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Abstract

The thermal-to-visible (T2V) face translation task is essential for
enabling face verification in low-light or dark conditions by convert-
ing thermal infrared faces into their visible counterparts. However,
this task faces two primary challenges. First, the inherent differ-
ences between the modalities hinder the effective use of thermal
information to guide RGB face reconstruction. Second, translated
RGB faces often lack the identity details of the corresponding visible
faces, such as skin color. To tackle these challenges, we introduce
Diff TV, the first Latent Diffusion Model (LDM) specifically designed
for T2V facial image translation with a focus on preserving iden-
tity. Our approach proposes a novel heterogeneous feature align-
ment strategy that bridges the modal gap and extracts both coarse-
and fine-grained identity features consistent with visible images.
Furthermore, a dual-stage condition injection strategy introduces
control information to guide identity-preserved translation. Exper-
imental results demonstrate the superior performance of Diff TV,
particularly in scenarios where maintaining identity integrity is
critical.
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1 Introduction

Face recognition technology serves both military and commercial
purposes and traditionally depends on images from the visible
spectrum. Recent studies [3, 27, 33] have demonstrated very high
recognition accuracies. However, these systems become less effec-
tive at night due to their dependence on sufficient lighting. Under
such conditions, thermal images are advantageous as they capture
the heat emitted by objects, requiring no external light source. Pre-
vious research has consistently demonstrated that thermal images
maintain greater flexibility under varied lighting conditions com-
pared to visible spectrum images [8, 41, 43]. Thus, One potential
solution to this challenge could involve retraining a network to
recognize faces using exclusively thermal imagery. Nevertheless,
this approach is challenging because traditional CNN-based facial
recognition methods [3, 33] generally require extensive datasets to
perform optimally, but large-scale thermal image datasets are not
widely available for public use.

In the field of image translation and face recognition, particu-
larly under challenging lighting conditions, researchers have in-
creasingly turned to an approach that leverages the capabilities of
conditional generative models. This method begins by translating
thermal images into the visible spectrum, after which traditional fa-
cial recognition algorithms are applied. GAN-based models [30, 35],
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which are popular for these tasks, have shown significant poten-
tial. However, they often face complex training challenges and are
vulnerable to data shortages, which can lead to issues with model
stability and training convergence.

In contrast, Denoising Diffusion Probabilistic Models (DDPMs)
[10] have risen to prominence in generative modeling, demon-
strating superior image synthesis capabilities that surpass those of
GAN:S, particularly in complex applications such as super-resolution
and denoising [7, 38]. However, DDPMs are limited by slow infer-
ence times due to their iterative process, which can be a drawback
for applications requiring rapid processing. To address this, inno-
vations like Denoising Diffusion Implicit Models (DDIM) [28] have
been developed to enhance sampling speeds. Yet, as the size of in-
put images grows, these models still face performance bottlenecks.
The integration of Latent Diffusion Models (LDM) [25] with DDIM
presents an effective solution, optimizing performance for larger
image sizes efficiently.

TH UVCGAN T2V-DDPM  AxialGAN DiffTV GT

Figure 1: Face translation outcomes of the SpeakingFaces
dataset [1], TH denotes the thermal image and GT represents
the Ground Truth. The compared results come from UVC-
GAN [30], T2V-DDPM [22], and AxialGAN [13].

In the context of thermal-to-visible image conversion, both GANs
and DDPMs are confronted with the inherent limitations of ther-
mal imagery. Thermal images, by their very nature, do not capture
the same visual cues as visible light images, making it difficult to
extract cross-modal features. Previous studies [2, 11, 15, 37] have
consistently highlighted issues such as cross-modal skin color in-
consistencies in existing face recognition and translation methods,
which contribute to racial bias. Additionally, the subtle nuances
of facial features, such as expressions and other distinctive char-
acteristics, often become distorted or lost during the translation
process. As demonstrated in Figure 1, these challenges can result
in significant inconsistencies. In Figure 1, all methods except our
proposed Diff TV show varying degrees of identity detail loss. This
includes but is not limited to, changes in skin color, altered expres-
sions, and facial distortions, potentially leading to final images that
barely resemble the original individual, thereby undermining the
goal of producing a realistic and accurate visible representation.

