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ABSTRACT
Blood transfusion is a commonly used, life-saving medical thera-
peutics worldwide. A significant challenge is the high variability of
supply and demand in blood products, making it difficult to main-
tain a balance between preventing shortages of blood products and
preventing wastage. Recent studies used data-drivenmethods on de-
mand forecasting for blood products from regional and centralized
databases due to regulatory restrictions, which lack the panorama
view of the national blood supply and demand picture. Motivated
by achieving better policy-making through national blood supply
chain demand forecasting, in this paper, we propose to use feder-
ated learning (FL) to forecast the demand for platelets through a
case study with simulated scenarios considering a national demand
and supply network. Our solution facilitates FL with a Long-Short-
Term Memory (LSTM) model to make collaborative predictions for
future decision-making processes from distributed and regional
time-series data. Empirical studies show that FL brings additional
performance improvement in various settings, especially for regions
with scarcer and shorter data histories. We release the source code
for our study at https://github.com/denoslab/fl-blood-supply-chain.
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1 INTRODUCTION
Powered by blood supply chain management (BSCM), blood trans-
fusion saves over 4.5 million lives annually in the US alone [3].
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As an essential transfusion medicine, the supply and demand of
blood products can be highly variable over time [22]. The supply of
blood products is dominantly from donors with planned quantities,
while the demand for blood products can vary due to seasonality,
holidays, weekend patterns, and so forth [6]. As such, blood suppli-
ers worldwide face significant challenges in maintaining a balance
between preventing shortages and wastage of blood products, as
well as reducing the overall cost of maintaining an efficient blood
supply chain, including routine and urgent deliveries costs, holding
costs, and wastage due to the short shelf lives of products such as
red blood cells (RBC) and platelets [9]. Addressing these conflicting
requirements for orders of blood products requires the blood prod-
ucts inventory to be carefully managed to keep the overall cost low,
along with prudently-designed healthcare policies to compensate
for the unavoidable costs to ensure the universal accessibility of
the blood products.

Data-driven methods provide a promising way to address the
aforementioned challenges by forecasting blood products based on
historical usage, enabling the calibration of the short- and long-term
demands at a finer granularity and leading to leaner while sufficient
inventories and reduced operating costs. While several studies have
been conducted on demand forecasting for blood products from
regional and centralized databases [15], a national understanding
of multiple inventories across jurisdictions would leverage their
synergies. Therefore, collectively modeling frommultiple databases
greatly helps in accurate forecasting and policy-making processes,
such as subsidizing the costs from a nationwide perspective. How-
ever, predictive models generated from state-of-the-art methods
are primarily from a regional database covering data serving only
one jurisdiction. Healthcare regulatory burdens prohibit a national
model from being generated following the traditional methods be-
cause health data cannot be shared outside of the jurisdiction by
law, mainly due to confidentiality concerns.

Federated learning (FL) offers a decentralized approach to model
training, allowing multiple parties to collaboratively train a predic-
tive model without sharing data, therefore keeping data confiden-
tiality. This privacy-aware approach utilizes collective intelligence
from distributed datasets and can bring additional benefits in blood
supply chain demand forecasting, inventory management, and fu-
ture policy making. Despite its potential, there has been no study
of blood product demand forecasting with FL.
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Figure 1: Proposed federated blood supply chain demand forecast-
ing architecture in a case study considering a national blood demand
and supply network. At Round 𝑡 , the National Datacenter transmits
the latest global model 𝜃𝑡 and sends it to each regional distribution
center (RDC). A local model 𝜃𝑘

𝑡+1 is trained at the 𝑘th RDC and sent
back to the server. The server aggregates all local model updates at
Round 𝑡 + 1 into a new global model 𝜃𝑡+1. This process repeats until
the global model converges or the desired round number is reached.

