
Editing Partially Observable Networks via Graph Diffusion Models

Puja Trivedi 1 Ryan A. Rossi 2 David Arbour 2 Tong Yu 2 Franck Dernoncourt 2 Sungchul Kim 2

Nedim Lipka 2 Namyong Park 3 Nesreen K. Ahmed 4 Danai Koutra 1

Abstract
Most real-world networks are noisy and incom-
plete samples from an unknown target distribu-
tion. Refining them by correcting corruptions or
inferring unobserved regions typically improves
downstream performance. Inspired by the im-
pressive generative capabilities that have been
used to correct corruptions in images, and the
similarities between “in-painting” and filling in
missing nodes and edges conditioned on the ob-
served graph, we propose a novel graph generative
framework, SGDM, which is based on subgraph
diffusion. Our framework not only improves the
scalability and fidelity of graph diffusion models,
but also leverages the reverse process to perform
novel, conditional generation tasks. In particu-
lar, through extensive empirical analysis and a
set of novel metrics, we demonstrate that our pro-
posed model effectively supports the following
refinement tasks for partially observable networks:
(T1) denoising extraneous subgraphs, (T2) ex-
panding existing subgraphs and (T3) performing
“style” transfer by regenerating a particular sub-
graph to match the characteristics of a different
node or subgraph.

1. Introduction
Real-world networks are typically partially observed and
noisy (Eliassi-Rad et al., 2019; Kim & Leskovec, 2011;
Hanneke & Xing, 2009), posing challenges in downstream
tasks (e.g., node classification). Refining a corrupted graph
can significantly improve downstream performance but in-
cludes a variety of editing tasks with different requirements
such as: denoising (removing extraneous edges), expansion
(recovering missing edges), and attribute editing (correcting
erroneous or missing node attributes). Since the observed

1CSE Dept, University of Michigan, Ann Arbor 2Adobe Re-
search Inc 3Carnegie Mellon University 4Intel AI Research. Corre-
spondence to: Puja Trivedi <pujat@umich.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

graph can be corrupted in different ways, it is important to
jointly support all these editing tasks, but existing methods
usually only support some of them. For instance, link pre-
diction methods (Zhang & Chen, 2018; Zhang et al., 2020)
are able to recover missing edges, but cannot remove noisy
edges. Likewise, graph generative adversarial networks
(GANs) (Cao & Kipf, 2018; Liao et al., 2019; Wang et al.,
2018; Martinkus et al., 2022) can be used to generate can-
didate subgraphs that maximize a given property by using
RL (Cao & Kipf, 2018; Zhu et al., 2022), but it can be diffi-
cult to enforce that certain desired subgraphs are preserved
in the generated graph (i.e., conditional generation).

Recently, in computer vision, large-scale diffusion models
(DMs) (Ho et al., 2020; Hoogeboom et al., 2023; Sohl-
Dickstein et al., 2015; Ho et al., 2022) have revolutionized
image generation and correction of corrupted images due to
(1) their ability to generate extremely high-quality samples
while capturing many modes of the underlying data distri-
bution, (2) their ability to easily support powerful condi-
tional generation and editing tasks, such as in-painting, col-
orization, panorama generation and artifact removal (Lug-
mayr et al., 2022; Saharia et al., 2022a; Zhang et al., 2023;
Ramesh et al., 2021; Saharia et al., 2022b; Kawar et al.,
2022; Nie et al., 2022), and (3) their relative ease of train-
ing (Dhariwal & Nichol, 2021). Given their success in
generating images, there has been significant recent effort in
developing graph denoising diffusion models (GDDMs) that
accommodate discrete, structured graph data (Austin et al.,
2021; Vignac et al., 2023; Chen et al., 2023; Jo et al., 2022),
but there is limited work on supporting or even defining
analogous graph-based editing tasks.

