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Unlearning Incentivizes Learning under Privacy Risk
Anonymous Author(s)

Abstract
While machine learning empowers intelligent services and offers
users customized experiences, privacy concerns emerge from regu-
latory requirements and the privacy-conscious demands of users.
Machine unlearning presents a potential solution to these concerns.
Despite the growing demand for practical deployment due to the
right to be forgotten privacy regulations, the economic impact of
machine unlearning on user behavior and platform profitability
remains largely unexplored and may limit its implementation. In
this paper, we formulate a set of contract design problems under
both unlearning-disabled and unlearning-enabled scenarios. Chal-
lenges arise when the unlearning-enabled platform jointly designs
compensation for both learning and unlearning to incentivize users’
sequential decisions to balance the expected revenue and unlearn-
ing cost. We first conduct a questionnaire survey that reveals that
machine unlearning increases users’ willingness to participate in
federated learning. We then provide a necessary condition for max-
imizing the surplus of an unlearning-enabled platform, enabling
the point-wise decomposition for the optimal contract design prob-
lem, based on which we minimize the incentive cost and maximize
the surplus for the platform. Our further analysis reveals that i)
the incentive effects of unlearning grow quadratically with users’
privacy sensitivity, and ii) enabling unlearning may even profit
more than disabling it, under higher cost elasticity of risk distribu-
tion. Our numerical results show that the platform’s profitability
is primarily influenced by users’ privacy sensitivity. When users
are relatively highly privacy-sensitive, enabling unlearning can
significantly improve profitability.

CCS Concepts
• Security and privacy → Economics of security and privacy;
• Computing methodologies→Model development and anal-
ysis.
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1 Introduction
1.1 Background
Data generated by mobile devices, including IoT devices, is pro-
jected to reach 79.4 zettabytes (ZB) by 2025, according to a recent
report [1]. This vast amount of data is pivotal for enabling next-
generation applications such as intelligent transportation systems,
smart industries, healthcare, and smart surveillance [2, 3]. Data
sharing creates a mutually beneficial scenario, as it enhances the
capability of platforms in data markets that operate these emerging
applications to deliver more personalized, efficient, and innovative
services while providing users with more relevant experiences and
tailored product offerings. The ongoing digital transformation is
driving the integration of artificial intelligence, machine learning,
and other advanced technologies, leading to new business models
and significant impacts across various industries [4].

Conventional centralized machine learning approaches face a
fundamental challenge of privacy leakage, as they require the trans-
fer of data from end devices to a centralized third-party server for
training. Additionally, centralized machine learning may not be
viable in cases where data is extremely large and distributed across
multiple locations[5]. Federated learning addresses these issues by
enabling multiple users to collaboratively train a shared global
model while keeping their data localized, thereby enhancing pri-
vacy and security [6]. This paradigm has been extensively studied
in recent years across various domains, including healthcare [7],
finance [8], personalized recommendations [9], and smart home
applications [10].

On the other hand, as privacy regulations and user rights con-
tinue to evolve, there is a growing demand for transparency and
clarity in data handling practices. Prominent examples include the
European Union’s General Data Protection Regulation (GDPR) [11]
and the California Consumer Privacy Act (CCPA) [12]. Notably,
the GDPR introduces the right to be forgotten, which empowers
users to request the deletion of their data from platforms, ensuring
that personal data is removed not only from storage but also from
any further use [13]. While federated learning offers some level
of privacy by avoiding the sharing of raw data, it falls short of
meeting such stringent requirements. Machine unlearning [14, 15]
is an emerging technique designed to selectively and efficiently
remove the influence of specific data points or users from a trained
model without necessitating complete retraining. It essentially re-
verses previous machine learning processes bymodifying or erasing
learned models or data. This approach addresses key privacy, secu-
rity, and compliance concerns, enabling machine learning systems
to be updated while maintaining data integrity.

A questionnaire survey of 150 participants in this work demon-
strates their satisfaction with the implementation of unlearning.
Despite recent regulations and promising technological advance-
ments in machine unlearning, there remains a significant gap in un-
derstanding its economic implications. Key questions remain unan-
swered, such as whether offering an unlearning option can attract
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more users and foster greater data sharing, or whether the imple-
mentation of unlearning increases operational costs (e.g., through
the removal of data) or leads to cost savings by enhancing user
incentives for platforms in data markets. Additionally, the broader
effects on business models, profitability, and competitive advantage
are still underexplored. Without a comprehensive analysis of how
machine unlearning impacts the platforms that implement it, its
practical deployment remains a challenge.

1.2 Challenges
Although federated learning and model sharing create a mutu-
ally beneficial scenario in digital economies, users’ ability to make
informed decisions about their privacy is often severely limited
due to their privacy concerns. On one hand, users tend to be risk-
averse [16]. After participating in local training and model sharing,
they may receive immediate, tangible benefits such as discounts
or enhanced personalized services. However, they frequently face
imperfect or asymmetric information about when their data is col-
lected, for what purposes, and with what potential consequences
[17]. On the other hand, users are highly sensitive to privacy leak-
age, often preferring that platforms possess minimal information
about them [18, 19]. Consequently, users may hesitate to engage
in federated learning due to the uncertainty surrounding potential
benefits and the risks of privacy loss.

Contract design is an essential economic method to incentivize
user model sharing and elicit necessary unlearning processes. A
contract ensures that users’ training efforts contribute positively to
the desired outcomes [20–22]. In our case, it specifies the users’ po-
tential benefits, such as monetary compensation, improved services,
or access to a personalized machine learning model, thereby ensur-
ing that users understand what they will gain from participating
in model sharing. From a legal and ethical standpoint, the contract
serves as a formal agreement that helps ensure platform compli-
ance with privacy regulations such as GDPR and CCPA, while also
fostering trust between the platform and its users.

When unlearning is available to users, granting privacy-sensitive
users the right to be forgotten, the business model and underlying
contract design must adapt. Intuitively, unlearning can be seen
as a special form of insurance for users participating in federated
learning. By requesting unlearning, users can retract their shared
data and exit the federated learning platform, thereby preventing
significant harm from privacy leakage incurred during the learning
process. This flexibility may further incentivize greater user partici-
pation in federated learning. Survey results in Figure 2 support this
hypothesis, showing that participants in both online services are
more willing to share their data when they know it can be revoked.
However, how unlearning influences the decision-making process
of users remains an open question, leading to our first key question:

Question 1. How will federated unlearning influence privacy-
sensitive user’s willingness to participate in federated learning?

If users request unlearning, unlike those who directly leave
the platform, the platform must bear the associated unlearning
costs[23, 24]. This requires a proper incentive structure guiding
users’ unlearning decisions, excessive unlearning requests could
impose significant burdens on the platform. Significant challenges

Local model

Compensation

Platform

Users

😊

☹ Too much privacy 
leaked, I want my 
model unlearned! 

Personalized 
services

Unlearning request

Platform’s revenue

Figure 1: An illustrative
ecosystem demonstrating
both federated learning and
unlearning.

Figure 2: A survey on users’
willingness to share data in
two online service applica-
tions, with three distinct per-
sonal information usage set-
tings.

arise in designing contracts that incorporate unlearning. The plat-
form must jointly design compensation schemes for both learning
and unlearning, striking a balance between encouraging user par-
ticipation in training and managing the potential costs linked to
unlearning. On the other hand, users’ local training processes are
unobservable or costly to verify [25, 26], and, therefore, cannot be
directly contracted. As a result, the contract serves as an indirect
mechanism to incentivize users’ sequential decisions. This brings
us to our second key question:

Question 2. How should one design an optimal contract that
jointly incentivizes user participation in learning and properly elicits
unlearning decisions?

Federated learning platforms can derive several economic bene-
fits from the globalmodel generated through federated learning [27].
For instance, these models’ enhanced accuracy and generalization
capabilities offer deeper insights into individual user behavior and
preferences, which can be leveraged to inform marketing strategies
and improve customer service. Furthermore, platforms can mone-
tize these highly accurate and robust models by offering them as
premium services or products. The models can be licensed or sold to
other businesses, generating additional revenue streams. However,
users’ risk aversion to uncertainty and sensitivity to privacy loss
have a direct influence on the platform’s revenue and incentive
costs. When unlearning is introduced, the equilibrium between the
platform’s objectives and the users’ participation shifts, as the plat-
form must account for unlearning being available to users, which
influences the platform’s overall profitability. This raises our third
key question:

Question 3. How do users’ risk aversion and privacy sensitivity
impact the platform’s profitability when unlearning is an available
option?

1.3 Main Work and Contributions
We summarize our key novelty and contributions below.

• Questionnaire Surveys. We conducted a questionnaire
survey to quantify the varying levels of privacy sensitivity
among participants, confirm their tendency toward risk

2
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aversion, and demonstrate the incentive effect of unlearn-
ing. Due to space limitations, the detailed hypotheses, ques-
tionnaire, and results are presented in Appendix A.

• Modeling and problem formulation.We propose a com-
prehensive model for privacy risk that accounts for the
platform’s data utilization and users’ training process. Ad-
ditionally, we model the users’ privacy preferences through
their risk aversion and privacy sensitivity. We formulate
contract design problems for both unlearning-disabled and
unlearning-enabled scenarios. To the best of our knowl-
edge, this is the first framework for studying the incentive
effect of unlearning and strategic interactions in federated
learning while incorporating unlearning.

• Optimal contract design and analysis. We character-
ize the optimal contract structure, enabling the point-wise
decomposition of the optimization problem for each value
of privacy leakage, making it tractable to solve. We then
analyze the optimized contract design and evaluate the
platform’s profitability when unlearning is incorporated.
We further show that i) the incentive effects of unlearning
grow quadratically with users’ privacy sensitivity, and ii)
enabling unlearning may even profit more than disabling,
under higher cost elasticity of risk distribution.

• Numerical results.We conduct numerical studies to ex-
plore the impacts of various factors, including users’ risk
aversion, privacy sensitivity, and the platform’s revenue
and unlearning cost models. We show that the platform’s
profitability is primarily influenced by users’ privacy sensi-
tivity; when users are relatively highly privacy-sensitive,
enabling unlearning can significantly improve profitability.

2 Related Work
There is a substantial body of literature on federated learning, en-
compassing both algorithm design [28, 29] and mechanism design
[30, 31]. In this section, we primarily focus on reviewing the litera-
ture related to machine unlearning.

Machine unlearning was first introduced in [14]. Since then, a
growing body of research has focused on developing unlearning
techniques. These approaches can be broadly categorized as model-
agnostic (e.g., differential privacy [32], knowledge adaptation [33]),
and model-intrinsic (e.g., linear regression models [34], Random
Forest models [35]). In recent years, federated unlearning [36, 37]
has emerged as a response to the challenges of data erasure in the
federated learning context, where the decentralized nature of data
poses new complexities.

Only a limited number of studies explored the economics of
federated unlearning. The most relevant work to ours includes [38],
which employs a four-stage non-cooperative game to model the
interactions and information dynamics between the platform and
users during both the learning and unlearning processes. Addition-
ally, [39] investigates users’ strategic behavior in permitting partial
data revocation in federated unlearning, focusing on the trade-offs
between model performance, data privacy, and unlearning costs.

These studies differ from ours in several key aspects. First, the
privacy risk models in [38] and [39] assume a deterministic rela-
tionship, where users can determine their privacy loss before local

training. In contrast, we consider a more realistic scenario where
privacy leakage is uncertain before users participate in federated
learning. Furthermore, in [38], the asymmetric information con-
cerns users’ data profiles, with the platform’s goal being to design
a mechanism that reveals users’ privacy and training costs. Thus,
the impact of unlearning on the behavior of risk-averse users and
its influence on platform profitability remain largely unexplored,
which is the main focus of this work.

3 Model and Preliminary
In this section, we first introduce the uncertain privacy leakage
model in federated learning. We then provide a detailed discussion
of the principal-agent model in federated learning, followed by the
formulation of contract design problems. We summarize the key
notations in Table 1 in Appendix B.

3.1 Federated Learning Setting
3.1.1 Federated learning overview. We consider a set of 𝐼 individ-
ual users represented as I = {1, · · · , 𝐼 }, and a federated learning
platform, denoted by 𝑃 , which collects the local training model
shared by users and aggregates them to enhance the performance
of the global model. Each user 𝑖 ∈ I processes private informa-
tion 𝑋𝑖 ∈ X𝑖 that they seek to protect. This private information
may include personal characteristics in social networks, transaction
details in financial markets, and geolocation data.