Inspired by the criticality of blood supply chain demand fore-
casting and the research gaps identified above, and thanks to the
ARIMA models proposed in [15] based on the TRUST database
in Hamilton, ON, Canada, in this paper, we explore a federated
approach to forecasting the demand for platelets through a case
study using simulated data based on the model parameters from
[15] without the use of clinical data, for the simplified data acces-
sibility and reproducibility of this study. We identify patterns and
trends by considering key factors that affect demands, such as sea-
sonality parameters. We use a Long-Short-Term Memory (LSTM)
model that handles sequential information and learns long-term
relationships [1], with FL to generate reliable predictions to guide
future decision-making processes. Our proposed privacy-aware and
collaborative FL approach, shown in Fig. 1, provides the enabling
capability for national blood suppliers to manage supply-demand
dynamics effectively among local health institutions. To our knowl-
edge, this is the first study that adopts FL for demand forecasting
of blood products. Our solution can potentially transform the regu-
latory landscape of blood chain supply data and greatly benefit the
public with such demand forecasting capability. We summarize the
following contributions to this study:
• We propose to adopt FL to the unique scenarios of blood sup-
ply chain settings where jurisdictional data holders keep their
data locally. In a national BSCM network, data remains at the re-
gional distribution center (RDC) level across different provinces.
A global model is aggregated nationally based on the local mod-
els learned from RDCs nationwide. We believe the shared global
model will foster a national view of the demand forecasting, pro-
moting an informed decision-making process for stakeholders.

• We build a time series platelets demand dataset using the ARIMA
model with parameters extracted from a large-scale dataset.

• We apply LSTM through FL against the dataset to verify the ef-
fectiveness of FL for each local site holding regional data. The
experimental results demonstrate the effectiveness of FL in en-
hancing demand forecasting accuracy, reducing model bias, and
improving scalability across heterogeneous datasets and geo-
graphically dispersed supply chains.

2 RELATEDWORK
Statistical techniques, e.g., autoregressive integrated moving aver-
ages (ARIMA), have been extensively used to capture time-series
dynamics and are widely accepted for supply chain demand fore-
casting. However, such traditional methods often rely on a single,
centralized source, leading to privacy regulatory concerns [5, 19].
Motamedi et al. [15] highlighted the significance of integrating
clinical predictors into demand forecasting models for improving
accuracy. Schilling et al. [18] employed a statistical model and a
deep neural network to forecast platelet demand within a hospital
setting. Their models showed a potential decrease in platelet waste
and shortage and substantially reduced financial implications.

Initially proposed by McMahan et al. [14], FL offers a promising
solution for training models collaboratively across decentralized
data resources. FedProx [10] was proposed to address statistical
and system heterogeneity. Due to the wide availability of time
series data, FL has been extensively studied with time series data
in electrical load forecasting [7, 21] and traffic forecasting [12, 24].
Specifically, the use of LSTM with FL was investigated in [4, 11, 13,
17] for various purposes, including anomaly detection, intrusion
detection, and behavior analysis. No study has used LSTM for FL
in blood supply chain management.

3 PROPOSED METHOD
In this paper, an ARIMA model is used to generate the data with
parameters obtained from [15], as the authors concluded that given
suitable parameters, ARIMA models could generate high-quality
time series data that reflects the actual blood product demand in a
given period with low errors. Other univariate models, e.g., Prophet,
and other multivariant models such as Lasso regression, Random
Forest, and LSTM were used to forecast the time series data. We
recognize that using the ARIMA model for data generation was one
approach among several options. We select the ARIMA method in
our work due to its effectiveness, interpretability, and wide use in
time series analysis.

3.1 The ARIMA model
Effective in practical applications, the AutoRegressive Integrated
Moving Average (ARIMA) model is a popular forecasting method
for time series data, which captures a suite of different standard
temporal structures in time series data, stationary, with a trend, or
with a seasonal component. Let 𝑦1, 𝑦2, · · · , 𝑦𝑡 be the demand values
over time period 𝑡 ; the time series data can be written as:

𝑦𝑡 = 𝑓 (𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3, · · · , 𝑦𝑡−𝑛) + 𝜖𝑡 . (1)

An ARIMA model assumes that the value of demand is a linear
function of several previous past demand values and previous error
values. Thus, the ARIMA model can be written as follows:
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Figure 2: Data generated using ARIMA. First row: balanced i.i.d. data. Second row: imbalanced i.i.d. data. Third row: noisy data with zeros.
Fourth row: data with various ARIMA parameters (one set of ARIMA parameters per client). Fifth row: data with various ARIMA parameters
(two sets of ARIMA parameters per client concatenated together).

𝑦𝑡 = 𝜇 + 𝜈1𝑦𝑡−1 + 𝜈2𝑦𝑡−2 + · · · + +𝜈𝑝𝑦𝑡−𝑝 + 𝜖𝑡

− 𝜙1𝜖𝑡−1 − 𝜙2𝜖𝑡−2 − · · · − −𝜙𝑞𝜖𝑡−𝑞,
(2)

where 𝑦𝑡 is the response variable (the predicted demand), 𝜇 is a
constant, 𝜈𝑖 and 𝜙 𝑗 are model parameters in which 𝑖 ∈ [1, 𝑝] and
𝑗 ∈ [1, 𝑞]. Here 𝑝 defines the number of autoregressive terms.
and 𝑞 is the number of lagged forecast errors in the prediction
equation. For a nonseasonal ARIMA model, define 𝑑 as the number
of nonseasonal differences needed for stationarity. We can write
the model as a function 𝐴𝑅𝐼𝑀𝐴(𝑝,𝑑, 𝑞) with 3 parameters.