Inspired by the conceptual similarities between “in-painting”
(i.e., filling in masked regions of an image) and filling in
missing nodes and edges conditioned on the observed graph,
we observe that the distributional modeling capacity of
a trained GDDM could be used to refine parts of an ob-
served training graph that may be corrupted or incomplete.
However, refining a single corrupted network raises addi-
tional challenges that preclude the applicability of existing
GDDMs; these models assume that they are trained on a
large set of clean graphs, and have quadratic complexity
over the number of nodes preventing them from scaling to
more than a few hundred nodes (Jo et al., 2022; Vignac et al.,

1

Editing Partially Observable Networks via Graph Diffusion Models

Figure 1. Overview of Subgraph-Diffusion Models and Editing Tasks. SGDM uses subgraph sampling to flexibly support three useful
editing tasks for refining a single, partially observable network.

2023).

Our Work. We focus on the challenging setting of train-
ing a GDDM on a single corrupted graph such that the
trained model can then be used to perform various condi-
tional graph editing tasks to refine the observed network.
In particular, we propose a novel subgraph-based diffusion
framework (SGDM) that uses graph sampling, and global
vs. local contextual information to support three editing
tasks: (T1) denoising, (T2) expansion and (T3) struc-
tured style-transfer tasks (Fig. 1), which respectively remove
extraneous edges, recover missing edges and regenerate
graphs to support particular attributes. Our contributions are
summarized as:

• Single Graph Editing Tasks: We formally introduce
three new graph editing tasks—denoising, expansion, style
transfer—for single graph GDDMs (§ 3).

• Subgraph Diffusion Framework: We propose a novel,
diffusion framework that utilizes graph sampling and global
vs. local positional information to learn distributions over
a single network and support the introduced editing tasks
(§ 4).

• Extensive Empirical Evaluation: We introduce a diverse
set of graph-specific metrics evaluating performance of the
editing tasks, and extensively evaluate the ability of GDDMs
and our proposed diffusion framework to perform them
(§ 5).

2. Related Work & Background
For both image and graph generation tasks, diffusion models
(DMs) have outperformed GAN (Cao & Kipf, 2018; Wang
et al., 2018; Dhariwal & Nichol, 2021; Liao et al., 2019)
and autoencoding alternatives (Simonovsky & Komodakis,
2018; Zahirnia et al., 2022; You et al., 2018) in generating
high fidelity, diverse inputs. Conceptually, DMs consist
of two parts: (1) a forward process which progressively
adds noise to a sample and (2) a reverse process which
learns to remove noise from the corrupted sample. While
several improvements have been suggested to vision DMs
to improve their trainability (Karras et al., 2022; Xiao et al.,
2022), fidelity and sampling speed (Rombach et al., 2022;
Zhang & Chen, 2023), we provide a generic exposition that
also applies to GDDMs (Xie et al., 2021; Mahdi Karami,
2024; Bergmeister et al., 2024) here.

Let x0 ∼ q(x) be a sample from a data distribution. Then,
we can define a forward process that gradually adds noise
to x0 over T steps such that in limit xT can be seen as a
sample from a predefined reference distribution. Formally,
let q(xt|xt−1) be one step of the forward process, then using
the Markov property, we can condition on the data sample
such that q(x1, . . . , xT |x0) =

∏T
t=1 q(x

t|xt−1). Image
DMs (Sohl-Dickstein et al., 2015) and early graph DMs (Niu
et al., 2020; Jo et al., 2022) use an isotropic Gaussian for
the reference distribution as it ensures that each step of the
reverse process can be computed in closed form, sampling
xT does not require knowledge of x0, and the posterior has
a closed form.

2

Editing Partially Observable Networks via Graph Diffusion Models

Then, the parameterized reverse process, pθ, learns to ap-
proximate q(xt−1|xt) to iteratively convert a sample from
reference distribution to a sample from q(x). Since each
step in the forward process is conditionally independent,
we can compute the joint probability over the noisy latent
(x0, . . . , xT) as pθ

(
x0:T

)
= p

(
xT

)∏T
t=1 pθ

(
xt−1|xt

)
,

where marginalizing out the trajectory models the data dis-
tribution, pθ(x0). Thus, data can be generated by sampling
from the reference distribution, and then using the learned
reverse process at each step T → 0. Several equivalent for-
mulations have been proposed for training pθ by minimizing
the variational lower bound, which practically involve train-
ing a neural network to predict the noise at step t (Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2019). We refer
the interested reader to a comprehensive survey by (Yang
et al., 2022).