Each user 𝑖’s local data is a noisy realization of the private infor-
mation 𝑋𝑖 , and we denote the instance space as D𝑖 for user 𝑖 . The
local training dataset 𝑫𝑖 consists of 𝑛𝑖 independent and identically
distributed (i.i.d.) samples 𝐷𝜅

𝑖
∈ D𝑖 , 𝜅 ∈ {1, · · · , 𝑛𝑖 }.

LetW represent the hypothesis space, and ℓ : W×D → R+ be
a nonnegative loss function. The objective of each user in federated
learning is to minimize the empirical risk through local training by
solving the following optimization problem:

min
𝑊𝑖 ∈W

1
𝑛𝑖

𝑛𝑖∑︁
𝜅=1

ℓ (𝐷𝜅
𝑖 ,𝑊𝑖 ), (1)

where 𝐷𝜅
𝑖
denotes the 𝜅-th data sample of user 𝑖 .

We consider a warm-start scenario [40], where the platform al-
ready had a pre-trained global model𝑊𝑃 , derived from a dataset
𝑫𝑃 consisting of 𝑛𝑃 data points sampled from D𝑃 . At each itera-
tion round for the global model, after each user 𝑖 ∈ I completes
the local training, the platform collects each trained model𝑊𝑖 for
aggregation to produce a new global model.

3.1.2 Local training effort. After participating in federated learn-
ing, each user 𝑖 ∈ I chooses a training effort level 𝑒 ∈ E = [0, 1]
for local training as described in (1). This effort includes the compu-
tational resources, time, and energy they invest, and we denote the
associated costs as 𝑐 (𝑒). We define the user’s local training process
asΦ : E×D → W. When a user exerts no effort (𝑒 = 0), it indicates
no local training is performed. Conversely, as users increase their
local training effort, the resulting model𝑊𝑖 captures more detailed
information about the underlying private data 𝑋𝑖 .

The training effort is often unobservable or costly to verify be-
cause local training takes place independently on users’ devices,
which vary in computational capabilities and energy constraints
due to device heterogeneity.

3
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3.1.3 Privacy risk. Although federated learning ensures that the
raw private dataset 𝑫𝑖 does not leave the training devices of the
user 𝑖 , several potential privacy risks remain inherent in federated
learning [41]. Additionally, users in the social network exhibit corre-
lations with each other[42], and attackers can use this information
to amplify the privacy leakage.

We quantify the user’s privacy leakage using conditional mutual
information[43], as defined in Definition 1.

Definition 1. For a user 𝑖 ∈ I with private information 𝑋𝑖 ∈ X𝑖 ,
holding the local training dataset 𝑫𝑖 , and participating in federated
learning via local training with Φ(𝑒,𝑫𝑖 ), the verifiable leaked privacy
is defined as:

𝑅(𝑒,𝑫𝑖 ) = 𝛿 · MI (𝑋𝑖 ;Φ(𝑒,𝑫𝑖 ) |𝑊𝑃 ) , (2)

where 𝛿 ∈ [0, 1] and mutual information MI(·; · | ·) measures how
much information local training reveals about 𝑋𝑖 , given that the
platform already has access to𝑊𝑃 .

The platform and users may evaluate privacy leakage through
techniques such as membership inference attacks [44] and backdoor
attacks [45]. We introduce a ratio 𝛿 ∈ [0, 1] in Definition 1 to
further characterize the potentially limited attack capability and
the imperfect information about the underlying distribution X𝑖 .

The privacy risk arises before the user participates in federated
learning and performs local training via Φ(𝑒,𝑫𝑖 ). Neither the plat-
form nor the user has complete knowledge of each other’s data
profiles or data correlation. This incomplete information introduces
randomness and hence risk regarding privacy leakage for both par-
ties. While the exact value of privacy leakage remains uncertain
before users engage in local training, both the platform and the
users are aware of the probability distribution. We denote 𝑓 (𝑅 |𝑒)
as the privacy leakage density function conditional on the user’s
training effort 𝑒 .

3.1.4 Federated unlearning. When unlearning is enabled, the user
can request that the platform unlearn their data after local training
andmodel sharing. The goal of unlearning is to remove the influence
of a particular user’s data from the global model without requiring
a complete retraining of the model. We assume an exact unlearning
algorithm [24, 46], which ensures that after unlearning, the platform
no longer retains any information about the shared model produced
during local training Φ(𝑒,D𝑖 ). Consequently, the privacy leakage
defined in Definition 1 is reduced to 0.

During the unlearning process, when a user submits an unlearn-
ing request, the platform incurs costs denoted by 𝑞(𝑅). These costs
include the degradation in the global model’s performance and the
additional training required to restore the model after unlearning.

Example 1. An example distribution of𝑋𝑖 is a normal distribution,
i.e.,𝑋𝑖 ∼ N(𝑥𝑖 , 𝜎2

𝑖
). This personalized data is modeled as𝐷𝑖 = 𝑋𝑖+𝑍𝑖 ,

where 𝑍𝑖 is an independent random variable also following a normal
distribution N(0, 𝜏2

𝑖
). A commonly used model for analyzing the

theoretical performance of machine learning systems [47] defines the
loss function as ℓ (𝐷,𝑊 ) = ∥𝐷 −𝑊 ∥2, where 𝐷 denotes the training
data sample,𝑊 represents the machine learning model, and ∥ · ∥ is
the Euclidean norm. Consider the correlation coefficient of (𝑋𝑖 , 𝑋𝑃 )

as 𝜌𝑖 , the privacy leakage is then given by

𝑅(𝑒,𝑫𝑖 ) =
𝛿

2
log(1 + 𝑦 · 𝑒), ∀𝑒 ∈ E, (3)

where

𝑦 =
𝜎2
𝑖
𝑛𝑖

[
(1 − 𝜌2

𝑖
)𝑛𝑃𝜎2

𝑃
+ 𝜏2

𝑃

]
𝜏2
𝑖

(
𝑛𝑃𝜎

2
𝑃
+ 𝜏2

𝑃

) ≥ 0, and 𝑅 ∈ R . (4)

Figure 10 in Appendix B.1 illustrates the distribution of uncertain
privacy leakage 𝑅 conditional on effort 𝑒 .

In the following analysis, we assume that externalities do not
exist, meaning one user’s decisions do not influence the decisions of
others. This assumption is valid because techniques such as secure
aggregation and averaging ensure that each user’s contribution
to the global model and platform is negligible [48, 49]. We will
therefore drop the index 𝑖 in the following.

3.2 Principal-Agent Model
In federated learning, the platform serves as the principal, delegat-
ing the task of training a machine learning model to the user in
each iteration round without directly accessing its data. The user,
acting as an agent, retains autonomy over its data and contributes
to the learning process by training the local model based on its
local data. They also have their own interests, such as preserving
privacy or earning incentives for participation.

We examine two scenarios for comparison based on the imple-
mentation of machine unlearning: the unlearning-enabled scenario
and the unlearning-disabled scenario. We use the subscript (·)𝐷 and
(·)𝐸 to denote variables associated with the unlearning-disabled
case and the unlearning-enabled case, respectively.

3.2.1 Contract variables. As we discussed in Section 3.1, the user
incurs local training costs and faces risks of privacy loss. Without
sufficient compensation, it may lack motivation to contribute to
the learning process. Compensation serves as an incentive for par-
ticipation and can take various forms, such as monetary rewards
or non-monetary benefits. For instance, the platform may offer
efficiency bonuses or enhanced personalized services to the user
[17].

For the unlearning-disabled scenario, the contract is defined as
C𝐷 = {𝑡 (𝑅)}, where the positive contract term 𝑡 (𝑅) represents the
compensation contingent on the observed privacy leakage 𝑅 after
user’s local training and model sharing. In the unlearning-enabled
scenario, the contract is denoted as C𝐸 = {𝑡 (𝑅), 𝑡 (𝑅)}, where the
additional term 𝑡 (𝑅) ≥ 0 accounts for compensation to the user
when requesting unlearning. If 𝑡 (𝑅) ≡ 0, it implies that the user
receives no compensation for unlearning.

3.2.2 Interaction framework. We model the interactions between
the platform and the user as a three-stage game, as in Figure 3.

Specifically, in Stage 0, the platform designs and announces
contract C𝐷 when disabling unlearning or C𝐸 when enabling un-
learning. The interaction then progresses to Stage 1, where the
user determines its level of training effort 𝑒 , which incurs a corre-
sponding cost 𝑐 (𝑒). This effort impacts the potential privacy leakage
associated with the shared data. In Stage 2, after observing the real-
ized privacy leakage 𝑅 and considering the compensation offered,

4
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Stage 1: Learning Stage

The user selects its training effort 𝑒 ∈ ℰ.

Stage 2: Unlearning Stage

Stage 0: Contract Stage

e platform specifies either contract 𝒞! or 𝒞" . If 𝒞" is chosen, 
unlearning is enabled, and the user has the option to request 

unlearning in Stage 2. 

The uncertain privacy leakage 𝑅 is realized. If contract 𝒞" was 
specified in Stage 0, the user makes an unlearning decision 𝑎 ∈ {0,1}.

Figure 3: The three-stage interaction among the platform
and users under two scenarios based on the implementation
of unlearning.

the user on an unlearning-enabled platform decides whether to re-
quest unlearning. This decision is represented by the binary choice
variable 𝑎(𝑅) ∈ {0, 1}, where 𝑎(𝑅) = 1 signifies a request for un-
learning. Finally, the platform compensates the user based on the
realized privacy leakage 𝑅 and the pre-agreed terms of the contract.
If unlearning is enabled, the compensation also accounts for the
user’s unlearning decision. Through these stages, the platform and
the user complete the execution of the contract.

3.2.3 Risk-averse user. The user values its privacy sensitivity as
𝑝 ≥ 0, which reflects their attitude towards privacy leakage [50].
For instance, a larger 𝑝 implies a stronger preference to keep private
data confidential. Let 𝑢 (·) represent the user’s utility function. We
assume that utility 𝑢 (·) and training costs 𝑐 (𝑒) (also referred to as
disutility) are additively separable, which is a common assumption
in contract theory involving moral hazard [51].

The user’s net utility 𝑈𝐷 in the unlearning-disabled platform
conditional on realized 𝑅 is given by

𝑈𝐷 (𝑅, C𝐷 , 𝑒) = 𝑢 (𝑡 (𝑅) − 𝑝𝑅) − 𝑐 (𝑒). (5)

In the unlearning-enabled platform, the user can request unlearn-
ing, which eliminates the privacy loss (i.e., 𝑅 = 0), while receiving
compensation 𝑡 (𝑅) as specified in the contract C𝐸 . Given the se-
quential actions of exerting effort 𝑒 and making the unlearning
decision 𝑎(𝑅), the user’s net utility𝑈𝐸 in the unlearning-enabled
platform is expressed as:

𝑈𝐸 (𝑅, C𝐸 , 𝑒, 𝑎(𝑅)) = 𝑢
(
𝑎(𝑅) · 𝑡 (𝑅) + (1 − 𝑎(𝑅)) · (𝑡 (𝑅) − 𝑝𝑅)

)
− 𝑐 (𝑒).

(6)

Due to their limited computational resources, the user is assumed
to be risk-averse, as described by the Arrow–Pratt measure of risk
aversion [52, 53], formalized in Definition 2.

Definition 2. A user is risk averse if

E[𝑢 (�̃�)] ≥ 𝑢 (E(�̃�)) , (7)

for every risky payoff �̃� . The Arrow-Pratt measure of absolute risk
aversion is given by

𝑟 (𝜋) ≜ −𝑢
′′ (𝜋)
𝑢′ (𝜋) . (8)

Moreover, as stated in [52, 53], risk aversion corresponds to the
concavity of the utility function. Thus, the utility function 𝑢 (·) is

strictly concave, with 𝑢′ > 0 and 𝑢′′ < 0. We also assume the cost
function 𝑐 (·) is strictly convex, with 𝑐′ > 0 and 𝑐′′ > 0.

3.2.4 Risk-neutral platform. The platform’s revenue generated by
exploiting users’ privacy-sensitive data is denoted as 𝑆 (𝑅), which is
an increasing function in 𝑅. This model generalizes the one in [17]
and captures that the platform can benefit from privacy leakage
in several significant ways, such as price discrimination, target
advertising, and interest rate setting in credit markets.