To address these challenges, we introduce Diff TV, the first Latent
Diffusion Model (LDM) specifically designed for Thermal-to-Visible
(T2V) facial image translation, which performs well in maintain-
ing identity features. Leveraging the efficiency of operating in a
lower-dimensional latent space, LDM greatly speeds up the infer-
ence process while maintaining high-quality image generation. As
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illustrated in Figure 2 and Figure 3, Diff TV employs a novel hetero-
geneous feature alignment strategy along with a dual-stage condi-
tional injection. This approach effectively bridges the modality gap
and enhances the translation process from coarse to fine-grained
details. With its superior performance, Diff TV alleviates the press-
ing issues of previous methods significantly, setting a new SOTA
for identity-preserved facial recognition in challenging lighting
conditions.
In summary, our contributions are fourfold:

e We introduce Diff TV, the first LDM-based model specifically
designed for T2V facial image translation.

e We propose a novel heterogeneous feature alignment strat-
egy that effectively extracts identity features from thermal
images, ensuring the retention of identity details throughout
the translation process.

e We incorporate a dual-stage conditional injection mechanism
within Diff TV to facilitate a more refined identity-preserved
translation from thermal images to visible images. This pro-
cess allows for a granular control from coarse to fine details,
significantly enhancing the model’s practicality and perfor-
mance in maintaining identity integrity.

e Through extensive evaluations on public datasets, we demon-
strate that Diff TV outperforms existing translation methods
in T2V task. This superiority is evident in scenarios demand-
ing high fidelity in identity preservation.

2 Related Work

2.1 GAN-based Face Translation Networks

For Heterogeneous Face Recognition (HFR) tasks, GAN-based face
translation networks have made significant advancements in re-
cent years. SAGAN [4] utilizes self-attention modules to effectively
synthesize visible faces from thermal images for cross-modal match-
ing, capitalizing on discriminative information about a person’s
identity inherent in thermal images. Axial-GAN [13] employs axial-
attention layers that harness the latest developments in transform-
ers to model long-range dependencies, enabling the synthesis of
high-resolution visible images for matching. VPGAN [20] leverages
established facial priors from the visible domain to avoid learning
the generation process from scratch. UVCGAN [30] improves the
quality and diversity of image translations by integrating the non-
local pattern learning capabilities of ViT with the cycle-consistency
constraints of Cycle-Consistent GANs. HiFaceGAN [35] incremen-
tally restores facial details using hierarchical semantic guidance,
addressing the complex task of reconstructing faces with heteroge-
neous degradation and rich background contents. GP-UNIT [36]
establishes coarse-level cross-domain correspondences with a gen-
erative prior and refines these through adversarial translations.

2.2 DDPM-based Face Translation Networks

To date, there are relatively few methods applying DDPM to thermal-
to-visible translation, although some existing cross-modal face
translation techniques could be adapted to this task. T2V-DDPM
[22] is the first to present a DDPM-based solution for the Thermal-
to-Visible (T2V) face translation problem. A novel inference strategy
is introduced to accelerate the inference process. AT-DDPM [21]
is trained using a progressive training framework and an efficient
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sampling technique is introduced to reduce inference time. BBDM
[17] is the first method to propose the use of Brownian Bridge
diffusion processes for image-to-image translation. It directly mod-
els the translation between two domains through a bidirectional
diffusion process. DiffuselT [16] extracts intermediate keys from
the ViT model and uses them as loss of content preservation. These
DDPM-based approaches have demonstrated significant improve-
ments in the quality of their output, as evidenced by metrics that
assess the realism of the generated images, such as the Fréchet
Inception Distance (FID) [9], and those that measure structural
similarity, like the Structural Similarity Index (SSIM). In addition,
there is research exploring the connection between the capacity of
DDPMs to learn conditional distributions and the optimal trans-
port theory, which seeks to find the most efficient transformation
between two distributions [29].

2.3 Identity Preserving Image Generation

Identity-preserving image generation emphasizes the generation of
images with distinct facial attributes that carry significant seman-
tic meaning. Low-Rank Adaptation (LoRA) [12] is a widely-used,
lightweight training method that involves adding a small number
of additional weights into the pre-existing model to accommodate
new datasets. However, LoRA’s requirement for individual training
for each novel character restricts its adaptability. Face0 [31] em-
ploys a technique that replaces the last three text tokens in CLIP
space with the projected facial embedding, utilizing the combined
embedding to guide the diffusion process. PhotoMaker [18] follows
a similar strategy but enhances its capability to capture identity-
specific embeddings by fine-tuning certain Transformer [5] layers
within the image encoder and combining class and image embed-
dings. FaceStudio [34] introduces a hybrid-guidance framework for
identity-preserving image synthesis, where facial embeddings are
incorporated into both the visual and textual embeddings of CLIP
through linear projection.

