggle with long-horizon credit assignment and Proximal Policy Optimization
(PPO) suffers from unstable value estimation in this context, we propose a novel
uncertainty-aware Adaptive Tree Policy Optimization (ATPO) algorithm. Our
method adaptively allocates the rollout budget to states with high uncertainty,
quantified by a composite metric of Bellman error and action-value variance. This
strategy enables more accurate value estimation, while fostering more efficient
and diverse exploration. To mitigate the high computational cost of tree-based
RL, we introduce two key optimizations: an uncertainty-guided pruning mecha-
nism to minimize the number of rollouts, and an asynchronous search architec-
ture that leverages KV cache reuse to maximize inference throughput. Exten-
sive experiments on three public medical dialogue benchmarks demonstrate that
our algorithm significantly outperforms several strong baselines, culminating in
Qwen3-8B model surpassing the much larger GPT-4o (+0.92% accuracy). 1

1 INTRODUCTION

In recent years, Large Language Models (LLMs) such as GPT-4 Achiam et al. (2023), Gemini
2.5 Comanici et al. (2025), Qwen3 Yang et al. (2025), and DeepSeek-R1 Guo et al. (2025a) have
demonstrated exceptional capabilities across a range of natural language processing tasks, including
open-domain question answering, dialogue generation, and code generation, continuously pushing
the boundaries of AI performance (Chen et al., 2025). These models are increasingly being applied
to downstream domains like education (Chu et al., 2025), law (Siino et al., 2025), and healthcare
(Awasthi et al., 2025). Within the medical field, medical LLMs are consistently achieving state-of-
the-art results on various benchmarks (Sellergren et al., 2025; Li et al., 2025a), such as professional
medical examinations (Jiang et al., 2025) and disease diagnosis tasks (Xu et al., 2025; McDuff
et al., 2025), and show immense potential for providing preliminary medical advice and assisting in
clinical decision-making (Kopka et al., 2025).

However, despite these achievements, a critical aspect has long been overlooked. Current training
and evaluation of medical LLMs predominantly focus on single-turn interaction scenarios, where
models are expected to provide faithful responses based on the user’s initial input. In real-world
medical dialogues, however, the information provided by users is often incomplete, making it diffi-
cult to generate a satisfactory response based solely on the vague or fragmented initial query (Auer-
bach et al., 2024; Wu et al., 2025a). This necessitates the model’s ability to proactively ask clarifying
questions to gather more essential information. Unfortunately, this capability for dynamic, multi-
turn information gathering is a significant deficiency in current models (Laban et al., 2025).

Previous work has attempted to fill this gap. Some approaches Li et al. (2024); Liu et al. (2025a); Hu
et al. (2024) have used prompt engineering to elicit proactive questioning, but these methods often

1Code: https://anonymous.4open.science/r/ATPO-03D0/.
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fail to fundamentally enhance the model’s multi-turn interactive capabilities and can even lead to
poorer performance than simply responding with incomplete information. Other efforts Liao et al.
(2023); Liu et al. (2025b) have employed supervised fine-tuning (SFT) to improve dynamic inter-
action, yet these models tend to merely imitate the training data. Furthermore, some studies Shi
et al. (2024); Xiong et al. (2024) have extended single-turn preference optimization to the trajectory
level, but they rely on costly preference data and are highly sensitive to distribution shift. While
reinforcement learning offers a promising, goal-driven alternative with stronger generalization (Guo
et al., 2025a), current methods are also flawed. For instance, Group Relative Policy Optimization
Shao et al. (2024) struggles with long-horizon credit assignment, and Proximal Policy Optimiza-
tion Schulman et al. (2017) often suffers from unstable value estimation, hindering effective policy
learning for complex multi-turn dialogues (Feng et al., 2025a).

In this work, we introduce Adaptive Tree Policy Optimization, a novel uncertainty-aware algorithm
illustrated in Figure 1. ATPO employs an adaptive tree search where, for each node, it calculates an
uncertainty metric to decide whether to expand the search further. This metric is a composite of two
key signals: the Bellman error, which prioritizes nodes beneficial for critic training, and the action-
value variance, which encourages sampling diversity. Furthermore, ATPO achieves high training
efficiency by reusing shared prefixes to fully leverage the Key-Value (KV) cache Kwon et al. (2023)
mechanism, combined with an asynchronous execution strategy. We conduct comprehensive evalua-
tions on three Qwen3 models Yang et al. (2025) with different sizes (Qwen3 1.7B, 4B and 8B) using
three multi-turn medical dialogue datasets meticulously adapted from public multiple-choice ques-
tion datasets (MedQA Jin et al. (2020), MedMCQA Pal et al. (2022), and MedicalExam Liao et al.
(2024)). The experimental results demonstrate that our proposed method significantly outperforms
strong competitive RL baselines across all datasets and model sizes, validating its effectiveness and
generalization capabilities.

Our contributions are as follows:

• We propose the Adaptive Tree Policy Optimization algorithm, which adaptively allocates
rollout budgets based on turn-level uncertainty in multi-turn medical dialogues. This
method enhances sampling diversity while simultaneously improving the critic model’s
accuracy.