Additionally, the platform typically is a big organization, thus
the uncertainty from any single user is diluted, justifying the as-
sumption of a risk-neutral platform. We define the surplus of the
unlearning-disable platform as𝑉𝐷 , which is the difference between
the platform’s revenue 𝑆 (𝑅), and compensation cost according to
the agreed-uponed contract. Therefore, when unlearning is disabled,
the platform’s surplus is expressed as:

𝑉𝐷 (𝑅, C𝐷 ) = 𝑆 (𝑅) − 𝑡 (𝑅) . (9)

When unlearning is enabled, if the user requests unlearning, the
revenue from that user’s privacy leakage drops to zero, and the
platform is required to pay 𝑡 (𝑅) to the user and bear the unlearning
cost 𝑞(𝑅). Given the user’s unlearning decision 𝑎(𝑅), the surplus
of the unlearning-enabled platform 𝑉𝐸 , is given by:

𝑉𝐸 (𝑅, C𝐸 , 𝑎(𝑅)) = 𝑎(𝑅) ·
(
−𝑞(𝑅) − 𝑡 (𝑅)

)
+ (1 − 𝑎(𝑅)) · (𝑆 (𝑅) − 𝑡 (𝑅)) .

(10)

3.3 Contract Design Problem
To incentivize user’s effort and elicit the proper unlearning decision,
we consider contract design for the platform. Since the effort is
the user’s hidden action, not directly observable by the platform, it
leads to a moral hazard problem [54].

3.3.1 The unlearning-disabled scenario. In this scenario, the plat-
form’s objective is to design an optimal contract, denoted by C𝐷 ,
that incentivizes the user to exert the desired effort level 𝑒 . This con-
tract aims to maximize the platform’s expected surplus, represented
as E𝑅 [𝑉𝐷 (𝑅, C𝐷 ) | 𝑒], which takes into account the user’s expected
utility based on their training effort, denoted asE𝑅 [𝑈𝐷 (𝑅, C𝐷 , 𝑒) | 𝑒].
The platform’s optimization problem can be formulated as follows:

max
𝑒,C𝐷

E𝑅 [𝑉𝐷 (𝑅, C𝐷 ) |𝑒] (11a)

s.t. E𝑅 [𝑈𝐷 (𝑅, C𝐷 , 𝑒) | 𝑒] ≥ 0, (11b)
𝑒 ∈ arg max

𝑒∈E
E𝑅 [𝑈𝐷 (𝑅, C𝐷 , 𝑒) | 𝑒] , (11c)

𝑡 (𝑅) ≥ 0,∀𝑅 ∈ R . (11d)

The constraint in (11b) represents the individual rationality (IR)
condition. It ensures that the user’s expected net utility from par-
ticipating in the federated learning platform and exerting effort
cannot fall below its reservation utility, which is its net utility when
exerting no effort (i.e., 𝑒 = 0). The constraint in (11c) is the incen-
tive compatibility (IC) condition. This ensures that even though the
platform cannot directly observe the user’s effort, the user is in-
centivized to choose the effort level that aligns with the platform’s
objectives. Finally, the constraint in (11d) enforces limited liability
[55], ensuring that the user’s compensation remains non-negative
for any realized 𝑅 ∈ R.
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3.3.2 The unlearning-enabled scenario. When unlearning is en-
abled, the platformmust design a contract that not only incentivizes
the user’s training effort 𝑒 but also elicits the user’s sequential
decision-making regarding unlearning, represented by 𝑎(𝑅).

In Stage 2, the privacy leakage 𝑅 is realized, the user chooses
𝑎(𝑅) to maximize its utility by deciding whether to unlearn:

𝑎(𝑅) ∈ arg max
𝑎∈{0,1}

𝑎 · 𝑡 (𝑅) + (1 − 𝑎) · (𝑡 (𝑅) − 𝑝𝑅) , ∀𝑅 ∈ R . (12)

By backward induction, anticipating the future realization of pri-
vacy leakage 𝑅 alongside (12), the expected inter-temporal utility
for the user is given by E𝑅 [𝑈𝐸 (𝑅, C𝐸 , 𝑒) | 𝑒, 𝑎(𝑅)]. The platform’s
expected surplus, based on the user’s sequential decision (𝑒, 𝑎(𝑅)),
is given by E𝑅 [𝑉𝐸 (𝑅, C𝐸 ) | 𝑒, 𝑎(𝑅)]. Then the contract design prob-
lem in the unlearning-enabled scenario is as follows:

max
𝑒,C𝐸 ,𝑎 (𝑅)

E𝑅 [𝑉𝐸 (𝑅, C𝐸 ) | 𝑒, 𝑎(𝑅)] (13a)

s.t. E𝑅 [𝑈𝐸 (𝑅, C𝐸 , 𝑒) | 𝑒, 𝑎(𝑅)] ≥ 0, (13b)
𝑒 ∈ arg max

𝑒∈E
E𝑅 [𝑈𝐸 (𝑅, C𝐸 , 𝑒) | 𝑒, 𝑎(𝑅)] , (13c)

𝑎(𝑅) ∈ arg max
𝑎∈{0,1}

𝑎 · 𝑡 (𝑅) + (1 − 𝑎) · (𝑡 (𝑅) − 𝑝𝑅) , ∀𝑅 ∈ R, (13d)

𝑡 (𝑅) ≥ 0, 𝑡 (𝑅) ≥ 0, ∀𝑅 ∈ R . (13e)

Compared to the unlearning-disabled contract design in (11), the
unlearning-enabled contract design introduces additional complex-
ity, as it requires incentive compatibility across two stages, resulting
in the user’s expected utility being inter-temporal.

3.3.3 Challenges. The contract design problem in the unlearning-
disabled scenario falls into the standard moral hazard problem
with bounded payments [55]. However, directly comparing it to
the unlearning-enabled scenario is inherently complex due to the
additional decision-making process introduced by unlearning. First,
both the unlearning-enabled platform and the user must consider
the initial effort 𝑒 and subsequent unlearning decision 𝑎(𝑅), which
are interdependent. The compensations for learning 𝑡 (𝑅) and un-
learning 𝑡 (𝑅) are also coupled. The contract C𝐸 must be designed to
ensure that the user’s optimal decisions—regarding both effort and
unlearning—align with the platform’s goal of surplus maximization.

4 Optimal Contract Design and Analysis
In this section, we first analyze the incentive effects of unlearning
in survey results. Then we examine the contract design problem.

4.1 The Incentive Effect of Unlearning
Survey results in Appendix A indicate that the introduction of
unlearning can significantly increase users’ willingness to partici-
pate in federated learning and model sharing. To further quantify
these findings, we consider a simplified scenario in which the user’s
training effort is binary, i.e., E = {0, 𝑒}. The platform offers a con-
stant compensation for the user’s effort 𝑒 , denoted as either 𝑡𝐷 for
the unlearning-disabled setting and 𝑡𝐸 for the unlearning-enabled
setting.

In the unlearning-disabled platform, the platform’s problem in
(11) is reduced to determine the minimum compensation 𝑡𝐷 that sat-
isfies the user’s individual rationality (IR) constraint. The minimum

compensation 𝑡𝐷 is given by:

𝑡𝐷 = inf
{
𝑡 ≥ 0 :

∫
R
𝑢 (𝑡 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 ≥ 0

}
, (14)

where 𝑝𝑅 represents the privacy cost associated with the realized
leakage 𝑅, and 𝑐 denotes the effort cost.

In the unlearning-enabled platform, if the realized privacy leak-
age 𝑅 leads to 𝑡𝐸 − 𝑝𝑅 < 0, the user will request unlearning to
ensure their utility remains non-negative. Consequently, the plat-
form must adjust its compensation to account for the possibility of
unlearning. Thus, the problem in (13) is reduced to obtaining the
minimum compensation 𝑡𝐸 :

𝑡𝐸 = inf
{
𝑡 ≥ 0 :

∫
R
𝑢 (max{𝑡 − 𝑝𝑅, 0}) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 ≥ 0

}
.

(15)
We further define the incentive effect in Definition 3.

Definition 3. The incentive effect (IE) is the relative difference in
compensation required between the unlearning-disabled and unlearning-
enabled settings, expressed as:

IE =
𝑡𝐷 − 𝑡𝐸

𝑡𝐸
. (16)

The ratio 𝑡𝐷−𝑡𝐸
𝑡𝐸

in Definition 3 captures how the introduction
of unlearning creates an additional incentive for user participation.
We are ready to present the following theorem:

Theorem 1. The optimal compensation required to incentivize
user participation in the unlearning-disabled and unlearning-enabled
settings is bounded by:

𝑡𝐷 − 𝑡𝐸 ≥ 0 and
𝑡𝐷 − 𝑡𝐸

𝑡𝐸
= Ω(𝑟𝑝2). (17)

The proof of Theorem 1 is presented in Appendix D.1. This the-
orem suggests that the unlearning-disabled platform must always
offer a higher compensation (𝑡𝐷 ) to induce the same level of effort
from the user as compared to the unlearning-enabled platform (𝑡𝐸 ).
This implies that unlearning introduces additional incentive for
learning. Specifically, in the unlearning-enabled setting, the user’s
expected utility increases since its potential losses from privacy
leakage are capped due to the option to unlearn.

Additionally, the lower bound of the incentive effect is given by
Ω(𝑟𝑝2), indicating that the incentive effect grows quadraticallywith
the user’s privacy sensitivity 𝑝 and linearly with its risk aversion
𝑟 . In other words, as the user become more risk-averse and/or
more privacy-sensitive, the unlearning-enabled platform requires
relatively lower compensation to incentivize its participation.

4.2 Optimal Contract Design
4.2.1 The general case. In this subsection, we aim to solve the
general contract design problem when user’s effort is unobservable
by the platform. As mentioned, the main challenge is the joint
design of the compensation 𝑡 (𝑅) for learning and the compensation
𝑡 (𝑅) to incentivize the user’s sequential actions in alignment with
the platform’s overall objectives.

To address this complexity, we present Theorem 2 to characterize
the optimal contract structure.
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Theorem 2. For any realized privacy leakage 𝑅 ∈ R, the optimal
contract structure is as follows:

• If 𝑅 ∈ R𝑈 =

{
𝑅 | 𝑝 ≥ 𝑆 (𝑅)+𝑞 (𝑅)

𝑅

}
, the platform should de-

sign the contract such that 𝑆 (𝑅) + 𝑞(𝑅) ≤ 𝑡 (𝑅) − 𝑡 (𝑅) ≤ 𝑝𝑅

to incentivize the user to request unlearning.

• If 𝑅 ∈ R𝐿 =

{
𝑅 | 𝑝 <

𝑆 (𝑅)+𝑞 (𝑅)
𝑅

}
, the platform should struc-

ture the contract so that 𝑝𝑅 ≤ 𝑡 (𝑅) − 𝑡 (𝑅) ≤ 𝑆 (𝑅) + 𝑞(𝑅)
to encourage the user to retain their shared model without
requesting unlearning.

This contract structure ensures that the user’s decision to unlearn
or not is aligned with the platform’s objective of maximizing the
expected surplus. By managing the trade-offs between learning and
unlearning costs, the platform can optimize its overall surplus. The
proof of Theorem 2 is provided in Appendix D.2, and the optimal
contract structures for each 𝑅 are illustrated in Figure 14.

The theorem demonstrates that the platform’s optimal incentive
strategy for each level of privacy leakage 𝑅 ∈ R depends on the
user’s privacy sensitivity and the platform’s combined marginal
revenue and unlearning costs. Based on Theorem 2, the joint design
problem in (13) can be separated into two distinct cases: one for
𝑅 ∈ R𝑈 and the other for 𝑅 ∈ R𝐿 .

Furthermore, Theorem 2 characterizes the optimal contract struc-
ture for the joint design of 𝑡 (𝑅) and 𝑡 (𝑅) at each level of privacy
leakage. Specifically, for 𝑅 ∈ R𝑈 , the compensation 𝑡 (𝑅) is ap-
plied, while 𝑡 (𝑅) is not uniquely defined as long as the difference
𝑡 (𝑅)−𝑡 (𝑅) falls within the interval [𝑆 (𝑅)+𝑞(𝑅), 𝑝𝑅]. This flexibility
allows the contract designer to optimize 𝑡 (𝑅) in the 𝑅 ∈ R𝑈 case,
and vice versa for 𝑡 (𝑅).

4.2.2 The special case: Binary privacy leakage. We then examine a
binary privacy leakage setting based on Theorem 2, which allows
us to derive the closed-form optimal contract for more insights.

In the binary privacy leakage setting, there are only two possible
privacy risk outcomes, {𝑅𝐻 , 𝑅𝐿} with 𝑅𝐻 > 𝑅𝐿 ≥ 0, representing
high and low leakage, respectively. The user’s effort influences the
probabilities of these outcomes, with 𝐹 (𝑒) ≜ Pr(𝑅𝐻 |𝑒). To capture
the relationship between training cost and privacy leakage, we
define the cost elasticity of risk distribution in Definition 4.

