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Abstract

The facts and time in the document are intri-
cately intertwined, making temporal reason-
ing over documents challenging. Previous
work models time implicitly, making it dif-
ficult to handle such complex relationships.
To address this issue, we propose MTGER, a
novel Multi-view Temporal Graph Enhanced
Reasoning framework for temporal reasoning
over time-involved documents. Concretely,
MTGER explicitly models the temporal rela-
tionships among facts by multi-view temporal
graphs. On the one hand, the heterogeneous
temporal graphs explicitly model the tempo-
ral and discourse relationships among facts;
on the other hand, the multi-view mechanism
captures both time-focused and fact-focused
information, allowing the two views to comple-
ment each other through adaptive fusion. To
further improve the implicit reasoning capabil-
ity of the model, we design a self-supervised
time-comparing objective. Extensive experi-
mental results demonstrate the effectiveness
of our method on the TimeQA and SituatedQA
datasets. Furthermore, MTGER gives more con-
sistent answers under question perturbations.

1 Introduction

In the real world, many facts change over time, and
these changes are archived in the document such as
Wikipedia. Facts and time are intertwined in docu-
ments with complex relationships. Thus temporal
reasoning is required to find facts that occurred
at a specific time. To investigate this problem,
Chen et al. (2021) propose the TimeQA dataset and
Zhang and Choi (2021) propose the SituatedQA
dataset. For example, Figure 1 illustrates a ques-
tion involving implicit temporal reasoning. From
the human perspective, to answer this question, we
first need to find relevant facts in the document and
obtain new facts based on existing facts (left of
Figure 1(d)). We need to deduce the answer from
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(b) Wikipedia Document: Tiger Woods

…… In 1984 at the age of eight, he won the 9–10 boys' event, the youngest age group 

available, at the Junior World Golf Championships as amateur player.

When Woods was 13 years old, he played in the 1989 Big I, which was his first major 

national junior tournament.

Woods was 15 years old and a student at Western High School in Anaheim when he 

became the youngest U.S. Junior Amateur champion;

He enrolled at Stanford in the fall of 1994 under a golf scholarship and won his first 

collegiate event, the 40th Annual William H. Tucker Invitational, that September.

He left college after two years in order to turn professional player in the golf industry. ……
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Figure 1: An example of a time-sensitive question in-
volving implicit reasoning, best viewed in color. (a) de-
scribes the question, answer and constraints (b) shows
a time-involved document (c) depicts the timeline of
events in the document (d) illustrates the reasoning pro-
cess in the human perspective, including three steps.

the existing facts according to the constraints of the
question, including time constraints and relation
constraints (right of Figure 1(d)).

Recent work (Chen et al., 2021; Zhang and Choi,
2021; Izacard and Grave, 2021b; Zaheer et al.,
2020; Beltagy et al., 2020a; Guo et al., 2022) di-
rectly uses pre-trained models or large-scale lan-
guage models to answer time-sensitive questions,
neglecting to explicitly model the time like human,
resulting in lack of understanding of time. Even
the state-of-the-art QA models have a large gap
compared with human performance (50.61 EM vs.
87.7 EM), indicating that there is still a long way
to go in this research area.

Inspired by the human reasoning process de-
picted in Figure 1(d), we intend to explicitly model
the temporal relationships among facts. To this



end, we propose Multi-view Temporal Graph En-
hanced Reasoning framework (MTGER) for tem-
poral reasoning over time-involved documents. We
construct a multi-view temporal graph to establish
correspondence between facts and time and to ex-
plicitly model the temporal relationships between
facts. The explicit and implicit temporal relations
between facts in the heterogeneous graph enhance
the temporal reasoning capability, and the cross-
paragraph interactions between facts alleviate the
inadequate interaction.

Specifically, each heterogeneous temporal graph
(HTG) contains factual and temporal layers. Nodes
in the factual layer are events, and nodes in the
temporal layer are the timestamps (or time inter-
vals) corresponding to the events. Different nodes
are connected according to the discourse relations
and relative temporal relations. In addition, we
construct a time-focused HTG and a fact-focused
HTG to capture information with different focuses,
forming a multi-view temporal graph. We com-
plement the two views through adaptive fusion to
obtain more adequate information. At the decoder
side, we use a question-guided fusion mechanism
to dynamically select the temporal graph informa-
tion that is more relevant to the question. Finally,
we feed the time-enhanced representation into the
decoder to get the answer. Furthermore, we intro-
duce a self-supervised time-comparing objective to
enhance the temporal reasoning capability.

Extensive experimental results demonstrate the
effectiveness of our proposed method on the
TimeQA and SituatedQA datasets, with a perfor-
mance boost of up to 9% compared to the state-
of-the-art QA model and giving more consistent
answers when encountering input perturbations.

The main contributions of our work can be sum-
marized as follows:

• We propose to enhance temporal reasoning by
modeling time explicitly. As far as we know,
it is the first attempt to model time explicitly
in temporal reasoning over documents.

• We devise a document-level temporal reason-
ing framework, MTGER, which models the
temporal relationships between facts through
heterogeneous temporal graphs with a com-
plementary multi-view fusion mechanism.

• Extensive experimental results demonstrate
the effectiveness and robustness of our method
on the TimeQA and SituatedQA datasets.

2 MTGER Framework

2.1 Task Definition
Document-level textual temporal reasoning tasks
take a long document (e.g., typically thousands
of characters) with a time-sensitive question as
input and output the answer based on the docu-
ment. Formally, given a time-sensitive question Q,
a document D, the goal is to obtain the answer A
which satisfies the time and relation constraints in
question Q. The document D = {P1, P2, ..., Pk}
contains k paragraphs, which are either from a
Wikipedia page or retrieved from Wikipedia dumps.
The answer can be either an extracted span or gen-
erated text, and we take the generation approach
in this paper. Please refer to Appendix A.1 for the
definition of time-sensitive questions.