3.2 Synthetic data of platelets demand
In our study, we use the three parameters fitted from the study
in [15]. In addition, we generate dataset splits in a heterogeneous
fashion under various settings. Fig. 2 shows the time series data
generated regarding the demands and time ranges. We list the
categories of the synthetic data below with the consideration if the
data is independent and identically distributed (i.i.d.):
• Balanced i.i.d. data. Each client generates an equal amount of
data using the same (𝑝, 𝑑, 𝑞) values in the ARIMA model.

• Imbalanced i.i.d. data. Each client generates different volumes
of data with the same parameters. Here we simulate imbalanced
data, commonly found in healthcare, as certain institutions may
have little or no historical data.

• Noisy data with zeros: A portion of clients have random zeros
in their datasets, creating noise in the system. This simulates the
situation where there are missing or incomplete records.

• Data with inconsistent ARIMA parameters (non-i.i.d.): Data
is generated using different ARIMA parameters since institutions
may have different demand patterns and unexpected changes in
demand patterns in an unprecedented event like COVID-19.

Time Series Model

ARIMA 𝑝, 𝑑, 𝑞, 𝜇, 𝜈, 𝜙

Synthetic 
Blood Demand 

Data

LSTM
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Figure 3: The proposed data pipeline first generates synthetic time
series blood product demand data using the ARIMA model learned
in [15]. The data is preprocessed before it is split across multiple
RDC clients. An LSTMmodel is then used to learn a federatedmodel.

3.3 The LSTM model
With the synthetic data, We adopt the LSTM model to forecast
the demands. Our LSTM model consists of an input layer with
11 - 50 dimensions (previous 7 - 46 days’ values, day of month,
month of year, day of week, and week of year), three hidden 64× 64
layers, with one fully connected layer with an output dimension
of 1. For hyperparameter settings, we use 64 for the mini-batch
size and 50 for the number of epochs in each round. We use the
ADAM optimizer, with the initial learning rate being 0.001. The
total number of trainable parameters is 86,337 - 96,321 for the



KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Wei and Li, et al.

LSTMmodel. The hyperparameters used are selected after extensive
experiments with different hyperparameter settings (64, 128, and
256) with varied mini-batch sizes to understand how it affects the
convergence speed and resource utilization, shown in Fig. 4. As
a result, we find that in our case, batch sizes above 64 offer more
generalization but not enough precision in their predictions, leading
to higher errors; thus, a mini-batch size of 64 is chosen.
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Figure 4: Evaluation results of different batch sizes under heteroge-
neous settings(Inconsistent ARIMA parameters, two clients share
one set while three others share another set). Left: Batch size of 64.
Middle: Batch size of 128. Right: Batch size of 256.

Statistical models, such as ARIMA, SARIMA [16], and ARIMAX
[23], along with simpler neural network architectures, including
the multi-layer perception (MLP) and LSTM [8] models, are widely
used in healthcare. Since our data is generated synthetically with an
ARIMA model fitted from actual data, we choose the LSTM model
as it is commonly used in demand forecasting [20]. Adopting LSTM
will lead to generic conclusions showing FL’s effectiveness with
complex, real-world time-series data.

4 EXPERIMENTAL RESULTS
4.1 Experimental settings
Our experiments use an FL system based on the Flower framework
[2]. The experiments are conducted on a Windows PC (AMD Ryzen
7 5800X, 32GM RAM, RTX 4070 with 12GB GDDR RAM), simulating
1 centralized server and 5 local clients. The source code can be found
at https://github.com/denoslab/fl-blood-supply-chain.

We apply two popular FL algorithms: FedAvg [14] and FedProx
[10]. Fig. 1 shows the overall FL framework, where a client is a
regional distribution center (RDC) holding that region’s blood sup-
ply and demand data. Each client trains its local data based on the
global model maintained by the server. We train an LSTM model
with the synthetic dataset under the following 5 scenarios in the
FL setting. For each scenario, 5 clients are participating in training.
Each year of data contains 365 data points.
• Balanced i.i.d. data scenario (Balanced): each client carries
10 years of data generated from the same (𝑝,𝑑, 𝑞) values.