Definition 4. Define the cost elasticity of risk distribution (𝐸CR)
as the elasticity ratio of the training cost to the probability of high
privacy leakage with respect to the user’s local training effort 𝑒 as:

𝐸CR (𝑒) =
𝑐′ (𝑒)/𝑐 (𝑒)
𝐹 ′ (𝑒)/𝐹 (𝑒) . (18)

Definition 4measures how responsive the training cost is relative
to the probability of high privacy leakage as the user adjusts 𝑒 .

In this case, the platform’s revenues become {𝑆𝐻 , 𝑆𝐿}, and the un-
learning costs become {𝑞𝐻 , 𝑞𝐿}. Considering the platform’s strictly
convex revenue function and unlearning cost function, we have the
condition 𝑆𝐿+𝑞𝐿

𝑅𝐿
<

𝑆𝐻 +𝑞𝐻
𝑅𝐻

. For the convex unlearning cost model,
this may be due to the complexity of removing deeply embedded
or widely distributed data.

Further details of this setting are provided in Appendix D.3. Let
the expected surpluses of the platform be denoted as E[𝑉𝐷 ] for the
unlearning-disabled platform and E[𝑉𝐸 ] for the unlearning-enabled
platform. We now present Theorem 3.

E
[V̄

E
]
−

E
[V̄

D
]

p
SL+qL

RL

SH+qH

RH

p̄

High elasticity

Mediate elasticity

Low elasticity

Figure 4: The expected surplus difference (
(
E[𝑉𝐷 ] − E[𝑉𝐸 ]

)
)

under effort 𝑒 versus user’s privacy sensitivity 𝑝.

Theorem 3. To incentivize the user to exert a fixed effort 𝑒 ∈ E:

• If the incentivized effort 𝑒 satisfies 𝐸CR (𝑒) < 1 − 𝑢 (−𝑝𝑅𝐿 )
𝑐 (𝑒 )

(high elasticity), the surplus difference
(
E[𝑉𝐷 ] − E[𝑉𝐸 ]

)
in-

creases piecewise linearly in 𝑝 .
• If the incentivized effort 𝑒 satisfies 𝐸CR (𝑒) ≥ 1 − 𝑢 (−𝑝𝑅𝐿 )

𝑐 (𝑒 )
(low elasticity), the surplus difference

(
E[𝑉𝐷 ] − E[𝑉𝐸 ]

)
is

strictly negative and decrease in 𝑝 until 𝑝 >
𝑆𝐻 +𝑞𝐻
𝑅𝐻

.

Figure 4 illustrates Theorem 3. Detailed proof and further dis-
cussion are provided in the Appendix D.3.

When 𝐸CR (𝑒) ≤ 1, the probability of high privacy leakage in-
creases more rapidly with effort than the training cost. In this case,
the user is incentivized to exert higher effort to trigger high privacy
leakage, maximizing its net utility. Here, the incentive problems
for both the unlearning-disabled and unlearning-enabled platforms
are similar. However, the unlearning-disabled platform must ab-
sorb all potential loss. As the user’s privacy sensitivity increases
(i.e., 𝑝 >

𝑆𝐿+𝑞𝐿
𝑅𝐿

), the unlearning-enabled platform can cap its maxi-
mum loss at unlearning and compensation for unlearning, while
the unlearning-disabled platform’s loss decreases linearly with 𝑝 .

When 1 < 𝐸CR (𝑒) < 1− 𝑢 (−𝑝𝑅𝐿 )
𝑐 (𝑒 ) , the surplus difference behaves

differently. In this scenario, the user exert less effort because the
training cost grows more sharply than the probability of high pri-
vacy leakage. For small 𝑝 ≤ 𝑝 in Figure 4, the higher compensation
for the user’s training cost dominates the platform’s surplus, result-
ing in a lower surplus compared to the unlearning-disabled setting.
This effect becomes more pronounced when 𝐸CR (𝑒) ≥ 1− 𝑢 (−𝑝𝑅𝐿 )

𝑐 (𝑒 ) .
These findings are summarized in Observation 1.

Observation 1. Unlearning can improve the platform’s profitabil-
ity when the cost elasticity of risk distribution is high, where the user
is less concerned about the training costs.

The platform then chooses the optimal effort to incentivize the
user to exert to maximize the expected surplus. Due to the complex-
ity of obtaining a closed-form solution, we numerically examine
this in Section 5 for the continuous leakage case.

5 Simulations
In this section, we first perform numerical studies of the incentive
effect of unlearning. Then we compare the expected surpluses of
two unlearning profiles and investigate the platform’s probability
under different degrees of risk aversion and privacy sensitivity.
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Figure 5: Incentive effect of unlearning
versus user’s privacy sensitivity 𝑝 and
risk aversion 𝑟 .
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Figure 7: The difference of achievable
expected surplus when enabling and
disabling unlearning.

5.1 Setting
We consider the federated learning setting in Example 1. Assume the
random factor𝑦 follows an exponential distribution with parameter
𝜃 = 100. The utility function is defined as 𝑢 (𝜋) = 1 − exp(−𝑟𝜋),
where 𝑟 represents the user’s degree of risk aversion. The training
cost is modeled by 𝑐 (𝑒) = −𝜉 · log(1 − 𝑒), where 𝑒 ∈ [0, 1). For the
platform’s setting, we consider 𝑆 (𝑅) = 𝑅2 and 𝑞(𝑅) = 0.1 · 𝑅2. A
more detailed setup for simulations is provided in Appendix C.1.

To solve the contract design problems in (11) and (13), we ap-
ply the first-order approach[56]. This method simplifies the set of
possible incentive constraints to a local incentive constraint, trans-
forming the problem into a standard convex programming one.
More details are provided in the Appendix B.2. We then quantify
R to ensure the optimization is solvable using CVX, a package for
specifying and solving convex programs [57, 58].

5.2 Numerical Results
5.2.1 Unlearning incentivizes learning under risk aversion. We begin
by investigating the incentive effects of unlearning in relation to
two key factors: user risk aversion 𝑟 and user privacy sensitivity 𝑝 .

Figure 5 illustrates a contour plot demonstrating that as both
the user’s risk aversion 𝑟 and privacy sensitivity 𝑝 increase, the
incentive effect also increases. This demonstrates that higher levels
of risk aversion and privacy sensitivity lead to a greater disparity
in the compensation required to motivate users in the unlearning-
disabled versus unlearning-enabled platforms. These results are
consistent with the theoretical bound presented in Theorem 1.

5.2.2 Contract design problem. We compare the platform’s con-
tract design under both unlearning-enabled and unlearning-disabled
settings, considering 𝑝 ∈ [0, 2] and 𝑟 ∈ [0, 2].

Figure 6 shows the platform’s expected surplus as the user exerts
a fixed effort level 𝑒 ∈ [0.05, 0.95] under two privacy sensitivity
settings: 𝑝 = 0.5 and 𝑝 = 1.0. When privacy sensitivity is low
(𝑝 = 0.5), the expected surplus of the unlearning-enabled platform
is slightly higher than that of the unlearning-disabled one, which
aligns with our analysis of the binary privacy leakage case. As the
effort increases, reaching the low elasticity region (𝑒 > 0.84), the
expected surplus in the unlearning-disabled setting surpasses that
of the unlearning-enabled one.

At higher privacy sensitivity (𝑝 = 1.0), the surplus difference re-
mains strictly positive until 𝑒 > 0.912, at which point the low elastic-
ity reappears. Additionally, we mark a zero-surplus line, indicating
that when privacy sensitivity is high (e.g., 𝑝 = 1.0), the unlearning-
disabled platform may frequently (𝑒 ∈ [0.71, 0.94]) shut down its
federated learning operations due to negative expected surplus. In
contrast, the unlearning-enabled platform can sustain a positive
expected surplus over a broader effort range 𝑒 ∈ [0.43, 0.922].

We further examine the platform’s achievable expected surplus
concerning user risk aversion and privacy sensitivity in Figure 7.
First, an increase in user risk aversion 𝑟 leads to a slight improve-
ment in expected surplus. This is because when users are more
risk-averse, the platform needs to smooth the contract to mitigate
the risks users face, thereby lowering the risk premium. In this
context, Figure 12 in Appendix C.2 illustrates the optimal compen-
sation schemes for 𝑒 = 0.85. Additionally, unlearning significantly
enhances the platform’s profitability when user privacy sensitivity
𝑝 is high. As privacy sensitivity increases, the gap between the
achievable surplus in the two settings widens.

We also examine the platform’s revenue and incentive cost sepa-
rately in Appendix C.2.

6 Conclusion
To the best of our knowledge, this paper is the first to examine
the incentive effects of unlearning on both user behavior and plat-
form profitability. We have proposed a necessary condition that
decomposes the intertwined compensation mechanisms for learn-
ing and unlearning, thereby making the contract design problem
for unlearning-enabled scenarios tractable and solvable. Our for-
mulation and analysis have highlighted several key insights: (i)
introducing unlearning can enhance users’ willingness to partici-
pate in federated learning; (ii) when users’ local training processes
are unobservable, the incentive effects of unlearning depend on
the relationship between training costs and the probability of sig-
nificant privacy leakage as users exert the incentivized effort; and
(iii) higher privacy leakage sensitivity leads to a larger surplus
advantage of unlearning compared to disabling unlearning.

In future work, we will explore this direction under more general
conditions by considering the externality model, in which case one
user’s unlearning behaviors may trigger other users to unlearn.
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A Questionnaire Survey
In this section of the Appendix, we present details of the question-
naire survey conducted in October 2024, followed by our findings
and insights.

A.1 Hypotheses
The primary goal is to evaluate the following three hypotheses:

• H1: Users of online services have varying levels of privacy
sensitivity.

• H2: Users tend to exhibit risk aversion when confronted
with privacy risk.

• H3: Providing an "unlearning" option significantly increases
users’ willingness to share data.

A.2 Survey Setup
A.2.1 Demographics. To ensure that the data was comprehensive
and representative, minimizing biases toward specific groups, we
carefully selected five demographic dimensions that are most likely
to influence privacy sensitivity or consumer behavior: gender, in-
come, educational background, age, and race, and balance them as
much as possible. We applied strict stratified sampling to the first
three dimensions to ensure balanced data across these categories.

Specifically, we recruited 150 participants via the Prolific 1. Our
participant pool was relatively balanced by gender with 36% male,
39% female, and 22% identifying as non-binary or third gender. In-
come levels were also well distributed, with each personal income
bracket covering between 13.1% and 24.2% of the sample. In terms
of educational background, there was diversity as well, with partic-
ipants in each category ranging from 17.6% to 38.6%. Regarding age,
56.5% of participants were aged 18-34, and 35.4% were aged 35-55,
which are precisely the groups that are frequent internet users.
It is important to note that 73.9% of the participants were white,
which reflects the broader demographic distribution of Prolific’s
user base[59] but may introduce a potential bias toward this racial
group.

Demographic data for these five dimensions are illustrated in
Figure 8.

A.2.2 Privacy sensitivity metric. To quantify participants’ privacy
sensitivity, we used the widely recognized willingness to pay a
premium (WPP) method, which measures participants’ perceived
added value of a product (e.g., brand, quality, or features) [60].

To ensure that all "privacy sensitivity" scores fell within the
range [0,1], we also apply Min-Max Normalization to standardize
the values.

A.2.3 Remark. Two key points should be noted. First, to ensure
participants quickly and clearly understand the concept of "un-
learning", we used the phrase "erase your contribution of shared
data" instead of more technical terms like "unlearning" or "feder-
ated unlearning". Second, to make the survey relevant to real-world
applications of federated unlearning, we selected scenarios that
reflect typical privacy concerns in practice, such as online shopping
platforms and video apps.

A.3 Survey Questions
A.3.1 Question Set 1. Question Set 1 is designed to measure par-
ticipants’ privacy sensitivity and verify our H1. Participants were
asked how much they would be willing to pay to mitigate the con-
sequences of a privacy breach. We created four scenarios—social
media, health fitness app, news website, and ride-sharing app—each
involving a potential privacy breach. For each scenario, participants
indicated the maximum amount they would be willing to pay to
prevent the loss and keep their data private. The specific questions
are as follows:
1Prolific: https://www.prolific.com
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Figure 8: Demographic distribution across gender, income, educational background, age, and race.

• You have shared personal data with a social media platform
to receive personalized recommendations for accounts or
posts. However, you later notice an increase in targeted ads
and realize your data may be at risk of privacy breaches.
Now, you have the option to delete your data and stop
sharing information in the future. What is the maximum
amount you would be willing to pay to keep your data
private?