A∗ = argmaxP (A | Q,D; θ) (1)

2.2 Overview
As depicted in Figure 2, MTGER first encodes
paragraphs and constructs a multi-view tempo-
ral graph, then applies temporal graph reasoning
over the multi-view temporal graph with the time-
comparing objective and adaptive fusion, and fi-
nally feeds the time-enhanced features into the de-
coder to get the answer.

2.3 Text Encoding and Graph Construction
Textual Encoder We use the pre-trained
FiD (Izacard and Grave, 2021b) model to encode
long text. FiD consists of a bi-directional encoder
and a decoder. It encodes paragraphs individually
at the encoder side and concatenates the paragraph
representations as the decoder input.

Given a document D = {P1, P2, ..., Pk} con-
taining K paragraphs, each paragraph contains
M tokens: Pi = {x1, x2, ..., xm}, h represents
the hidden dimension. Following the previous
method (Izacard and Grave, 2021a), the question
and paragraph are concat in a "question: title:
paragraph:" fashion. The textual representation
Htext ∈ Rk×m×h is obtained by encoding all para-
graphs individually using the FiD Encoder.

Htext = Enc(P1, P2, ..., Pk) (2)

Graph Construction We construct a multi-view
heterogeneous temporal graph based on the rela-
tionship between facts and time in the document,
as illustrated in Figure 2(a). The multi-view tempo-
ral graph consists of two views, Gfact = (V, Efact)
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Figure 2: Overview of MTGER. Best viewed in color. (a) Encoding the context and constructing multi-view
temporal graph (b) Temporal garph reasoning over multi-view temporal graph with time-comparing objective and
adaptive multi-view fusion (c) Question-guided text-graph fusion and answer decoding.

and Gtime = (V, Etime), which has the same nodes
and different edges.

Procedure Constructing a multi-view temporal
graph consists of document segmentation, node ex-
traction and edge construction. Firstly, we segment
the document into chunks (or paragraphs) based on
headings, with similar content within each chunk.
Afterward, we extract time and fact nodes repre-
senting time intervals and events, using regular ex-
pressions. Finally, we construct edges based on the
relationship between nodes and chunks. Besides,
to mitigate graph sparsity problem, we introduce a
global node to aggregate information among fact
nodes. We will introduce nodes, edges, and views
in the following.

Nodes According to the roles represented in tem-
poral reasoning, we define six node types: global
node is responsible for aggregating the overall in-
formation; fact nodes represent the events at the
sentence-level granularity (e.g. He enrolled at Stan-
ford); time nodes are divided into four categories
according to their temporal states, before, after, be-
tween, and in, which represent the time interval
of the events (e.g. Between 1980 and March 1988
[1980, 1998.25]). In the temporal graph, the global
node and fact nodes are located at the factual layer
and time nodes at the temporal layer.

Edges In the temporal layer, we build edges ac-
cording to the temporal relationship between time
nodes, including before, after and overlap. In the
factual layer, we build edges according to the dis-
course relationship between fact nodes. For facts
in the same paragraph, they usually share a com-
mon topic. Accordingly, we construct densely-
connected intra-paragraph edges among these fact
nodes. For facts in different paragraphs, we pick

two fact nodes in each of the two paragraphs to con-
struct inter-paragraph edges. Temporal and factual
layers are bridged by time-to-fact edges, which are
uni-directed, from times to facts. The global node
is connected with all fact nodes, from facts to the
global node. The Appendix A.8 and A.9 provide
an example of temporal graph and a more detailed
graph construction process.

Views We construct two views, the fact-focused
view and the time-focused view. Multiple views
make it possible to model both absolute relation-
ships between time expression (e.g. 1995 is before
2000 because 1995 < 2000) and relative relation-
ships between events (e.g. Messi joins Inter Miami
CF after his World Cup championship). If only
one view exists, it is difficult to model both rela-
tionships simultaneously. In the time-focused view,
time comparisons occur between time nodes, and
fact nodes interact indirectly through time nodes
as bridges; in the fact-focused view, the relative
temporal relationships between facts are directly
modeled. The model can sufficiently capture the
temporal relationships among facts by complement-
ing each other between the two views. To obtain
the fact-focused view, we replace the discourse re-
lation edges between fact nodes in the time-focused
view with the temporal relation edges between the
corresponding time nodes and replace the edges of
time nodes with discourse relations of fact nodes
in a similar way. The comparison of the two views
is shown at the top of Figure 2(b).

2.4 Multi-view Temporal Graph Reasoning

Temporal Graph Reasoning First, we initialize
the nodes representations using the text represen-
tation and then perform a linear transformation to



the nodes according to their types.

vi = Pooling(h1,h2, ...,hl) (3)

v
(0)
i = W tvi (4)

V (0) = [v
(0)
1 ,v

(0)
2 , ...,v(0)

n ] (5)

where h1, ...,hl are textual representations corre-
sponding to the node v, W t ∈ Rn×n is the linear
transformation corresponding to node type t, n is
number of nodes, V (0) ∈ Rn×h serves as the first
layer input to the graph neural network.

We refer to the heterogeneous graph neural net-
work (Schlichtkrull et al., 2018; Busbridge et al.,
2019) to deal with different relations between
nodes. In this paper, we use heterogeneous graph
attention network.

We define the notation as follows: W r ∈
Rh×h,W r

Q ∈ Rh×h,W r
K ∈ Rh×h represents the

node transformation, query transformation and key
transformation under relation r, respectively. They
are all learnable parameters.

First, we perform a linear transformation on the
nodes according to the relations they are located.