• Imbalanced i.i.d. data scenario (Imbalanced): each client
holds a different amount of data, carrying 20 years, 10 years, 1
year, 5 years, and 40 years of data, respectively, generated from
the same (𝑝,𝑑, 𝑞) values.

• Noisy data scenario with zeros (Noisy): 3 out of 5 clients have
random zeros in their data, with Client 1 having 20% of data
being random zeros, Client 3 having 30% of data being random
zeros, and Client 5 having 40% of data being random zeros.

• Heterogeneous scenario with one set of ARIMA parame-
ters per client (Hetero.): two clients share one set of ARIMA
parameters while three other clients share another set.

• Heterogeneous scenario with two sets of ARIMA param-
eters per client (Hetero. M.): the five clients use a series of
combinations of ARIMA parameters for their local data.

Algorithm 1 Synthetic data generation with ARIMA. 𝜈 is the au-
toregressive term. 𝜙 is the moving average term. 𝑝 is the length of 𝜈 .
𝑞 is the length of 𝜙 , 𝜇 is the mean of the error term. 𝜎 is the standard
deviation of the error term. 𝑑 is the number of unit roots. 𝑡 is the
deterministic linear trend. 𝑛 is the time series length, and burn is
the number of discarded values used to start the data generation.

1: Initialization: Initialize an empty dataframe. Define the AR
and MA terms 𝜙 , 𝜈 . Define 𝑑 , 𝑡 , 𝜇, 𝜎 , 𝑛, and burn.

2: Error terms: Create an array size of (𝑛 + max(𝑝, 𝑞) + burn)
with error terms following N(𝜇, 𝜎2).

3: for 𝑖 in range(length of error terms array) do
4: obtain the 𝐴𝑅 term by ®𝜈 · ®𝑝𝑡−1
5: obtain the𝑀𝐴 term by current error term + ®𝜙 · ®𝑞𝑡−1
6: current value is 𝐴𝑅 +𝑀𝐴 + 𝑡

7: end for
8: Unit Root: If 𝑑! = 0, introduce the unit root to the time series.
9: Return the last n values of the simulated ARIMA process.

4.2 Numerical Results
With the five data distribution settings above, we compare the
following three methods. In the following sections, the terms Feder-
ated, Local, and Centralized will be used to refer to these methods.
• Federated: A federated model is learned with LSTM using FL.
• Local: A model is learned from a single client with LSTM.
• Centralized:A centralizedmodel is learned from all clients using
a centralized LSTM. This can be considered the ideal learning
method that defines the upper bound of learning.

We use the performance metrics of root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE),
and symmetric mean absolute percentage error (SMAPE). Table 1
shows the values of these errors under the two methods, i.e., the
Federated method and the Local method, with five data distribution
settings, i.e., Balanced, Imbalanced, Noisy, Hetero., and Hetero. M.,
as defined in Section 4.1.
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Figure 5: Evaluation results with the balanced i.i.d. dataset. Left:
ground truth vs. predicted values. Right: prediction errors.

https://github.com/denoslab/fl-blood-supply-chain
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Table 1: Errors for two methods: Federated and Local, com-
bined with five data distribution settings: Balanced, Imbal-
anced, Noisy, Hetero., and Hetero. M..

Method RMSE MAE MAPE SMAPE
Balanced local 15.66 12.79 16.56% 14.12%

Balanced federated 12.45 9.91 12.55% 11.16%
Imbalanced local 34.99 28.73 14.63% 13.66%

Imbalanced federated 20.29 15.86 7.51% 7.50%
Noisy local 31.58 26.08 21.89% 17.97%

Noisy federated 27.62 22.61 19.09% 15.88%
Hetero. local 2.46 2.02 1.21% 1.20%

Hetero. federated 6.29 5.97 3.57% 3.50%
Hetero. M. local 22.16 17.47 10.25% 9.86%

Hetero. M. federated 21.67 17.02 9.99% 9.62%

Balanced i.i.d. data.When data is balanced across all the clients,
the Federated method is expected to perform better than the Local
method trained with only local data, as the federated model learns
knowledge from participating clients. As illustrated by Fig. 5 and
Table 1, the Federated method outperforms the Local method with
RMSE by 3.21, MAE by 2.88, MAPE by 4.01%, and SMAPE by 2.96%.
The errors of the Federated method converge towards the upper
bound with the Centralized method. The results indicate that for
RDCs with similar data distributions and comparable data volumes,
the Federated method can enhance the global model performance
by weighing in more knowledge from nationwide.
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Figure 6: Evaluation results with the imbalanced i.i.d. dataset. Left:
ground truth vs. predicted values. Right: prediction errors.