3 Method

In this section, we explore the methodology of our Diff TV approach
for Thermal-to-Visible (T2V) image translation. Section 3.1 provides
a brief summary of the thermal-to-visible task and our Diff TV, and
outlines the main points and scope of the content that follows.
Section 3.2 introduces the preliminaries and covers essential back-
ground information. The subsequent sections, 3.3 and 3.4, describe
the Latent Diffusion Model (LDM) pipeline and the heterogeneous
feature alignment strategy, respectively. Section 3.5 discusses how
skin color features and Arcface identity details are combined for
enhanced detail retention.

3.1 Overview
Assume that we have a dataset D = {(It(;;), I,gi) )f\_]l } where It(}i) is the

i-th thermal image and 15’) is its corresponding visible image. We
aim to train a generative model G parameterized by 6 to minimize
the distributional discrepancy between generated visible images I,
and real visible images I,,. Formally, our objective is to solve:

mein E([thJU)ND [-E (Iz), G(Ich ‘9))] 5 (l)
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where L is a loss function measuring the fidelity of translation,
so that we can ensure accurate thermal-to-visible translation. This
translation process aims to bridge the modality gap between ther-
mal and visible spectra, enabling the generation of visually infor-
mative images from thermal inputs.

In the process depicted in Figure 2, our Diff TV leverages the
cutting-edge latent diffusion models tailored to convert thermal
images into RGB counterparts. Alongside this core pipeline, we
have developed a novel feature alignment strategy that skillfully
extracts identity details from thermal images. This strategy is criti-
cal in ensuring that the generated visual outputs closely match the
actual faces, thereby maintaining both consistency and accuracy.
We then progressively incorporate detailed identity cues into the
translation process, which is crucial for producing high-fidelity
facial reconstructions.

3.2 Preliminaries

Latent Diffusion. Our method leverages the Latent Diffusion ar-
chitecture [25], which efficiently executes the diffusion process
with an auto-encoder [32] in a low-dimensional latent space rather
than in the pixel domain. Specifically, an input image x; € REXW>3
is initially transformed by the encoder into a latent form: zg = £(x;),
with zg € RP*WX¢ Here, f = H/h = W /w denotes the downsam-
pling factor and ¢ symbolizes the dimensionality of the latent space.
The diffusion process adopts a denoising UNet [26] €y to denoise a
normally-distributed noise e with noisy latent z;, current timestep
t, and condition C. The condition C is derived from the embeddings
of prompts created by a specialized condition encoder. The overall
training objective is defined as:

L=E;, 1 cenon e =gzt t, O3] @)

Controllable Diffusion Models. We utilize ControlNet [40]
as an exemplar, which is capable of adding spatial control to a
pre-trained diffusion model as conditions, extending beyond the
capabilities of basic textual prompts. ControlNet integrates the
UNet architecture from Stable Diffusion with a trainable replica
of UNet. This replica features zero convolution layers within the
encoder blocks and the middle block. The full process of ControlNet
is executed as follows,

Ye = F(x,0) + Z(F (x + Z(c, 021), 0c), 0z2). ®)

ControlNet sets itself apart from the foundational Stable Diffusion
model through its innovative use of residuals, specifically within
the ¥ component, which is the UNet structure. Here, x denotes the
latent, 6 refers to the frozen weights of the pre-trained model, and
z corresponds to zero convolutions, influenced by weights 6,1 and
0.2, while 0. represents the modifiable weights within ControlNet.
In essence, ControlNet encodes spatial condition information by
adding residuals to UNet Block and then embeds it into the original
network.

3.3 LDM Pipeline

Our tailored latent diffusion model is intricately composed of three
fundamental components: a VQ-VAE model [32], a conditional en-
coder for thermal images, and a diffusion Unet model [26]. All of
these constituent models are trained from scratch.
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Figure 2: Pipeline of our Diff TV. Firstly, we train a VQ-VAE model from scratch, so that the denoising process can be performed in
the latent space (We note that x; is a latent noise). We employ the ArcFace model (Parameter frozen, source from heterogeneous
feature alignment illustrated in Section 3.4) for fine-grained identity feature extraction from thermal images while leveraging

the skin color labels to guide the generation process.

To elaborate, we start our workflow by training a VQ-VAE model
dedicated to reconstructing visible images. Following this, we pro-
ceed to train another VQ-VAE model, this time focusing on the
reconstruction of thermal images. The encoder from this second
VQ-VAE model is then utilized as the conditional thermal encoder,
setting the stage for subsequent translation tasks.

