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Abstract001

Vision-Language Models (VLMs) are powerful002
yet computationally intensive for widespread003
practical deployments. To address such chal-004
lenge without costly re-training, post-training005
acceleration techniques like quantization and006
token reduction are extensively explored. How-007
ever, current acceleration evaluations primarily008
target minimal overall performance degrada-009
tion, overlooking a crucial question: does the010
accelerated model still give the same answers to011
the same questions as it did before acceleration?012
This is vital for stability-centered industrial ap-013
plications where consistently correct answers014
for specific, known situations are paramount,015
such as in AI-based disease diagnosis. We016
systematically investigate this for accelerated017
VLMs, testing four leading models (LLaVA-018
1.5, LLaVA-Next, Qwen2-VL, Qwen2.5-VL)019
with eight acceleration methods on ten multi-020
modal benchmarks. Our findings are stark: de-021
spite minimal aggregate performance drops, ac-022
celerated models changed original answers up023
to 20% of the time. Critically, up to 6.5% of024
these changes converted correct answers to in-025
correct. Input perturbations magnified these026
inconsistencies, and the trend is confirmed by027
case studies with the medical VLM LLaVA-028
Med. This research reveals a significant over-029
sight in VLM acceleration, stressing an urgent030
need for instance-level stability checks to en-031
sure trustworthy real-world deployment.032

1 Introduction033

Large Vision-Language Models (VLMs) are034

demonstrating remarkable capabilities in under-035

standing and generating content across visual and036

textual modalities (Liu et al., 2024a,b; Bai et al.,037

2025). Despite their impressive performance, the038

substantial computational demands of state-of-the-039

art VLMs critically limit their practical deployment,040

particularly in resource-constrained environments041

(Chen et al., 2024; Zhang et al., 2025; Tang et al.,042

2024). To mitigate these challenges without the043
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Figure 1: Current VLM acceleration methods focus on
improving efficiency while minimizing overall perfor-
mance drop relative to the base model. However, this
focus may obscure a critical risk: accelerated models
can exhibit significant changes in instance-level pre-
dictions compared to their original counterparts. Such
instability poses serious concerns in sensitive domains
such as healthcare, where producing stable and reliable
outputs is essential.

necessity of costly re-training, post-training accel- 044

eration techniques—such as quantization (Lin et al., 045

2024; Frantar et al., 2022; Dettmers et al., 2022) 046

and token reduction (Chen et al., 2024; Yang et al., 047

2024c; Xing et al., 2024)—are widely adopted. The 048

primary objectives of these techniques have been 049

two-fold: achieving substantial computational effi- 050

ciency gains while ensuring minimal degradation in 051

aggregate performance metrics. Yet, this prevailing 052

focus obscures other vital impacts of acceleration, 053

posing the question: Are these two criteria truly 054

sufficient to guarantee the reliable deployment of 055

accelerated VLMs in practice? 056

We contend that for many practical applica- 057

tions, particularly in critical domains like medicine 058

(Zhang et al., 2023; Li et al., 2023a), the answer 059

is highly risky to be “No”. In such fields, system 060

development and validation often adhere to a “case- 061
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driven” paradigm (Bodendorf, 2025; Liao and Xiao,062

2023; Weidinger et al., 2025), where a fundamental063

requirement is the AI system’s ability to consis-064

tently and correctly resolve specific, known crucial065

instances, even post-optimization or updates. Con-066

sider a medical VLM adept at identifying a rare067

disease from patient scans; it is paramount that068

this specific diagnostic capability remains invariant069

after an acceleration process aimed at enhancing070

efficiency. However, as illustrated in Figure 1, this071

crucial aspect of instance-level stability is largely072

unaddressed within the evaluation of current ac-073

celeration methodologies (Lin et al., 2024; Frantar074

et al., 2022; Chen et al., 2024; Yang et al., 2024c),075

potentially masking significant operational risks.076

This paper confronts this oversight by system-077

atically investigating the instance-level stability of078

accelerated VLMs. Our central aim is to evaluate079

whether and to what extent existing post-training080

acceleration techniques, despite ostensibly preserv-081

ing overall performance, can induce substantial082

and often detrimental inconsistencies in models’083

response to individual inputs. To rigorously quan-084

tify this instability, we introduce two intuitive yet085

powerful metrics: Divergence Ratio (DR) and Neg-086

ative Divergence Ratio (NDR). DR measures the087

frequency with which an accelerated model yields088

a different prediction for the same input compared089

to its original, unaccelerated counterpart. NDR090

quantifies a more critical failure mode: the propor-091

tion of instances where a correct prediction from092

the original model becomes incorrect after accel-093

eration. Low DR and NDR values signify that094

an accelerated VLM maintains behavioral fidelity095

and reliability. Conversely, high values—even096

when accompanied by negligible shifts in aggregate097

performance—would indicate that the accelerated098

model’s behavior has become alarmingly unpre-099

dictable relative to its original state.100

To empirically validate our hypothesis, we un-101

dertook an extensive study. We assessed eight dis-102

tinct acceleration methods applied to four leading103

open-source VLMs (LLaVA-1.5 (Liu et al., 2024a),104

LLaVA-Next (Liu et al., 2024b), Qwen2-VL (Wang105

et al., 2024), and Qwen2.5-VL (Bai et al., 2025))106

across ten diverse multi-modal benchmarks. To107

probe the resilience of instance-level stability under108

practical conditions, we further evaluated model109

performance on perturbed inputs (spanning both110

visual and textual modalities) designed to mimic111

real-world data variations. Underscoring the high112

stakes involved, we conducted targeted case studies113

on LLaVA-Med (Li et al., 2023a), a VLM tailored 114

for medical applications where predictive consis- 115

tency is non-negotiable. Our experiments reveal 116

several striking findings: 117

1. Despite acceleration methods inducing only 118

a negligible drop in overall performance (av- 119

erage of 0.8%), they precipitated surprisingly 120

high Divergence Ratios (DR) of up to 20% 121

and, more critically, Negative Divergence Ra- 122

tios (NDR) reaching up to 7%. 123

2. Input data perturbations, characteristic of real- 124

world scenarios, further exacerbated this di- 125

vergence. 126

3. Application of acceleration to the medical 127

VLM (LLaVA-Med) corroborated these high 128

DR and NDR values, highlighting the acute 129

potential risks in safety-critical domains. 130

To the best of our knowledge, this work represents 131

the first large-scale empirical investigation dedi- 132

cated to the instance-level stability of VLM accel- 133

eration techniques. Our research uncovers a signif- 134

icant, potentially hazardous, oversight in current 135

VLM acceleration practices, emphasizing an ur- 136

gent imperative for incorporating rigorous instance- 137

level stability checks to ensure these models are 138

genuinely faithful and trustworthy for real-world 139

deployment. 140

2 Related Work 141

2.1 Large Vision-Language Models 142

Large Vision-Language Models (VLMs) have ad- 143

vanced rapidly in integrating visual and textual 144

understanding. Early models like CLIP (Rad- 145

ford et al., 2021) employed contrastive learning 146

to align these modalities. Subsequent architec- 147

tures, such as BLIP-2 and Instruct-BLIP (Li et al., 148

2023b; Dai et al., 2023), introduced Q-Former 149

to bridge pre-trained vision encoders with Large 150

Language Model (LLM) backbones. More recent 151

state-of-the-art models, including LLaVA-1.5 (Liu 152

et al., 2024a), LLaVA-NeXT (Liu et al., 2024b), 153

and the Qwen-VL series (Wang et al., 2024; Bai 154

et al., 2025), leverage powerful LLMs (e.g., Vi- 155

cuna, LLaMA, Qwen2 (Peng et al., 2023; Dubey 156

et al., 2024; Yang et al., 2024a)) and lightweight 157

vision-text connectors (typically linear layers) for 158

advanced multimodal reasoning. However, VLM 159

vision encoders often generate a high volume of vi- 160

sual tokens (hundreds or thousands (Radford et al., 161
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2021)). The LLM backbone processing of these162