• You are using a Health & Fitness App and have provided
personal information to receive customized fitness plans.
One day, you find out that your data could be sold to third
parties or insurers, potentially raising your premiums or
increasing targeted ads. What is the maximum amount you
would be willing to pay to keep your data private?

• You are using a newswebsite that tracks your reading habits
to offer tailored content. However, it may also sell your pref-
erences to third-party advertisers or deliver biased news.
What is the maximum amount you would be willing to pay
to keep your data private?

• You are using a ride-sharing app that tracks your past loca-
tions to suggest faster routes. However, it may also share
this data with third parties or adjust prices based on your
location and demand (e.g., price surges). What is the max-
imum amount you would be willing to pay to keep your
data private?

A.3.2 Question Set 2. Question Set 2 aims to assess participants’
risk aversion and explore how the availability of an unlearning
option affects their willingness to share data, addressing both H2
and H3. Two specific scenarios—“video app usage” and “shopping
app usage”—were presented. Participants were asked to indicate
their willingness to share data under the following three conditions:

(1) The app does not actively collect personal information and
offers only a basic search function.

(2) The app collects your information, resulting in both positive
consequences (such as more personalized video recommen-
dations) and negative consequences (such as more targeted
ads and repetitive video suggestions). All consequences,
both positive and negative, affect you directly.

(3) Similar to condition (2), but with the added option to request
the app to erase your shared information at any time (for
example, if you are dissatisfied with the benefits or privacy
implications).

The specific questions for these scenarios are as follows:

• There is a video app (such as YouTube) where you can find
anything that may interest you (e.g. latest news, music,
movie cuts). Please show your willingness of three different
choices.

• There is a shopping app (such as Amazon, Walmart) where
you can buy various items ranging from living things to
snacks. Please show your willingness of three different
choices by moving the sliding blocks.

A.3.3 Attention-check. To maintain data quality, we also included
two attention-check questions. Only participants who passed both
checks were included in the final analysis. The attention-check
questions for Problem Set 1 and Problem Set 2 are as follows:

• Jack is a wealthy programmer who is solely focused on
making money and knows nothing about financial man-
agement. With this in mind, select Jack’s area of expertise:
“Investing in the stock market”, “Investing in real estate”,
“Both”, or “Neither”.

• Carol is very sensitive in her daily life and does not share
any browsing history related to her private life. Which
choice would she prefer? “TikTok’s intelligent recommen-
dation system based on personal data”, “Walmart app’s intel-
ligent recommendation system based on browsing records”,
“Both are acceptable”, or “Neither”.

A.4 Survey Results
Out of the 150 participants, 122 successfully passed both attention-
check questions, resulting in a pass rate of 81.3%. All subsequent
data analyses are based on the responses from participants who
passed the attention checks.

A.4.1 Varying levels of privacy sensitivity. Participants’ privacy
sensitivity across the four scenarios, along with the mean values, is
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Figure 9: Normalized privacy sensitivity of participants
across four different scenarios.

illustrated in a box plot in Figure 9. The central line in the figure rep-
resents the median value, approximately 0.04. The upper and lower
bounds of the box correspond to the 75% quantile (0.10) and the
25% quantile (0.02), indicating that most data points fall within this
range. The whiskers extend to the upper limit (0.22) and the lower
limit (1𝑒 − 06), with several outliers shown as orange points. This
variation in privacy sensitivity levels among participants supports
H1.

However, the variation along with the clustering of data around
0.04 may suggest a potential limitation in the survey design. The sce-
narios might have been too broad, causing participants’ responses
to be overly influenced by subjective preferences, leading to a wide
disparity in selected values.

A.4.2 Risk Aversion Tendency. As shown in Figure 2, participants’
willingness to share personal data is 73.34% and 73.87% when the
application does not actively collect personal information (as indi-
cated by the orange bars in Figure 2). However, when participants
were presented with both the positive and negative consequences
of data sharing, willingness dropped to 34.14% and 28.63%. These
results strongly validate H2 and support the overarching premise
of the study.

A.4.3 Unlearning Option and Change of Willingness. Figure 2 also
demonstrates the increase in participants’ willingness to share data
when a revocable data-sharing option was introduced. Willingness
to share data increased by 23.26% and 23.8% across the two scenarios.
The contrast is visually emphasized by the red and blue bars in
Figure 2. This finding suggests that when faced with potential
risks, the availability of an unlearning option significantly boosts
participants’ willingness to share data, directly supporting H3.

B Analysis Details
In this part of the Appendix, we provide the analysis of Example 1
and the relaxed contract design problem to support our analysis in
the main text. We summarize the key notations in Table 1.

B.1 Analysis of Example 1
The distribution of𝑋𝑖 is assumed to follow a normal distribution, i.e.,
𝑋𝑖 ∼ N(𝑥𝑖 , 𝜎2

𝑖
). This personalized data is modeled as 𝐷𝑖 = 𝑋𝑖 + 𝑍𝑖 ,

where𝑍𝑖 is an independent random variable also following a normal
distribution, i.e., 𝑍𝑖 ∼ N(0, 𝜏2

𝑖
). Consequently, the local training

data sample 𝐷𝜅
𝑖

∈ D𝑖 for user 𝑖 consists of i.i.d. samples from
N(𝑥𝑖 , 𝜎2

𝑖
+ 𝜏2

𝑖
).

Define the loss function as ℓ (𝐷,𝑊 ) ≜ ∥𝐷 −𝑊 ∥2, where 𝐷

denotes the training data sample,𝑊 denotes the machine learning
model, and ∥ · ∥ denotes the Euclidean norm. When the user 𝑖
participates in the federated learning, the well-trained local model
based on D𝑖 is given by:

𝑊 ∗
𝑖 = arg min

𝑊 ∈W

1
𝑛𝑖

𝑛𝑖∑︁
𝜅=1

ℓ (𝐷𝜅
𝑖 ,𝑊 ) = 1

𝑛𝑖

𝑛𝑖∑︁
𝜅=1

∥𝐷𝜅
𝑖 −𝑊 ∥2, (19)

The minimum of this objective function is given by the sample
mean. Therefore, the well-trained local model and its underlying
distribution can be expressed as:

𝑊 ∗
𝑖 =

1
𝑛𝑖

𝑛𝑖∑︁
𝜅=1

𝐷𝜅
𝑖 , 𝑊 ∗

𝑖 ∼ N
(
𝑥𝑖 , 𝜎

2
𝑖 + 1

𝑛𝑖
𝜏2
𝑖

)
. (20)

Similarly, the well-trained platformmodel𝑊 ∗
𝑃
for the warm-start

federated learning platform and its underlying distribution can be
given by

𝑊 ∗
𝑃 =

1
𝑛𝑃

𝑛𝑃∑︁
𝜅=1

𝐷𝜅
𝑃 , 𝑊 ∗

𝑃 ∼ N
(
𝑥𝑃 , 𝜎

2
𝑃 + 1

𝑛𝑃
𝜏2
𝑃

)
, (21)

where 𝐷𝜅
𝑃
represented the 𝜅-th data sample to train the global

machine learning model𝑊 ∗
𝑃
.

Let the correlation coefficient of (𝑋𝑖 , 𝑋𝑃 ) to be denoted as 𝜌𝑖 . The
joint distribution of

(
𝑋𝑖 ,𝑊

∗
𝑖
,𝑊 ∗

𝑃

)
follows a multivariate normal

distribution:

©­«
𝑋𝑖
𝑊 ∗

𝑖
𝑊 ∗

𝑃

ª®¬ ∼ N ©­«©­«
𝑥𝑖
𝑥𝑖
𝑥𝑃

ª®¬ , Σ𝑖ª®¬ , (22)

where

Σ𝑖 =


𝜎𝑖

2 𝜎𝑖
2 𝜌𝑖 𝜎𝑃 𝜎𝑖

𝜎𝑖
2 𝜏𝑖

2

𝑛𝑖
+ 𝜎𝑖

2 𝜌𝑖 𝜎𝑃 𝜎𝑖

𝜌𝑖 𝜎𝑃 𝜎𝑖 𝜌𝑖 𝜎𝑃 𝜎𝑖
𝜏𝑃

2

𝑛𝑃
+ 𝜎𝑃

2

 . (23)

Then the privacy leakage for the well-trained local and well-
trained global models, denoted as the maximum privacy leakage, is
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Table 1: Key notations and descriptions.

Symbol Description

𝑅 Privacy leakage modeled by conditional mutual information.
C𝐷 = {𝑡 (𝑅)} Contract in the unlearning-disabled setting, where 𝑡 (𝑅) is the compensation for privacy leakage 𝑅.

C𝐸 = {𝑡 (𝑅), 𝑡 (𝑅)} Contract in the unlearning-enable setting, where 𝑡 (𝑅) is the compensation for privacy leakage 𝑅,
and 𝑡 (𝑅) is the compensation for unlearning 𝑅.

𝑒 , 𝑐 (𝑒) User’s local training effort and the corresponding training cost.
𝑎(𝑅) User’s unlearning decision when realized 𝑅
𝑟 User’s degree of risk aversion.
𝑝 User’s privacy sensitivity.

𝑞(𝑅) Platform’s unlearning cost for privacy leakage 𝑅.
𝑆 (𝑅) Platform’s revenue from privacy leakage 𝑅.

given by:

(𝑅𝑖 )max = MI
(
𝑋𝑖 ;𝑊 ∗

𝑖 |𝑊 ∗
𝑃

)
= 𝐻 (𝑋𝑖 ,𝑊 ∗

𝑃 ) + 𝐻 (𝑊 ∗
𝑖 ,𝑊

∗
𝑃 ) − 𝐻 (𝑋𝑖 ,𝑊 ∗

𝑖 ,𝑊
∗
𝑃 ) − 𝐻 (𝑊 ∗

𝑃 )

=
1
2

log

det

(
Σ(

𝑋𝑖 ,𝑊
∗
𝑃

) ) det

(
Σ(

𝑊 ∗
𝑖
,𝑊 ∗

𝑃

) )
det

(
Σ(

𝑋𝑖 ,𝑊
∗
𝑖
,𝑊 ∗

𝑃

) ) det

(
Σ(

𝑊 ∗
𝑃

) )

=
1
2

log

©­­­­­­­­­«
1 +

𝜎2
𝑖
𝑛𝑖

[
(1 − 𝜌2

𝑖
)𝑛𝑃𝜎2

𝑃
+ 𝜏2

𝑃

]
𝜏2
𝑖

(
𝑛𝑃𝜎

2
𝑃
+ 𝜏2

𝑃

)
︸                            ︷︷                            ︸

=�̃�

ª®®®®®®®®®¬
.

(24)
The term 𝜎2

𝑖 𝑛𝑖

𝜏2
𝑖

in 𝑦 corresponds to the user’s effort, representing
the leaked privacy resulting from the sharing of its local model. The
user can increase the number of local data samples (increasing 𝑛𝑖 )
or reduce the noise in the local data (decreasing 𝜏𝑖 ) to contribute
more privacy leakage, i.e., exert higher training effort.

Finally, integrating the ratio 𝛿 ∈ [0, 1], the privacy leakage is
given by

𝑅(𝑒,𝑫𝑖 ) =
𝛿

2
log(1 + 𝑦 · 𝑒), ∀𝑒 ∈ E, (25)

where

𝑦 =
𝜎2
𝑖
𝑛𝑖

[
(1 − 𝜌2

𝑖
)𝑛𝑃𝜎2

𝑃
+ 𝜏2

𝑃

]
𝜏2
𝑖

(
𝑛𝑃𝜎

2
𝑃
+ 𝜏2

𝑃

) ≥ 0, and 𝑅 ∈ R . (26)

B.2 Relaxed Contract Design Problem
The complexity of solving the moral hazard problem arises from
the user’s incentive compatibility constraint. The most common
method to address this is relaxing it according to the first-order
condition. Following [56], we conclude the first-order approach in
Lemma 1.