Next, we train a DDPM UNet model within the latent space, while
keeping the parameters of the initial VQ-VAE and the conditional
encoder fixed. This strategy allows for the effective integration of
thermal-specific features into our translation framework, signifi-
cantly enhancing the fidelity and quality of the generated images.

Overall, our LDM pipeline is formally as follows:

Iy = D(&(eq(z Ern (1)), 4

where D, & represents the encoder and decoder of the first-stage
VQ-VAE model, € and E;j, represents the diffusion noise predictor
and the conditional thermal encoder.

3.4 Heterogeneous Feature Alignment

To effectively extract and align identity features from thermal im-
ages, we implement a heterogeneous feature alignment strategy
using ArcFace, which is known for its fine-grained identity represen-
tation capabilities. ArcFace’s strength lies in its attention to detailed
facial features, which allows for a more nuanced understanding
and encoding of identity characteristics. As shown in Figure 3, by
employing this model in a trainable setup for thermal images, we
take advantage of its sophisticated embedding mechanism to distill
identity information from thermal data.

For the RGB images, we utilize the frozen ArcFace-S model (de-
noted as ArcS), which produces a robust embedding eggp for each
RGB input image IrGp:

®)

erGB = ArcS(IrGB)-

On the other hand, for thermal images, we employ a trainable
version of the Arcface model, noted as ArcT, allowing it to adapt
and learn the specific features of thermal data to produce embedding
eThermal for each thermal input image ITpermal:

(6)

To align features from both modalities and contribute to identity
preservation, we calculate the Identity Loss Lrp as the cosine simi-
larity between the thermal and RGB embeddings:

eThermal = ArcT (IThermal)-

__©RGB " €Thermal

llerGBlllleThermatll”
The embeddings are then used to compute the skin color loss Lgg;,
for skin color classification through a Classification Head (MLP),
ensuring that the model discriminates between different identities
effectively:

)

Lip=1

®)

where BCE(-) denotes for Binary CrossEntropy loss function. Class(+)
represents the skin color classification head. By minimizing both
loss functions during training, we enhance the capability of our
model to maintain identity and skin-color consistency across ther-
mal and RGB modalities.

This distilled knowledge is then applied to ensure that the gen-
erated visual representations retain the critical identity traits of the
input thermal images. Through this strategy, our model manages
to overcome the challenge of translating identity cues from the
visual spectrum to the thermal spectrum, enhancing the fidelity
and recognition accuracy of the thermal-to-visible translation.

Lskin = BCE(Class(erGp), Class(eThermal))s

3.5 Dual-stage Conditional Injection

Skin Color Consistency. The latent diffusion model has demon-
strated remarkable superiority over previous methods. Nevertheless,



Identity-Preserved Thermal-to-Visible Face Translation via Feature Alignment and Dual-Stage Conditions

-

Thermal images

RGB images

& Trainable

Frozen

Arcface-S | |&Arcface-T

RGB Embedding ID Loss Thermal Embedding

(T I 4y (T

Skin Color Loss

=)

Classification

Py Classification
Head (MLP)

Head (MLP)

Figure 3: Details of our proposed heterogeneous feature align-
ment strategy. We simultaneously aligned the Arcface em-
beddings and skin color classification results of both the
thermal image and RGB image.

owing to the inherent limitation that thermal infrared images do
not inherently provide skin color information, some discrepancies
in skin color may arise between generated faces and ground truth
faces. Consequently, to deal with this challenge, we use the het-
erogeneous feature alignment strategy mentioned above to extract
identity features directly from thermal images.

As depicted in Figure 2 and 3, the frozen Arcface uses a pre-
trained backbone, capable of extracting facial embeddings. Further-
more, we categorized skin colors in the dataset into “Dark Skin”
and “Not Dark Skin” and trained a classifier to achieve binary clas-
sification with almost 100 percent accuracy. We then froze the
parameters of this classifier and the pre-trained model of Arcface
within our Heterogeneous Feature Alignment Strategy. This ap-
proach effectively imparts the feature extraction capability of RGB
faces to thermal modality faces using a concept akin to knowledge
distillation.

Based on thermal faces, an almost 100 percent accuracy of binary
skin color classification can be also achieved. We then initialize
two learnable vectors to represent the dark- and light-skin people,
respectively. Each infrared face can be assigned to a color category,
so the Equation 4 is modified as follows:

Iy = D(E(egp (25 Epp (1), ")), )
where p represents the skin color encoder which is an MLP structure.
r denotes the skin color.