numerous tokens incurs significant computational163

costs, hindering the practical deployment of VLMs.164

2.2 Post-Training Acceleration Techniques for165

Vision-Language Models166

Post-training acceleration techniques are widely ap-167

plied to reduce computational demands of VLMs168

without costly retraining. Token Reduction meth-169

ods aims to substantially remove the redundant170

visual tokens for VLMs, thereby reducing the input171

sequence length and lowering inference costs. Re-172

cent methods implementing this approach during173

inference include VisionZip (Yang et al., 2024c),174

PyramidDrop (Xing et al., 2024), FastV (Chen175

et al., 2024), SparseVLM (Zhang et al., 2024), and176

HiRed (Arif et al., 2025). Quantization techniques177

reduces model size and computational overhead by178

utilizing lower-precision numerical formats (e.g.,179

8-bit, 4-bit) for model weights and/or activations.180

Post-Training Quantization (PTQ), which applies181

this technique after model training, has become a182

common practice, such as LLM.int8() (Dettmers183

et al., 2022), GPTQ (Frantar et al., 2022), and184

AWQ (Lin et al., 2024). Although these meth-185

ods often report minimal degradation on standard186

benchmarks, their impact on instance-level stabil-187

ity remains largely unexplored. This work system-188

atically investigates the instance-level prediction189

stability of VLMs under both token reduction and190

quantization, moving beyond standard benchmark191

evaluations.192

2.3 Evaluation for LM Acceleration193

The typical approach to evaluating model accel-194

eration techniques tends to emphasize negligible195

loss in aggregate performance and improved com-196

putational efficiency. However, there’s a growing197

recognition that such criteria, while important, may198

overlook other critical impacts. Recent investiga-199

tions, for example, have shown that quantization200

can diminish the reasoning capabilities of LLMs201

(Li et al., 2025), and that prompt compression can202

affect their ability to retain information (Lajewska203

et al., 2025). Similarly, Dutta et al. (2024) demon-204

strates that accuracy alone is not enough for assess-205

ing LLM quantization, leading to proposals like206

the “flip” metric for instance-level changes. Wen207

et al. (2025) argues that the fundamental designs208

of token reduction methods for VLMs can cause209

biased performance on different task types. More-210

over, a specialized benchmark, LLMCBench, has211

been introduced targeting the practical efficiency 212

of model compression techniques for real-world de- 213

ployment (Yang et al., 2024b). Distinct from these 214

explorations, our work concentrates on a crucial 215

aspect: the instance-level stability and reliability 216

of accelerated VLMs, ensuring they consistently 217

solve the problems they were initially capable of 218

solving. 219

3 Experimental Settings 220

3.1 Tasks and Datasets 221

We utilize a diverse suite of ten benchmark datasets 222

covering various Visual-Language understanding 223

capabilities. These include AI2D (Kembhavi et al., 224

2016) for diagram understanding, GQA (Hudson 225

and Manning, 2019) for real-world compositional 226

reasoning, MMBench (Liu et al., 2024c) for di- 227

verse multi-modal abilities, MMMU (Yue et al., 228

2024) for expert-level multi-discipline reasoning, 229

OK-VQA (Marino et al., 2019) requiring external 230

knowledge, POPE (Li et al., 2023c) for evaluating 231

object hallucination, ScienceVQA (Lu et al., 2022) 232

focusing on science diagrams, TextVQA (Singh 233

et al., 2019) requiring reading text within images, 234

VizWiz (Gurari et al., 2018) using images from 235

visually impaired users, and the widely-used large- 236

scale VQA benchmark VQAv2 (Goyal et al., 2017). 237

Finally, we use VQA-RAD (Lau et al., 2018) to 238

extend to medical domain tasks. Details of the 239

benchmarks are presented in Appendix A. 240

3.2 Base Models and Acceleration Techniques 241

We select four state-of-the-art open-source VLMs 242

as base models for our acceleration experiments. 243

LLaVA-1.5 (Liu et al., 2024a) is a widely recog- 244

nized VLM demonstrating strong general vision- 245

language capabilities. LLaVA-Next (Liu et al., 246

2024b) extends LLaVA-1.5, improving perfor- 247

mance particularly for high-resolution inputs. 248

Qwen2-VL (Wang et al., 2024) and Qwen2.5-VL 249

(Bai et al., 2025) are recent released VLMs, which 250

are adept at handling various image resolutions and 251

video inputs. Additionally, we also use LLaVA- 252

Med (Li et al., 2023a), which is a specialised med- 253

ical domain VLM. We adopt the 7B model size 254

for all VLMs throughout our study, unless stated 255

otherwise. 256

We investigate two main categories of post- 257

training acceleration: token reduction and quan- 258

tization. For token reduction, we evaluate five of 259

the latest and widely applied methods, including 260
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VisionZip (Yang et al., 2024c), which selects in-261