Since graphs are structured, discrete data, alternative ref-
erence distributions and corresponding forward processes
have been proposed to preserve sparsity and discreteness.
For example, DiGRESS (Vignac et al., 2023) proposes a
categorical distribution over node and edge types, while
EDGE (Chen et al., 2023) uses an empty Erdos-Renyi graph.
Both are more scalable than the Gaussian reference distribu-
tion used by GDSS (Jo et al., 2022), and produce structured
intermediate latent variables. We give more details for graph
diffusion models in Appendix A.6.

3. Problem Formulation
In this section, we introduce the editing tasks that our frame-
work supports (Fig. 1).

Notations. Let G(V, E ,A,X) represent a graph where the
tuple contains, respectively, the node set V , edge set E ,
adjacency matrix A ∈ [0, 1]|V| times|V|, and node features
X ∈ R|V|×d.

Problem Statement. Let GO(VO, EO) be an incomplete,
noisy observed network and GT (VT , ET) be the correspond-
ing, but unknown, complete, noise-free target graph. Fur-
ther, we assume that the majority of the observed graph is
not corrupted or missing—i.e., |(EO \ ET) ∪ (ET \ EO)| ≤
min(ϵ|ET |, ϵ|EO|), where ϵ ≪ 1. Then, given GO, we seek
to devise a scalable, unified GDDM framework that can
support (T1) expansion, (T2) denoising, and (T3) style
transfer in order to recover the missing subgraphs and re-
move the extra subgraphs such that the refined graph better
aligns with the unknown target graph GT . While these dis-
crepancies could co-occur, we begin by considering them
individually and assume all nodes are shared between the
target and observed graphs.

(T1) Expansion: Here, we assume that the observed graph
is missing some subgraph present in the target graph. The
task is to recover these missing edges given the observed

graph. Formally, let EM = ET \ EO correspond to the set
of missing edges, where 0 < |EM | < ϵ and |VO| = |VT |.
Then, conditioning on GO, we wish to generate a graph GG
that contains both EO and EM .

(T2) Denoising: Here, we assume that the observed graph
has extra edges present that are not present in target graph.
The task is to remove the additional edges given the ob-
served graph. Formally, let EA = EO \ ET correspond to the
set of additional edges, where 0 < EA < ϵ and |VO| = |VT |.
Then, conditioning on GO, we wish to generate a graph GG
that removes EA, but keeps the rest of the edges.

(T3) Style Transfer: While expansion and denoising focus
on editing GO so that the generated graph better aligns with
GT , style transfer is not strictly a refinement task. Instead, it
focuses on adapting GO to reflect a particular attribute (e.g.
style) of interest. We include it in our editing framework
since it provides a mechanism for making abstract condi-
tional graph changes. For example, we may be interested in
how changing the number of triangles affects connectivity,
but do not know apriori which particular edges are changed
in response. Formally, let Attr be some attribute of interest
and AttrD be the desired value. Then, given GO(VO, EO)
with observed value AttrO, we wish to generate a graph,
GG(VG, EG), such that GG obtains value AttrD. We note
that existing GDDMs cannot support this task.

4. Editing Networks with Subgraph Diffusion
Models

Here, we describe our subgraph-based diffusion model
(SGDM) and editing framework (Sec. 4.2).

4.1. SGDM Framework

Our diffusion framework is motivated by the challenges that
existing diffusion models face when training in our problem
setup (Sec. 3). Specifically, the majority of image (Saharia
et al., 2022a; Ramesh et al., 2021; Saharia et al., 2022b)
and graph diffusion models (Vignac et al., 2023; Chen et al.,
2023) are trained on very large datasets of generally clean
samples to support diverse, high fidelity generation and
conditional editing. However, when training diffusion mod-
els are applied on a single sample (Kulikov et al., 2023;
Nikankin et al., 2023), it is easier to overfit to the observed
graph—i.e., the reverse process becomes effectively deter-
ministic and only generates the observed graph. This is
especially damaging as the observed graph is assumed to
be corrupted or otherwise incomplete, and overfitting will
lead the diffusion model to memorize these artifacts. Fur-
thermore, while most single-image diffusion models assume
standard to moderately-sized training images, single-graph
diffusion models will likely need to accommodate very large
training graphs. Lastly, since most parts of the graph are