Identity Preservertion. Despite the alleviation of skin color
inconsistency, the translated visible faces continue to exhibit a
deficiency in capturing fine-grained identity details. To mitigate
this issue, we introduce an additional refinement step.

Specifically, we employ ArcFace-T embedding in Section 3.4 as
the identity embedding, leveraging its discriminative power to en-
hance the preservation of fine-grained identity features. Addition-
ally, we integrate ControlNet [40] into our framework to fine-tune
the trained model in the final stage. This refinement process ensures
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a more comprehensive and accurate translation, resulting in visible
faces that faithfully represent the identity details present in the
thermal images.

4 Experiments

In this section, we provide details on experiments, datasets utilized,
ablation studies performed, and comparisons with other methods.

Starting with the implementation details, we outline the experi-
mental parameter settings in the experimental process. We will then
describe the datasets used to train and test our models. Moreover,
this section will include an ablation study aimed at uncovering the
roles and significance of individual components within the model.
By progressively simplifying the model, we can gain a clearer un-
derstanding of the contribution of each part to the final outcome.
Finally, we will present the performance of our method on two
datasets: SpeakingFaces [1] and ARL-VTF [24], and compare it with
existing techniques.

4.1 Implementation Details

Our model architecture comprises a diffusion model parameterized
with a base learning rate of 2.0 x 107°. The diffusion process is
characterized by a linear noise schedule starting from 0.00085 to
0.012 over 1000 timesteps, facilitating a detailed and controlled
generation process. Diff TV uses a batch size of 42 and is trained,
validated, and tested on specifically curated datasets comprising
thermal and visible images. The model is set to train for a maximum
of 300 epochs, with validation checks every 5 epochs to monitor
progress.

4.2 Datasets

In our experiments, we concentrate on the task of translating 128 x
128 thermal images to 128 X 128 visible images. Our primary goal
is to improve the quality of the generated faces and improve the
accuracy of facial recognition. Presently, there are no established
benchmarks for thermal-to-visible face translation, so we reference
the datasets used in the works [1, 24] for our experimentation. We
conduct tests across the two distinct datasets tailored to T2V face
translation. Further details on each dataset and the benchmarks
used for evaluation are discussed in the following section.
SpeakingFaces dataset [1]: The SpeakingFaces dataset offers a
vast, publicly accessible multimodal corpus suitable for machine
learning studies that leverage thermal, visual, and auditory streams.
It is comprised of aligned high-resolution thermal and visual spec-
tra image streams of fully-framed faces synchronized with audio
recordings of each subject speaking approximately 100 imperative
phrases. Sourced from a diverse pool of 142 subjects, it presents
over 13,000 synchronized samples. Notably gender-balanced and
ethnically varied, subjects are recorded from multiple angles. The
dataset is split into three parts: train set, validation set, and test set,
with each set containing unique subjects. The synchronized sam-
ples and the wide diversity of subjects render the SpeakingFaces
dataset a robust and challenging resource for research endeavors.
ARL-VTF dataset [24]: Unlike the SpeakingFaces dataset, the
ARL-VTF dataset consists of facial images captured in the Long
Wave Infrared (LWIR) modality. The dataset also provides the image
capture settings for aligning the faces. However, the visible images
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in ARL-VTF tend to be markedly overexposed. To address this, we
employ exposure matching techniques, referencing the Speaking-
Faces dataset to adjust the visible images from ARL-VTF. We create
a subset of the original ARL-VTF dataset for all our experiments
and choose 100 identities with different expressions as the training
dataset, and data corresponding to 40 identities as the testing set.
This results in a collection of 3,200 training pairs and 985 pairs for
testing.

Evaluation metrics: For evaluating the effectiveness of our
method, we utilize two different schemes [6, 20]. We prioritize
evaluating the quality of the reconstructed outputs using four key
metrics: Learned Perceptual Image Patch Similarity (LPIPS) [42],
Fréchet Inception Distance (FID) [9], Peak Signal to Noise Ratio
(PSNR) of the underlying grayscale image, and Structural Similar-
ity Index (SSIM). Additionally, we explore face verification perfor-
mance, comparing our approach against existing methods with
metrics including Rank-1 accuracy and Verification Rate (VR) at
False Acceptance Rates (FAR) of 1% and 0.1%. To further elucidate
the performance of our Diff TV method, it is essential to understand
the principles behind the evaluation metrics of VR@FAR=1% and
VR@FAR=0.1%. The Verification Rate (VR) at a fixed False Accep-
tance Rate (FAR) is a measure used to assess the effectiveness of
a biometric system, such as facial recognition. FAR represents the
probability of the system incorrectly accepting a non-match as a
match. When we set FAR at 1% and 0.1%, we are examining the sys-
tem’s ability to accurately identify individuals at these specific error
rates. All facial verification experiments employ the pre-trained
ArcFace facial recognition system [3].