• We design ATPO to be highly efficient by reusing shared prefixes to fully leverage the KV
cache, and we implement it with an asynchronous execution strategy to achieve substantial
improvements in inference throughput.

• Extensive experiments demonstrate that ATPO not only consistently and significantly out-
performs strong RL baselines, but also achieves this with far greater sample efficiency,
validating its robust generalization and effectiveness.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING IN MULTI-TURN MEDICAL DIALOGUES

Recent efforts have applied reinforcement learning to train medical LLMs for proactive, multi-turn
dialogue. A common approach involves simulating doctor-patient interactions within a multi-agent
framework. For instance, DoctorAgent-RL Feng et al. (2025b) uses such a setup where a “doctor
agent” and “patient agent” (termed the “assistant” and “user”, respectively, in our work) interact,
with the former learning an optimal questioning strategy guided by a comprehensive evaluator. To
better guide this learning process, ProMed Ding et al. (2025) introduces a process reward based on
Shapley Information Gain, which uses cooperative game theory to formally quantify the clinical util-
ity of each question, enabling more targeted policy optimization. In contrast, Savage Conversation
Forests (SCF) Savage (2025) concentrates on the training architecture, which employs a branched
conversation structure to help the model learn how early conversational choices impact downstream
outcomes by exploring multiple dialogue paths simultaneously. Despite these excellent works, a
robust reinforcement learning algorithm capable of training a model to handle the complexities of
real-world medical dialogues remains to be fully explored.
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Figure 1: Overview of ATPO algorithm. ATPO generates training data via an adaptive tree search.
At each expansion step, it generates candidate child nodes and computes a composite uncertainty
score based on their Bellman error U1 and Q-value variance U2. Nodes with high uncertainty U are
fully expanded, while low-uncertainty nodes are pruned by randomly selecting a single child for the
subsequent rollout. The collected trajectories are then used for policy and critic updates.

2.2 TREE-BASED REINFORCEMENT LEARNING

To enhance the reasoning capabilities of LLMs, recent reinforcement learning approaches have be-
gun to integrate tree-based search, particularly for single-turn tasks. These methods primarily focus
on three distinct goals. First, some aim to improve value estimation; for example, VinePPO Kazem-
nejad et al. (2024) uses auxiliary “vine” rollouts to compute more accurate Monte Carlo values,
mitigating the impact of inaccurate value estimation. Second, another line of work leverages model
uncertainty to guide exploration, typically by expanding the search tree at tokens with high en-
tropy (Hou et al., 2025; Dong et al., 2025). Third, others refine the search structure itself for better
credit assignment or efficiency, such as SPO Guo et al. (2025b), which defines “segments” based
on low-probability tokens, or TreePO Li et al. (2025b), which uses a fixed N-ary tree for compu-
tational gains. Despite their innovations, these methods are fundamentally limited by their single-
turn, token-level focus. Their operational units (tokens, segments) do not naturally translate to the
macro-level decisions required in multi-turn dialogue. Moreover, their uncertainty metrics are ei-
ther indirect proxies (e.g., token entropy) or absent entirely in methods with fixed structures. Our
approach directly addresses these limitations. We introduce an uncertainty measure based on the
variance of turn-level Q-values, which quantifies the uncertainty over future rewards for different
macro-actions (i.e., conversational turns). This makes our method inherently better suited for the
long-horizon planning challenges of multi-turn interactions.

3 METHODS

3.1 MULTI-TURN DIALOGUES AS A HIERARCHICAL MDP

Similar to ArCHer Zhou et al. (2024), we model multi-turn dialogues as a Hierarchical Markov
Decision Process (H-MDP), which comprises a high-level MDP with a nested low-level MDP. For
the high-level MDP, a macro-action is defined as the full token sequence of the assistant’s response
in a single turn. A micro-action in the low-level MDP is a single token, such that generating a
sequence of micro-actions in the low-level MDP leads to a single macro-action in the high-level
MDP. Formally, each state xk in the high-level MDP consists of the interaction history between the
user and the assistant prior to the k-th turn, together with the user’s query qk at the k-th turn. The
macro-action yk is defined as a variable-length token sequence representing the assistant’s response
to qk. The low-level MDP models the process of generating a macro-action, where each low-level

3
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action yk,t corresponds to an individual token (i.e., the t-th token in the k-th macro-action). A low-
level state xk, t is defined as the concatenation of the high-level state xk and the partial sequence
yk,<t, namely the tokens that have already been generated in the current turn up to (but excluding)
the t-th token.

3.2 DIALOGUE EXPLORATION VIA TREE EXPANSION

In H-MDP optimization, accurate state-value estimation is crucial for effective policy improvement.
Existing methods either rely on pure Monte Carlo estimates from full trajectories (e.g., GRPO Shao
et al. (2024)), which can be high-variance and lead to unstable training, or solely on a learned
critic (e.g., PPO Schulman et al. (2017)), which may suffer from approximation errors. To strike a
balance between accuracy and efficiency, we propose an exploration strategy based on incremental
tree expansion. This approach efficiently reuses the computation of shared dialogue prefixes and
adaptively allocates the sampling budget to the most promising or uncertain parts of the dialogue
space, rather than repeatedly re-exploring from the root.