Or = V W r ∈ Rn×h (6)

Qr = OrW r
Q ∈ Rn×h (7)

Kr = OrW r
K ∈ Rn×h (8)

Afterwards, we calculate the attention scores1 in
order to aggregate the information.

ari,j = qri · kr
j (9)

αr
i,j =

exp (ari,j)∑
k∈Nr(i)

exp(ari,k)
(10)

Finally, we obtain the updated node representa-
tion by aggregating based on the attention score.
Here we use the multi-head attention mecha-
nism (Vaswani et al., 2017), where K is the number
of attention heads.

V (ℓ+1) =

K⊕
k=1

σ

∑
r∈R

∑
j∈Nr(i)

αr,k
i,j o

r,k
j

 (11)

We obtain the final graph representation through L
layer heterogeneous graph neural network.

V (ℓ+1) = HeteroGNN(V (ℓ)) (12)
1Formula of multi-head attention is omitted for readability.

Adaptive Multi-view Graph Fusion Through
the graph reasoning module introduced above, we
can obtain the fact-focused and time-focused graph
representation, Vf ∈ Rn×h,Vt ∈ Rn×h, respec-
tively. These two graph representations have their
own focus, and to consider both perspectives con-
currently, we adopt an adaptive fusion manner (Li
et al., 2022; Zhang et al., 2023) to model the inter-
action between them, as illustrated in Figure 2(b).

λ = Sigmoid(WfVf +WtVt) (13)

Vfuse = (1− λ) · Vf + λ · Vt (14)

where Wf ∈ Rh×h and Wt ∈ Rh×h are learnable
parameters.

Self-supervised Time-comparing Objective To
further improve the implicit reasoning capability
of models over absolute time, we design a self-
supervised time-comparing objective. First, we
transform the extracted TimeX into a time interval
represented by a floating-point number. After that,
the fact nodes involving TimeX in the graph are
combined two by two. Three labels are generated
according to the relationship between the two time
intervals: before, after, and overlap. Assuming that
there are N fact nodes in the graph, N(N − 1)/2
self-supervised examples can be constructed, and
we use cross-entropy to optimize them.

hi,j = MLP([hi;hj ]) (15)

Ltc = −
N−1∑
i=1

N∑
j=i+1

yi,j log(P (y′i,j |hi,j)) (16)

where hi, hj are the nodes representations and yi,j
is the pseudo-label. [; ] denotes vector concatenate.

2.5 Time-enhanced Decoder
Question-guided Text-graph Fusion Now we
have the text representation Htext and the multi-
view graph representation Vfuse. Next, we dynam-
ically fuse the text representation and the graph
representation guided by the question to get the
time-enhanced representation Hfuse , which will
be fed into the decoder to generate the final answer,
as illustrated in Figure 2(c).

V ′
fuse = MHCA(qquery,Vfuse,Vfuse) (17)

H ′
text = MHCA(Htext,V

′
fuse,V

′
fuse) (18)

Hfuse = AdapGate(Htext,H
′
text) (19)

where qquery is query embedding, MHCA is multi-
head cross-attention, and AdapGate is mentioned
in the graph fusion section.



Time-enhanced Decoding Finally, the time-
enhanced representation Hfuse is fed into the de-
coder to predict the answer, and we use the typical
teacher forcing loss to optimize the model.

Ltf = −
N∑
i=1

yi logP (y′i | Hfuse , y<i) (20)

2.6 Training Objective

The training process has two optimization ob-
jectives: teacher-forcing loss for generating an-
swers by maximum likelihood estimation and time-
comparing loss for reinforcing time-comparing
ability in the graph module. We use a multi-task
learning approach to optimize them.

Ltotal = Ltf + λ · Ltc (21)

where λ is a hyper-parameter.

3 Experiments

3.1 Experiments Setup

Dataset We conduct experiments on the TimeQA
and SituatedQA (Chen et al., 2021; Zhang and
Choi, 2021) datasets. TimeQA is a document-
level temporal reasoning dataset to facilitate tempo-
ral reasoning over time-involved documents. It is
crowd-sourced based on Wikidata and Wikipedia.
SituatedQA is an open-domain QA dataset where
each question has a specified temporal context,
which is based on the NQ-Open dataset.

Following the original experimental setup, we
use EM and F1 on the TimeQA and EM on the Sit-
uatedQA dataset as evaluation metrics. In addition,
we calculate metrics for each question type. For
more information about the datasets, please refer
to Appendix A.1.

Baseline We choose four typical long-context
QA models, FiD, BigBird, LED and LongT5 (Izac-
ard and Grave, 2021b; Zaheer et al., 2020; Belt-
agy et al., 2020a; Guo et al., 2022), an open-
domain QA system DPR (Karpukhin et al., 2020)
and a close-book QA model BART (Lewis et al.,
2020a) as baselines. FiD, BigBird and LongT5 are
inited with pre-trained checkpoint on NaturalQues-
tions (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017) and NewsQA (Trischler et al., 2017).
Besides, large-scale language models (LLMs) have
demonstrated excellent performance on reasoning

and QA tasks. In order to explore their capabil-
ities on textual temporal reasoning, we also in-
clude the state-of-the-art LLM, GPT3 and Chat-
GPT2 (Ouyang et al., 2022; OpenAI, 2022) for
comparison.

For the large-scale language model baseline,
we sample 10 answers per question, @mean and
@max represent the average and best results, re-
spectively. We use gpt-3.5-turbo@max in subse-
quent experiments unless otherwise stated.

Implementation Details We use Pytorch frame-
work, Huggingface Transformers for pre-trained
models and PyG for graph neural networks. We use
the base size model with hidden dimension 768 for
all experiments. For all linear transformations in
graph neural networks, the dimension is 768×768.
The learning rate schedule strategy is warm-up for
the first 20% of steps, followed by cosine decay.
We use AdamW as the optimizer (Loshchilov and
Hutter, 2019). All experiments are conducted on
a single Tesla A100 GPU. The training cost of
TimeQA and SituatedQA is approximately 4 hours
and 1.5 hours, respectively. Please refer to Ap-
pendix A.3 for detailed hyperparameters.

