Under review as a conference paper at ICLR 2021

IF-DEFENSE: 3D ADVERSARIAL POINT CLOUD
DEFENSE VIA IMPLICIT FUNCTION BASED
RESTORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Point cloud is an important 3D data representation widely used in many essential
applications. Leveraging deep neural networks, recent works have shown great
success in processing 3D point clouds. However, those deep neural networks
are vulnerable to various 3D adversarial attacks, which can be summarized as
two primary types: point perturbation that affects local point distribution, and
surface distortion that causes dramatic changes in geometry. In this paper, we
propose a novel 3D adversarial point cloud defense method leveraging implicit
function based restoration (IF-Defense) to address both the aforementioned at-
tacks. It is composed of two steps: 1) it predicts an implicit function that captures
the clean shape through a surface recovery module, and 2) restores a clean and
complete point cloud via minimizing the difference between the attacked point
cloud and the predicted implicit function under geometry- and distribution- aware
constraints. Our experimental results show that IF-Defense achieves the state-of-
the-art defense performance against all existing adversarial attacks on PointNet,
PointNet++, DGCNN and PointConv. Comparing with previous methods, IF-
Defense presents 20.02% improvement in classification accuracy against salient
point dropping attack and 16.29% against LG-GAN attack on PointNet.

1 INTRODUCTION

Recent years have witnessed a growing popularity of various 3D sensors such as LIDAR and Kinect
in self-driving cars, robotics and AR/VR applications. As the direct outputs of these sensors, point
cloud has drawn increasing attention. Point cloud is a compact and expressive 3D representation,
which represents a shape using a set of unordered points and can capture arbitrary complex geometry.
However, the irregular data format makes point clouds hard to be directly processed by deep neural
networks (DNNs). To address this, PointNet (Qi et al., [2017a) first uses multi-layer perceptrons
(MLPs) to extract point-wise features and aggregate them with max-pooling. Since then, a number of
studies have been conducted to design 3D deep neural networks for point clouds, such as PointNet++
(Q1 et al., 2017b), DGCNN (Wang et al.,[2019) and PointConv (Wu et al.,[2019)).

One limitation to DNNSs is that they are vulnerable to adversarial attacks. By adding imperceptible
perturbations to clean data, the generated adversarial examples can mislead victim models with high
confidence. While numerous algorithms have been proposed in 2D attack and defense (Goodfellow
et al., [2014b; (Carlini & Wagner, [2017} |Xie et al., |2017; |[Papernot et al., |2016} IMoosavi-Dezfooli
et al) [2016; |Athalye et al., |2018; Moosavi-Dezfooli et al., 2017), only little attention is paid to
its 3D counterparts (Xiang et al., 2019; Zhou et al., 2019} |[Zheng et al., 2019). They show that
point cloud networks such as PointNet (Qi et al.,|2017a) and PointNet++ (Q1 et al.,|2017b) are also
sensitive to adversarial examples, bringing security threat to those safety-critical applications. By
carefully examine the attack methods, we summarize the effects of 3D adversarial attacks on point
cloud from existing works into two aspects as shown in Figure

1) Point perturbation changes the local geometry and point-wise sampling pattern, which
moves the points either out of the surface to become noises or along the surface to change
point distributions. This effect performs similarly to 2D adversarial attack, which adds
noise over each pixel within a given budget to fool the classifier.
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Figure 1: The key effects of 3D adversarial attacks on point cloud summarized from existing works.
We show (a) a clean point cloud, (b)(c) point perturbation, and (d)(e) surface distortion. In each
subfigure, we show an entire shape and a local illustration. The blue curve is the object surface, the
black points are clean points and the red points are attacked points.

2) Surface distortion aims to modify the geometry of the point cloud more dramatically by
either removing local parts or deforming the shape of the point cloud. In general, surface
distortion is difficult to defend due to the significant change of the geometry, yet is also
more perceptible by humans.