3

Editing Partially Observable Networks via Graph Diffusion Models

Algorithm 1 SGDM: Subgraph-based Diffusion
Input: GO = (V, E ,A,X), Global-Context,

Local-Context, Sampling, q, pθ
Output: (q, pθ,Hist-Global): trained subgraph diffusion

model
C← Global-Context(GO)
GO ← C
S ← Sampling(GO)
Hist-Global = [0]|GO|

Hist-GraphSize = [0]|Max Size(|S|)

for S to S do
Q← Local-Context(S)
S ← Q
Hist-Global[CS]+ = 1
Hist-GraphSize[|S|]+ = 1
S ← (S = AS ,XS ,CS ,Q)

end
Forward← q

(
S1, . . . ,ST

)
=

∏T
t=1 q

(
St|St−1

)
Reverse← pθ

(
S0:T

)
= p(ST)

∏T
t=1 pθ

(
St−1|St,CS0

)
minθ

∑
S∈S Eq(S0)q(S1:T |S0)

[
− log pθ(S0:T)

q(S1:T |S0)

]
return (q, pθ,Hist-Global,Hist-GraphSize)

assumed to be complete and uncorrupted, it is unnecessary
to regenerate the entire graph per edit.

We propose Subgraph-based Diffusion Models (SGDM)
which rely upon subgraph sampling and global context
to address these challenges, and flexibly support existing
GDDMs in generating and editing large-scale networks (Al-
gorithms 1). Next, we discuss the key components of SGDM.

Subgraph Sampling. Existing GDDMs have demonstrated
impressive performance in modeling large distributions of
small graphs but are limited by the quadratic memory and
runtime complexity incurred by considering every potential
edge during generation. This is further exacerbated when
using expressive but memory-intensive graph transformer
architectures during training. While there has been some
recent work on improving the scalability of GDDMs by
only taking the gradient with respect to a subset of active
nodes (Chen et al., 2023), such approaches are nonethe-
less destined to run out-of-memory on production-scale
networks as even a subset of active nodes will be too large
to compute the backward pass. Moreover, as more sophisti-
cated GDDMs are proposed, it is beneficial to support these
methods on large-scale networks as well.

To this end, we use subgraph sampling and stitching to con-
vert the task of learning on a single large-scale network
to learning a distribution over a collection of subgraphs.
Namely, given the observed graph, GO, we use a subgraph
sampling function: SAMPLE : GO → S, to return a set of
subgraphs, S, such that (1) the average size of a subgraph
S is much smaller than GO, i.e.,

(
1
|S|

∑
S∈S |S|

)
≪ |GO|;

(2) each node is represented at least once through sampling—

Algorithm 2 Editing with SGDM
Input: SO = (VO, EO,AO,XO,CO): subgraph that will be

edited, fψ : (S, t) → y: trained attribute regressor, λ:
guidance strength

Output: SG = (AG,XG,CO): edited graph.
n← |SO|
St=T ← qn(·)
for t = T to 0 do

Qt ← Local-Context(St)
St ← Qt

St−1 ← pθ(St,C)
(At−1,Xt−1,C)← St−1

▷ Expansion.
At−1 ← (1−A)⊙At−1 +A

Xt−1 ← (1−X)⊙Xt−1 +X
▷ Denoising.

At−1 ← A⊙At−1

▷ Style Transfer. (Vignac et al.,
2023; Dhariwal & Nichol, 2021)

ỹ = f(St, t)
pψ(ỹ|St−1) ∝ exp(−λ⟨∇St||ỹ − y||2,St−1⟩)
St−1 ∼ pθ(St−1|St)pψ(ỹ|St−1)

end
return SG = (At,Xt,CO)

∀v ∈ VO, |{S|v ∈ (S ∋ S}| > 1; and (3) for trainability,
S is connected. Graph partitioning and clustering methods,
as well as ego-network sampling are candidates for sam-
pling, potentially followed by post-processing to ensure the
connectivity requirement. In case the obtained subgraphs re-
main prohibitively large, an optional subsampling function
can be applied to reduce the size of S to a predefined maxi-
mum size Nmax. Formally, define SUBSAMPLE : S → S̃,
such that |S̃| ≤ Nmax and S̃ remains connected.