3.2 Main Result

Results on TimeQA Table 1 shows the overall
experiment results of baselines and our methods
on the TimeQA dataset. The first part shows the
results of the LLM baselines. Even though the
LLMs demonstrate their amazing reasoning ability,
it performs poorly in temporal reasoning. The sec-
ond part shows the results of supervised baselines,
where BigBird performs on par with gpt-3.5-turbo,
and FiD performs better than BigBird.

Our method MTGER outperforms all baselines,
achieving 60.40 EM / 69.44 F1 on the easy split
and 53.19 EM / 61.42 F1 on the hard split. MT-
GER obtains 2.43 EM / 1.92 F1 and 3.39 EM /
2.95 F1 performance boost compared to the state-
of-the-art QA model, FiD. We think this significant
performance boost comes from explicit modelling
of time and interaction across paragraphs. In addi-
tion, MTGER++ further improves the performance
through long-context adaptation pre-training for
the reader model, achieving 60.95 EM / 69.89 F1
on the easy split and 54.11 EM / 62.40 F1 on the
hard split. Please refer to Appendix A.4 for more
details about MTGER++.

2ChatGPT May 24 Version



Method
Easy Hard

Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1

LLM Baseline
Zero-shot
gpt-3.5-turbo@mean 30.71 42.67 32.79 46.04 28.91 36.94 28.68 35.14
gpt-3.5-turbo@max 43.14 53.92 43.46 56.18 37.14 45.08 37.64 43.32
Few-shot(n=5)
gpt-3.5-turbo@mean 42.14 51.59 34.80 47.12 35.37 43.52 34.03 42.36
gpt-3.5-turbo@max 54.67 62.92 44.98 58.66 45.69 54.41 41.63 51.71

Supervised Baseline
LED 46.97 56.41 49.41 58.35 39.78 48.45 40.50 48.10
LongT5 48.17 59.59 48.14 58.94 41.43 52.58 42.94 53.50
BigBirdtqa 52.00 61.13 50.65 60.21 43.69 51.71 44.73 51.59
BigBirdnq 51.89 62.43 50.61 60.88 44.04 53.83 43.56 53.60
FiDtqa 55.21 65.82 56.32 64.99 47.62 56.74 47.92 56.78
FiDnq 57.25 66.56 58.06 67.52 49.21 58.00 49.80 58.74

Ours
MTGER 59.65 68.05 60.49 69.44 52.31 60.66 53.19 61.42
MTGER++ 59.20 67.70 60.95 69.89 52.02 61.06 54.15 62.40

Table 1: Main results on the TimeQA Dataset. All supervised models are base size and we report the average results
of three runs. Best and second results are highlighted by bold and underline.

Method Easy Hard Perf. Gap

EM F1 EM F1 EM F1

LLM
Zeroshot 43.45 56.94 36.28 43.06 -1.73% +0.5%
Fewshot(n=5) 52.74 64.75 50.63 57.80 +19.4% +11.1%

Supervised
BigBirdnq 46.81 55.67 41.75 51.36 -5.8% -6.4%
FiDnq 55.91 63.86 47.52 54.82 -4.3% -6.4%

Ours
MTGER 58.74 66.12 50.55 57.05 -3.9% -5.9%
MTGER++ 59.35 66.51 51.06 57.91 -4.1% -6.0%

Table 2: Results on TimeQA Human-Paraphrased
dataset. Gap represents the performance gap compared
with the main dataset.

Results on TimeQA Human-Paraphrased The
questions in TimeQA human-paraphrased are
rewritten by human workers in a more natural lan-
guage manner, making the questions more diverse
and fluent. As shown in Table 2, the performance
of the LLMs increases rather than decreases, which
we think may be related to the question becoming
more natural and fluent. All supervised baselines
show some performance degradation. Our method
still outperforms all baselines and has less perfor-
mance degradation compared with supervised base-
lines. The experimental results illustrate that our
method is able to adapt to more diverse questions.

Results on SituatedQA To investigate the gen-
eralization of MTGER for temporal reasoning, we

Method Temp

Static Samp. Start Avg.

LLM
Zeroshot 11.6 8.5 11.9 9.9
Fewshot(n=5) 9.3 13.4 15.5 13.4

Supervised Baseline
LED 18.1 16.2 20.4 17.8
LongT5 22.0 14.4 18.3 16.8
BART 26.0 16.2 18.3 18.3
DPR 39.8 17.2 24.9 23.0
BigBirdnq 34.2 15.7 21.3 20.2
FiDnq 28.7 22.2 31.8 26.4

Ours
MTGER 45.0 24.8 28.2 28.8

Table 3: Results on the SituatedQA Temp test set. Eval-
uation metric is EM from the correct temporal context.

conduct experiments on an open-domain temporal
reasoning dataset, SituatedQA. Since the model ini-
tiated with NaturalQuestion checkpoint performs
better than TriviaQA, we do not present the results
for models initiated with TriviaQA.

As shown in Table 3, MTGER achieves 28.8
EM, exceeding all baseline methods, improving by
9% compared to the best baseline. MTGER does
not have a reranking module while it outperforms
DPR by 5.8 EM, which has a reranking module.
Our method performs well on all three types of
questions and significantly better than others on
Static and Samp. types. The experimental results
demonstrate that our method can be generalized to



Method Hard-Implicit Easy-Explicit

in between before after avg. in between avg.