While some methods have been proposed in recent years for 3D adversarial defense (Zhou et al.|
2019; Dong et al., 2020), they fail to simultaneously address both the two aspects. For example,
DUP-Net (Zhou et al.| 2019) uses a statistical outlier removal (SOR) pre-processor to address out-
of-surface point perturbations, followed by an up-sampling network to generate denser point clouds.
However, it cannot well recover the point distribution and restore the distorted surface. Gather-
vector guidance (GvG) method (Dong et al.l 2020) learns to ignore noisy local features, which fails
to defend the attacks by local part removal. As a result, these methods fail to protect the victim
models from all the attack methods, especially the latest ones, such as saliency point dropping
(Zheng et al.|[2019), LG-GAN (Zhou et al.,2020) and AdvPC (Hamdi et al.| [2020).

In this paper, we propose a novel 3D adversarial point cloud defense algorithm named IF-Defense
through implicit function based restoration, which is more universal and can simultaneously address
both the attack effects. Figure [2] shows the pipeline of IF-Defense. We first employ SOR to pre-
process the input point cloud following the existing work (Zhou et al.l[2019)). Inspired by the recent
success in deep implicit functions which reconstruct accurate surfaces even under partial observa-
tions (Park et al.|[2019;|Duan et al., 2020; Mescheder et al.,|2019; |Peng et al.,2020; (Chen & Zhang),
2019), we predict an implicit function that captures the clean shape using a learned deep implicit
function network. Then, the defended point cloud is restored by optimizing the coordinates of the in-
put points under the geometry-aware and distribution-aware constraints. The geometry-aware loss is
enforced by the predicted implicit surface, which aims to remove out-of-surface geometric changes,
such as Figure b)(d)(e), while the distribution-aware loss aims to distribute points evenly and get
rid of the on-surface point perturbation, as illustrated in Figure[I|c). Experimental results show that
our [F-Defense consistently outperforms existing defense methods against various 3D adversarial
attack methods for PointNet, PointNet++, DGCNN and PointConv.

2 RELATED WORKS

Deep learning on point clouds. The pioneering work PointNet (Qi et al., 2017al) is the first deep
learning algorithm that operates directly on 3D point clouds. After that, PointNet++ (Q1 et al.,
2017b) further improves the performance of PointNet by exploiting local information. Another
representative work is Dynamic Graph CNN (DGCNN) (Wang et al., 2019)), which constructs kNN
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Figure 2: The pipeline of our IF-Defense method. We first pre-process the input point cloud by SOR,
and then we learn point cloud restoration via implicit function based optimization. Finally, we send
the restored point cloud to the classifier. Pert. and Distort. indicate Perturbation and Distortion,
while Geo. and Dist. mean Geometry and Distribution.

Table 1: Correspondence between existing 3D attacks and the attack effects. In the table, v" indicates
the main effects of an attack while A shows the less significant ones.

Out-of-surface Pert. | On-surface Pert. | Part Removal | Geo. Deform.
Perturb (Xiang et al.|[2019) v A
Add (Xiang et al.;,|2019) v A
kNN (Tsai et al.| [2020) A ve
AdvPC (Hamdi et al.| 2020) AN v
Drop (Zheng et al.,|2019) A v
LG-GAN (Zhou et al.} 2020) A v v

graphs and applies EdgeConv to capture local geometric structures. In recent years, there are more
and more convolution based methods proposed in the literature (Wu et al.,|2019; Thomas et al.,[2019;
Hermosilla et al.,|2018), which run convolutions across neighboring points using a predicted kernel
weight. Though these point cloud networks have achieved promising results, they are vulnerable to
adversarial attacks and require defense methods to improve the robustness.

3D adversarial attack. Existing 3D adversarial attack methods can be roughly divided into three
classes: optimization based methods, gradient based methods and generation based methods. For
optimization based methods, |Xiang et al.|(2019) first propose to generate adversarial point clouds us-
ing C&W attack framework (Carlini & Wagner;,2017)) by point perturbation and adding. In contrast,
Tsai et al.| (2020) propose to add a kNN distance constraint, a clipping and a projection operation to
generate adversarial point clouds that are resistant to defense. Besides, Hamdi et al.|(2020) propose
AdvPC by utilizing a point cloud auto-encoder (AE) to improve the transferability of adversarial
examples. Because of the limited budget, these attacks mainly introduce point perturbations. For
gradient based methods, [Liu et al.| (2019) extend the fast/iterative gradient method to perturb the
point coordinates. Additionally, |Zheng et al.| (2019) develop a point dropping attack by construct-
ing a gradient based saliency map, which would remove important local parts. LG-GAN (Zhou
et al., [2020) is a generation based 3D attack method, which leverages GANs (Goodfellow et al.,
2014a) to generate adversarial point clouds guided by the input target labels. We summarize the
correspondence between existing 3D attacks and the attack effects in Table[I]