Given the subgraphs, we can use any existing GDDM to
define pθ, q, and the reference distribution (Vignac et al.,
2023; Chen et al., 2023; Jo et al., 2022) over S as follows,
including those that may have been previously prohibited
through the large memory complexity:

Forward Process: q
(
Stk(v)|St−1

k (v)
)

(1)

Reverse Process: pθ
(
St−1
k (v)|Stk(v)

)
(2)

Joint Prob: p
(
STk (v)

)∏T
t=1 pθ

(
St−1
k (v)|Stk(v)

)
. (3)

We note that while our primary objective is not to learn
a large-network generative model, SGDM can be used for
this purpose as it has been shown that it is possible to re-
construct a graph from a reasonably-sized collection of its
random subgraphs with sufficient coverage (Manvel, 1976;
McGregor & Sengupta, 2022). We discuss “stitching” at the
end of the subsection.

Context. While Equations (1,2,3) define a complete graph
diffusion model over S, we can further improve its gener-
ative capabilities by introducing information that can dif-
ferentiate between similar subgraphs. It is possible that
there exist subgraphs Si,Sj ∈ S which are structurally
similar but located in different parts of the network. To

4

Editing Partially Observable Networks via Graph Diffusion Models

handle such cases effectively, we design SGDM to leverage
both global context (e.g., how close Si is to Sj in GO, what
Si’s surroundings are) and local context (i.e., the structural
characteristics of Si) for editing tasks. For example, when
editing a corrupted subgraph, it may be more helpful to
leverage information from a closer, structurally similar sub-
graph than one that is further away; global context helps us
capture this and ensures the edited graph remains consistent
with respect to its surroundings.

To improve model performance and effectively provide
Local-Context : S → R|S|×d, existing GDDMs (Vi-
gnac et al., 2023; Chen et al., 2023) use spectral and struc-
tural features (e.g., cycle counts, number of triangles, Lapla-
cian vectors, degree distributions). For global context,
let Global-Context : GO → R|GO|×d be a function
that computes a global-context vector (Cv) for each node
v ∈ VO such that (i) ∀u, v, q, u ̸= v ∈ VO,Cu ̸= Cv, and
(ii) for most u, v, (u ̸= v) ∈ VO, |Cu - Cv| ≤ |Cv - Cq|
if d(u, v) ≤ d(v, q) for some graph distance d. To incor-
porate global information, we modify pθ to take CS as an
additional feature (as described in the appendix). Notably,
when generating new samples, we first sample n subgraph
global-context vectors from the empirical distribution of
global-context vectors in S, and then proceed with the re-
verse process. This allows us to control the broader context
in which graphs are generated. (Algorithm 1).

Stitching. As we mentioned above, it is possible to re-
construct graphs given a collection of random subgraphs
(Manvel, 1976; Gupta & Khandelwal, 2012; McGregor
& Sengupta, 2022) with enough samples and provided
there is a mechanism for identifying nodes across the sub-
graphs so that edges may be coalesced. Since we required
Global-Context to be unique ∀v ∈ VO, we can use
the global-context vectors to perform this identification and
then define a COALESCE: S̃ → G̃O function accordingly,
e.g., take the union over collection of edges. (Algorithm 3).

4.2. Supported Editing Tasks

We now discuss how to perform the editing tasks introduced
in Sec. 3 for both SGDM and single-graph diffusion mod-
els. We assume that we have a pretrained diffusion model,
pθ, and the portion of the graph that needs to be edited is
provided, S(V, E ,A,X,C).

(T1) Expansion with SGDM. For expansion, the reverse
process needs to recover missing edges or subgraphs, given
the specified, observed subgraph. Conceptually, this task
is similar to “in-painting” where a diffusion model is used
to fill-in masked regions of an image so that the resulting
image is consistent with the surrounding context. Our ap-
proach is inspired by a computer vision approach (Lugmayr
et al., 2022) that uses the DM to only fill in the masked
regions of the images; it only modifies the reverse process

and ensures consistency with the starting sample by incor-
porating information from the unmasked regions through-
out the reverse process. For graphs, the masked region is
defined by the connectivity and node features of the pro-
vided, starting subgraph, S(A,X,Q), and unmasked re-
gion is implicitly defined by the potential |S|2 - A edges
of S. Formally, for each step t in the reverse process,
At−1 ← (1 − A) ⊙ At−1 + A, where the full process
is shown in Algorithm 2.