LLM Baseline
Zeroshot 38.79 34.53 41.46 27.50 36.69 33.33 44.39 43.46
Fewshot(n=5) 37.69 45.36 56.09 25.50 41.41 45.27 40.47 44.86

Supervised Baseline
BigBirdnq 46.31 45.04 40.22 42.36 44.85 28.97 52.34 50.61
FiDnq 49.61 48.83 50.18 53.81 49.73 56.10 58.22 58.06

Ours
MTGER 52.99 52.80 53.87 56.10 53.28 57.92 60.69 60.49
MTGER++ 52.99 53.57 56.83 57.25 53.99 57.47 61.23 60.95

Table 4: Results for different question types on the TimeQA test set. Evaluation metric is EM.

different temporal reasoning datasets and achieves
excellent performance.

4 Analysis

4.1 Probe Different Question Types

We calculate the metrics for different categories
of implicit questions in the hard split and explicit
questions in the easy split. Results are shown in
Table 4. Our method outperforms all baselines on
all question types, achieving 53.99 Implicit-EM
and 60.95 Explicit-EM, compared to the best base-
line of 49.73 Implicit-EM and 58.06 Explicit-EM,
reaching a relative improvement of 8.6% for im-
plicit questions and 5% for explicit questions.

According to the results, our method is particu-
larly good at handling hard questions that require
implicit reasoning. We believe the explicit tem-
poral modelling provided by the heterogeneous
temporal graphs improves the implicit temporal
reasoning capability of models. In the next sec-
tion, we will perform an ablation study on different
modules of MTGER to verify our conjecture.

4.2 Ablation Study

We investigate the effects of text-graph fusion,
time-comparing objective and multi-view temporal
graph. For multi-view temporal graphs, we conduct
a more detailed analysis by sequentially remov-
ing the multi-view graph, heterogeneous temporal
graph and homogeneous temporal graph. Experi-
mental results are shown in Table 5.

Effect of Text-graph Fusion Question-guided
text-graph fusion module dynamically selects the
graph information that is more relevant to the ques-
tion. As shown in Table 5(a), removing this module
results in the performance degradation of 0.54 EM
/ 0.43 EM and 0.87 EM / 0.80 EM in the dev set

Method Dev Test

Easy Hard Easy Hard

MTGER 59.65 52.31 60.49 53.19
- Text-graph Fusion (a) 59.11 51.88 59.52 52.39
- Time-comparing (b) 59.65 51.53 60.66 52.65
- Multi-view Graph (c.1) 59.17 52.04 60.12 52.42

- HeteroGraph (c.2) 58.67 50.52 59.89 50.78
- HomoGraph (c.3) 57.25 49.21 58.06 49.80

Table 5: Results of Ablation Study on the TimeQA
dataset. Evaluation metric is EM.

and test set, respectively. This suggests that the
question-guided text-fusion module can improve
overall performance by dynamically selecting more
useful information.

Effect of Time-comparing Objective As shown
in Table 5(b), removing the time-comparing objec-
tive has almost no effect on the easy split, and the
performance degradation in the dev and test set on
the hard split is 0.78 EM / 0.54 EM, indicating that
the time-comparing objective mainly improves the
implicit temporal reasoning capability of models.

Effect of Multi-view Temporal Graph We se-
quentially remove the multi-view temporal graph
(c.1 keep only one heterogeneous temporal graph);
replace the heterogeneous temporal graph with a
homogeneous temporal graph (c.2 do not distin-
guish the relations between nodes); and remove the
graph structure (c.3) to explore the effect of graph
structure in detail.

Removing the multi-view temporal graph (c.1)
brings an overall performance degradation of 0.48
EM / 0.78 EM and 0.37 EM / 0.77 EM in the dev set
and test set, respectively, implying that the comple-
mentary nature of multi-view mechanism helps to
capture sufficient temporal relationships between
facts, especially implicit relationships.



Perturbated Question Context FiD MTGER

Q: Which school did Beatrix Tu-
gendhut Gardner go to in Dec 1955?
Q′: Which school did Beatrix Tu-
gendhut Gardner go to before 1954
and 1955?
Answer: Brown University

... Beatrix , often spelled Beatrice , attended
Radcliffe College in Massachusetts and re-
ceived her bachelors degree in 1954 . In 1956
, she earned her masters degree from Brown
University , working with Carl Pfaffman . She
completed her PhD in zoology at Oxford Uni-
versity in 1959 where she studied under the
mentorship of Niko Tinbergen ...

Answer′:
Radcliffe College%

Answer′:
Brown University"

Q: Which school did Jay Rockefeller
go to between Oct 1966 and Dec
1967?
Q′: Which school did Jay Rocke-
feller go to before 1973? 123412
Answer: Unanswerable

... Rockefeller moved to Emmons , West Vir-
ginia , to serve as a VISTA worker in 1964
and was first elected to public office as a mem-
ber of the West Virginia House of Delegates
( 1966-1968 ) . Rockefeller was later elected
West Virginia Secretary of State ( 1968-1973 )
and was president of West Virginia Wesleyan
College ( 1973–1975 ) . He became the states
senior U.S . Senator when the long-serving Sen-
ator Robert Byrd died in June 2010 . ...

Answer′:
West Virginia
Wesleyan College%

Answer′:
Unanswerable"

Table 6: Case study from the consistency analysis. Q stands for the original question, Q′ stands for the perturbated
question and Answer′ stands for the answer after question perturbation.

We replace the heterogeneous temporal graph
with a homogeneous temporal graph (c.2), which
results in the GNN losing the ability to explicitly
model the temporal relationships between facts,
leaving only the ability to interact across para-
graphs. The performance degradation is slight in
the easy split, while it causes significant perfor-
mance degradation of 1.52 EM / 1.64 EM com-
pared with (c.1) in the hard split, which indicates
that explicit modelling of temporal relationships
between facts can significantly improve the implicit
reasoning capability.

Removing the graph structure also means remov-
ing both text-graph fusion and time-comparing ob-
jective, which degrades the model to a FiD model
(c.3). At this point, the model loses the cross-
paragraph interaction ability, and there is an overall
degradation in performance, which suggests that
the cross-paragraph interaction can improve the
overall performance by establishing connections
between facts and times.