3D adversarial defense. [Liu et al.| (2019) employ adversarial training to improve the robustness of
models by training on both clean and adversarial point clouds. [Yang et al.|(2019) propose Gaussian
noising and point quantization, which are adopted from 2D defense. They also introduce a Simple
Random Sampling (SRS) method which samples a subset of points from the input point cloud.
Recently, [Zhou et al.| (2019) propose a Statistical Outlier Removal (SOR) method that removes
points with a large kNN distance. They also propose DUP-Net, which is a combination of SOR
and a point cloud up-sampling network PU-Net (Yu et al., 2018). The non-differentiability of SOR
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Figure 3: Comparison of the re-meshing and optimization based IF-Defense. Given the (a) input
point cloud, the (b) reconstructed mesh using Marching Cubes according to the implicit field fails to
capture the legs. As aresult, the (c) re-sampled point cloud is misclassified as a monitor by PointNet.
In contrast, the (d) optimized point cloud successfully retain the legs and is classified correctly.

also improves its robustness. Instead of designing a pre-processing module to recover adversarial
examples, Dong et al.| (2020) leverage the intrinsic properties of point clouds and develop a variant
of PointNet++ (Q1 et al., [2017b) that can identify and eliminate adversarial local parts of an input.
Although these defenses are effective against simple attacks (Xiang et al.,|2019), their performance
against more complex methods (Tsai et al., [2020; [Zhou et al., |2020) is relatively poor, which is
because they fail to simultaneously address the aforementioned two attack effects.

Implicit representation. Different from the voxel-based, mesh-based and point-based methods that
explicitly represent shape surface, implicit functions learn a continuous field and represent surface
as the zeroth level-set. More recently, deep learning based methods use DNNs to approximate
the occupancy field (Mescheder et all [2019; |(Chen & Zhang, |2019) or signed distance function
(Park et al., |2019; Michalkiewicz et al., 2019; Duan et al., 2020), which capture more complex
geometries. Apart from their strong representation power, previous works show that implicit models
encode shape priors in the decoder space, which are able to reconstruct complete shapes from partial
observations (Park et al., 2019; Duan et al.,[2020). Inspired by this, we propose an implicit function
based restoration method to recover clean points from the attacked ones.

3 IF-DEFENSE

IF-Defense consists of two modules, namely surface recovery and point cloud restoration. For
surface recovery, we train a deep implicit function network to represent shape surface implicitly.
We adopt Occupancy Networks (ONet) (Mescheder et al.,|2019) and Convolutional Occupancy Net-
works (ConvONet) (Peng et al.,2020) in our implementation as they are widely used in the literature.
These networks are composed of an encoder, which takes as input a point cloud and outputs a la-
tent code, and a decoder, which outputs implicit fields. Using the trained implicit function network,
we obtain the implicit function of the point cloud pre-processed by SOR. As the implicit model is
trained purely on clean data, the output space of the decoder lies in the complete and accurate shape
manifold, which is beneficial to defend the attack of any out-of-surface geometric changes.

Given an implicit representation of the recovered surface, the next step is to restore the original clean
point cloud, which can reverse the attack effects. An intuitive way is to explicitly reconstruct the
shape as a mesh using Marching Cubes (Lorensen & Clinel [1987), then sample from the mesh using
the same point sampling method as in training data to get a point cloud. However, the Marching
Cubes algorithm completely relies on the predicted implicit field, which may contain certain errors.
Previous studies show that some geometry such as slender parts of an object are difficult to be
captured by implicit functions (Duan et al., 2020). Also, the noise in the attacked point cloud may
lead to imprecise shape latent codes, which further enlarge the reconstruction errors. For example,
ONet (Mescheder et al.||2019) fails to reconstruct the legs of a chair in FigureE] (b). As aresult, the
re-sampled point cloud in Figure [3|(c) is misclassified by PointNet as a monitor.
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Although ONet fails to reconstruct the chair legs as shown in Figure[3](b), this information is actually
provided by the input point cloud in Figure[3(a). Inspired by this, we further propose an optimization
based method which simultaneously exploits the information from both the input point cloud and
implicit surface. More specifically, we first initialize the defense point cloud X as the input. Since
the number of the input points may differ from the clean point clouds, we randomly duplicate points
in X to maintain the same number of points as the training data. Then, instead of reconstructing