Thermal Image __ Baseline B C D DiffTV___ Ground Truth
» p-

4
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Figure 4: Visualization results of Diff TV vs. variants. Zoom
in to get a better view.

4.3 Ablation Study

We assess the effectiveness of each internal module during inference
and its impact on the generated results. We have set up seven sets
of ablation experiments, with different variants denoted by the
characters A-G, the results are shown in Table 1.

A) Baseline: Our baseline is an LDM conditioned on thermal
images. During training, visible and thermal images are encoded
into the latent space respectively via the VQVAE encoder and con-
ditional thermal encoder, followed by the diffusion and denoising
steps of DDPM. This variant has shown commendable performance
across four quality metrics—achieving an FID of 35.58, LPIPS of
0.1750, PSNR of 29.19, and SSIM of 0.7082.

B) Baseline + Skin Color Embedding: To address the issue
of skin color confusion, we introduce two trainable skin color em-
beddings to provide the model with a skin color prompt during

Jingyu Lin et al.

Table 1: Ablation study on the SpeakingFaces dataset. We
use A-G to denote different variants. The best result is high-
lighted by bold. T means higher is better, and | means lower
is better.

Variants FID| LPIPS| PSNRT SSIMT

A 3558 0.1750  29.19  0.7082
B 34.15  0.1722 29.49  0.7208
C 3433 0.1668  29.88  0.7206
D 33.67 0.1693 29.74  0.7375
E 32.16  0.1663 29.97  0.7629
F 3429  0.1759 2933  0.7194
G (Ours) 31.67 0.1553 30.42 0.7832

training. This embedding merges pixel-wise with latent space fea-
tures through addition, applying a conditional constraint to the
generation outcome. Compared to the baseline, this variant shows
improvements across all metrics, validating the effectiveness of
introducing skin color embedding.

C) Baseline + ArcFace Embedding: ArcFace, a robust facial
recognition network, effectively extracts identity information from
face images for classification. Our heterogeneous feature alignment
strategy equips the network with the ability to focus on identity
details from thermal images. Compared to the baseline, the variant
enhanced with ArcFace embedding shows improvements in all
metrics, even surpassing the gains of the variant in B.

D) Baseline + ArcFace Embedding + Skin Color Embedding;:
Given the effectiveness of the previous two additions, we explore a
variant that combines both embeddings to constrain the model’s
generative results. This combination further improves model gen-
eration, with this variant’s FID, LPIPS, PSNR, and SSIM reaching
33.67, 0.1693, 29.74, and 0.7375 respectively—significantly better
than the baseline.

E) Baseline + ArcFace Embedding with ControlNet: Control-
Net is known for exceptional conditional constraint capability and
fine-tuning effects in generation tasks; this variant explores a better
way of conditional injecting the ArcFace embedding using Control-
Net. Compared to the variant in C, the results indicated marked
improvements across all metrics, even exceeding the variant in D.

F) Baseline + Skin Color Embedding with ControlNet: Sim-
ilarly, to verify whether ControlNet is also effective for skin color
embedding, we explore the variant that injects the skin color em-
bedding with ControlNet. Although the variant still shows improve-
ments over the baseline in all metrics, it doesn’t show any advantage
compared to directly adding skin color embedding to LDM in vari-
ant B. Considering the strong performance of the variant in E, we
conclude that ControlNet has a more potent constraint capability
for fine-grained facial details, while skin color prompts are too
general to showcase ControlNet’s inherent strengths.

G) Diff TV: Integrating the previous variants, we implement a
dual-stage conditional injection mechanism. By directly applying
skin color information to LDM through addition, and combining
it with the fine-grained identity details from ArcFace embedding
by ControlNet, Diff TV achieves optimal performance. It reaches a
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new SOTA with FID, LPIPS, PSNR, and SSIM scores of 31.67, 0.1553,
30.42, and 0.7832, respectively.