4.3 Consistency Analysis

To investigate whether the model can consistently
give the correct answer when the time specifier of
questions is perturbed, we conduct a consistency
analysis. The experimental results in Table 7 show
that our method exceeds the baseline by up to 18%,
which indicates that our method is more consistent
and robust compared to baselines. Please refer to
Appendix A.7 for details of consistency analysis.

Method Consistency

BigBirdnq 0.63
FiDnq 0.66
text-davinci-003@mean 0.54
gpt-3.5-turbo@mean 0.46
MTGER 0.76
MTGER++ 0.78

Table 7: Results of consistency analysis on the TimeQA
hard test set. The higher the consistency, the better.

4.4 Case Study

We show two examples from the consistency analy-
sis to illustrate the consistency of our model in the
face of question perturbations, as shown in Table 6.
Both examples are from the TimeQA hard dev set.

The first example shows the importance of im-
plicit temporal reasoning. From the context, we
know that Beatrix received her bachelor’s degree in
1954 and her master’s degree in 1956. The master’s
came after the bachelor’s, so we can infer that she
was enrolled in a master’s degree between 1954
and 1956, and 1954-1955 lies within this time in-
terval, so she was enrolled in Brown University dur-
ing this period. Since FiD lacks explicit temporal
modelling, its implicit temporal reasoning ability
is weak and fails to predict the correct answer.

The second example shows the importance of
question understanding. The question is about
which school he attends, which is not mentioned in
the context. FiD incorrectly interprets the question
as to where he is working for, fails to understand the
question and gives the wrong answer. Our method,



which uses a question-guided fusion mechanism,
allows for a better question understanding and con-
sistently gives the correct answer.

5 Related Work

5.1 Temporal Reasoning in NLP

Knowledge Base Temporal Reasoning Knowl-
edge base QA retrieves facts from a knowledge
base using natural language queries (Berant et al.,
2013; Bao et al., 2016; Lan and Jiang, 2020;
He et al., 2021; Srivastava et al., 2021). In re-
cent years, some benchmarks specifically focus
on temporal intents, including TempQuestions (Jia
et al., 2018a) and TimeQuestions (Jia et al., 2021).
TEQUILA (Jia et al., 2018b) decomposes complex
questions into simple ones by heuristic rules and
then solves simple questions via general KBQA
systems. EXAQT (Jia et al., 2021) uses Group
Steiner Trees to find subgraph and reasons over
subgraph by RGCN. SF-TQA (Ding et al., 2022)
generates query graphs by exploring the relevant
facts of entities to retrieve answers.

Event Temporal Reasoning Event Temporal
Reasoning focuses on the relative temporal re-
lationship between events, including event tem-
poral QA (Ning et al., 2020; Lu et al., 2022;
Han et al., 2021), temporal commonsense reason-
ing (Qin et al., 2021; Zhou et al., 2019, 2020), event
timeline extraction (Faghihi et al., 2022), and tem-
poral dependency parsing (Mathur et al., 2022).
TranCLR (Lu et al., 2022) injects event semantic
knowledge into QA pipelines through contrastive
learning. ECONET (Han et al., 2021) equips PLMs
with event temporal relations knowledge by con-
tinuing pre-training. TACOLM (Zhou et al., 2020)
exploits explicit and implicit mentions of temporal
commonsense by sequence modelling.

Textual Temporal Reasoning Textual temporal
reasoning pays more attention to the temporal un-
derstanding of the real-world text, including both
absolute timestamps (e.g. before 2019, in the late
1990s) and relative temporal relationships (e.g. A
occurs before B). To address this challenge, Chen
et al. (2021) proposes the TimeQA dataset, and
Zhang and Choi (2021) propose the SituatedQA
dataset. Previous work directly adopts long-context
QA models (Izacard and Grave, 2021b; Zaheer
et al., 2020) and lacks explicit temporal modelling.

In this paper, we focus on temporal reasoning
over documents and explicitly model the temporal

relationships between facts by graph reasoning over
multi-view temporal graph.

5.2 Question Answering for Long Context

Since the computation and memory overhead of
Transformer-based models grows quadratically
with the input length, additional means are re-
quired to reduce the overhead when dealing with
long-context input. ORQA (Lee et al., 2019) and
RAG (Lewis et al., 2020b) select a small number
of relevant contexts to feed into the reader through
the retriever, but much useful information may be
lost in this way. FiD (Izacard and Grave, 2021b)
and M3 (Wen et al., 2022) reduce the overhead at
the encoder side by splitting the context into para-
graphs and encoding them independently. However,
there may be a problem of insufficient interaction
at the encoder side, and FiE (Kedia et al., 2022)
introduces a global attention mechanism to allevi-
ate this problem. Longformer, LED, LongT5, and
BigBird (Beltagy et al., 2020b; Guo et al., 2022;
Zaheer et al., 2020) reduce the overhead by sliding
window and sparse attention mechanism.

6 Conclusion

In this paper, we devise MTGER, a novel temporal
reasoning framework over documents. MTGER

explicitly models temporal relationships through
multi-view temporal graphs. The heterogeneous
temporal graphs model the temporal and discourse
relationships among facts, and the multi-view
mechanism performs information integration from
the time-focused and fact-focused perspectives.
Furthermore, we design a self-supervised objec-
tive to enhance implicit reasoning and dynami-
cally aggregate text and graph information through
the question-guided fusion mechanism. Exten-
sive experimental results demonstrate that MTGER

achieves better performance than state-of-the-art
methods and gives more consistent answers in the
face of question perturbations on two document-
level temporal reasoning benchmarks.