In this framework, the multi-turn dialogue process is viewed as the expansion of a search tree. The
initial user query forms the root node, which is at depth 0 and corresponds to state x0. From there,
the tree expands turn-by-turn. At any non-terminal node corresponding to state xk, the assistant
produces a macro-action, which can be either a clarifying question or a definitive answer. In the
case of a clarifying question, the user’s reply completes the state transition to xk+1, resulting in
the creation of a new node at the next depth of the tree. In the case of a definitive answer, the
dialogue terminates along that branch and the node becomes a terminal leaf; for consistency, the
subsequent user feedback in this scenario is considered empty. Thus, the depth of a node corresponds
to the number of turns elapsed in the dialogue, with the root at depth 0, and the nodes at depth k
representing all possible dialogue states after k turns of interaction.

This entire procedure is guided by an uncertainty-aware principle. The core idea is to prioritize the
expansion of nodes exhibiting high uncertainty, as they provide more diverse and informative sam-
ples for driving effective policy updates and improving critic accuracy. In the multi-turn dialogue
setting, this uncertainty can be broadly categorized into two types: Epistemic uncertainty, aris-
ing from the inherent cognitive limitations of the model and manifests as uncertainty in its action.
Aleatoric uncertainty, stemming from the inherent randomness in the environment, such as the
variability in user responses.

3.3 UNCERTAINTY-AWARE TREE EXPANSION MECHANISM

To operationalize our tree expansion strategy, we first quantify the uncertainty of each frontier node.
Consider a specific node at depth k, representing the dialogue state xk. We sample a set of N
candidate macro-actions {yik}Ni=1 from the policy πθ(·|xk). For each candidate action yik, we define
its estimated action-value Q̂(xk, y

i
k) using a one-step lookahead:

Q̂(xk, y
i
k) = r(xk, y

i
k) + γVψ(x

i
k+1), (1)

where xik+1 is the state resulting from action yik, and the next-state value Vψ is given by the critic
model. Based on this, the uncertainty is calculated as:

U1(xk) =

∣∣∣∣∣Vψ(xk)− 1

N

N∑
i=1

Q̂(xk, y
i
k)

∣∣∣∣∣ , (2)

U2(xk) = Vari∈[N ]

[
Q̂(xk, y

i
k)
]
=

1

N

N∑
i=1

Q̂(xk, y
i
k)−

1

N

N∑
j=1

Q̂(xk, y
j
k)

2

, (3)

U(xk) = αU1(xk) + (1− α)U2(xk). (4)

The first term, U1(xk), measures the Bellman error between the critic’s current state-value estimate
Vψ(xk) and the empirical one-step lookahead value averaged over all candidates. It serves as a
proxy for aleatoric uncertainty; a large error indicates an inaccurate value estimate for the current
state. The second term, U2(xk), quantifies the variance of the action-value estimates. This term
captures a blend of both epistemic and aleatoric uncertainty. High variance can arise from two
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distinct sources: the policy’s own indecision leading it to explore a diverse set of candidate actions
(epistemic), or the environment’s inherent randomness where different state transitions yield widely
varying Q-values (aleatoric). The notation Var(·) represents the variance across the N candidate
actions. This raw value is subsequently normalized using Z-score scaling based on historical samples
to create a stable, comparable metric. The hyperparameter α ∈ [0, 1] balances the contributions of
these two uncertainty sources.

With the uncertainty metric U(xk) defined, the expansion process is guided by a threshold-based
rule. When the expansion process reaches a node at depth k, representing one of the possible dia-
logue states after k turns, we compare its calculated uncertainty against a predefined threshold τ : If
U(xk) > τ , the node is considered highly uncertain and all N branches are retained. Conversely, if
U(xk) ≤ τ , the node is deemed sufficiently understood. To conserve computational resources, we
primarily prune the search by randomly selecting only one of the N candidate branches. However,
to maintain a baseline level of sampling diversity, we bypass this pruning with a small probability
(e.g., 10%) and instead expand all N branches.

The uncertainty-driven expansion continues along the retained branches until all dialogues terminate
or the total number of leaf nodes (i.e., the tree width) reaches a predefined budget. Once this budget
is met, no further nodes are expanded, and all current leaf nodes proceed to the rollout phase until
termination.

3.4 VALUE TRACEBACK, TREE DECOMPOSITION AND MODEL OPTIMIZATION

Following the completion of the tree expansion process, we compute the state-values and advantages
for all nodes within the generated tree via a recursive backward pass starting from the leaf nodes.
First, we calculate the target value V̂ (xk) for each state xk, which serves as a robust empirical
estimate of the Monte Carlo return from that state and can be used as the value target for subsequent
critic updates:

V̂ (xk) =


r(xk, yk), if leaf node,

1

B(xk)

B(xk)∑
i=1

[
r(xk, y

i
k) + γV̂ (xik+1)

]
, otherwise.