meshes from the implicit field, we directly optimize the coordinates of X based on the predicted
implicit surface with two losses: geometry-aware loss and distribution-aware loss.

Geometry-aware loss aims to encourage the optimized points to lie on the shape surface. At each
time, we concatenate the latent code and the coordinate of point as the input of implicit function,
where the output shows the predicted occupancy probability. Then, we employ the binary cross-
entropy loss to force the optimized points to approach the surface as follows:

N
Ls =Y Lelfolz2i),T), )

i=1

where z is the shape latent code extracted from the input point cloud, x; is the point coordinate
to be optimized, and N is the number of points. fy(z,x;) is the implicit function that outputs the
occupancy probability at location @;. 7 is a hyper-parameter controlling the object boundary, which
is used as the ground-truth occupancy probability of surface. By minimizing the geometry-aware

loss, we can drive the points in X towards the object surface.

Distribution-aware loss is used to maximize the distance from a point to its k-nearest neighbors
(ENN), which encourages a more uniform point distribution:

N
w12 /R2
o= Yl e e 2)

=1 x;eknn(xz;,k)

where knn(x;, k) denotes the kNN of a point ;. The exponential term especially punishes the
points that are too close to each other, and & is a hyper-parameter controlling the decay rate with re-
spect to the distance. Similar penalization has also been proposed in the previous point up-sampling
work (Yu et al., 2018)), known as the repulsion loss. We optimize the point coordinates x; by min-
imizing the following objective function with a hyper-parameter A balancing the weights of two
terms: R

L(X)=Ls+ ALp. 3)

Implementation details. We implemented the implicit function network with the widely-used ONet
(Mescheder et al.,2019) and ConvONet (Peng et al.,[2020) in IF-Defense, which are trained on mul-
tiple categories without class labels. We first pre-trained them on the ShapeNet dataset (Chang et al.,
2015) and then finetuned them on the ModelNet40 dataset (Wu et al., |2015). For the optimization
based IF-Defense, we used 7 = 0.2 as suggested by [Mescheder et al.| (2019). Parameters h and k
were set to be 0.03 and 5 following |Yu et al.|(2018)), and A was set as 500. We optimized the coor-
dinates of points for 200 iterations using the Adam (Kingma & Ba, |[2014) optimizer with a learning
rate equals to 0.01. More implementation details are provided in the appendix.

4 EXPERIMENTS

We conducted all the experiments on the ModelNet40 (MN40) dataset (Wu et al.| [2015)). Model-
Net40 is a commonly used shape classification benchmark that contains 12,311 CAD models from
40 man-made object classes. We used the official split with 9,843 shapes for training and 2,468 for
testing. Following|Q1 et al.|(2017a), we uniformly sampled 1,024 points from the surface of each ob-
ject and normalize them into a unit sphere. We applied PointNet (Qi et al., |2017a)), PointNet++ (Q1
et al.|, [2017b), DGCNN (Wang et al} [2019) and PointConv (Wu et al.l [2019) as the victim models,
with the single scale grouping (SSG) strategy for PointNet++ and PointConv.

For the attack methods, we employed the point perturbation and individual point adding attack
(Xiang et al., [2019), kNN attack (Tsai et al., 2020), point dropping attack (Zheng et al.l [2019) as
well as two recently proposed attacks LG-GAN (Zhou et al.,|2020) and AdvPC (Hamdi et al.,[2020).
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Table 2: Classification accuracy of MN40 under various attack and defense methods on PointNet.