Lemma 1. If the platform is risk neutral and the user is risk averse,
𝑈 (𝜋, 𝑒) = 𝑢 (𝜋) − 𝑐 (𝑒) with 𝑢′ > 0, 𝑢′′ < 0, 𝑐′ > 0, 𝑐′′ ≥ 0, then the
first-order approach is valid if the following conditions hold:

• 𝐺 (𝑅, 𝑒) =
∫ �̂�

−∞ 𝐹 (𝑅 |𝑒)d𝑅 is non-increasing convex in 𝑎 for

each value of 𝑅, i.e., 𝜕𝐺 (�̂�,𝑒 )
𝜕𝑒 ≤ 0, 𝜕

2𝐺 (�̂�,𝑒 )
𝜕𝑒2 ≥ 0;

• E[𝑅 |𝑒] =
∫
R 𝑅 · 𝑓 (𝑅 |𝑒)d𝑅 is non-decreasing concave in 𝑒 , i.e.,

𝜕E[𝑅 |𝑒 ]
𝜕𝑒 ≥ 0, 𝜕

2E[𝑅 |𝑒 ]
𝜕𝑒2 ≤ 0;

• MLRP: 𝐿(𝑅 |𝑒) = 𝑓𝑒 (𝑅 |𝑒 )
𝑓 (𝑅 |𝑒 ) is non-decreasing concave in 𝑅 for

each value of 𝑒 , i.e., 𝜕𝐿 (𝑅 |𝑒 )
𝜕𝑅

≥ 0, 𝜕
2𝐿 (𝑅 |𝑒 )
𝜕𝑅2 ≤ 0;

• 𝑤 (𝑧) = 𝑢
(
𝑢′−1 (1/𝑧)

)
is concave.

Based on Lemma 1, let the user’s payoff conditional on 𝑅 be 𝜋 (𝑅).
The incentive compatibility constraint then relaxes to:∫

R
𝑢 (𝜋 (𝑅)) · 𝑓𝑒 (𝑅 |𝑒)d𝑅 − 𝑐′ (𝑒) = 0. (27)

where 𝑓𝑒 (𝑅 |𝑒) is the derivative of 𝑓 (𝑅 |𝑒) with respect to 𝑒 .

C Simulation Details
In this part of the Appendix, we provide the simulation setup details
omitted from the main text and show additional numerical results.

C.1 Simulation Detailed Setup
Assume the random factor 𝑦 follows an exponential distribution
with parameter 𝜃 :

𝑓 (𝑦) = 1
𝜃

exp
(
−𝑦
𝜃

)
. (28)

The probability density function of uncertain privacy leakage 𝑅 is
then given by:

𝑓 (𝑅 |𝑒) = 2
𝛿𝜃𝑒

exp
©­­«

2𝑅
𝛿

−
exp

(
2𝑅
𝛿

)
− 1

𝑒𝜃

ª®®¬ , (29)

and

𝑓𝑒 (𝑅 | 𝑒) =
exp

(
2𝑅
𝛿

)
− 𝑒𝜃 − 1

𝑒2𝜃
· 𝑓 (𝑅 |𝑒) . (30)

The cumulative distribution function is:

𝐹 (𝑅 |𝑒) = 1 − exp
©­­«

1 − exp
(

2𝑅
𝛿

)
𝑒𝜃

ª®®¬ . (31)
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Figure 10: Probability density function of privacy leakage 𝑅
conditional on user’s effort 𝑒 when the random factor follows
an exponential distribution with 𝜃 = 100 and 𝛿 = 0.5.

We consider a constant 𝛿 = 0.5, which is publicly known to both
the platform and the user. This may be because the user must agree
upon a data use agreement before they participate in the federated
learning platform. Figure 10 illustrates how a user’s effort affects
the distribution of privacy risk. The utility function is defined as
𝑢 (𝜋) = 1 − exp(−𝑟𝜋), where 𝑟 represents the user’s degree of risk
aversion. Then using this setup, we can validate the first-order
approach as described in Lemma 1.

Additionally, in our training cost setup for the user, it is impor-
tant to note that lim𝑒→1 𝑐 (𝑒) = +∞, as 𝑒 = 1 represents a perfectly
trained model, which is impractical to achieve. Additionally, the
user’s utility function has an upper bound of 1, meaning that suf-
ficiently high effort levels would render the incentive problem
infeasible. To address this, we introduce a coefficient 𝜉 = 0.01 to
make the incentive problem feasible at higher effort levels, thus
providing more valuable insights. We consider the effort range of
[0.05, 0.95]. As 𝑒 → 0 will make the numerical instability due to
the denominator in (29) goes to zero.

C.2 Additionally Numerical Results
C.2.1 Unlearning frequency. For the platform’s setting, we con-
sider 𝑆 (𝑅) = 𝑅2 and 𝑞(𝑅) = 0.1 · 𝑅2. In this setting, R𝑈 is given by
[0, 𝑝

1.1 ]. For any realization of 𝑅 ∈ [0, 𝑝
1.1 ], the platform designs the

compensation pairs 𝑡 (𝑅) and 𝑡 (𝑅) to incentivize the user to request
unlearning. The unlearning frequency (UF) is defined as:

UF =

∫
R𝑈

𝑓 (𝑅 |𝑒)d𝑅. (32)

Figure 11 illustrates the unlearning frequency. As the user’s privacy
sensitivity increases, the range of R𝑈 also expands. Additionally,
as the user’s effort increases, the distribution of 𝑅 shifts toward
higher values (as shown in Figure 10), resulting in a decrease in
unlearning frequency. This suggests a trade-off between incentive
intensity and expected revenue in the incentive problem.

C.2.2 An illustrative example for compensation scheme. Figure 12
illustrates the user’s payoff, with privacy sensitivity 𝑝 = 1.0, as
a function of the realized privacy leakage 𝑅, given that the user

exerts an effort level of 𝑒 = 0.85. Then the contract terms of C𝐸 can
de be determined according to Theorem 2. Additionally, unlearning
imposes stricter limited liability, ensuring that the user’s payoff in
the unlearning-enabled platform remains positive. To incentivize
the user to exert the effort the platform desires, the platform must
offer a steep incentive. Moreover, when the user is more risk-averse,
the difference in payoffs diminishes, as risk aversion also limits
the unlearning-disabled platform’s ability to offer high-intensity
incentives.

C.2.3 Platform’s expected revenue and expected incentive cost. Fig-
ure 13 shows the platform’s expected revenue and the incentive
costs required to induce a fixed effort level 𝑒 ∈ [0.05, 0.95]. In
both settings, the platform’s incentive costs and expected sur-
plus increase with the incentivized effort level 𝑒 . As higher ef-
fort shifts the distribution of privacy leakage 𝑅 rightward. While
the unlearning-disabled platform consistently generates higher
expected revenue and incurs higher incentive costs, its expected
surplus may be lower than that of the unlearning-enabled platform.
The unlearning-disabled platform must induce effort within the
range 𝑒 ∈ [0.735, 0.825] to maintain a positive surplus, whereas the
unlearning-enabled platform can support effort over a larger range
𝑒 ∈ [0.435, 0.918].

D Proofs
In this part of the Appendix, we provide the proofs omitted from
the main text.

D.1 Proof of Theorem 1
First, we show 𝑡𝐷 and 𝑡𝐸 are existing and unique. From the definition
of 𝑡𝐷 ,

𝑡𝐷 = inf
{
𝑡 ≥ 0 :

∫
R
𝑢 (𝑡 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 ≥ 0

}
, (33)

Since 𝑢 (·) is an increasing function, the left-hand side of the in-
equality is increasing in 𝑡 . Thus, there is a unique value of 𝑡𝐷 that
satisfies ∫ +∞

0
𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 = 0. (34)

Similarly, 𝑡𝐸 is defined as

𝑡𝐸 = inf
{
𝑡 ≥ 0 :

∫
R
𝑢 (max{𝑡 − 𝑝𝑅, 0}) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 ≥ 0

}
.

(35)
For 𝑡𝐸 , the function𝑢 (max{𝑡 − 𝑝𝑅, 0}) behaves similarly to𝑢 (𝑡 − 𝑝𝑅)

except when 𝑡 − 𝑝𝑅 ≤ 0, in which case it equals 0. Again, due to
the monotonicity of 𝑢 (·), there is a unique value of 𝑡𝐸 that satisfies:∫ 𝑡𝐸

𝑝

0
𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 = 0. (36)

Thus, 𝑡𝐸 is also existing and unique.
From the definitions of 𝑡𝐸 and 𝑡𝐷 , we have the following rela-

tionship:∫ +∞

0
𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅 =

∫ 𝑡𝐸
𝑝

0
𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅. (37)
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Figure 11: Unlearning frequency versus
user’s privacy sensitivity 𝑝 and user’s ef-
fort 𝑒.
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Figure 12: Optimal contract to incentivize
user’s effort 𝑒 = 0.85 when privacy sensi-
tivity 𝑝 = 1.0.
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Figure 13: Platform’s expected revenue
and incentive cost versus user’s effort.
The user risk aversion is 𝑟 = 0.5 and pri-
vacy sensitivity is 𝑝 = 1.0.

Break down the integral on the left-hand side as:∫ +∞

0
𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

=

∫ 𝑡𝐸
𝑝

0
𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅 +

∫ +∞

𝑡𝐸
𝑝

𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅.

(38)
For the right-hand side, we have∫
R
𝑢 (max{𝑡𝐸 − 𝑝𝑅, 0}) · 𝑓 (𝑅 |𝑒) d𝑅 =

∫ 𝑡𝐸
𝑝

0
𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒) d𝑅.

(39)
Thus, the problem in (37) reduces to:∫ 𝑡𝐸

𝑝

0
[𝑢 (𝑡𝐸 − 𝑝𝑅) − 𝑢 (𝑡𝐷 − 𝑝𝑅)] · 𝑓 (𝑅 |𝑒)d𝑅

=

∫ +∞

𝑡𝐸
𝑝

𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅.
(40)

Using the concavity of 𝑢 (·), we can bound the term 𝑢 (𝑡𝐷 − 𝑝𝑅)
in right-hand side of (40):

𝑢 (𝑡𝐷 − 𝑝𝑅) ≤ 𝑢 (𝑡𝐸 − 𝑝𝑅) + 𝑢′ (𝑡𝐸 − 𝑝𝑅) · (𝑡𝐷 − 𝑡𝐸 ), (41)

Therefore, it follows that∫ +∞

𝑡𝐸
𝑝

𝑢 (𝑡𝐷 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

≤
∫ +∞

𝑡𝐸
𝑝

𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

+ (𝑡𝐷 − 𝑡𝐸 ) ·
∫ +∞

𝑡𝐸
𝑝

𝑢′ (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅.

(42)

For the left-hand side of (40),∫ 𝑡𝐸
𝑝

0
[𝑢 (𝑡𝐸 − 𝑝𝑅) − 𝑢 (𝑡𝐷 − 𝑝𝑅)] · 𝑓 (𝑅 |𝑒)d𝑅

≥(𝑡𝐸 − 𝑡𝐷 ) ·
∫ 𝑡𝐸

𝑝

0
𝑢′ (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅.

(43)

Finally, by combining the inequality (42) and (43), we obtain:

(𝑡𝐷 − 𝑡𝐸 ) ·
∫ +∞

0
𝑢′ (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

≥ −
∫ +∞

𝑡𝐸
𝑝

𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅.
(44)

Rearranging the terms on both sides yields that:

(𝑡𝐷 − 𝑡𝐸 ) ≥
−

∫ +∞
𝑡𝐸
𝑝

𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅∫ +∞
0 𝑢′ (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

≥ 0. (45)

For 𝑡𝐷−𝑡𝐸
𝑡𝐸

, it can be bounded by:

𝑡𝐷 − 𝑡𝐸

𝑡𝐸
≥

𝑐 −
∫ +∞
0 𝑢 (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

𝑡𝐸 ·
∫ +∞
0 𝑢′ (𝑡𝐸 − 𝑝𝑅) · 𝑓 (𝑅 |𝑒)d𝑅

=
𝑐 − E𝑅 [𝑢 (𝑡𝐸 − 𝑝𝑅)]
𝑡𝐸 · E𝑅 [𝑢′ (𝑡𝐸 − 𝑝𝑅)] .

(46)

Using the Taylor expansion of𝑢 (𝑡𝐸 −𝑝𝑅) and𝑢′ (𝑡𝐸 −𝑝𝑅) around
𝑡𝐸 :

𝑢 (𝑡𝐸 − 𝑝𝑅) ≈ 𝑢 (𝑡𝐸 ) − 𝑝𝑅𝑢′ (𝑡𝐸 ) +
𝑝2𝑅2

2
𝑢′′ (𝑡𝐸 ),

𝑢′ (𝑡𝐸 − 𝑝𝑅) ≈ 𝑢′ (𝑡𝐸 ) − 𝑝𝑅𝑢′′ (𝑡𝐸 ) .
(47)

Substituting the definition of risk aversion 𝑟 = −𝑢′′ (𝑡 )
𝑢′ (𝑡 ) in (8) into

both the numerator and the denominator of (46), we obtain:

𝑡𝐷 − 𝑡𝐸

𝑡𝐸
≥

𝑐 − 𝑢 (𝑡𝐸 ) + 𝑝E𝑅 [𝑅] · 𝑢′ (𝑡𝐸 ) + 1
2𝑝

2E𝑅 [𝑅2]𝑟 · 𝑢′ (𝑡𝐸 )
𝑡𝐸𝑢

′ (𝑡𝐸 ) · (1 + 𝑝𝑟E𝑅 [𝑅])

=
𝑐 − 𝑢 (𝑡𝐸 )
𝑡𝐸𝑢

′ (𝑡𝐸 )
+ 𝑝E𝑅 [𝑅]

𝑡𝐸
+ 1

2
𝑝2E𝑅 [𝑅2]𝑟

𝑡𝐸
· 1

1 + 𝑝𝑟E𝑅 [𝑅]
.