(T2)Denoising with SGDM. While expansion assumes that
all the existing edges S(A,X,C) are reliable, and can be
used to guide the reverse process, this is not the case when
performing denoising. Indeed, when performing denoising,
it is unknown which subset of A can be considered reliable.
This makes it challenging to ensure that the generated sam-
ple is consistent with the starting sample. On the other hand,
while expansion requires correctly identifying which of the
possible |S|2 - A edges should be added to S, denoising
requires only identifying which of the A edges are in fact
correct. Since graphs are often sparse, this entails that the
possible “solution” space when denoising is significantly
smaller than that when performing expansion. We propose
to use an in-painting style approach, but instead of filling-in
regions given S, we attempt to remove edges that do not
belong: At−1 ← A⊙At−1. This ensures that the sample
generated at the end of the reverse process will only contain
edges that belong to S , and, due to the impressive generative
capacity of the pretrained diffusion model, resulting sample
may also remove the extraneous edges.

(T3) Style Transfer with SGDM. Consider an example
where we are interested in understanding how changing
a node’s attribute will lead to changes in its connectiv-
ity. With an existing single large-graph GDDM, the entire
graph would be regenerated in an attempt to reflect these
changes despite the expectation that edits will be relatively
local (Newman, 2010). In contrast, with SGDM, we can pro-
vide the relevant subgraph (i.e., k-hop egonet) of the spec-
ified node and regenerate to reflect the changed attribute.
This is particularly important for scalability as we do not
consider an in-painting approach here, but instead lever-
age classifier guidance (Dhariwal & Nichol, 2021; Kawar
et al., 2023; Vignac et al., 2023) which requires taking the
gradient of the generated graph while attempting to mini-
mize the loss of a time-dependent classifier. We build on
a conditional generation pipeline (Vignac et al., 2023) that
is unable to perform style transfer on large networks due
to memory issues during training. To overcome these chal-
lenges, in brief, we first train a time-dependent regressor,
fψ(S, t) to predict the attribute of interest, then we use the
regressor loss, (pψ(ỹ|St−1)), to guide the reverse process
St−1 ∼ pθ(St−1|St)pψ(ỹ|St−1) (Algorithm 2).

5

Editing Partially Observable Networks via Graph Diffusion Models

Table 1. Dataset Statistics

Dataset # Graphs # Nodes # Edges

BA-Shapes 1 700 3,944
PolBlogs 1 1,222 33,431
CORA 1 2,485 10,138

5. Experiments
In this section, we evaluate the ability of graph diffu-
sion models to perform editing tasks, and demonstrate the
benefits of using SGDM. Specifically, we seek to answer
the following research questions: (RQ1) Is there a bene-
fit to SAMPLING on the expansion and denoising tasks?
(RQ2) Is there a benefit to using GLOBAL-CONTEXT in
our proposed graph editing tasks? (RQ3) How do different
GDDM backbones affect the performance of SGDM? Below,
we first describe our evaluation setup.

5.1. Evaluating Refinement Tasks

To the best our knowledge, we are the first to consider using
graph editing to perform refinement on a single, partially
observed network. Therefore, we begin by introducing the
following new metrics.

5.1.1. NOVEL EVALUATION METRICS

Evaluating the ability of generative graph models to recover
GT (VT , ET) through conditional editing tasks presents sev-
eral unique difficulties in comparison to similar editing tasks
in computer vision. While repainted images are assessed for
“realism”, which considers how plausible an in-painting so-
lution is given the unmasked region, and “diversity”, which
considers the perceptual dissimilarity of generated solutions,
it is non-trivial to define such quantities for edited graphs.
Indeed, in the case of a subgraph missing a single edge, gen-
erating a diverse set of alternative subgraphs may introduce
unnecessary changes that do not align with GT . Further-
more, it is not possible to perform user-studies or visual
inspection to determine if the edited graph maps to realistic
solutions due to their size and the abstract nature of struc-
tured data. To this end, we introduce the following novel
metrics for assessing the quality of expanded or denoised
graphs. We discuss style transfer evaluation separately.