Defenses Clean Perturb Add-CD Add-HD kNN Drop-100 Drop-200 LG-GAN AdvPC
No defense 88.41% 0.00% 0.00% 0.00% 8.51% 64.67% 40.24% 4.40% 0.00%
SRS 87.44% | 77.47% | 76.34% | 73.66% | 57.41% 63.57% 39.51% 11.72% | 49.01%
SOR 87.88% | 82.81% | 82.58% | 82.25% | 76.63% 64.75% 42.59% 34.90% 75.45%
SOR-AE 88.09% | 79.86% | 80.15% | 79.58% | 78.28% 72.53% 48.06% 38.56% 76.60%
DUP-Net 87.76% | 84.56% | 83.63% | 82.16% | 80.31% 67.30% 46.92% 35.81% 77.55%
Ours-Mesh " 83.95% | 83.31% | 84.76% | 83.79% | 84.28% | 77.76% 66.94% 50.00% 75.62%
Ours-Opt’ 87.07% | 85.78% | 85.94% | 85.94% | 86.18% 77.63% 65.28% 52.10% 80.14%
Ours-Opt* 87.64% | 86.30% | 86.83% | 86.75% | 86.95% 77.39% 64.63% 48.11% | 80.72%

Table 3: Classification accuracy of MN40 under various attack and defense methods on PointNet++.

Defenses Clean Perturb Add-CD Add-HD kNN Drop-100 Drop-200 | LG-GAN AdvPC
No defense 89.34% 0.00% 7.24% 6.59% 0.00% 80.19% 68.96% 10.12% 0.56%
SRS 83.59% | 73.14% 65.32% 43.11% 49.96% 64.51% 39.63% 7.94% 48.37%
SOR 86.95% | 77.67% 72.90% 72.41% 61.35% 74.16% 69.17% 11.11% 66.26%
SOR-AE 88.45% | 78.73% 73.38% 71.19% 78.73% 76.66% 68.23% 15.19% 68.29%
DUP-Net 85.78% | 80.63% 75.81% 72.45% 74.88% 76.38% 72.00% 14.76% 64.76%
Ours-Mesh' 83.27% | 81.65% 77.71% 79.13% 72.57% 82.46% 72.93% 18.96% 65.97%
Ours-Opt ' 87.64% | 85.21% 78.44% 73.87% 85.37% 79.38% 75.12% 21.38% 74.63%
Ours-Opt* 89.02% | 86.99% | 80.19% 76.09% | 85.62% 84.56% 79.09% 17.52% 77.06%

For the defense baselines, we employed SRS (Yang et al.|[2019), SOR (Zhou et al.||2019) and DUP-
Net (Zhou et al.| [2019). We also trained a point cloud AE with a SOR pre-processor method as a
baseline called SOR-AE. Following previous works, we tested on targeted attack and reported the
classification accuracy after defense, where higher accuracy indicates better defense.

4.1 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Table[2]and Table[3]illustrate the classification accuracy under various attack and defense methods on
PointNet and PointNet++. In the Tables, Ours-Mesh and Ours-Opt represent the methods based on
re-meshing and optimization respectively. We use T and § to show the results of two implicit function
networks ONet and ConvONet. We observe that the optimization based method consistently outper-
forms the re-meshing based method, which shows the effectiveness of leveraging the input points
in generating defense point clouds. Also, employing ConvONet usually leads to better or compa-
rable accuracy compared with ONet because of the stronger representation capacity of ConvONet.
For perturbation and point adding attacks, IF-Defense achieves relatively small improvements com-
pared with existing methods, because these attacks mainly lead to local out-of-surface perturbation
and can be alleviated by the simple SOR. However, our method boosts the performance significantly
for kNN, point dropping, LG-GAN and AdvPC attack. The reason is that these attacks mainly intro-
duce on-surface perturbation or significant surface distortion, while IF-Defense can recover natural
shape surface via implicit function network and restore point clouds with desired point distribution.