(5)

If a state is terminal, its target value equals the immediate reward; otherwise, it is the average one-
step TD target over all child branches. Here, B(xk) denotes the number of child nodes, which
according to the expansion rule is either N for fully expanded nodes or 1 for pruned nodes, and the
superscript i indexes the i-th branch among these children.

With the target values established, we compute the estimated advantage for each macro-action yik
using the standard one-step temporal-difference formulation:

Â(xk, y
i
k) = r(xk, y

i
k) + γ Vψ(x

i
k+1)− Vψ(xk). (6)

We use the critic’s value estimates instead of the target values V̂ (·) because with only one retained
branch, V̂ (xk) equals its one-step return, resulting in a zero advantage, whereas the critic’s estimates
preserve non-zero learning signals.

Once values and advantages have been computed for all nodes, the expanded tree is decomposed
into a set of independent trajectories for model optimization. Each unique path from the root to a
leaf node constitutes one trajectory, so a tree with M leaf nodes directly yields M such trajectories.
The number of turns in the j-th trajectory, denoted by K(j), can vary across trajectories because
different dialogues may terminate after different numbers of turns. The policy πθ is then updated by
maximizing the following PPO-style objective, aggregated over all tokens from all trajectories:

J(θ) = Ex0∼D,{yk∼πθ(xk),xk+1∼P (·|xk,yk)}K−1
k=0

 1

M

M∑
j=1

1

K(j)

K(j)∑
k=1

1

C(x
(j)
k )L(y

(j)
k )

(7)

L(y
(j)
k )∑

t=1

min
(
ρ
(j)
k,tÂ(xk, y

(j)
k,t), clip

(
ρ
(j)
k,t, 1− ϵ, 1 + ϵ

))
− βDKL(πθ, πref)

 ,
5
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where ρ(j)k,t =
πθ

(
y
(j)
k,t

∣∣∣x(j)k , y
(j)
k,<t

)
πref

(
y
(j)
k,t

∣∣∣x(j)k , y
(j)
k,<t

) , and Â(xk, y
(j)
k,t) = Â(xk, y

(j)
k ) for 1 ≤ t ≤ L(y

(j)
k ).

In this objective, the expectation E(·) is taken over initial user queries x0 sampled from the dataset
D, along with subsequent states and actions. The term ρ

(j)
k,t denotes the probability ratio between the

current policy πθ and the reference policy πref for generating the t-th token in the k-th turn of the
j-th trajectory. Consistent with our hierarchical MDP formulation, the advantage Â(xk, y

(j)
k,t) for

each token is set equal to the macro-action’s advantage Â(xk, y
(j)
k ), thereby uniformly distributing

the turn-level credit across the tokens generated in that turn. The update is normalized by two
factors: C(x(j)k ), the visit count of the state across all trajectories, which prevents over-optimizing
on frequently visited nodes; and L(y(j)k ), the length of the response, which ensures the turn-level
advantage is properly scaled for each token. The min(·) and clip(·) constrain the policy update to
stabilize training.

Finally, the critic model, parameterized by ψ, is trained to predict the target state values. The critic
consists of the LLM backbone and a linear value head. Its value estimate Vψ(xk) is obtained as the
average of the predictions over the final h special tokens. The critic is trained by minimizing the
following mean squared error loss:

L(ψ) = 1

M

M∑
j=1

1

K(j) · h

K(j)∑
k=1

L(x
(j)
k )∑

t=L(x
(j)
k )−h

1

2

[
Vψ(x

(j)
k,t)− V̂ (x

(j)
k )

]2
, (8)

where Vψ(x
(j)
k,t) is the value predicted at the t-th token position of the input, with L(x(j)k ) denoting

the total number of tokens of state x(j)k . This loss trains the critic to make the predictions at the final
h token positions for state x(j)k match the ground-truth target value V̂ (xk).

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Environment and Task Description. We establish a multi-turn clinical case reasoning environ-
ment with two LLM-based agents: a User Simulator and an Assistant Agent. (1) User Simulator:
Implemented using Qwen3-8B, it is instructed to answer the Assistant’s questions strictly based on
a given set of atomic facts, refusing to respond to any out-of-scope queries. To ensure reliability,
we continuously monitor its behavior during training and verify it with GPT-4o, achieving 100%
accuracy in following instructions and rejecting irrelevant queries, with a hallucination rate of only
1.2%, demonstrating high fidelity. Detailed prompts are provided in Appendix A.3. (2) Assistant
Agent: The Assistant Agent is tasked with resolving a clinical case question by selecting the correct
answer from a list of options. It begins with an initial context and can iteratively query the User
Simulator for additional information. The process terminates when the agent either commits to a
final answer or the pre-defined turn limit is reached. An interaction example between the Assistant
Agent and the User Simulator is provided in Appendix A.1.