(48)
Focus on the highest-order terms in 𝑝 , we have

𝑡𝐷 − 𝑡𝐸

𝑡𝐸
= Ω(𝑟𝑝2), (49)

which shows that the relative difference between 𝑡𝐷 and 𝑡𝐸 grows
quadratically with the 𝑝 and linearly with 𝑟 .
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D.2 Proof of Theorem 2
We first present the contract design problem in (13) can be decom-
posed into two sub-problems: one for optimizing the user’s utility
extraction and another for determining the compensation terms
𝑡 (𝑅) and 𝑡 (𝑅).

The platform’s primal optimization problem in (13) can be ex-
pressed as:

max
𝑒,𝑎 (𝑅),𝑡 (𝑅),𝑡 (𝑅)

∫
R

[
𝑎(𝑅) · (−𝑞(𝑅) − 𝑡 (𝑅))

+(1 − 𝑎(𝑅)) · (𝑆 (𝑅) − 𝑡 (𝑅))] · 𝑓 (𝑅 |𝑒)d𝑅,

s.t.
∫
R
𝑢

(
𝑎(𝑅) · 𝑡 (𝑅)

+(1 − 𝑎(𝑅)) · (𝑡 (𝑅) − 𝑝𝑅)) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 (𝑒) ≥ 0,

𝑒 ∈ arg max
𝑒∈E

∫
R
𝑢

(
𝑎(𝑅) · 𝑡 (𝑅)

+(1 − 𝑎(𝑅)) · (𝑡 (𝑅) − 𝑝𝑅)) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 (𝑒),
𝑎(𝑅) ∈ arg max

𝑎∈{0,1}
𝑎 · 𝑡 (𝑅) + (1 − 𝑎) · (𝑡 (𝑅) − 𝑝𝑅),∀𝑅 ∈ R,

𝑡 (𝑅) ≥ 0, 𝑡 (𝑅) ≥ 0,∀𝑅 ∈ R .

(50)
Express the user’s payoff conditional on 𝑅 as:

𝜋 (𝑅) = 𝑎(𝑅) · 𝑡 (𝑅) + (1 − 𝑎(𝑅)) · (𝑡 (𝑅) − 𝑝𝑅), ∀𝑅 ∈ R . (51)

The user’s unlearning decision 𝑎(𝑅) is chosen to maximize its
payoff under 𝑅, which implies:

𝑎(𝑅) = 1
{
𝑡 (𝑅) ≥ 𝑡 (𝑅) − 𝑝𝑅

}
, ∀𝑅 ∈ R . (52)

where 1{·} denotes the indicator function. Then the user’s payoff
𝜋 (𝑅) is determined by

𝜋 (𝑅) = max
{
𝑡 (𝑅), 𝑡 (𝑅) − 𝑝𝑅

}
, ∀𝑅 ∈ R . (53)

Substituting the expression for 𝑎(𝑅) and 𝜋 (𝑅) into (50), the plat-
form’s optimization problem can now be reformulated as:

max
𝜋 (𝑅),𝑡 (𝑅),𝑡 (𝑅)

∫
R
[𝑎(𝑅) · (−𝑞(𝑅))

+(1 − 𝑎(𝑅)) · (𝑆 (𝑅) − 𝑝𝑅)] · 𝑓 (𝑅 |𝑒)d𝑅

−
∫
R
𝜋 (𝑅) · 𝑓 (𝑅 |𝑒)d𝑅, (54a)

s.t.
∫
R
𝑢 (𝜋 (𝑅)) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 (𝑒) ≥ 0, (54b)

𝑒 ∈ arg max
𝑒∈E

∫
R
𝑢 (𝜋 (𝑅)) · 𝑓 (𝑅 |𝑒)d𝑅 − 𝑐 (𝑒), (54c)

𝜋 (𝑅) = max
{
𝑡 (𝑅), 𝑡 (𝑅) − 𝑝𝑅

}
, ∀𝑅 ∈ R, (54d)

𝑎(𝑅) = 1
{
𝑡 (𝑅) ≥ 𝑡 (𝑅) − 𝑝𝑅

}
, ∀𝑅 ∈ R, (54e)

𝑡 (𝑅) ≥ 0, 𝑡 (𝑅) ≥ 0,∀𝑅 ∈ R . (54f)

The problem naturally decomposes into two sub-problems. The
first sub-problem focuses on determining the optimal payoff func-
tion 𝜋 (𝑅), which satisfies the user’s participation constraint (54b)
and incentive compatibility constraint (54c). Once 𝜋 (𝑅) is deter-
mined, the contract terms 𝑡 (𝑅) and 𝑡 (𝑅) can be adjusted to maxi-
mize the platform’s expected surplus (54a), ensuring that the chosen

t̂(R)

t(R)S(R) + q(R) pR

t̂(R) = t(R) − (S(R) + q(R))

t̂(R) = t(R) − pR

(a) 𝑅 ∈ R𝑈 .

t̂(R)

t(R)S(R) + q(R)pR

t̂(R) = t(R) − (S(R) + q(R))

t̂(R) = t(R) − pR

(b) 𝑅 ∈ R𝐿 .

Figure 14: Feasible contract region for each 𝑅 ∈ R. Given one
contract term, the allowable range for another term can be
determined within this region.

compensation terms are consistent with the user’s optimal payoff
𝜋 (𝑅).

Based on the decomposition, the platform’s adjusted revenue
maximization is then expressed as:

max
𝑡 (𝑅),𝑡 (𝑅)

∫
R
[𝑎(𝑅) · (−𝑞(𝑅))

+(1 − 𝑎(𝑅)) · (𝑆 (𝑅) − 𝑝𝑅)] · 𝑓 (𝑅 |𝑒)d𝑅,
s.t. 𝑎(𝑅) = 1

{
𝑡 (𝑅) ≥ 𝑡 (𝑅) − 𝑝𝑅

}
, ∀𝑅 ∈ R .

(55)

This adjusted revenue maximization problem simplifies the plat-
form’s objective by focusing on maximizing the expected surplus
given the user’s unlearning decision 𝑎(𝑅). By optimizing the ob-
jective function with respect to 𝑎(𝑅) for each 𝑅 ∈ R, we derive
the necessary conditions for the adjusted revenue maximization in
(55):

• If −𝑞(𝑅) ≥ 𝑆 (𝑅) − 𝑝𝑅, then the optimal user’s unlearning
decision for the platform is 𝑎∗ (𝑅) = 1, meaning that the
contract must satisfy 𝑡 (𝑅) − 𝑡 (𝑅) ≤ 𝑝𝑅.

• If −𝑞(𝑅) < 𝑆 (𝑅) − 𝑝𝑅, then the optimal user’s unlearning
decision for the platform is 𝑎∗ (𝑅) = 0 and the contract must
satisfy 𝑡 (𝑅) − 𝑡 (𝑅) ≥ 𝑝𝑅.

Substituting the optimal 𝑎∗ (𝑅) into platform’s primal optimiza-
tion in (50) yields a second set of necessary conditions:

• If 𝑎∗ (𝑅) = 1, the contract must also satisfy 𝑡 (𝑅) − 𝑡 (𝑅) ≥
𝑆 (𝑅) + 𝑞(𝑅).

• If 𝑎∗ (𝑅) = 0, the contract must also satisfy 𝑡 (𝑅) − 𝑡 (𝑅) ≤
𝑆 (𝑅) + 𝑞(𝑅).

Combining these conditions, we can state the Theorem 2.
We examine the necessity by driving a contradiction, i.e., any

deviation from the contract structure specified in Theorem 2 results
in a suboptimal expected surplus for the platform.

When 𝑝𝑅 ≥ 𝑆 (𝑅) + 𝑞(𝑅), the optimal contract structure is:

𝑆 (𝑅) + 𝑞(𝑅) ≤ 𝑡 (𝑅) − 𝑡 (𝑅) ≤ 𝑝𝑅 (56)

Any deviation from this structure would imply:

• If the contract {𝑡 (𝑅), 𝑡 (𝑅)} deviates such that 𝑡 (𝑅) − 𝑡 (𝑅) ≤
𝑆 (𝑅) + 𝑞(𝑅) ≤ 𝑝𝑅, the user will request unlearning to max-
imize its payoff under 𝑅. In this case, the platform’s surplus
becomes −𝑞(𝑅) − 𝑡 (𝑅), which is less than 𝑆 (𝑅) − 𝑡 (𝑅), lead-
ing to a suboptimal expected surplus for the platform.
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• Alternatively, if the contract deviates such that 𝑆 (𝑅) +
𝑞(𝑅) ≤ 𝑝𝑅 ≤ 𝑡 (𝑅) − 𝑡 (𝑅), the user will not request un-
learning because the condition 𝑡 (𝑅) ≤ 𝑡 (𝑅) − 𝑝𝑅. The plat-
form’s surplus will then be 𝑅 − 𝑡 (𝑅), which is lower than
−𝑞(𝑅) − 𝑡 (𝑅), again leading to suboptimality.

Similarly, when 𝑝𝑅 ≤ 𝑆 (𝑅) + 𝑞(𝑅), any deviation from 𝑝𝑅 ≤
𝑡 (𝑅) − 𝑡 (𝑅) ≤ 𝑆 (𝑅) + 𝑞(𝑅) will result in a sub-optimal expected
surplus for the platform.

Therefore, the contract structure specified in Theorem 2 is neces-
sary. It ensures that the user selects the unlearning decision 𝑎∗ (𝑅)
that aligns with the platform’s objective while simultaneously sat-
isfying the user’s IR and IC constraints.

We illustrate the relationship between 𝑡 (𝑅) and 𝑡 (𝑅) for each
𝑅 ∈ R in Figure 14.

D.3 Proof of Theorem 3
In the binary privacy leakage case, the platform’s revenues reduce
to {𝑆𝐻 , 𝑆𝐿}, and the unlearning costs to {𝑞𝐻 , 𝑞𝐿}. The contract also
reduce to C̄𝐷 = {𝑡𝐻 , 𝑡𝐿} and C̄𝐸 = {𝑡𝐻 , 𝑡𝐿, 𝑡𝐻 , 𝑡𝐿}.

When the unlearning is disabled, the contract design problem
for binary privacy leakage is formulated as:

max
C̄𝐷

𝐹 (𝑒) · (𝑆𝐻 − 𝑡𝐻 ) + (1 − 𝐹 (𝑒)) · (𝑆𝐿 − 𝑡𝐿) (57a)

s.t. 𝐹 (𝑒) · 𝑢 (𝑡𝐻 − 𝑝𝑅𝐻 ) + (1 − 𝐹 (𝑒)) · 𝑢 (𝑡𝐿 − 𝑝𝑅𝐿) − 𝑐 (𝑒) ≥ 0,
(57b)

𝑒 ∈ arg max
𝑒∈E

𝐹 (𝑒) · 𝑢 (𝑡𝐻 − 𝑝𝑅𝐻 )

+ (1 − 𝐹 (𝑒)) · 𝑢 (𝑡𝐿 − 𝑝𝑅𝐿) − 𝑐 (𝑒), (57c)
𝑡𝐻 ≥ 0, 𝑡𝐿 ≥ 0. (57d)

Replace the (57c) with its first-order condition based on Lemma
1. Then the optimization problem can be solved using the Lagrange
method. Let ℎ(·) denote the inverse function of 𝑢 (·) with ℎ′ >

0, ℎ′′ > 0. The optimal contract is then given by:

• If 𝑐 (𝑒) − 𝐹 (𝑒 )
𝐹 ′ (𝑒 ) · 𝑐

′ (𝑒) ≥ 𝑢 (−𝑝𝑅𝐿), the limited liability con-

straint (57d) is slack. In this case, 𝑡𝐻 = 𝑝𝑅𝐻+ℎ
(
𝑐 (𝑒) + 1−𝐹 (𝑒 )

𝐹 ′ (𝑒 ) · 𝑐′ (𝑒)
)

and 𝑡𝐿 = 𝑝𝑅𝐿 + ℎ
(
𝑐 (𝑒) − 𝐹 (𝑒 )

𝐹 ′ (𝑒 ) · 𝑐
′ (𝑒)

)
.