Limitations

Although our proposed method exhibits excellent
performance in document-level temporal reason-
ing, the research in this field still has a long way to
go. We will discuss the limitations as well as possi-
ble directions for future work. First, the automat-
ically constructed sentence-level temporal graphs
are slightly coarse in granularity; a fine-grained



temporal graph can be constructed by combining
an event extraction system in future work to capture
fine-grained event-level temporal clues accurately.
Second, our method does not give a temporal rea-
soning process, and in future work, one can con-
sider adding a neural symbolic reasoning module
to provide better interpretability.
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A Appendix

A.1 Datasets Details

TimeQA TimeQA contains a main dataset and a
human-paraphrased dataset, where the questions in
the main dataset are synthesized by the templates
the questions in the human-paraphrased dataset
are rewritten manually by humans. The ques-
tions in the dataset include both explicit and im-
plicit forms. Explicit question types contain in-
explicit and between-explicit, and implicit ques-
tion types contain in-implicit, between-implicit,
before-implicit, and after-implicit. The easy split
contains only explicit questions, and the hard split
contains most implicit questions and a few explicit
questions. The statistics of the dataset are shown
in Table 8 and Table 9.

SituatedQA The same question may have dif-
ferent answers depending on the context. Situat-
edQA is an open-domain QA dataset that requires
a specific context to produce the correct answer.
The dataset contains two types of context, tempo-
ral and geographic, and we use the questions with
the temporal context in this paper. The evaluation
metrics in the original paper include EM-One (the
answer exactly matches the correct context) and
EM-Any (the answer matches any of the annotated
contexts), and we use EM-One as the evaluation
metric. The original task form of SituatedQA is
open-domain QA, and we transform it into a long-
context QA by retrieving relevant fragments using
a dense retriever. Please refer to Appendix A.2 for
the retrieval details.

Explicit and Implicit Questions Explicit Ques-
tions: The timestamps in the questions appear in
the document. Implicit Questions: (a) the times-
tamps in the questions do not appear in the docu-
ment (b) vague timestamps, such as the 1990s and
21st century (c) the timestamps involving common-
sense knowledge, such as World War II lasted from
1939 to 1945.

Time-sensitive Questions We refer to the def-
inition in (Chen et al., 2021): (a) each question
contains a time identifier (b) changing the time
identifier causes the answer to change (c) it requires
temporal reasoning to answer the question.

A.2 Details of SituatedQA Retrieval

Following the DPR (Karpukhin et al., 2020), we
divide Wikipedia into segments by no overlapping

Dataset #Train #Dev #Test

TimeQA Easy 14308 3021 2997
TimeQA Hard 14681 3087 3078
TimeQA Human-Paraphrased Easy 1171 - 989
TimeQA Human-Paraphrased Hard 1171 - 989
SituatedQA Temp 6009 3423 2795

Table 8: Statistic of TimeQA and SituatedQA.

Split Implicit Explicit

in bet. bef. aft. bet. in

Easy - - - - 92.43% 7.56%
Hard 37.75% 38.79% 8.32% 7.75% 7.37% -

Table 9: The proportion of the #question of different
categories in the TimeQA training set.

windows of length 100. We take the Pyserini (Lin
et al., 2021) library, using DPR as the dense re-
triever3. We select the top 20 most similar seg-
ments for each question as the context. The English
Wikipedia dumps we used is as of Feb 20, 2021.

A.3 Hyperparameters
The hyperparameters we used during our experi-
ments are shown in Table 10. We search through
the listed hyperparameters and end up using the
bolded ones in each row.

Hyperparameters Values

Learning Rate 2e-5 5e-5
Batch Size 4
Warmup 20%
Num GNN Layers 3 5 7
Num Graph Relations 4 6 8
GNN Dropout 0.1 0.5 0.9
Beam Size 1
Training Epochs 3
λ 0.01 0.001

Table 10: Hyperparameters

A.4 Stronger Reader with Long-context
Adaptation

We perform long-context adaptation pre-training
for models that do not support long-context in-
put. We replace the reader backbone with Uni-
fiedQA (Khashabi et al., 2020), a strong QA model.
However, UnifiedQA is built on vanilla T5 (Raf-
fel et al., 2020) and does not support long con-
text input, which needs additional adaptations. We
use a similar approach to FiD (Izacard and Grave,

3https://huggingface.co/facebook/dpr-ctx_
encoder-multiset-base

https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base
https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base


Method
Easy Hard

Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1

Zero-shot
gpt-3.5-turbo@mean 30.71 42.67 32.79 46.04 28.91 36.94 28.68 35.14
gpt-3.5-turbo@max 43.14 53.92 43.46 56.18 37.14 45.08 37.64 43.32
text-davinci-003@mean 21.27 34.59 24.34 33.47 22.21 27.27 23.80 30.52
text-davinci-003@max 32.40 49.05 38.02 51.09 34.26 43.20 38.44 46.83
Few-shot(n=5)
gpt-3.5-turbo@mean 42.14 51.59 34.80 47.12 35.37 43.52 34.03 42.36
gpt-3.5-turbo@max 54.67 62.92 44.98 58.66 45.69 54.41 41.63 51.71
text-davinci-003@mean 32.00 43.58 28.87 38.28 30.96 36.82 29.05 33.78
text-davinci-003@max 42.54 53.91 40.64 51.70 39.87 48.43 42.23 48.58

Ours
MTGER 59.65 68.05 60.49 69.44 52.31 60.66 53.19 61.42
MTGER++ 59.20 67.70 60.95 69.89 52.02 61.06 54.15 62.40

Table 11: Entire results of LLM baseline on the TimeQA dataset.

2021b), forcing the model to encode paragraphs
separately at the encoder side, delaying the interac-
tion across paragraphs to the decoder side, and use
a FiD-style input format for training 3000 steps
on long-context QA task for adaption. Finally,
we obtain a UnifiedQA model adapted to long-
context input. We replace the reader of MTGER

with the long-context adapted UnifiedQA to obtain
MTGER++.