formative tokens and merges others; PyramidDrop262

(Xing et al., 2024), which progressively drops to-263

kens in deeper layers; SparseVLMs (Zhang et al.,264

2024), which prunes tokens based on relevance265

scores; FastV (Chen et al., 2024), dynamically266

pruning based on attention scores during inference;267

and HiRed (Arif et al., 2025), designed for high-268

resolution inputs, allocating token budgets based269

on attention. For all the token reduction meth-270

ods, we choose the signature or best-performing271

hyper-parameter settings as reported in the corre-272

sponding papers, which are listed in Appendix B.273

For Quantization, which reduces numerical preci-274

sion, we apply: llm.int8() (Dettmers et al., 2022)275

(W8A16), a mixed-precision quantisation scheme;276

AWQ (Lin et al., 2024) (W4A16), an activation-277

aware 4-bit weight quantization; and GPTQ (Fran-278

tar et al., 2022) (W4A16), a layer-wise 4-bit weight279

quantization method.280

3.3 Evaluation Metrics281

We report standard top-1 accuracy for all tasks ex-282

cept for POPE, where F1 score is the standard met-283

ric. We also calculate the Accuracy or F1 Drop for284

all the acceleration methods compared with the cor-285

responding baseline VLMs. To assess the instance-286

level instability of accelerated models compared to287

their original counterparts, we introduce two addi-288

tional metrics: 1) Divergence Ratio (DR), defined289

as the proportion of test samples where the accel-290

erated model’s prediction differs from the original291

model’s prediction, irrespective of correctness. 2)292

Negative Divergence Ratio (NDR), which quan-293

tifies harmful instability by measuring the propor-294

tion of samples that were correctly predicted by295

the original model but incorrectly predicted by the296

accelerated model.297

3.4 Input Perturbation298

To better understand the instance-level stability299

of accelerated VLMs under practical settings, we300

adopt a comprehensive set of input perturbation301

methods proposed by Chen et al. (2023) to sim-302

ulate the real-world user scenarios. Specifically,303

we use 96 visual perturbation methods (e.g. noise,304

blur, weather effects) and 87 textual perturbation305

methods (e.g., typos, paraphrasing, character sub-306

stitutions), whose details are shown in Appendix C.307

We apply these visual and textual perturbations sep-308

arately to the inputs of the accelerated models and309

assess their impact on performance and prediction310

stability. 311

4 Experimental Results 312

This section presents our empirical findings on 313

the instance-level stability of accelerated Vision- 314

Language Models (VLMs). Our experiments are 315

structured in three stages: 316

1. We first evaluate Divergence Ratios (DR) and 317

Negative Divergence Ratios (NDR) for widely 318

used post-training acceleration methods (To- 319

ken Reduction and Quantization) on standard 320

benchmarks in section 4.1. This establishes 321

their fundamental impact on instance-level sta- 322

bility under laboratory conditions. 323

2. Next, we further assess the instance-level sta- 324

bility under more realistic conditions by ap- 325

plying input perturbations to large-scale Vi- 326

sual Question Answering (VQA) benchmarks 327

(VQAv2 (Goyal et al., 2017) and GQA (Hud- 328

son and Manning, 2019)), simulating typical 329

input noise encountered in practice as dis- 330

cussed in section 4.2. 331

3. Finally, we analyze an accelerated medical 332

VLM to demonstrate the potential down- 333

stream consequences and critical risks of 334

instance-level instability in a high-stakes do- 335

main in section 4.3. 336

4.1 Instance-Level Instability on Standard 337

Benchmarks 338

This section presents our quantitative findings on 339

the instance-level stability of various post-training 340

acceleration techniques applied to leading Vision- 341

Language Models (VLMs). The detailed results for 342

token reduction techniques are shown in Table 1 343

and those for quantization methods are summarized 344

in Table 2. Qualifying examples are demonstrated 345

in appendix G. 346

The Illusion of Stability: High Divergence De- 347

spite Low Aggregate Performance Drops. The 348

most striking revelation from our experiments is the 349

significant instance-level instability introduced by 350

many common acceleration methods, even when 351

these methods exhibit only minimal degradation 352

in overall aggregate performance. This creates an 353

illusion of stability if one only considers coarse- 354

grained metrics. Across multiple VLMs and bench- 355

marks, we consistently observed that accelerated 356
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Method Metric VQAv2 AI2D GQA ScienceQA
Img TextVQA OKVQA VizWiz MMBench MMMU POPE Average

LLaVA-1.5 
(Baseline) Acc/F1 (%) ↑ 76.64 55.25 61.92 69.46 46.09 53.44 54.05 64.09 36.22 85.85 60.30

Acc/F1 (%) ↑ 75.93 54.60 60.05 69.21 45.32 52.67 53.19 64.60 37.22 84.81 59.76
Acc/F1 Drop (%) ↓ 0.71 0.65 1.87 0.25 0.76 0.77 0.86 -0.52 -1.00 1.03 0.54

DR (%) ↓ 8.97 12.82 11.34 5.75 18.68 10.64 11.79 4.87 10.89 3.31 9.91
NDR (%) ↓ 2.29 4.21 4.72 2.33 2.56 3.23 3.17 1.82 2.33 2.04 2.87

Acc/F1 (%) ↑ 75.26 54.83 59.37 68.77 44.88 51.93 54.82 64.00 35.78 85.59 59.52
Acc/F1 Drop (%) ↓ 1.38 0.42 2.54 0.69 1.21 1.51 -0.77 0.09 0.44 0.26 0.78

DR (%) ↓ 12.10 14.86 13.97 6.64 23.74 12.33 15.72 6.56 11.78 4.49 12.22
NDR (%) ↓ 3.33 4.83 5.81 2.93 3.48 4.12 3.52 2.66 2.89 2.33 3.59

Acc/F1 (%) ↑ 74.93 55.73 59.13 68.57 44.66 52.72 54.06 63.66 36.67 85.26 59.54
Acc/F1 Drop (%) ↓ 1.71 -0.49 2.78 0.89 1.43 0.72 -0.01 0.43 -0.45 0.59 0.76

DR (%) ↓ 13.10 17.71 14.46 7.98 24.34 13.91 19.17 7.55 14.89 4.89 13.80
NDR (%) ↓ 3.64 5.54 6.15 3.42 3.76 4.02 4.79 3.16 3.44 2.74 4.07

Acc/F1 (%) ↑ 75.86 55.38 60.09 68.86 45.91 52.95 54.51 64.18 35.89 82.47 59.61
Acc/F1 Drop (%) ↓ 0.77 -0.13 1.83 0.59 0.18 0.49 -0.47 -0.09 0.33 3.38 0.69

DR (%) ↓ 7.88 6.80 10.85 2.88 13.40 5.87 8.71 3.47 4.89 5.22 7.00
NDR (%) ↓ 2.17 1.75 4.41 1.39 1.58 1.70 1.90 1.27 1.44 3.82 2.14

Acc/F1 (%) ↑ 76.51 53.50 61.23 67.97 48.58 53.39 53.54 62.97 35.60 84.06 59.74
Acc/F1 Drop (%) ↓ 0.12 1.75 0.69 1.49 -2.50 0.05 0.51 1.12 0.62 1.79 0.56

DR (%) ↓ 14.72 17.65 13.26 11.40 42.58 12.62 20.38 6.91 35.33 7.42 18.23
NDR (%) ↓ 3.50 6.35 4.47 5.06 7.40 3.23 5.16 3.28 10.00 4.43 5.29

LLaVA-Next 
(Baseline) Acc/F1 (%) ↑ 80.06 65.32 64.26 70.25 64.82 44.23 60.74 67.10 36.67 86.41 63.98

Acc/F1 (%) ↑ 79.46 64.31 63.38 69.16 64.18 46.07 61.16 66.84 36.56 86.60 63.77
Acc/F1 Drop (%) ↓ 0.60 1.00 0.88 1.09 0.64 -1.85 -0.42 0.26 0.11 -0.18 0.21

DR (%) ↓ 8.18 10.04 10.44 5.95 17.22 10.19 9.86 4.30 11.33 3.06 9.06
NDR (%) ↓ 1.97 3.79 3.96 2.78 3.40 1.78 2.36 1.71 2.00 1.41 2.52

Acc/F1 (%) ↑ 78.42 64.83 62.89 68.27 62.29 43.99 59.75 66.67 37.11 87.00 63.12
Acc/F1 Drop (%) ↓ 1.63 0.49 1.38 1.98 2.53 0.24 0.99 0.43 -0.44 -0.58 0.86

DR (%) ↓ 11.83 12.21 13.48 7.54 21.84 11.40 10.14 5.43 13.11 3.80 11.08
NDR (%) ↓ 3.28 4.34 5.20 3.57 5.00 3.37 3.36 1.89 2.11 1.63 3.38

Acc/F1 (%) ↑ 78.34 64.80 61.89 68.22 62.94 46.06 60.49 65.46 36.56 87.24 63.20
Acc/F1 Drop (%) ↓ 1.72 0.52 2.37 2.03 1.88 -1.84 0.25 1.63 0.11 -0.82 0.78

DR (%) ↓ 12.28 14.80 14.03 10.36 20.76 14.11 13.36 7.88 18.67 3.71 13.00
NDR (%) ↓ 3.44 5.02 6.01 4.96 4.56 2.95 3.43 3.47 3.78 1.53 3.91

Acc/F1 (%) ↑ 79.63 64.51 63.87 69.11 63.88 43.69 60.25 66.49 35.22 86.19 63.28
Acc/F1 Drop (%) ↓ 0.43 0.81 0.39 1.14 0.94 0.54 0.49 0.60 1.45 0.23 0.70

DR (%) ↓ 5.77 7.16 6.34 3.12 11.80 4.40 4.17 2.22 5.56 2.01 5.25
NDR (%) ↓ 1.44 2.78 2.31 1.69 2.48 1.55 1.30 0.97 1.44 1.06 1.70