As shown in Table [4] and Table [5} we draw similar observations for DGCNN and PointConv. The
optimization based IF-Defense still outperforms its re-meshing based counterpart, and ConvONet
demonstrates competitive or superior performance compared with ONet. It is worth noticing that
DUP-Net performs poorly on these two models. DGCNN and PointConv are sensitive to local
point distributions as they extract and propagate features through kNN graphs. However, DUP-
Net up-samples points to a much higher density using PU-Net, which largely affects the learned
local kNN graphs due to the difference in point distributions. Instead, the proposed IF-Defense
optimizes towards uniform point distribution, which leads to better kNN graphs. Therefore, we
achieve significantly better results than DUP-Net against all the attacks on DGCNN and PointConv.

4.2 ABLATION STUDY

In this subsection, we study the effect of the hyper-parameter A of the optimization based method
(Ours-Opt), where ConvONet is adopted as it achieves the best performance against most of the
attacks. We varied \ between 0 and 1,000 and recorded the accuracy of the victim models after
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Table 4: Classification accuracy of MN40 under various attack and defense methods on DGCNN.

Defenses Clean Perturb Add-CD Add-HD kNN Drop-100 Drop-200 LG-GAN AdvPC
No defense 91.49% 0.00% 1.46% 1.42% 20.02% 75.16% 55.06% 15.41% 9.23%
SRS 81.32% | 50.20% 63.82% 43.35% 41.25% 49.23% 23.82% 20.07% 41.62%
SOR 88.61% | 76.50% 72.53% 63.74% 55.92% 64.68% 59.36% 30.82% 56.49%
SOR-AE 89.20% | 79.05% 76.38% 66.25% 56.78% 66.78% 63.70% 32.96% 58.67%
DUP-Net 53.54% | 42.67% 44.94% 33.02% 35.45% 44.45% 36.02% 21.38% 29.38%
Ours-Mesh’ 83.91% | 81.56% 81.73% 67.50% 79.38% 78.97% 70.34% 46.09% 65.54%
Ours-Opt’ 88.25% | 82.25% 81.77% 67.75% 82.29% 79.25% 73.30% 53.08% 76.01%
Ours-Opt* 89.22% | 85.53% | 84.20% 72.93% | 82.33% 83.43% 73.22% 50.70% 79.14%

Table 5: Classification accuracy of MN40 under various attack and defense methods on PointConv.

Defenses Clean Perturb Add-CD | Add-HD kNN Drop-100 | Drop-200 | LG-GAN AdvPC
No defense 88.49% 0.00% 0.54% 0.68% 3.12% 77.96% 64.02% 4.42% 6.45%
SRS 85.23% | 76.22% | 71.31% | 61.98% | 55.75% 69.45% 48.87% 5.10% 37.62%
SOR 87.28% | 79.25% | 82.41% 72.73% | 26.13% 77.63% 63.78% 5.48% 51.75%
SOR-AE 87.40% | 78.08% | 77.27% 74.55% | 56.50% 72.45% 60.37% 8.64% 50.96%
DUP-Net 78.73% | 68.84% | 72.61% | 61.14% | 43.76% 70.75% 58.23% 5.02% 49.35%
Ours-Mesh’ 82.78% | 81.73% | 81.85% 75.61% 77.15% 75.97% 68.44% 15.46% 53.81%
Ours-Opt’ 86.10% | 83.55% | 83.95% 76.86% | 80.47% 78.85% 70.34% 18.78% 61.77%
Ours-Opt* 88.21% | 86.67% | 85.62% | 82.13% | 81.08% 81.20% 74.51% 16.55% 59.82%

defense. As shown in Figure[d] with the increase of \, the accuracy first improves and then begins to
decrease. In most cases, we observe that the best accuracy is achieved at A = 500. The distribution-
aware loss enforces the points to distribute uniformly over the surface. The points are not able to
cover the entire object uniformly with a small A\, while a large A fails to capture the surface precisely
due to the ignorance of the geometry-aware loss. To this end, we select a proper A to balance the
importance between accurate surfaces and uniform point distributions.

4.3 BLACK-BOX ATTACKS AND DEFENSES

We explore the transferability of attacks and the performance of various defense methods in this
black-box setting. We first generated adversarial examples against PointNet, and then transferred
them to the other three victim models. We adopted the optimization based IF-Defense with Con-
vONet for comparison. The results are summarized in Table [6] As the attacked point clouds are
generated against PointNet, they are less effective for other network architectures due to the limited
transferability. We observe that our method consistently outperforms other defense methods. For
SOR and DUP-Net, the classification accuracy even drops in some situations compared with directly
using the noisy point cloud. Instead, our IF-Defense continuously boosts the performance, which
demonstrates its effectiveness and robustness.