From the analysis above, it is evident that our model has success-
fully alleviated the issue of identity and skin color inconsistency
prevalent in existing thermal-to-visible face translation methods.
Figure 4 shows some qualitative results obtained by the variants
and our Diff TV, from the figure, it is clear that the inconsistencies
in identity and skin color between the original visible image and
other results are significantly improved after applying Diff TV. The
figure shows the effectiveness of Diff TV in dealing with identity
and skin color inconsistency issues. This success is attributed to the
combined feature injection methods, enhanced identity information
from thermal images, and the addition of skin color priors. The
utilization of each module and the methods of conditional injection
have proven effective.

4.4 Comparison

In this section, we evaluate our method by comparing it with dif-
ferent generative model-based approaches for image-to-image face
translation on two representative datasets.

4.4.1 Results on the SpeakingFaces Dataset. We compare our
Diff TV against the prevailing thermal-to-visible methods. Such
methods are predominantly categorized into two groups: GAN-
based methods such as SAGAN [4] and Pix2Pix [14], and the emerg-
ing DDPM-based approaches exemplified by T2V-DDPM [22]. Our
method aligns with the DDPM-based category but capitalizes on
the LDM framework, renowned for its rapid inference and versa-
tile conditional inclusion. To the best of our knowledge, Diff TV is
the pioneering method of applying this framework to the thermal-
to-visible task. The performance comparison presented in Table 2
clearly demonstrates Diff TV’s leading edge over other methods.
This is evident across a variety of metrics, including FID, which
measures image diversity and quality, as well as LPIPS, PSNR, and
SSIM, which are based on image similarity. The “TH” in the table
represents the metrics obtained by directly comparing thermal and
visible images. It’s observable that GAN-based methods are gener-
ally outperformed by DDPM-based approaches. We not only employ
the most advanced Diffusion Model, but also perform tailored opti-
mizations specifically to address challenges of thermal-to-visible
translation.

Given the relatively few mainstream methods specific to the
thermal-to-visible task, we also compare it with recent popular
methods capable of image-to-image face translation in order to
validate the superiority of our proposed approach. As Table 3 shows,
apart from UVCGAN [30] and CFSM [19], all listed methods are
based on Diffusion Models, with BBDM [17] also utilizing the LDM
framework. In particular, Diff TV significantly outperforms BBDM
even when sharing the same foundational framework. Evidently,
even against other Diffusion Model-based image-to-image methods,
Diff TV distinctly showcases its advantages in the thermal-to-visible
task. It surpasses the second best method, DiffuselT [16], by 1.5
points in FID and 1.73 points in PSNR, while widening the gap more
substantially in LPIPS and SSIM.
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Table 2: Comparison results against the prevailing methods
for thermal-to-visible tasks on the SpeakingFaces dataset.
The best result is highlighted by bold. T means higher is
better, and | means lower is better.

Methods FID| LPIPS| PSNRT SSIMT
TH 21970 0.6634  7.88  0.2850
Pix2Pix [14] 7011 05132 1351  0.4626
SAGAN [4] 56.98 04342 1511  0.4318
GANVFS [39]  57.19 03190 17.66  0.4905
HiFaceGAN [35] 46.77 03244  19.02  0.6233
AxialGAN [13] 4322 02436 2216  0.6111
T2V-DDPM [22] 39.27 02356  27.52  0.6449
Diff TV(Ours)  31.67 0.1553 3042 0.7832

Table 3: Comparison results against recent popular methods
capable of image-to-image face translation on the Speaking-
Faces dataset. The best result is highlighted by bold. T means
higher is better, and | means lower is better.

Methods FID| LPIPS| PSNR{ SSIMT
UVCGAN [30] 5297 02587 2842  0.6344
CFSM[19]  49.01 02616 0.2798  0.6529
Difareli [23]  44.19 02891  28.11  0.6088
BBDM [17]  38.66 0.2277 28.83  0.6933
DiffuselT [16] 33.17 02154  28.69  0.7112
Diff TV(Ours) 31.67 0.1553 3042 0.7832

Table 4: Comparison results on the ARL-VTF dataset. The
best result is highlighted by bold. T means higher is better,
and | means lower is better.