Baselines. We compare our ATPO with several baselines to evaluate its effectiveness:

1) Zero-shot Prompting: To benchmark performance, we evaluate several base models (Qwen3-
1.7B, Qwen3-4B, and Qwen3-8B) under two distinct settings. The first is a Direct single-turn setting,
where the agent must respond using only the initial context. The second is an interactive MEDIQ Li
et al. (2024) setting, which allows the agent to interact with the User Simulator for up to 8 turns in
total, including the final answering turn. Prompts for both settings are provided in Appendix A.4.

2) SFT: To establish a stronger baseline, we fine-tune the Qwen3 instruct models to encourage multi-
turn information-seeking behavior instead of directly producing an answer in the first turn. Using the
MEDIQ validation dataset as the source of atomic facts, questions, and answer options, we employ
the expert model Gemini-2.5-Pro in a self-play setup, where it role-plays both user and assistant

6
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to generate 1, 269 multi-turn dialogues. We ensure no information leakage during this process and
retain only dialogues with a correct final answer. The resulting dataset is used to train the models
with supervised fine-tuning and dynamic fine-tuning (DFT Wu et al. (2025b)).

3) SFT+RL: We compare our algorithm with standard RL post-training methods under the same
environment, using rewards solely based on the correctness of the final answer. Critic-based Meth-
ods: PPO (MDP) treats text generation as a standard MDP, assigning a unique value to each token.
PPO (H-MDP) adopts a hierarchical formulation, estimating a single value per turn and propagating
the corresponding advantage to all tokens in that turn. Critic-free Methods: We implement GRPO,
which assigns a single advantage to an entire trajectory and shares it across all tokens. We also
adopt TreePO (Guo et al., 2025b; Li et al., 2025b), where we construct a binary search tree in which
each non-terminal node expands into two child nodes, constrained only by a maximum depth cor-
responding to the dialogue turn limit, without any pruning. After the search completes, we perform
a backward pass to compute the aggregate return for each node as its target value V̂ (xk). The ad-
vantage is calculated as Â(xk, yk) = r(xk, yk) + γV̂ (xk+1)− V̂ (xk), and is assigned to all tokens
generated in that sequence for policy optimization.

Implementation Details. For RL experiments, we use the SFT-trained Qwen3-1.7B, Qwen3-4B,
and Qwen3-8B models as the initial policy for the Assistant Agent. The reward function is based
solely on final-answer correctness: +3 for a correct answer, 0 for an incorrect answer, and −1 for
an invalid format. The training data contains 14, 256 samples, with 66% (9, 400) drawn from the
MEDIQ training dataset and 34% (4, 856) constructed from the MedMCQA training dataset.

Policy learning rate 1 × 10−6, critic learning rate 1 × 10−5, KL penalty weight β = 0.01, and
discount factor γ = 1. The critic is initialized from the actor’s weights and warmed up for 5 steps.
Method-specific settings include a group size of 32 for GRPO, and for ATPO, an expansion size
N = 4 with a total expansion budget of 128. In ATPO (U1), the uncertainty threshold is τ = 0.5; in
ATPO (U1 + U2), we set α = 0.3 and τ = 1.5.

Our TreePO and ATPO implementations build upon the VeRL (Sheng et al., 2025) Agentic RL
framework, integrating tree search, reward computation, and advantage estimation into a single
concurrent phase. This design eliminates the need for a multi-stage pipeline by producing ready-
to-train trajectories directly from the search process. High throughput is achieved via asynchronous
rollouts across tree nodes and efficient prefix sharing, with vLLM KV cache enabling speeds of up
to 2,500 tokens/sec/GPU on a 1.7B model with TreePO. Both our implementation and the associated
datasets are available at https://anonymous.4open.science/r/ATPO-03D0/.

4.2 RESULTS

Evaluation Setup. We conduct evaluations on three Qwen3 models Yang et al. (2025) of different
sizes (Qwen3-1.7B, Qwen3-4B, and Qwen3-8B), along with GPT-4o as a strong baseline to assess
the effectiveness of our method. Experiments are performed on three multi-turn medical dialogue
datasets adapted from public multiple-choice question datasets: MedQA, obtained directly from
the MEDIQ Li et al. (2024) test set; MedMCQA, constructed from its original training data Pal
et al. (2022); and MedicalExam, sourced directly from AIE Liao et al. (2024). Each sample is
reformulated into a set of atomic facts, a concise initial context, an atomic question that excludes
factual details, and several answer options with exactly one correct choice (details in Appendix A.2).
The primary evaluation metric is final-answer accuracy, defined as the percentage of test cases where
the Assistant Agent’s chosen option matches the ground-truth answer. For statistical robustness, we
report the mean and standard deviation of five independent runs.

Main Findings. From Table 1, we observe that in the zero-shot setting, the MEDIQ prompting strat-
egy performs worse than the Direct single-turn prompt, consistent with the finding in MEDIQ Li
et al. (2024) that prompting LLMs to ask questions can reduce accuracy. Supervised fine-tuning
brings only modest gains in final-answer accuracy while being crucial for enabling multi-turn infor-
mation seeking and providing a solid foundation for subsequent reinforcement learning.