A.5 Prompts

The prompts we use are shown in Figure 4, and
Figure 5. We try three different prompts and choose
the one that performs best on the TimeQA dev set.
We maintain a few-shot examples pool. For the
k-shot prompt, k examples are drawn from it at
a time, and we ensure that these k examples can
cover all question types in the current dataset split.

Due to the maximum length limitation of the
LLMs, the few-shot examples cannot take the full
context. Therefore, we filter out some context irrel-
evant to the answer based on the original annotation
data to ensure that the context does not exceed the
maximum length limit.

A.6 Entire Results of LLMs

We conduct experiments using gpt-3.5-turbo4 (Ope-
nAI, 2022) and text-davinci-003 (Ouyang et al.,
2022) on the TimeQA dataset. The entire experi-
ment results are shown in Table 11. Gpt-3.5-turbo
has significantly outperformed text-davinci-003 in
most cases, but they still have a large gap compared
to our method.

4We use gpt-3.5-turbo (May 24 Version). https://
platform.openai.com/

A.7 Consistency Analysis

This section describes how to construct perturbated
questions. A question and a time interval [s, e] can
determine the answer. We randomly sample a time
interval [s′, e′] ⊂ [s, e], which ensures that the an-
swer to the question does not change. After that, we
randomly select 100 questions that the model an-
swers correctly (EM=1.0), perturb the timestamps
of the questions, and calculate the results after the
perturbation. If the model still gives the correct
answer after the perturbation, it is consistent; oth-
erwise, it is inconsistent.

consistency =
#cons.

#cons. + #incons.
(22)

A.8 An Example of Temporal Graph

Figure 3 illustrates a heterogeneous temporal graph
under the time-focused view, with the legend on
the right. There are three kinds of edges in the
factual layer: Intra-para Fact Edge connects fact
nodes within the same paragraph, Inter-para Fact
Edge connects fact nodes across paragraphs and
Fact Aggregation Edge connects fact nodes and
the global node. There are three types of edges in
the temporal layer, Before, After and Overlap, de-
pending on the relative temporal relations between
time nodes. Among them, Before and After are
inverse edges of each other. Time-to-Fact Edge
is the cross-layer edge for bridging fact and time
nodes.

A.9 Graph Construction Details

Document Segmentation We divide the docu-
ment into chunks (or paragraphs) based on chapter

https://platform.openai.com/
https://platform.openai.com/


Factual Layer

Temporal Layer Temporal Relation Edge

Time-to-Fact Edge

Intra-para Fact Edge

Inter-para Fact Edge

After

Fact Aggregation Edge

Fact Node

Time Node

Global Node

Node Types

Edge Types

In 1984

On Dec 30, 1975

15 years old

13 years old, 1989

In 1996

Fall of 1994 In Nov 2021

In May 2019

Before
After

Woods was born…

…he won 9-10 boys’ event…

… Western High School…

…he played in the 1989 Big I...

…Medal of Freedom…

…Standford…

…Professional…

He retired…

After 2 years

Global

Figure 3: An example of heterogeneous temporal graph under time-focused view. Best viewed in color.

headings, with similar content within each para-
graph. (e.g. Early life, College career, Profession
career, Retirement, etc.)

Node Extraction We design regular expressions
to extract Time Expression from documents. We
treat the extracted TimeX as time nodes containing
4 categories (In, Between, Before, After). The
sentence which time nodes are located are treated
as fact nodes, corresponding to the time nodes.

Examples: time nodes (In 1999, Before March
1988, etc.), fact nodes (He went to UCLA, etc.)

Edge Construction Take a time-focused graph
as an example. The graph contains a temporal layer
and a factual layer.

Factual Layer: We construct fact edges accord-
ing to the document paragraphs divided in the first
step. Dense connections (Inter-para Fact Edge) are
taken for fact nodes within the same paragraph (two
nodes in the same paragraph), and sparse connec-
tions (Intra-para Fact Edge) are taken between fact
nodes across paragraphs (two nodes are located in
two adjacent paragraphs).

Temporal Layer: Each time node can be repre-
sented by a time interval (e.g. between 1923 and
1924 can be represented as [1923, 1924]; before
March 1988 can be represented as [−∞, 1998.25]).
There are three kinds of interval relations between
two time nodes: before, after and overlap. We
use this to connect time nodes (Temporal Relation
Edge). It is worth noting that the connections be-
tween time nodes are also dense within paragraphs
and sparse across paragraphs.

Other connections: To mitigate the graph spar-
sity problem, we introduce a global node to aggre-
gate information, and global nodes are connected

to all fact nodes (Fact Aggr. Edge). Unidirec-
tional connections are taken from fact to time nodes
(Time-to-Fact Edge).



Zero-shot Prompt

[User]
I will give you a question with context.
You need to answer my question based on the context.
If you can infer the answer from the context, then output your answer; otherwise, if there is no answer, output 
[unanswerable].
Do not output anything else.
question: 
context: 

[Assistant]
answer: Model generated…

Figure 4: An example of zero-shot prompt.

Few-shot Prompt

[User]
I will give you a question with context.
You need to answer my question based on the context.
If you can infer the answer from the context, then output your answer; otherwise, if there is no answer, output 
[unanswerable].
Do not output anything else.
question: Where was Clarice Phelps educated from 2016 to 2019?
context: Clarice Phelps Clarice Evone Phelps is an American nuclear chemist researching the processing of 
radioactive transuranic elements at the U.S.  ……
answer: [unanswerable]

......
Several Examples

......
question: Which team did the player Michael Rankine belong to before Feb 2002?
context: Michael Rankine Michael Lee Rankine ( born 15 January 1985 ) is an English former professional 
footballer who played as a striker . Early career . ……
answer: Doncaster Rovers

question: 
context: 

[Assistant]
answer: Model generated…

Figure 5: An example of few-shot prompt.