• Consensus: If the score function has learned to model
the true data-generating process underlying the unob-
served target graph, then it is expected that the major-
ity of generated samples will concur that the missing
edges should be generated. A higher consensus score,

1
|EM |

∑
[i,j]∈EM

1
R

∑R
r=1 1

[
EGr[i,j] = ET [i,j]

]
, where R is

the number of generated samples, indicates that the majority

of samples are able to generate the particular set of missing
edges, as desired.

• Edge Overlap: While SGDM allows us to generate aligned
graphs by conditioning with the positional information,
we note that other methods may not produce such graphs.
Therefore, after performing some alignment, we measure
how much of the generated graph overlaps with the con-
ditioning graph. Since measuring overlap is an NP -hard
problem, we approximate it as 1

R

∑R
r=1 1 [EGr ⊙ EO], us-

ing the binary adjacency matrix representation of the graph.

• Diversity: While producing a diverse set of gener-
ated solutions may not be as high priority in graph edit-
ing tasks as in image editing tasks, it is still useful to
measure to understand if the generative model has con-
verged to a single solution or collapsed to single model:

1
R(R−1)

∑R
r1=1

∑R
r2=1 1 [EG

r1 ̸= EGr2].

• Sparsity: Given that we seek to recover missing edges
conditioned on the observed graph, it is possible to trivially
recover all missing edges if the generated samples are fully
connected. Thus, we measure the fraction of extra edges
generated with respect to the target graph: 1

R

∑R
r=1

|Er
G|

|ET | .

While the desired sparsity score is closer to 1, the range of
sparsity is [|EO|

|ET | ,
|VO|2
|ET |], corresponding to generated samples

which do not add any edges given the conditioning graph
and those that generate all possible edges.

5.1.2. EXPERIMENTAL SETUP

Datasets. For the editing tasks, we consider 3 large, single
networks—BA-Shapes, PolBlogs and CORA (Table 1)—
and corrupt them to create the incomplete, noisy observed
graphs. Namely, we randomly add or remove 10% of edges
in the CORA or Pol-Blogs dataset, while enforcing that the
graph remains connected. In order to assess performance
on a structured corruption process, we also evaluate the
BA-Shapes dataset (Ying et al., 2019), which consists of 80
house-motifs attached to a 300-node Barbasi Albert random
graph. Here, we corrupt 5% of the edges in the house-motifs.
Since the house-motifs have a fixed structure, we can better
understand if the diffusion model is able to capture the
underlying data-generating process in order to refine the
graph. Given the set of the removed or added edges, we are
able to compute the metrics introduced above (Sec. 5.1).

Baselines. Given that editing a single network is a relatively
new problem, there are no direct baselines, so we adapt
existing graph diffusion models to the best of our abilities.
EDGE (Chen et al., 2023), which conditions the reverse
process using the empirical degree distribution is our most
direct comparison and, as we discuss below, helps us show
the benefits of SGDM.

6

Editing Partially Observable Networks via Graph Diffusion Models

SGDM Variants. While SGDM was presented as a general
framework in Sec. 4.1, we evaluate specific variants that
are well-suited for our editing tasks. We define SAMPLING
using node-centric 2-hop ego-networks; SUBSAMPLING by
(1) randomly sampling 200 nodes per subgraph, (2) induc-
ing the corresponding subgraph, and (3) taking the largest
connected component; and GLOBAL-Context by com-
puting the top-two Laplacian positional encodings (LPEs)
(Dwivedi et al., 2020; 2022; Wang et al., 2022) on GO. We
select ego-networks for SAMPLING as it aligns well with
use cases where particular nodes are untrustworthy or cor-
rupted. Our SUBSAMPLING strategy is selected for ease
of use and efficiency. We chose LPEs for global context as
they have been shown to be theoretically expressive in distin-
guishing between nodes. We consider 3 different backbone
GDDMs (DiGRESS (Vignac et al., 2023), EDGE (Chen
et al., 2023) and GDSS (Jo et al., 2022)) in our evalua-
tion to demonstrate the flexibility of the proposed frame-
work. Local-Context is defined according to backbone
GDDM. We discuss more variants in Appendix A.8.