Acc/F1 (%) ↑ 77.57 62.05 61.33 67.97 61.54 46.70 58.53 65.38 36.22 85.10 62.24
Acc/F1 Drop (%) ↓ 2.49 3.27 2.93 2.28 3.28 -2.47 2.20 1.72 0.45 1.31 1.75

DR (%) ↓ 15.40 21.96 17.47 11.85 25.78 23.07 20.44 10.90 25.00 5.20 17.71
NDR (%) ↓ 4.43 9.46 7.60 5.80 6.36 4.80 6.58 4.46 5.67 3.04 5.82

PyramidDrop
(CVPR 2025)

SparseVLM
(ICML 2025)

VisionZip
(CVPR 2025)

FastV
(ECCV 2024)

HiRED
(AAAI 2025)

PyramidDrop
(CVPR 2025)

SparseVLM
(ICML 2025)

FastV
(ECCV 2024)

HiRED
(AAAI 2025)

VisionZip
(CVPR 2025)

Table 1: Instance-Level Instability in Token Reduction Methods. For each acceleration method, we report:
Accuracy (Acc) for most benchmarks (F1 score for POPE (Li et al., 2023c)), Acc/F1 drop (performance degradation
vs. baseline), Divergence Ratio (DR), and Negative Divergence Ratio (NDR) to evaluate instance-level prediction
changes. Red values indicate the largest NDR per baseline model within each benchmark column. Across all
benchmarks and token reduction methods, results reveal high DR and NDR values despite negligible Acc/F1 drops,
signifying considerable instance-level prediction instability.

models altered their original predictions on iden-357

tical inputs up to 20% of the time (DR), a con-358

cerning level of divergence. More critically, our359

findings indicate that up to 6.5% of these changes360

converted previously correct answers into incor-361

rect ones (NDR), directly undermining the model’s362

reliability on specific, previously solved cases.363

Instance-Level Instability in Token Reduction364

Methods. Our investigation into token reduction365

techniques reveals substantial instance-level insta-366

bility (Table 1). The HIRED method, for exam-367

ple, when applied to LLaVA-1.5 and LLaVA-Next,368

caused minimal average aggregate performance369

drops (∼0.2-0.6%) but still led to high average370

DRs of ∼18% and average NDRs approaching 6%. 371

Specific benchmarks under this method saw NDRs 372

reach up to 9-10% and DRs over 25%. Other token 373

reduction techniques like VisionZip and Sparse- 374

VLM similarly produced notable DR and NDR 375

values (e.g., average DRs often exceeding 12-13%) 376

despite their modest impact on overall accuracy 377

scores. Since the Qwen-VL model series (Wang 378

et al., 2024; Bai et al., 2025) already features in- 379

tegrated token compression modules, we do not 380

separately evaluate the impact of external token 381

reduction methods. 382

Instance-level Instability in Quantization Meth- 383

ods. The phenomenon of high instance-level in- 384
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Method Metric VQAv2 AI2D GQA ScienceQA
Img TextVQA OKVQA VizWiz MMBench MMMU POPE Average

LLaVA-1.5 
(Baseline) Acc/F1 (%) ↑ 76.64 55.25 61.92 69.46 46.09 53.44 54.05 64.09 36.22 85.85 60.30

Acc/F1 (%) ↑ 76.23 53.24 60.92 67.87 48.40 53.71 50.87 62.71 35.89 83.93 59.38
Acc/F1 Drop (%) ↓ 0.41 2.01 1.00 1.59 -2.31 -0.27 3.18 1.37 0.33 1.92 0.92

DR (%) ↓ 16.32 20.76 14.84 14.48 44.92 17.72 25.28 9.45 20.44 7.44 19.17
NDR (%) ↓ 3.93 7.42 5.17 6.49 7.84 4.10 8.15 4.02 5.33 4.49 5.69

Acc/F1 (%) ↑ 75.77 51.68 60.86 66.73 48.21 48.63 54.53 62.46 34.33 85.31 58.85
Acc/F1 Drop (%) ↓ 0.87 3.56 1.06 2.73 -2.12 4.81 -0.48 1.63 1.89 0.54 1.45

DR (%) ↓ 17.10 23.19 15.84 16.91 45.64 22.06 25.19 9.84 22.89 8.54 20.72
NDR (%) ↓ 4.34 9.13 5.49 7.54 8.06 8.68 6.34 4.16 7.11 4.68 6.55

Acc/F1 (%) ↑ 76.52 55.47 62.04 69.31 45.97 53.35 54.21 64.35 36.33 85.36 60.29
Acc/F1 Drop (%) ↓ 0.11 -0.23 -0.13 0.15 0.12 0.10 -0.16 -0.26 -0.11 0.49 0.01

DR (%) ↓ 2.89 6.35 2.88 3.87 7.46 5.35 5.14 3.00 9.44 0.69 4.71
NDR (%) ↓ 0.62 1.85 0.88 1.59 0.90 1.31 1.07 1.04 2.33 0.53 1.21

LLaVA-Next 
(Baseline) Acc/F1 (%) ↑ 80.06 65.32 64.26 70.25 64.82 44.23 60.74 67.10 36.67 86.41 63.98

Acc/F1 (%) ↑ 79.80 64.57 63.53 69.61 64.40 43.89 60.22 66.49 36.89 86.57 63.60
Acc/F1 Drop (%) ↓ 0.26 0.74 0.73 0.64 0.42 0.33 0.52 0.60 -0.22 -0.16 0.39

DR (%) ↓ 5.84 9.07 5.54 7.24 11.38 10.70 7.27 5.22 16.33 1.33 7.99
NDR (%) ↓ 1.25 3.56 2.21 3.12 2.00 2.91 2.08 2.08 3.11 0.59 2.29

Acc/F1 (%) ↑ 79.62 64.54 63.83 69.26 63.72 42.23 58.70 65.81 36.11 86.72 63.05
Acc/F1 Drop (%) ↓ 0.44 0.78 0.44 0.99 1.10 1.99 2.03 1.29 0.56 -0.30 0.93

DR (%) ↓ 11.82 6.95 6.38 21.33 15.26 1.51 8.78 13.86 9.45 6.92 10.22
NDR (%) ↓ 1.60 4.60 2.46 3.92 2.78 5.25 3.84 2.36 5.22 0.69 3.27

Acc/F1 (%) ↑ 79.83 65.25 64.13 70.10 64.29 42.49 60.18 67.18 35.44 85.99 63.49
Acc/F1 Drop (%) ↓ 0.23 0.06 0.14 0.15 0.53 1.73 0.55 -0.09 1.22 0.43 0.50

DR (%) ↓ 4.17 5.99 3.74 3.32 9.10 7.37 4.61 2.73 8.89 1.38 5.13
NDR (%) ↓ 0.94 2.10 1.28 1.34 1.98 3.09 1.55 0.99 2.00 0.84 1.61

Qwen2.5-VL
(Baseline) Acc/F1 (%) ↑ 82.56 82.51 60.41 76.20 82.84 42.10 70.21 83.85 50.67 86.17 71.75

Acc/F1 (%) ↑ 82.12 82.25 59.98 82.30 81.66 38.38 70.28 82.99 49.00 85.31 71.43
Acc/F1 Drop (%) ↓ 0.43 0.26 0.43 -6.10 1.18 3.72 -0.06 0.86 1.67 0.86 0.32

DR (%) ↓ 8.60 5.54 8.46 12.25 10.42 15.60 12.90 4.39 23.56 1.52 10.32
NDR (%) ↓ 1.61 2.36 2.48 2.03 1.72 6.58 2.43 1.46 5.22 1.10 2.70