Our proposed ATPO achieves the highest accuracy in most settings, even surpassing GPT-4o at the
8B scale (e.g., exceeding GPT-4o on MedQA by 0.92%). This demonstrates the strong effectiveness
of the method. Further, the results show that both uncertainty metrics are valuable and complemen-
tary: ATPO (U1 + U2) generally outperforms ATPO (U1), which in turn achieves higher accuracy
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Table 1: Performance comparison (%) on MedicalExam, MedQA, and MedMCQA. Bold indi-
cates the best performance, underlined the second-best.

Model Method Type Method Name MedicalExam MedQA MedMCQA

Qwen3-1.7B

Prompt Direct 35.07± 1.12 34.05± 0.38 32.54± 0.49
MEDIQ 34.00± 2.26 34.20± 0.75 32.35± 1.73

SFT DFT 29.07± 1.46 28.38± 0.80 21.08± 0.90
SFT 32.27± 4.77 33.42± 0.95 28.10± 2.32

SFT+RL

PPO (MDP) 39.33± 4.01 38.64± 1.17 35.37± 0.80
PPO (H-MDP) 39.33± 2.79 39.08± 1.85 34.89± 1.00
GRPO 42.93± 1.80 41.17± 0.64 36.57± 3.26
TreePO 43.33± 1.56 42.05± 1.03 38.47± 2.00
ATPO (U1) 45.73 ± 1.53 42.54± 0.39 38.66± 0.66
ATPO (U1 + U2) 43.20± 1.85 42.87 ± 0.77 39.93 ± 1.05

Qwen3-4B

Prompt Direct 48.13± 0.87 44.94± 0.35 41.53± 0.39
MEDIQ 45.87± 1.20 40.11± 0.60 31.64± 1.41

SFT DFT 43.07± 1.61 41.72± 1.27 33.28± 1.68
SFT 48.93± 2.14 47.15± 1.01 39.18± 1.22

SFT+RL

PPO (MDP) 50.13± 2.80 50.60± 0.90 42.50± 0.84
PPO (H-MDP) 52.40± 2.24 48.58± 1.48 43.32± 2.22
GRPO 53.87± 2.08 51.17± 1.08 43.84± 0.78
TreePO 56.13± 0.99 53.74± 0.56 45.22± 0.65
ATPO (U1) 56.80± 1.28 53.15± 0.55 46.23 ± 1.25
ATPO (U1 + U2) 59.73 ± 2.61 55.47 ± 0.99 45.93± 1.13

Qwen3-8B

Prompt Direct 52.40± 0.37 45.22± 0.34 46.16± 1.04
MEDIQ 51.87± 3.69 46.03± 0.75 41.60± 0.91

SFT DFT 51.86± 3.63 48.80± 1.30 42.20± 0.83
SFT 55.87± 0.30 53.75± 1.18 46.87± 1.74

SFT+RL

PPO (MDP) 59.20± 3.84 57.38± 0.84 50.00± 0.81
PPO (H-MDP) 59.07± 3.15 57.81± 1.29 51.98± 0.67
GRPO 60.93± 1.86 57.92± 0.68 51.12± 1.29
TreePO 65.33± 3.09 61.81± 0.90 54.74 ± 1.99
ATPO (U1) 65.52± 3.12 62.57± 0.41 53.22± 1.30
ATPO (U1 + U2) 65.87 ± 3.72 64.07 ± 0.43 53.66± 1.52

GPT-4o Prompt MEDIQ 64.00± 3.53 63.15± 0.82 53.03± 0.89

than TreePO. Combining U1 and U2 yields the best results, with absolute gains over TreePO on
MedQA of 0.82%, 1.73%, and 2.26% for the 1.7B, 4B, and 8B models, respectively.

ATPO also exhibits markedly higher sample efficiency, as shown in Figure 2 (a). For instance,
on MedQA with Qwen3-4B, ATPO (U1 + U2) achieves approximately 52.7% accuracy while us-
ing only 55% of the training turns required by TreePO. Additionally, hierarchical modeling proves
beneficial in multi-turn dialogue: PPO (H-MDP) slightly but consistently surpasses PPO (MDP),
scoring higher in 5 out of 9 evaluation settings. Among critic-free methods, the tree-based approach
demonstrates clear superiority, with TreePO substantially outperforming GRPO. This indicates that,
for complex multi-turn tasks, structuring credit assignment via a search tree is more effective than
relying on a single trajectory-level advantage.

4.3 ABLATION AND ANALYSIS

We conducted several ablation experiments on ATPO, which provide the following key insights.