4.4 QUALITATIVE RESULTS

Figure [5]illustrates two groups of defense results using SOR, DUP-Net and all the three variants of
IF-Defense. The first row shows the results under point dropping attack on PointNet, where the head
of the airplane is discarded in the adversarial example. SOR fails to defend the point dropping attack
because it just removes more points from the point cloud. Although DUP-Net further up-samples

PointNet PointNet++ DGCNN PointConv
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Figure 4: The ablation study of the hyper-parameter A. We show the defense accuracy of four victim
models against point perturbation attack.
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Table 6: Classification accuracy of black-box attacks and defenses.

Network Defense Add-CD kNN Drop LG-GAN AdvPC

PointNet No defense 0.00% 8.51 40.24% 4.40% 0.00%

No defense 87.60% 80.47% 79.90% 24.18% 70.07%

. SOR 87.13% 85.07% 74.84% 48.78% 74.09%
PointNet++

DUP-Net 87.12% 84.04% 73.06% 50.90% 72.94%
Ours-Opt* 88.17% | 85.98% | 79.98% 54.85% 80.59%
No defense 78.24% 80.19% 73.14% 35.12% 74.51%

SOR 85.58% 87.16% 66.57% 40.23% 78.49%

DGCNN

DUP-Net 53.20% 49.47% 35.01% 20.35% 38.77%

Ours-Opt* 88.09% | 88.01% | 76.90% 62.13% 85.61%

No defense 84.81% 77.11% 76.26% 22.41% 64.19%

. SOR 84.57% 82.43% 72.41% 47.52% 70.89%

PointConv

DUP-Net 79.74% 75.20% 57.37% 32.15% 66.78%

Ours-Opt* 87.76% | 86.55% | 77.19% 56.25% 76.69%

Ours-Mesh Ours-Opt Ours-Opt

Clean Adversarial SOR DUP-Net (ONet) (ONet) (ConvONet)

Drop-200
PointNet

guitar guitar airplane airplane airplane

kNN
PointConv

e

airplane curtain bookshelf sofa airplane airplane airplane

Figure 5: Visualization results of different defense results. The labels under each point cloud are the
prediction outputs of the victim models.

the point cloud with PU-Net, it only depends on its input point cloud so that the missing part cannot
be recovered. Instead, all three IF-Defense methods successfully restore the shape by extending the
front end and trying to generate a head, which demonstrates its effectiveness in reconstructing the
whole shapes under partial observations. The second row is the kNN attack on PointConv. Most
of the points are perturbed along the surface because of the kNN constraint, resulting in significant
changes in point distribution. DUP-Net fails to recover the original point distribution as it outputs
a much denser point cloud. Ours-Mesh re-samples points from the reconstructed mesh, which is
able to maintain the similar point distribution as the clean one, and Ours-Opt outputs uniformly
distributed points. Consequently, PointConv correctly classifies the airplane in both cases.

5 CONCLUSION

In this paper, we have proposed a general defense framework called IF-Defense for adversarial
defense in 3D point cloud, which simultaneously addresses both key attack effects including point
perturbation and surface distortion. Our IF-Defense restores the attacked point cloud by predicting
an implicit representation of the clean shape and then optimizing the point coordinates according to
the geometry-aware loss and the distribution-aware loss, so that the distorted surfaces are recovered
by the implicit functions and the perturbed points are denoised through optimization. Extensive
experiments show that IF-Defense consistently outperforms existing adversarial defense methods
against various attacks on PointNet, PointNet++, DGCNN and PointConv.



Under review as a conference paper at ICLR 2021

REFERENCES

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing Robust Adversarial
Examples. In ICML, pp. 284-293, 2018.

Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks. In
2017 IEEE Symposium on Security and Privacy (SP), pp. 39-57, 2017.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet: An Information-Rich 3D
Model Repository. arXiv preprint arXiv:1512.03012, 2015.