Acc/F1 (%) ↑ 82.04 82.25 59.92 85.57 81.85 38.38 69.23 82.56 49.00 85.86 71.67
Acc/F1 Drop (%) ↓ 0.51 0.26 0.48 -9.37 0.99 3.72 0.98 1.29 1.67 0.31 0.08

DR (%) ↓ 8.81 5.54 34.58 14.28 10.22 13.67 12.57 4.48 22.22 1.30 12.77
NDR (%) ↓ 1.67 2.36 15.32 1.09 1.60 5.71 2.59 1.57 4.56 0.79 3.73

Acc/F1 (%) ↑ 82.54 82.64 60.26 79.57 82.65 41.66 70.31 83.42 49.89 85.96 71.89
Acc/F1 Drop (%) ↓ 0.02 -0.13 0.14 -3.37 0.19 0.44 -0.09 0.43 0.78 0.21 -0.14

DR (%) ↓ 3.72 2.40 3.36 6.59 4.60 5.31 6.16 2.13 12.00 0.60 4.69
NDR (%) ↓ 0.67 0.84 0.88 0.89 0.56 1.72 1.25 0.72 2.22 0.38 1.01

GPTQ
(W4A16)

LLM.Int8()

GPTQ
(W4A16)

LLM.Int8()

AWQ
(W4A16)

AWQ
(W4A16)

GPTQ
(W4A16)

LLM.Int8()

AWQ
(W4A16)

Table 2: Instance-Level Instability in Quantization Methods. This table presents Acc/F1, Acc/F1 Drop, DR,
and NDR for various quantization methods. Most methods exhibit high DR and NDR values, indicating significant
instance-level instability, similar to token reduction techniques. Only the LLM.int8() method (Dettmers et al., 2022)
is a notable exception, maintaining relatively low DR and NDR. Red values indicate the largest NDR per baseline
model within each benchmark column.

stability extends to quantisation methods as shown385

in table 2. For instance, aggressive W4A16 quan-386

tization methods like GPTQ and AWQ applied387

to LLaVA-1.5 resulted in average aggregate per-388

formance drops of only ∼0.9-1.5%, yet induced389

high average Deviation Ratios (DR) of ∼19-21%390

and average Negative Deviation Ratios (NDR) of391

∼5.7-6.6%. Individual benchmarks exhibited even392

more severe divergence, with DRs occasionally ex-393

ceeding 40% and NDRs surpassing 8%. While394

less aggressive techniques like LLM.int8() showed395

markedly lower DR/NDR values (e.g., LLaVA-1.5396

average DR 4.71%, NDR 1.21%), the trend for397

commonly used aggressive quantization is a sig-398

nificant and concerning level of instance-level pre- 399

diction change. Table 2 only includes the results 400

of Qwen2.5-VL (Bai et al., 2025) for the Qwen- 401

VL model series since it is the improved version 402

of Qwen2-VL. We show the results of Qwen2-VL 403

(Wang et al., 2024) separately in Appendix E. 404

In summary, these results underscore a critical, 405

largely overlooked deficiency in current VLM ac- 406

celeration practices. To better view the overall 407

distribution of relation between Acc/F1 Drop and 408

DR/NDR values, we visualize the data in Appendix 409

D. The substantial DR and NDR values with 410

minimal changes in aggregate metrics, provide 411

compelling evidence that accelerated models can 412
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No 
Pertb.

Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

DR (%) ↓ 10.85 12.59 8.78 7.88 9.94 8.98
NDR (%) ↓ 4.41 4.75 2.76 2.17 2.86 2.11
DR (%) ↓ 13.26 16.08 47.06 14.72 17.62 15.86

NDR (%) ↓ 4.47 4.97 4.95 3.50 4.34 3.41
DR (%) ↓ 11.34 12.12 11.30 8.97 10.17 10.80

NDR (%) ↓ 4.72 4.77 3.30 2.29 2.62 2.38
DR (%) ↓ 13.97 15.25 13.42 12.10 13.70 14.25

NDR (%) ↓ 5.81 5.77 3.85 3.33 3.65 3.34
DR (%) ↓ 14.46 14.84 14.61 13.10 14.84 16.03

NDR (%) ↓ 6.15 5.55 4.36 3.64 3.68 3.76

DR (%) ↓ 6.34 8.71 6.45 5.77 8.13 6.44
NDR (%) ↓ 2.31 3.23 1.63 1.44 2.39 1.46
DR (%) ↓ 17.47 55.84 27.28 15.40 33.38 36.77

NDR (%) ↓ 7.60 25.55 6.75 4.43 4.23 3.51
DR (%) ↓ 10.44 10.69 12.47 8.18 9.44 10.58

NDR (%) ↓ 3.96 3.60 3.14 1.97 2.09 2.23
DR (%) ↓ 13.48 14.43 16.22 11.83 14.28 14.92

NDR (%) ↓ 5.20 5.13 3.81 3.28 3.81 3.55
DR (%) ↓ 14.03 15.14 19.11 12.28 16.34 16.97

NDR (%) ↓ 6.01 5.84 4.32 3.44 4.24 4.12

Method Metric

GQA VQAv2

FastV

LLaVA-1.5 (Baseline)

HiRED

PyramidDrop

SparseVLM

VisionZip

FastV

LLaVA-Next (Baseline)

HiRED

PyramidDrop

SparseVLM

VisionZip

Table 3: Instance-level instability of token reduction
methods under input perturbation. This table reports
Divergence Ratio (DR) and Negative Divergence Ratio
(NDR) across three input states: “No Pertb.” (original
inputs), “Vision Pertb.” (e.g., image noise, blur), and
“Text Pertb.” (e.g., text misspellings, paraphrasing). Red
signifies higher DR/NDR under perturbation than with-
out; blue signifies lower. The table illustrates that most
methods suffer greater instance-level instability when
inputs are perturbed.

indeed become unreliable for specific instances413

they previously handled correctly.414

4.2 Instance-Level Instability Under Input415

Perturbations416

To further demonstrate the risk of instance-level417

instability under practical settings, we conducted418

experiments involving perturbations to both text419

and vision inputs to VLMs, representing common420

real-world inputs disturbances. The detailed results421

are shown in Table 3 and Table 4. We only show422

the DR and NDR values in the tables. Acc/F1 and423

Acc/F1 Drop values are listed in appendix C. The424

clear takeaway is that these perturbations gener-425

ally exacerbate the Divergence Ratios (DR) and426

Negative Divergence Ratios (NDR) already ob-427

served in non-perturbed conditions. For instance,428

applying vision perturbation to LLaVA-1.5 with429

AWQ quantization on VQAv2 increased its DR430

from 16.32% to 19.13% and its NDR from 3.93%431

to 4.77%. Text perturbation on the same model432

and benchmark also increased DR to 19.01% and433

NDR, albeit slightly, to 4.00%. Similarly, for to-434

ken reduction, LLaVA-1.5 with the HIRED method435

No 
Pertb.

Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

DR (%) ↓ 14.84 17.20 14.89 16.32 19.13 19.01
NDR (%) ↓ 5.17 5.54 3.78 3.93 4.77 4.00
DR (%) ↓ 15.84 18.79 18.16 17.10 20.01 21.38

NDR (%) ↓ 5.49 6.03 4.66 4.34 5.07 4.85
DR (%) ↓ 2.88 2.98 4.05 2.89 3.11 4.78

NDR (%) ↓ 0.88 0.92 0.82 0.62 0.63 0.96

DR (%) ↓ 8.46 13.10 25.30 8.60 13.56 17.57
NDR (%) ↓ 2.48 3.33 3.12 1.61 2.76 3.28
DR (%) ↓ 34.58 14.37 24.85 8.81 15.05 19.09

NDR (%) ↓ 15.32 3.79 2.99 1.67 3.20 3.34
DR (%) ↓ 3.36 7.38 14.44 3.72 7.79 10.14

NDR (%) ↓ 0.88 1.89 1.43 0.67 1.64 1.59

LLaVA-1.5 (Baseline)

Method Metric
GQA VQAv2

AWQ

GPTQ

LLM.Int8()

GPTQ

LLM.Int8()

Qwen25-vl (Baseline)

AWQ

Table 4: Instance-level instability of quantisation meth-
ods under input perturbation. Most quantisation meth-
ods demonstrate increased instance-level instability un-
der input perturbations.

on GQA saw vision perturbation elevate DR from 436

13.26% to 16.08% and NDR from 4.47% to 4.97%; 437

text perturbation in this case markedly increased 438

DR to 47.06% and NDR to 4.95%. This observed 439

pattern of increased instability under noisy condi- 440

tions was generally consistent across different types 441

of acceleration methods, including both quantiza- 442

tion and token reduction. Consequently, the lev- 443

els of instance-level instability likely aggravate 444

when these accelerated models are deployed in 445

dynamic, real-world environments where input 446

data is rarely pristine. 447

4.3 Instance-Level Prediction Instability in 448

the Medical Domain 449

In this section, we apply VisionZip (Yang et al., 450

2024c), PyramidDrop (Xing et al., 2024), and 451

LLM.int8() (Dettmers et al., 2022) to LLaVA-Med 452

(Li et al., 2023a). We firstly verify the generalisa- 453

tion of these acceleration methods by evaluating 454

them on the biomedical multimodal conversation 455

test set introduced by Li et al. (2023a). We then 456

conduct a case study by measuring the DR and 457

NDR values on a medical VQA dataset VQA-RAD 458

(Lau et al., 2018), revealing similarly high DR and 459

NDR values as shown on general domain bench- 460

marks as discussed in Section 4.1. 461

Generalisation of Acceleration Methods to Med- 462

ical Domain. Table 5 summarizes the perfor- 463

mance of various acceleration methods compared 464

to the baseline model LLaVA-Med on the biomed- 465

ical multimodal conversation test set. Results in- 466

dicate that all examined acceleration methods (Vi- 467

sionZip, PyramidDrop and LLM.int8()) maintained 468
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Conversation Description Chest-Xray MRI Histology Gross CT
LLaVA-Med
(Baseline) 63.91 49.19 65.14 48.38 64.91 61.74 59.88 60.10
VisionZip 65.08 46.59 64.18 49.57 68.45 60.92 57.38 60.29
PyramidDrop 64.12 47.12 64.15 48.46 63.51 64.86 57.76 59.72
LLM.Int8() 63.96 50.20 64.47 47.82 64.75 64.07 60.65 60.39

DomainsMethod Question Types Overall

Table 5: Evaluation of VisionZip (Yang et al., 2024c), PyramidDrop (Xing et al., 2024), and LLM.int8() (Dettmers
et al., 2022) applied to LLaVA-Med (Li et al., 2023a) on its biomedical multimodal conversation test set. The results
confirm the negligible overall performance impact of extending these acceleration techniques to the medical domain.

Method
Open (Recall) (%) ↑ 30.29
Closed (Acc) (%) ↑ 59.35
Open (Recall) (%) ↑ 30.89
Closed (Acc) (%) ↑ 58.66

Recall/Acc Drop (%) ↓ 0.15
DR (%) ↓ 29.85

NDR (%) ↓ 5.12
Open (Recall) (%) ↑ 30.38
Closed (Acc) (%) ↑ 58.81

Recall/Acc Drop (%) ↓ 0.27
DR (%) ↓ 26.20

NDR (%) ↓ 4.54
Open (Recall) (%) ↑ 31.24
Closed (Acc) (%) ↑ 58.20

Recall/Acc Drop (%) ↓ 0.26
DR (%) ↓ 25.80

NDR (%) ↓ 4.80

LLaVA-Med
(Baseline)

VisionZip

PyramidDrop

LLM.Int8()

VQA-RAD

Table 6: Evaluation of VisionZip (Yang et al., 2024c),
PyramidDrop (Xing et al., 2024), and LLM.int8()
(Dettmers et al., 2022) on LLaVA-Med (Li et al., 2023a)
using the VQA-RAD (Lau et al., 2018) dataset (com-
prising open-ended and closed-ended questions). While
aggregate performance loss was minimal, all three ac-
celeration methods exhibited significant instance-level
deviations.

almost identical performance to the baseline across469

diverse medical imaging modalities. This demon-470

strates minimal overall performance impact from471

generalising acceleration methods to medical con-472

text.473

High Risk Instance-Level Instability in Medical474

Domain. Despite minimal overall performance475

drop, significant instance-level deviations were ob-476

served on the VQA-RAD benchmark as shown477

in Table 6. Deviation Ratio (DR) values were no-478

tably high, ranging between 25.80%-29.85% across479

the evaluated methods, suggesting that acceler-480

ated models frequently altered their predictions481

compared to the baseline model. More critically,482

Negative Deviation Ratios (NDR), representing483

detrimental prediction changes, were considerably484

higher in the medical domain (4.54%-5.12%) com-485

pared to general domain benchmarks. This indi- 486

cates heightened instability risks when deploying 487

accelerated VLMs in high-stake medical applica- 488

tions, where unstable outputs such as misdiagnoses 489

could have severe consequences. 490

5 Conclusion 491

This work addressed the critical yet often over- 492

looked issue of instance-level prediction stability 493

in accelerated Vision-Language Models (VLMs), 494

a factor vital for their trustworthy deployment in 495

sensitive real-world applications. Our comprehen- 496

sive empirical investigation revealed a stark reality: 497

despite minimal impact on aggregate performance 498

metrics, common acceleration techniques induced 499

significant instability. This concerning trend of in- 500

stability was consistently observed across diverse 501

models and methods, further exacerbated by input 502

perturbations, and confirmed in a medical VLM 503

case study, exposing a crucial vulnerability in cur- 504

rent VLM acceleration practices. We therefore con- 505

clude with an urgent imperative for incorporating 506

rigorous instance-level stability checks to ensure 507

these models are genuinely faithful and trustworthy 508

for real-world deployment. 509

6 Limitations 510

We acknowledge certain limitations in this study. 511

Our findings regarding instance-level instability pri- 512

marily stem from experiments on academic bench- 513

marks conducted in controlled laboratory settings. 514

While we employed input perturbation techniques 515

to approximate real-world data variability, these 516

simulations may not fully capture the diverse com- 517

plexities inherent in live industrial environments. 518

Consequently, caution is warranted when directly 519

generalizing our specific quantitative findings to 520

all industrial applications. Further research on 521

industrial cases is recommended to validate and 522

extend these insights across broader operational 523

conditions. 524
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A Benchmark Details767

Benchmark Split Number of Samples
VQAv2 Validation 214354

AI2D Test 3088
GQA  Test-DeV 12578

MMBench English-Dev 4377
MMMU Validation 900
OKVQA Validation 5046

POPE Test 9000
ScienceQA Training 2017
TextVQA Validation 5000

VizWiz Validation 4319
VQA-RAD Train+Test 2248

253972Total Samples

Table 7: Summary of benchmark datasets, splits, and
their respective sample sizes.