• If 𝑐 (𝑒) − 𝐹 (𝑒 )
𝐹 ′ (𝑒 ) · 𝑐

′ (𝑒) < 𝑢 (−𝑝𝑅𝐿), the limited liability con-

straint (57d) binds. Then 𝑡𝐻 = 𝑝𝑅𝐻 + ℎ
(
𝑢 (−𝑝𝑅𝐿) + 𝑐′ (𝑒 )

𝐹 ′ (𝑒 )

)
and 𝑡𝐿 = 0.

Substituting these optimal contract terms into (57a) yields the
unlearning-disabled platform’s optimized expected surplus under
effort 𝑒 .

When the unlearning is enabled, the contract design problem
becomes:

max
C̄𝐸

𝐹 (𝑒) ·
[
𝑎𝐻 · (−𝑞𝐻 − 𝑡𝐻 ) + (1 − 𝑎𝐻 ) · (𝑆𝐻 − 𝑡𝐻 )

]
+ (1 − 𝐹 (𝑒)) ·

[
𝑎𝐿 · (−𝑞𝐿 − 𝑡𝐿) + (1 − 𝑎𝐿) · (𝑆𝐿 − 𝑡𝐿)

]
(58a)

s.t. 𝐹 (𝑒) · 𝑢
(
𝑎𝐻 · 𝑡𝐻 + (1 − 𝑎𝐻 ) · (𝑡𝐻 − 𝑝𝑅𝐻 )

)
+ (1 − 𝐹 (𝑒)) · 𝑢

(
𝑎𝐿 · 𝑡𝐿 + (1 − 𝑎𝐿) · (𝑡𝐿 − 𝑝𝑅𝐿)

)
− 𝑐 (𝑒) ≥ 0,

(58b)

𝑒 ∈ arg max
𝑒∈E

𝐹 (𝑒) · 𝑢
(
𝑎𝐻 · 𝑡𝐻 + (1 − 𝑎𝐻 ) · (𝑡𝐻 − 𝑝𝑅𝐻 )

)
+ (1 − 𝐹 (𝑒)) · 𝑢

(
𝑎𝐿 · 𝑡𝐿 + (1 − 𝑎𝐿) · (𝑡𝐿 − 𝑝𝑅𝐿)

)
− 𝑐 (𝑒),

(58c)

𝑎𝐻 = arg max
𝑎∈{0,1}

𝑎 · 𝑡𝐻 + (1 − 𝑎) · (𝑡𝐻 − 𝑝𝑅𝐻 ), (58d)

𝑎𝐿 = arg max
𝑎∈{0,1}

𝑎 · 𝑡𝐿 + (1 − 𝑎) · (𝑡𝐿 − 𝑝𝑅𝐿), (58e)

𝑡𝐻 ≥ 0, 𝑡𝐿 ≥ 0, 𝑡𝐻 ≥ 0, 𝑡𝐿 ≥ 0. (58f)

Considering the platform’s strictly convex revenue function and
unlearning cost function, we have the condition 𝑆𝐿+𝑞𝐿

𝑅𝐿
<

𝑆𝐻 +𝑞𝐻
𝑅𝐻

.
By applying Theorem 2, the contract design problem can be divided
into three cases:

• 𝑝 ≤ 𝑆𝐿+𝑞𝐿
𝑅𝐿

, where the platform designs C̄𝐸 to induce 𝑎𝐻 =

𝑎𝐿 = 0.
• 𝑆𝐿+𝑞𝐿

𝑅𝐿
< 𝑝 <

𝑆𝐻 +𝑞𝐻
𝑅𝐻

, where the platform designs C̄𝐸 to
induce 𝑎𝐻 = 0, 𝑎𝐿 = 1.

• 𝑝 ≥ 𝑆𝐻 +𝑞𝐻
𝑅𝐻

, where the platform designs C̄𝐸 to induce 𝑎𝐻 =

1, 𝑎𝐿 = 1.
Substitute (58c) with its first-order condition, and the optimal

contract can be solved similarly to (57).
Comparing the surplus in both settings leads to three further

cases:
Case 1. 𝑐 (𝑒) − 𝐹 (𝑒 )

𝐹 ′ (𝑒 ) ·𝑐
′ (𝑒) ≥ 0, which implies 𝐸CR (𝑒) ≤ 1 (high

elasticity). The expected surplus difference is as follows:
(i) If 𝑝 ≤ 𝑆𝐿+𝑞𝐿

𝑅𝐿
:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 0. (59)

(ii) If 𝑆𝐿+𝑞𝐿
𝑅𝐿

< 𝑝 <
𝑆𝐻 +𝑞𝐻
𝑅𝐻

:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = (1 − 𝐹 (𝑒)) · 𝑅𝐿
(
𝑝 − 𝑆𝐿 + 𝑞𝐿

𝑅𝐿

)
. (60)

(iii) If 𝑝 ≥ 𝑆𝐻 +𝑞𝐻
𝑅𝐻

:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 𝐹 (𝑒) · 𝑅𝐻 (𝑝 − 𝑆𝐻 + 𝑞𝐻
𝑅𝐻

)

+ (1 − 𝐹 (𝑒)) · 𝑅𝐿
(
𝑝 − 𝑆𝐿 + 𝑞𝐿

𝑅𝐿

)
+ 𝐹 (𝑒) ·

[
ℎ

(
𝑐 (𝑒) + 1 − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐′ (𝑒)
)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
+ (1 − 𝐹 (𝑒)) · ℎ

(
𝑐 (𝑒) − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐
′ (𝑒)

)
.

(61)
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In this case, the limited liability constraints (57d) and (58f) are
slack.

When 𝑝 ≤ 𝑆𝐿+𝑞𝐿
𝑅𝐿

, the unlearning-enabled platform induces the
user not to unlearn regardless of the realization of privacy leakage.
Then the two contract design problems are the same, resulting in
zero surplus difference. When 𝑆𝐿+𝑞𝐿

𝑅𝐿
< 𝑝 <

𝑆𝐻 +𝑞𝐻
𝑅𝐻

, the unlearning-
enabled platform induces the user to unlearn if privacy leakage 𝑅𝐿
is realized. At this point, the unlearning-enabled platform’s surplus
equals −𝑞𝐿 − 𝑡𝐿 (with 𝑡𝐿 = ℎ

(
𝑐 (𝑒) − 𝐹 (𝑒 )

𝐹 ′ (𝑒 ) 𝑐
′ (𝑒)

)
), which remains

constant. Conversely, the unlearning-disabled platform absorbs a
significant negative surplus when realized𝑅𝐿 , as the surplus is given
by 𝑆𝐿 − 𝑝𝑅𝐿 − ℎ

(
𝑐 (𝑒) − 𝐹 (𝑒 )

𝐹 ′ (𝑒 ) 𝑐
′ (𝑒)

)
, which is linearly decreasing

with 𝑝 . When 𝑝 ≥ 𝑆𝐻 +𝑞𝐻
𝑅𝐻

, the unlearning-disabled platform incurs
additional negative surplus when 𝑅𝐻 is realized.

Case 2. 𝑢 (−𝑝𝑅𝐿) < 𝑐 (𝑒) − 𝐹 (𝑒 )
𝐹 ′ (𝑒 ) · 𝑐′ (𝑒) < 0, which implies

1 < 𝐸CR (𝑒) < 1 − 𝑢 (−𝑝𝑅𝐿 )
𝑐 (𝑒 ) (mediate elasticity). The expected

surplus difference is as follows:
(i) 𝑝 ≤ 𝑆𝐿+𝑞𝐿

𝑅𝐿
:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 𝐹 (𝑒) ·
[
ℎ

(
𝑐 (𝑒) + 1 − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐′ (𝑒)
)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
+ (1 − 𝐹 (𝑒)) · ℎ

(
𝑐 (𝑒) − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐
′ (𝑒)

)
.

(62)
(ii) 𝑆𝐿+𝑞𝐿

𝑅𝐿
< 𝑝 <

𝑆𝐻 +𝑞𝐻
𝑅𝐻

:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = (1 − 𝐹 (𝑒)) · 𝑅𝐿
(
𝑝 − 𝑆𝐿 + 𝑞𝐿

𝑅𝐿

)
+ 𝐹 (𝑒) ·

[
ℎ

(
𝑐 (𝑒) + 1 − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐′ (𝑒)
)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
+ (1 − 𝐹 (𝑒)) · ℎ

(
𝑐 (𝑒) − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐
′ (𝑒)

)
.

(63)
(iii) 𝑝 ≥ 𝑆𝐻 +𝑞𝐻

𝑅𝐻
:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 𝐹 (𝑒) · 𝑅𝐻
(
𝑝 − 𝑆𝐻 + 𝑞𝐻

𝑅𝐻

)
+ (1 − 𝐹 (𝑒)) · 𝑅𝐿

(
𝑝 − 𝑆𝐿 + 𝑞𝐿

𝑅𝐿

)
+ 𝐹 (𝑒) ·

[
ℎ

(
𝑐 (𝑒) + 1 − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐′ (𝑒)
)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
+ (1 − 𝐹 (𝑒)) · ℎ

(
𝑐 (𝑒) − 𝐹 (𝑒)

𝐹 ′ (𝑒) 𝑐
′ (𝑒)

)
.

(64)
In this case, the limited liability constraint (57d) in the unlearning-

disabled platform’s contract design remains slack, while in the
unlearning-enabled platform, the limited liability constraint (58f) is
binding and the individual rationality (IR) constraint (58b) is slack.
This leads to a situation where the user’s expected utility is greater
than zero, creating a “limited liability rent”. For sufficiently small
values of 𝑝 , where E[𝑉𝐸 ] −E[𝑉𝐷 ] < 0, the unlearning-enabled plat-
form’s surplus is dominated by this limited liability rent, resulting
in a negative surplus difference.

Case 3. 𝑐 (𝑒) − 𝐹 (𝑒 )
𝐹 ′ (𝑒 ) ·𝑐

′ (𝑒) ≤ 𝑢 (−𝑝𝑅𝐿), which implies 𝐸CR (𝑒) ≥

1 − 𝑢 (−𝑝𝑅𝐿 )
𝑐 (𝑒 ) (low elasticity). The expected surplus difference is as

follows:
(i) 𝑝 ≤ 𝑆𝐿+𝑞𝐿

𝑅𝐿
:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 𝐹 (𝑒) ·
[
ℎ

(
𝑢 (−𝑝𝑅𝐿) +

𝑐′ (𝑒)
𝐹 ′ (𝑒)

)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
− (1 − 𝐹 (𝑒)) · 𝑝𝑅𝐿

(65)
(ii) 𝑆𝐿+𝑞𝐿

𝑅𝐿
< 𝑝 <

𝑆𝐻 +𝑞𝐻
𝑅𝐻

:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 𝐹 (𝑒) ·
[
ℎ

(
𝑢 (−𝑝𝑅𝐿) +

𝑐′ (𝑒)
𝐹 ′ (𝑒)

)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
+ (1 − 𝐹 (𝑒)) (−𝑞𝐿 − 𝑆𝑙 ) .

(66)
(iii) 𝑝 ≥ 𝑆𝐻 +𝑞𝐻

𝑅𝐻
:

E[𝑉𝐸 ] − E[𝑉𝐷 ] = 𝐹 (𝑒) · 𝑅𝐻
(
𝑝 − 𝑆𝐻 + 𝑞𝐻

𝑅𝐻

)
+ 𝐹 (𝑒) ·

[
ℎ

(
𝑢 (−𝑝𝑅𝐿) +

𝑐′ (𝑒)
𝐹 ′ (𝑒)

)
− ℎ

(
𝑐′ (𝑒)
𝐹 ′ (𝑒)

)]
+ (1 − 𝐹 (𝑒)) (−𝑞𝐿 − 𝑆𝐿) .

(67)
In this scenario, the limited liability constraints (57d) and (58f)

are binding in both the unlearning-disabled and unlearning-enabled
platforms, while the IR constraints (57b) and (57b) are slack. Both
platforms must pay the user limited liability rent. In the unlearning-
disabled setting, the user’s utility is capped at 𝑢 (−𝑝𝑅𝐿), whereas
in the unlearning-enabled setting, it is capped at zero (as shown
in Figure 14). The unlearning-enabled platform must pay a higher
limited liability rent, which increases with 𝑝 , leading to a decreasing
surplus difference.
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