Imbalanced i.i.d. data. When clients have various amounts of
data, for those with fewer data samples, the Federated method
offers a significant improvement with the global model over clients’
local models. This resonates with the case that certain RDCs may
have a shorter data history than their counterparts in other regions.
Fig. 6 depicts the results of the local and global models on a client
with 1 year’s worth of data. Compared to the previous setting with
balanced data, clients with shorter data histories greatly benefit
from FL. At Round 7, the Federated method outperforms the Local
method with RMSE by 14.7, MAE by 12.87, MAPE by 7.12%, and
SMAPE by 6.16%. For RDCs with imbalanced data, the Federated
method proves to be capable of transferring the knowledge from
established RDCs to new RDCs.
Noisy dataset with zeros. RDCs may be missing data rows from
certain days for various reasons. We explore how the Federated
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Figure 7: Evaluations with the noisy dataset carrying random zeros
rows. Left: ground truth vs. predicted values. Right: prediction errors.

method can improve a noisy dataset with zeroes. When the datasets
contain zeros, data imputation preprocessing is done to replace
the zero-value row with the first preceding row carrying non-zero
values. It is expected to see the Federated method outperforming
the Local method under the same condition with the same amount
of non-zero values. The evaluation results in Fig. 7 show that the
Federated method outperforms Local with RMSE by 3.96, MAE by
3.47, MAPE by 2.8%, and SMAPE by 2.09%. The results confirm that
the Federated method can improve demand forecasting accuracy
in noisy datasets with missing rows.
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Figure 8: Heterogeneous data with single ARIMA model per client.
Left: ground truth vs. predicted values. Right: prediction errors.

Heterogeneous data with single ARIMA model per client.
When the ARIMA parameters are different across the clients, given
that the data is non-i.i.d. time series data, the Federated method is
expected to perform worse under heterogeneous settings. For time
series data, if two clients have drastically different trends, the Feder-
ated method will give a model that does not do well on either of the
clients because federated learning aims for generalization. Given
the data heterogeneity, FedProx [10] is used on the five clients, each
having a different set of ARIMA parameters. The results, shown in
Fig. 8, are just as expected, with the Federated method performing
worse than local models.

Combined with the previous experimental setting with zeros, the
two cases indicate that when the level of heterogeneity is low and
when it is clear where the distributions are different (i.e., different
by zero values), data imputation techniques will help improve FL
performance. However, when the data is not from the same type
of distribution (e.g., ARIMA) or with the same distribution family
but different parameters, it is challenging to expect FedAvg to out-
perform local models. But in these cases, if some data distribution
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information was known beforehand, there could be an opportunity
to improve the performance of FL.
Heterogeneous data with multiple ARIMA models per client.
When multiple ARIMA parameters are used inside one client’s data,
the local model would have difficulty learning those different pa-
rameters. We use three sets of ARIMA parameters, denoted by 𝛼 , 𝛽 ,
and 𝛾 . From Clients 1 - 5, (𝛼, 𝛽), (𝛽,𝛾), (𝛼,𝛾), (𝛼, 𝛽), (𝛽,𝛾) are used,
respectively. As shown in Fig. 9, the Federated method outperforms
the Local method in complex non-i.i.d situations and slightly under-
performs the Centralized method. We notice the improvement of
the Federated method compared to the previous setting assigning
one ARIMA model to each client. The performance change reflects
that the Federated method could contribute more significantly with
diverse client data.
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Figure 9: Heterogeneous data with 2 ARIMAmodels per client. Left:
ground truth vs. predicted values. Right: prediction errors.

5 CONCLUSIONS
This paper explored the potential of leveraging FL to enhance blood
supply chain demand forecasting. By generating synthetic data with
ARIMA models fitted from the real blood supply and demand data,
we conducted extensive numerical studies on the benefits of FL with
various data distribution settings. When clients have imbalanced
i.i.d. data, FL can significantly boost the performance for clients
with fewer data points. This is particularly meaningful for newly
involved hospitals and RDCs in BSCM. FL improved the overall
prediction errors with balanced i.i.d. data, justifying the need for
a federated framework. Additionally, FL proved to mitigate the
learning accuracy loss caused by missing data. Lastly, FL reduced
the errors with heterogeneous data using multiple ARIMA models
per client.
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