To comprehensively evaluate our methods, we768

utilize a diverse array of ten established bench-769

marks, as detailed in Table 7. This selection spans770

various visual and multimodal understanding tasks,771

including Visual Question Answering (VQAv2,772

GQA, AI2D, OKVQA, TextVQA, ScienceQA,773

VizWiz), multimodal reasoning (MMMU), and gen-774

eral multimodal capabilities (MMBench, POPE).775

The evaluation is conducted on standard splits such776

as validation, test, or development sets, encom-777

passing a significant total of 251,679 samples. No-778

tably, VQAv2 contributes the largest portion with779

214,354 validation samples, ensuring a robust as-780

sessment across different challenge domains and781

scales. For evaluation in the medical domain, we782

utilize the VQA-RAD benchmark, employing both783

its training and test sets. This dataset comprises784

1299 closed-ended (yes/no) questions, for which785

Text Perturbation Methods Severity
OCR 5
Punct 1
Typos 5

Keyboard 5
Spelling Error 5

char random insert 5
char random replace 5
char random swap 5
char random delete 5

Passive 1
Tense 1
Formal 1
Casual 1
Active 1

Double Neg 1
InsertAdv 1
AppendIrr 1

Random Insert 5
Drop NN 1

Drop Rand NN 1
DropVB 1

Drop VB & NN 1
Only NN 1
Only VB 1

Only NN & VB 1
Drop Rand VB 1

Drop First 1
Drop Last 1

Drop First and Last 1
Shuffle Order 1

Random Delete 5
SwapSyn Word Embd 5

SwapSyn WordNet 5
Back Trans 1

Random Swap 5

35 methods
87 levels of 
severity

Table 8: Summary of text perturbation methods.

we assess exact-match accuracy, and 949 open- 786

ended questions, evaluated using recall, defined 787

as the ratio of ground truth tokens present in the 788

prediction. 789

B Hyper-Parameter Settings 790

For all the token reduction methods, we choose 791

the signature or best-performing hyper-parameter 792

settings as reported in the corresponding pa- 793

pers.Specifically, for VisionZip (Yang et al., 2024c), 794

the number of retained tokens was set to 192. For 795

PyramidDrop (Xing et al., 2024), we use pruning 796

layers at indices [8, 16, 24] and corresponding 797

pruning ratios of [0.5, 0.25, 0.125]. For Sparse- 798

VLM(Zhang et al., 2024), the number of retained 799

tokens is set to 192. For FastV(Chen et al., 2024), 800

we utilize settings of K=3 and R=0.5. Finally, 801

HiRed(Arif et al., 2025) was configured with a 802

token budget of 20%. These settings were consis- 803

tently applied across relevant experiments. 804
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Image Perturbation Methods Severity
Impulse 5

Gaussian 5
Shot 5

Speckle 5
Zoom 5

Defocus 5
Motion 5

Frosted Glass 5
Gaussian Blur 5

JPEG 5
Contrast 5
Elastic 5

Saturate 5
Spatter 5
Pixelate 5
Snow 5
Frost 5
Fog 5

Brightness 5
Blank 1

20 methods 96 levels of 
severity

Table 9: Summary of image perturbation methods.

C Input Perturbation Details805

To evaluate robustness, we utilize a comprehensive806

suite of input perturbation techniques proposed by807

Chen et al. (2023). The specifics of these perturba-808

tions are detailed for text in Table 8 and for images809

in Table 9. Accounting for various severity lev-810

els, these amount to 87 distinct configurations for811

text inputs and 96 for image inputs. We randomly812

apply these varied perturbations to the text and813

image inputs of the VQAv2 (Goyal et al., 2017)814

and GQA(Hudson and Manning, 2019) datasets.815

Importantly, to ensure a fair and consistent compar-816

ison across experiments, the exact same perturbed817

inputs are used for all tested acceleration methods.818

D Data Visualisation819
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Figure 2: Statistical Distribution of Metrics (Acc/F1
Drop, DR, NDR) for Token Reduction Strategies Across
All Benchmarks and Implemented Methods.

To better view the distribution of Acc/F1 Loss820

Acc/F1 Drop (%) DR (%) NDR (%)
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Figure 3: Statistical Distribution of Metrics (Acc/F1
Drop, DR, NDR) for Quantisation Strategies Across All
Benchmarks and Implemented Methods.

together with DR and NDR values, we plot a scatter 821

diagram for Token Reduction Methods and Quanti- 822

sation Methods, respectively. As shown in figure 2, 823

it reveals a consistent trend across various models 824

and methods. In both diagrams, the "Acc/F1 Drop 825

(%)" remains notably low, generally appearing un- 826

der 5% and often close to or below 2%. In stark 827

contrast, the "DR (%)" and "NDR (%)" values are 828

substantially higher, frequently ranging between 829

10% and 30%. This significant disparity under- 830

scores that while the accuracy or F1 score experi- 831

ences minimal degradation, the other metrics, DR 832

and NDR, show much more pronounced changes. 833

Figure 4: Overlap ratios of negatively diverged in-
stances among acceleration methods for LLaVA-1.5
(Liu et al., 2024a).

Acceleration Methods Divergence Direction 834

We further investigate the "divergence direction" 835

of acceleration methods by examining the ex- 836
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Method Metric VQAv2 AI2D GQA ScienceQA
Img TextVQA OKVQA VizWiz MMBench MMMU POPE Average

Qwen2-VL
(Baseline) Acc/F1 (%) ↑ 78.69 70.14 59.83 59.00 79.34 44.02 66.05 71.22 40.67 86.00 64.03

Acc/F1 (%) ↑ 77.48 69.17 58.64 68.62 78.02 23.45 60.74 67.61 40.11 86.81 61.46
Acc/F1 Drop (%) ↓ 1.21 0.97 1.19 -9.62 1.33 20.57 5.31 3.61 0.56 -0.81 2.57

DR (%) ↓ 13.05 13.05 13.67 26.97 14.46 44.61 27.23 17.81 35.78 1.92 21.72
NDR (%) ↓ 3.13547 5.505 4.524 4.1646009 3.12 25.06936 10.257 3.5574036 9.44444 0.656 7.36637

Acc/F1 (%) ↑ 77.58 68.85 58.71 55.23 78.34 35.88 65.06 65.38 37.33 85.96 61.19
Acc/F1 Drop (%) ↓ 1.11 1.30 1.13 3.77 1.01 8.14 0.99 5.84 3.33 0.04 2.84

DR (%) ↓ 12.15 12.82 12.56 30.09 13.82 33.04 27.11 14.85 33.44 1.56 19.92
NDR (%) ↓ 2.9386 5.44 4.269 12.493803 2.9 11.95006 5.0938 5.4285054 11.1111 0.767 6.60597

AWQ
(W4A16)

GPTQ
(W4A16)

Table 10: Instance-Level Instability of quantisation methods (Lin et al., 2024; Frantar et al., 2022) in Qwen2-VL
model (Wang et al., 2024).

No 
Pertb.

Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

Acc/F1 (%) ↑ 60.089 54.285 40.396 75.862 65.851 59.048
Acc/F1 Drop (%) ↓ 0.018 0.018 0.010 0.008 0.011 0.005

Acc/F1 (%) ↑ 61.226 55.478 61.226 76.515 66.529 59.506
Acc/F1 Drop (%) ↓ 0.007 0.006 -0.198 0.001 0.004 0.001

Acc/F1 (%) ↑ 60.049 54.412 40.197 75.927 66.238 59.037
Acc/F1 Drop (%) ↓ 0.019 0.017 0.012 0.007 0.007 0.005

Acc/F1 (%) ↑ 59.374 53.967 39.959 75.259 65.695 58.548
Acc/F1 Drop (%) ↓ 0.025 0.021 0.015 0.014 0.013 0.010

Acc/F1 (%) ↑ 59.135 54.158 39.649 74.926 65.867 58.372
Acc/F1 Drop (%) ↓ 0.028 0.019 0.018 0.017 0.011 0.012

Acc/F1 (%) ↑ 63.873 55.470 41.398 79.632 66.836 62.249
Acc/F1 Drop (%) ↓ 0.004 0.010 0.002 0.004 0.011 0.004

Acc/F1 (%) ↑ 61.329 39.831 39.831 77.571 77.571 77.571
Acc/F1 Drop (%) ↓ 0.029 0.166 0.018 0.025 -0.097 -0.150

Acc/F1 (%) ↑ 63.381 55.987 40.968 79.460 67.702 62.181
Acc/F1 Drop (%) ↓ 0.009 0.005 0.007 0.006 0.002 0.004

Acc/F1 (%) ↑ 62.888 55.359 41.024 78.424 66.455 61.245
Acc/F1 Drop (%) ↓ 0.014 0.011 0.006 0.016 0.014 0.014

Acc/F1 (%) ↑ 61.894 54.556 40.579 78.340 66.296 61.099
Acc/F1 Drop (%) ↓ 0.024 0.019 0.011 0.017 0.016 0.015VisionZip

LLaVA-Next (Baseline)

FastV

HiRED

PyramidDrop

SparseVLM

FastV

HiRED

PyramidDrop

SparseVLM

VisionZip

Method Metric

GQA VQAv2

LLaVA-1.5 (Baseline)

Table 11: Performance and performance drop of token
reduction methods under input perturbation.

tent to which they are affected by the same in-837

stances. A high degree of overlap in these instances838

suggests that different methods diverge in a pre-839

dictable, controllable manner. This shared diver-840

gence would simplify the development of univer-841

sal solutions to mitigate instability. Conversely,842

minimal overlap—indicating highly separated di-843

vergences—would imply more unpredictable be-844

havior, posing greater uncertainty for the practi-845

cal deployment of these methods. To explore this,846

we analyzed results from LLaVA-1.5 (Liu et al.,847

2024a), measuring the overlap of affected instances848

across various acceleration techniques. The find-849

ings are presented in Figure 4, which demonstrates850

that most pairings exhibit more "highly separated"851

divergences.852

E Qwen2-VL Results853

We conduct experimetns on Qwen2-VL (Wang854

et al., 2024) 3B model with AWQ(Lin et al., 2024)855

and GPTQ(Frantar et al., 2022) quantisation meth-856

ods, detailed in table 10. It reveals varied per-857

formance impacts across different benchmarks.858

GQA VQAv2
No 

Pertb.
Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

LLaVA-1.5 (Baseline)
Acc/F1 (%) ↑ 60.916 0.551 0.408 76.231 0.663 0.594

Acc/F1 Drop (%) ↓ 1.002 0.010 0.006 0.405 0.007 0.002
Acc/F1 (%) ↑ 60.860 0.553 0.403 75.770 0.661 0.588

Acc/F1 Drop (%) ↓ 1.057 0.008 0.011 0.866 0.008 0.008
Acc/F1 (%) ↑ 62.045 0.561 0.414 76.522 0.669 0.594

Acc/F1 Drop (%) ↓ -0.127 0.000 0.000 0.114 0.001 0.002
Qwen25-vl (Baseline)

Acc/F1 (%) ↑ 59.978 0.505 0.367 82.121 0.662 0.632
Acc/F1 Drop (%) ↓ 0.429 0.006 0.004 0.435 0.005 0.001

Acc/F1 (%) ↑ 59.922 0.500 0.365 82.045 0.656 0.624
Acc/F1 Drop (%) ↓ 0.485 0.012 0.006 0.511 0.011 0.010

Acc/F1 (%) ↑ 60.264 0.506 0.370 82.540 0.665 0.635
Acc/F1 Drop (%) ↓ 0.143 0.005 0.001 0.015 0.002 -0.001

AWQ

GPTQ

LLM.Int8()

Method Metric

LLM.Int8()

AWQ

GPTQ

Table 12: Performance and performance drop of quan-
tisation methods under input perturbation.

On average, AWQ quantization leads to a 2.57% 859

drop in Acc/F1 score, an outcome notably influ- 860

enced by an unexpected 9.62% performance in- 861

crease on the ScienceQA Img benchmark, along- 862

side a significant 20.57% performance decrease on 863

OKVQA. GPTQ quantization results in a slightly 864

higher average Acc/F1 drop of 2.84%, with its 865

most pronounced performance reductions observed 866

on OKVQA (8.14% drop) and MMBench (5.84% 867

drop). While the average changes in Acc/F1 scores 868

are relatively contained, both quantization tech- 869

niques generally cause substantial increases in DR 870

(%) and NDR (%) values across the evaluated 871

benchmarks. 872

F Input Perturbation Impacts on Acc/F1 873

and Acc/F1 Drop 874

Table 11 and table 12 detail the performance 875

of various acceleration techniques—quantization 876

(AWQ, GPTQ, LLM.Int8()) and token reduction 877

(FastV, HIRED, PyramidDrop, SparseVLM, Vi- 878

sionZip)—on models like LLaVA-1.5, LLaVA- 879

Next, and Qwen2.5-vl, across GQA and VQAv2 880

datasets under no, vision, and text perturbations. 881

A consistent trend across both sets of methods is 882

the remarkably low impact on Acc/F1 scores; the 883

Acc/F1 Drop (%) is generally minimal, often well 884
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below 1% and frequently in the hundredths of a885

percent, irrespective of the specific acceleration886

technique or perturbation type applied.887

G Qualifying Examples888

In this section, we present qualifying examples:889

specific test instances showing how applying ac-890

celeration methods to a Vision Language Model891

(VLM) can cause prediction divergence.

User
What movie is this?

LLaVA-1.5
ABBA

VisionZip
mamma mia

Hired
rocky horror

rent
GPTQ

rent
AWQ

What is on the counter?
User

LLaVA-1.5

VisionZip

Hired

GPTQ

AWQ

plate

fries

fries

tray

fries

FastV
sandwich

Figure 5: Acceleration Instances Divergence qualifying
examples for LLaVA-1.5 (Liu et al., 2024a).

User
What is inside of the 
blender?

LLaVA-Next

garlic
VisionZip

nuts

FastV
food

pasta
SparsevVLM

shrimp
GPTQ

How many people are 
in line for this van?

User

LLaVA-Next

VisionZip

Hired

GPTQ

AWQ

3

4

10

1

1

FastV
5

Figure 6: Acceleration Instances Divergence qualifying
examples for LLaVA-Next (Liu et al., 2024b).

892

User
What is the 
reflection of?

Qwen-2.5-VL

ceiling

cave

light

cave
LLM.int8()

GPTQ

What is holding the 
bear up?

User

AWQ

Qwen-2.5-VL

nail

claw

magnet

magnet
LLM.int8()

GPTQ

AWQ

Figure 7: Acceleration Instances Divergence qualifying
examples for Qwen2.5-VL (Bai et al., 2025).

User
Why is the pancreas abnormal?

The pancreas appears to be abnormal due to its 
enlargement.

The pancreas appears to be enlarged.

The pancreas appears to be abnormal in the image.

The pancreas appears to be abnormal in the image.
LLM.int8()

PyramidDrop

VisionZip

LLaVA-Med

Figure 8: Acceleration Instances Divergence qualifying
examples for LLaVA-Med (Li et al., 2023a).

User
Is there a pelvic 
fracture?

No

Yes

LLM.int8()

PyramidDrop

VisionZip

LLaVA-Med

Yes

Yes

User
Is the surrounding 
phlegmon normal?

No

No

LLM.int8()

PyramidDrop

VisionZip

LLaVA-Med

No

Yes

Figure 9: Acceleration Instances Divergence qualifying
examples for LLaVA-Med (Li et al., 2023a).
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