Zhiqin Chen and Hao Zhang. Learning Implicit Fields for Generative Shape Modeling. In CVPR,
pp. 5939-5948, 2019.

Xiaoyi Dong, Dongdong Chen, Hang Zhou, Gang Hua, Weiming Zhang, and Nenghai Yu. Self-
Robust 3D Point Recognition via Gather-Vector Guidance. In CVPR, pp. 11513-11521, 2020.

Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia, and Leonidas J Guibas. Curriculum
DeepSDF. 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In NeurIPS, pp. 2672-2680,
2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. arXiv preprint arXiv:1412.6572, 2014b.

Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard Ghanem. AdvPC: Transferable Adversarial
Perturbations on 3D Point Clouds. In ECCV, September 2020.

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vazquez, Alvar Vinacua, and Timo Ropinski. Monte
Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds. TOG, 37(6):1-12,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Daniel Liu, Ronald Yu, and Hao Su. Extending Adversarial Attacks and Defenses to Deep 3D Point
Cloud Classifiers. In ICIP, pp. 2279-2283, 2019.

William E Lorensen and Harvey E Cline. Marching Cubes: A high resolution 3D surface construc-
tion algorithm. SIGGRAPH, 21(4):163-169, 1987.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy Networks: Learning 3D Reconstruction in Function Space. In CVPR, pp. 4460-4470,
2019.

Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders Eriks-
son. Implicit Surface Representations As Layers in Neural Networks. In ICCV, pp. 4743-4752,
2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: A Simple and
Accurate Method to Fool Deep Neural Networks. In CVPR, pp. 2574-2582, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
Adversarial Perturbations. In CVPR, pp. 1765-1773, 2017.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
Defense to Adversarial Perturbations Against Deep Neural Networks. In 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582-597, 2016.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In CVPR,
pp. 165-174,2019.



Under review as a conference paper at ICLR 2021

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolu-
tional Occupancy Networks. In ECCV, 2020.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. In CVPR, pp. 652-660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In NeurIPS, pp. 5099-5108, 2017b.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Frangois Goulette,
and Leonidas J Guibas. KPConv: Flexible and Deformable Convolution for Point Clouds. In
ICCV, pp. 6411-6420, 2019.

Tzungyu Tsai, Kaichen Yang, Tsung-Yi Ho, and Yier Jin. Robust Adversarial Objects against Deep
Learning Models. In AAAI volume 34, pp. 954-962, 2020.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic Graph CNN for Learning on Point Clouds. TOG, 38(5):1-12, 2019.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep Convolutional Networks on 3D Point
Clouds. In CVPR, pp. 9621-9630, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3D ShapeNets: A Deep Representation for Volumetric Shapes. In CVPR, pp. 1912-1920,
2015.

Chong Xiang, Charles R Qi, and Bo Li. Generating 3D Adversarial Point Clouds. In CVPR, pp.
9136-9144, 2019.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating Adversarial
Effects Through Randomization. arXiv preprint arXiv:1711.01991, 2017.

Jiancheng Yang, Qiang Zhang, Rongyao Fang, Bingbing Ni, Jinxian Liu, and Qi Tian. Adversarial
Attack and Defense on Point Sets. arXiv preprint arXiv:1902.10899, 2019.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. PU-Net: Point
Cloud Upsampling Network. In CVPR, pp. 2790-2799, 2018.

Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and Kui Ren. PointCloud Saliency Maps.
In ICCV, pp. 1598-1606, 2019.

Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang, Wenbo Zhou, and Nenghai Yu. DUP-Net:
Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense. In ICCV, pp. 1961—
1970, 2019.

Hang Zhou, Dongdong Chen, Jing Liao, Kejiang Chen, Xiaoyi Dong, Kunlin Liu, Weiming Zhang,

Gang Hua, and Nenghai Yu. LG-GAN: Label Guided Adversarial Network for Flexible Targeted
Attack of Point Cloud Based Deep Networks. In CVPR, pp. 10356-10365, 2020.

10



	Introduction
	Related Works
	IF-Defense
	Experiments
	Comparison with the State-of-the-art Methods
	Ablation Study
	Black-Box Attacks and Defenses
	Qualitative Results

	Conclusion