The dual uncertainty metrics enhance both sampling diversity and critic optimization. Figure 2 (b)
shows that guiding node expansion with U1 + U2 produces a high variance of sample returns, com-
parable to GRPO and markedly higher than TreePO, while using only U1 reduces diversity. At the
same time, Figure 2 (c) indicates that the critic’s value loss under U1 + U2 is substantially lower
than PPO (both MDP and H-MDP), with U1 alone ranking second. These results highlight that
uncertainty-aware tree search benefits value function learning. This advantage partly stems from
intelligent budget allocation (Figures 2 (d), (e)): U1 alone drives aggressive early exploration, con-
centrating expansions at shallow depths (3–4) and causing steep local drops in node values, whereas
U1 + U2 achieves deeper coverage and maintains a more uniform value variance, enabling a more
globally effective search.
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Figure 2: Analysis of the ATPO algorithm on Qwen3-4B. (a) Training efficiency and performance
comparison of various algorithms, plotting accuracy against the number of generated turns. (b), (c)
Return variance and critic loss for ATPO and baseline methods. (d), (e) Distribution of branching
nodes and returns by depth for samples from ATPO at a representative training step. (f), (g) Stability
analysis of ATPO with and without visit-count-based down-weighting.

We also find that down-weighting policy updates by node visit count is crucial for training stability.
An ablation study compares the default ATPO (policy advantage down-weighted) with two variants:
EXP 1 (no policy down-weighting) and EXP 2 (down-weighting both policy advantage and value
loss). EXP 1 results in uncontrolled entropy growth and excessive policy clipping (Figures 2 (f),
(g)), since ignoring visit counts leads to disproportionate policy updates on frequently visited nodes,
causing the policy to diverge rapidly from its reference state. In contrast, EXP 2 induces rapid en-
tropy collapse. High-visit nodes provide the most reliable value estimates due to abundant samples,
and underweighting the value loss on these nodes destabilizes the critic, increasing value variance in
early layers over time. As a result, the policy learns to distrust its flawed value function, abandons
multi-turn exploration, and regresses to suboptimal single-turn strategies.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present ATPO, a novel adaptive tree search method that intelligently guides explo-
ration in multi-turn dialogues through state-uncertainty evaluation. By selectively expanding nodes
that maximize sampling diversity and benefit critic optimization, ATPO achieves superior perfor-
mance with markedly fewer exploration steps, surpassing strong RL baselines such as TreePO and
GRPO across several clinical dialogue benchmarks, and even outperforming GPT-4o on MedQA
with the Qwen3-8B model.

Future work could pursue several promising directions. First, replacing the current fixed-threshold
expansion mechanism with a learnable, soft control policy may reduce hyperparameter tuning ef-
fort and enable the expansion strategy to adapt dynamically as the policy evolves. This idea could
be further extended to adaptively determine the number of nodes to expand based on uncertainty
metrics, rather than relying on random selection. Second, refining credit assignment within the Hi-
erarchical MDP (H-MDP) framework could yield additional gains. A more sophisticated approach
to distributing high-level advantages to low-level token actions, moving beyond uniform cloning,
may allow for more precise policy optimization and improved performance.
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A APPENDIX

A.1 INTERACTION PROCESS BETWEEN ASSISTANT AGENT AND USER SIMULATOR

Figure 3 presents an example of the interaction flow in our multi-turn clinical reasoning environment.
The process starts from an incomplete initial user query representing a clinical case. The Assistant
Agent receives this query along with a set of answer options. The initial information is intentionally
limited; attempting to answer directly at this stage often leads to incorrect results. Therefore, the
Assistant Agent must actively ask targeted questions to the User Simulator in order to obtain the
missing key facts. The User Simulator responds strictly within the scope of predefined atomic facts,
refusing to provide any information beyond this scope. This iterative exchange continues until the
Assistant Agent commits to a final answer or the predefined turn limit is reached.

An 8-month-old boy is brought to the office by his mother for recurrent infections.
Problem: What is the most likely cause of this patient’s condition?
Options: {'A': 'Adenosine deaminase deficiency', 'B': 'Hypoxanthine-guanine phosphoribosyl 
transferase (HGPRT) deficiency', 'C': 'HIV infection', 'D': 'Purine nucleoside phosphorylase 
deficiency'}

<think>
The patient is an 8-month-old with recurrent infections, a classic sign of immunodeficiency. The d
ifferential diagnoses provided include Severe Combined Immunodeficiency (SCID) variants (A, 
D), a metabolic disorder (B), and an acquired immunodeficiency (C, HIV). Before investigating ra
re genetic causes, it is crucial to rule out vertically transmitted HIV, which can present similarly. T
herefore, my first question will be about the mother's health and testing during pregnancy.
</think>
Question: Was the mother tested for any infectious diseases, such as HIV, during her pregnancy?

The mother denies any history of infection during her pregnancy and was tested negative for HIV.

<think>
The mother's negative HIV status makes congenital HIV (Option C) highly unlikely. The focus no
w shifts to primary immunodeficiencies like Adenosine deaminase deficiency (A) and Purine nucl
eoside phosphorylase deficiency (D), both of which can cause SCID. A key radiological finding in
many forms of SCID is the absence of a thymic shadow due to a lack of T-

cells. Asking about imaging is the most direct way to investigate this possibility and differentiate f
rom other causes of infection.
</think>
Question: Has the patient undergone any imaging tests, such as a chest X-ray?