Methods FID| LPIPS| PSNR SSIM?T
TH 122,70 0.5551  5.674  0.1095
Pix2Pix [14] 66.71 04467 13.12  0.3804
SAGAN [4] 5822  0.4044 1425  0.4490
GANVFS [39]  53.18 03924 13.68  0.4313
HiFaceGAN [35] 3591 0.1937  19.62  0.6937
AxialGAN [13]  37.88 02123  20.04 0.7179
T2V-DDPM [22] 3456 02010 19.70  0.6775
Diff TV(Ours)  30.11 0.1955 28.03 0.7579

4.4.2 Results on the ARL-VTF dataset. The ARL-VTF dataset
poses a challenge for thermal-to-visible tasks because of the ther-
mal images’ blurred facial textures, making it difficult for models
to extract key identity features. Nevertheless, our Diff TV method
still outperforms the mainstream thermal-to-visible approaches
as shown in Table 4, exhibiting superior performance. Among the
comparative methods, HiFaceGAN, Axial GAN, and T2V-DDPM per-
form better; however, our proposed Diff TV method demonstrates
a clear lead in performance metrics such as FID, PSNR, and SSIM.



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

TH HiFaceGAN AxialGAN  Difareli

DiffuseIT T2V-DDPM BBDM

Jingyu Lin et al.

DiffTV GT

Figure 5: Comparative visualization of face translation results. The samples source from the SpeakingFaces Dataset.

Table 5: Comparison results for face recognition tasks on the
ARL-VTF dataset. The best result is highlighted by bold.

Methods Rank-1 VR@FAR=1% VR@FAR=0.1%
Pix2Pix [14] 18.88 5.09 0.33
SAGAN [4] 13.46 5.42 0.33

GANVFS [39]  21.84 12.97 2.63
HiFaceGAN [35] 65.35 41.33 20.89
AxialGAN [13] 66.67 42.86 18.62
T2V-DDPM [22]  75.37 4351 19.87
DiffTV(Ours)  81.52 60.13 30.06

To provide a more quantitative evaluation of the methods, we
employ two criteria, VR@FAR=1% and VR@FAR=0.1%, as previ-
ously mentioned. The quantitative outcomes are presented in Table
5. The VR@FAR metric provides a measure of the system’s accu-
racy at these FAR levels. A higher VR@FAR value indicates a lower
number of incorrectly matched identities at the given FAR, thus
indicating better performance. By achieving performance gains of
more than 10% in VR @ FAR = 1% and VR @ FAR = 0. 1%, our
Diff TV method demonstrates a significant improvement in facial
recognition accuracy from thermal images.

These experimental results not only highlight the superior per-
formance of Diff TV in terms of quantitative metrics but also un-
derscore the realistic nature of the generated visible images. The
improvement in rank-1 accuracy by 6.15% directly reflects the
method’s ability to produce images that are more faithful to the
original subject’s appearance. This increase in accuracy is crucial
for applications where the correct identification of individuals is
paramount, such as security and surveillance systems.

Moreover, the substantial improvement in VR@FAR metrics
indicates that the images generated by Diff TV maintain a high
level of detail and accuracy, even at lower FAR thresholds where

the system is less prone to false matches. This suggests that the
images generated by Diff TV are not only visually convincing but
also contain the necessary facial features and details required for
accurate biometric analysis.

4.4.3 Qualitative Analysis. Comparative experiments under-
score the efficacy of our Diff TV model, as depicted in Figure 5.
Here, we present a visual comparison against other prevalent meth-
ods in the field. Not only does our approach excel in comparison to
models tailored for the specific task, but it also surpasses alterna-
tive image-to-image translation techniques. From the comparison
images of the generated results, it’s evident that the skin color
generation of most methods is not satisfactory. Among the compar-
ative methods, only BBDM performs relatively well in this aspect.
However, it still falls short in accurately restoring the details of
identity. In contrast, Diff TV not only significantly improves skin
color generation but also excels in preserving identity details. In
addition, Diff TV uniquely facilitates the recognition of ‘real’ faces
generated within verification systems, further demonstrating its
practical superiority for applications demanding high fidelity and
identity preservation.

5 Conclusion

In this work, we translate thermal images into visible images for
face recognition in low-light conditions. We propose Diff TV, an
LDM-based framework for Thermal-to-Visible (T2V) facial image
translation that adeptly captures and preserves identity. Diff TV
incorporates an innovative heterogeneous feature alignment strat-
egy that effectively uses thermal imaging to extract crucial identity
features. Through a dual-stage conditional approach, Diff TV en-
sures a detailed and identity-consistent translation from thermal
to visible images. Our empirical tests across public datasets have
demonstrated that Diff TV outperforms existing GAN-based and
DDPM-based methods, offering a robust solution for face recogni-
tion systems operating in varying lighting conditions.
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