Yes, a chest X-ray reveals an absent thymic shadow and fails to show any lung pathology.

<think>
The dialogue has established two critical facts: 1) The mother is HIV negative, ruling out 
congenital HIV infection (Option C). 2) A chest X-ray revealed an absent thymic shadow. The 
combination of recurrent infections in early infancy and an absent thymic shadow is a classic 
presentation of Severe Combined Immunodeficiency (SCID). Adenosine deaminase (ADA) 
deficiency (Option A) is a well-known cause of autosomal recessive SCID and perfectly matches 
this clinical picture. Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficiency 
(Option B) presents with neurological and behavioral issues, not immunodeficiency. Purine 
nucleoside phosphorylase deficiency (Option D) is another, rarer cause of immunodeficiency. 
Based on the hallmark finding of an absent thymus, ADA deficiency is the most probable 
diagnosis.
</think>
Final Answer: A

Figure 3: Schematic diagram of the interaction flow between the Assistant Agent and the User
Simulator in the multi-turn clinical reasoning environment. The process starts from an incomplete
initial user query, after which the Assistant Agent asks targeted questions and the User Simulator
responds strictly within the scope of predefined atomic facts, until a final answer is produced or the
turn limit is reached.

A.2 TEST DATASETS

MedicalExam: This test set is curated from a collection provided by Liao et al. (2024), comprising
five distinct data sources: MedQA, MedMCQA, MMLU, SelfExam, and QMAX. The original data
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from MedMCQA and MMLU lacked the atomic facts. To address this, we employed Gemini-2.5-
pro to decompose the original problems into our required structure, consisting of an atomic question,
atomic facts, and several answer options. The final curated set contains 150 samples.

MEDQA: This dataset is derived from the medical dialogues test set provided by MEDIQ ( Li et al.
(2024)). We preprocessed this data by filtering out all samples where the atomic facts were empty.
The final test set contains a total of 1, 268 samples.

MedMCQA: This test set was constructed from the official validation set of MedMCQA ( Pal et al.
(2022)). We first selected samples where the question description exceeded 150 characters in length.
For these selected samples, we then utilized an LLM to synthesize the corresponding atomic facts
and question. This process resulted in a final test set of 536 samples.

A.3 USER AGENT PROMPT

User Prompt

You are a medical information assistant. Your role is to help doctors by providing informa-
tion strictly from patient data.

INSTRUCTIONS:
1. Search through the provided atomic facts for information that directly answers the

doctor’s question
2. If you find relevant atomic facts, provide the answer using ONLY that information
3. Do NOT add any medical analysis, inference, interpretation, or external knowledge
4. Do NOT make assumptions or draw conclusions beyond what is explicitly stated
5. If no atomic fact directly answers the question, respond with exactly this phrase:

“The patient cannot answer this question.”
Patient atomic facts: {atomic facts}

Doctor’s question: {doctor’s question}

Your response:

A.4 ZERO-SHOT PROMPT

Direct Method Prompt

You are an expert medical assistant. Based on the medical case given by user, which includes
initial patient information, a question, and several options, select the single best answer. Your
response must be only the letter of the chosen option (e.g., A, B, C...), without any additional
text, punctuation, or explanation.

Initial information: [initial patient information]

Question: [question]

Options: [options]

Your response:
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MEDIQ System Prompt

You are a professional medical assistant, possessing outstanding medical diagnostic reason-
ing and analytical abilities, as well as strong clinical inquiry and patient assessment skills.

Below, the user will provide initial patient information at the beginning of the first round
of conversation, pose a single-choice question (Problem: question description), and corre-
sponding options (Options: option descriptions). Your task is to, based on the question
description, the option descriptions, the currently available patient information, and your
own knowledge, select the correct option.

Note: The initial patient information provided by the user in the first round is incomplete.
You can ask the user questions to continuously obtain more patient information until you are
confident enough to select the correct option.

In each round of dialogue, you must first determine: Based on the question description, the
option descriptions, the currently available patient information, and your own knowledge,
do you have enough confidence to select the correct option?

1. If you are not confident enough, output a specific question in the following format:
Question: [The specific question you want to ask]

2. If you are confident enough, output your selection in the following format: Final
Answer: [Your chosen option]

Important Notes:
1. In each round of conversation, you must make a clear decision — either choose an

option or ask a question. Do not be vague. When responding or asking, you must
strictly follow the corresponding format.

2. When choosing an option, you can only choose one from the provided options (e.g.,
A, B, C, etc.), and cannot choose multiple or include any other content.

3. When asking a question, you can only ask one specific question at a time, cannot
repeat questions that have already been asked, and cannot include any other content.

4. Interaction Limit: You have a maximum of 8 turns. This means you can ask at most
7 questions and must provide your Final Answer by the 8th turn at the latest.

Initial information: [initial patient information]

Question: [question]

Options: [options]

Your response:
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