5.1.3. RESULTS

Here, we answer the aforementioned research questions.
Scores closer to “1” indicate better performance.

(RQ1) Benefits of Sampling. In Table 2, EDGE is com-
pared against SGDM when using a EDGE backbone and NO
GLOBAL-CONTEXT to determine if learning over a collec-
tion of subgraphs is more effective than directly learning on
a single graph. We observe that SGDM significantly outper-
forms EDGE on Diversity, Sparsity and Edge Overlap on
the denoising task. While EDGE achieves better Consensus,
it does so by removing too many edges. On expansion, both
struggle to perform well. We posit that this is a side-effect
of guiding the reverse process using a degree distribution,
as other GDDM backbones perform better.

(RQ2) Benefits of Global-Context. In Table 3, we see that
SGDM (with GLOBAL-CONTEXT) continues to outperform
EDGE with or without GLOBAL-CONTEXT. Moreover,
compared against SGDM (without GLOBAL-CONTEXT) in
Table 2, we see that including context improves Sparsity
and Edge-Overlap on both Cora and PolBlogs. Recall that
context also enables effective stitching for large network
generation, though it is not the main focus of this work.

(RQ3) Effect of Backbone. To demonstrate the flexibility
of our proposed framework, we evaluate the performance
of SGDM on expansion when using GDSS and DiGRESS
backbones (see A.9 for results on denoising). In Fig. 2, we
see that both DiGRESS and GDSS achieve better Consensus
and Diversity than EDGE. While GDSS has significantly
greater Sparsity than other methods, this is not unexpected
as GDSS treats the adjacency matrix as a continuous vari-
able, leading to a densely generated graph. Nonetheless,

Table 2. Benefits of SGDM. Compared against EDGE, we see that
using SGDM +EDGE (gray rows) improves denoising performance.
EDGE uses the degree distribution to guide the reverse process.
This has negative effects on (T1) expansion, as it constrains the
model to satisfy an expected number of edges. Using other DM
backbones helps resolve this problem.

Dataset Task SGDM Global-Ctx Consensus Diversity Sparsity Edge Overlap

BA-Shapes Denoising ✗ ✗ 0.954 0.834 0.055 0.0427
BA-Shapes Denoising ✓ ✗ 0.751 0.992 0.364 0.3427

BA-Shapes Expansion ✗ ✗ 0.000 0.100 0.930 1.000
BA-Shapes Expansion ✓ ✗ 0.055 0.100 0.930 1.000

Cora Denoising ✗ ✗ 0.916 0.915 0.115 0.0957
Cora Denoising ✓ ✗ 0.587 1.000 0.591 0.5851

Cora Expansion ✗ ✗ 0.000 0.100 0.922 1.000
Cora Expansion ✓ ✗ 0.000 0.100 0.925 1.000

PolBlogs Denoising ✗ ✗ 0.992 0.702 0.0411 0.0412
PolBlogs Denoising ✓ ✗ 0.713 1.000 0.340 0.3156

PolBlogs Expansion ✗ ✗ 0.000 0.100 0.941 1.000
PolBlogs Expansion ✓ ✗ 0.000 0.100 0.939 1.000

Table 3. Benefits of Global-Context. We see that SGDM with
Global-Context (gray rows) continues to outperform single-
graph EDGE with or without additional context. Recall that context
is also useful for stitching to generate large graphs.

Dataset Task SGDM Global-Ctx Consensus Diversity Sparsity Edge Overlap

BA-Shapes Denoising ✗ ✗ 0.954 0.834 0.055 0.0427
BA-Shapes Denoising ✗ ✓ 0.996 0.733 0.019 0.0152
BA-Shapes Denoising ✓ ✓ 0.341 0.928 0.762 0.7210

BA-Shapes Expansion ✗ ✗ 0.000 0.100 0.930 1.000
BA-Shapes Expansion ✗ ✓ 0.000 0.100 0.930 1.000
BA-Shapes Expansion ✓ ✓ 0.055 0.100 0.930 1.000

Cora Denoising ✗ ✗ 0.916 0.915 0.115 0.0957
Cora Denoising ✗ ✓ 0.965 0.798 0.057 0.0486
Cora Denoising ✓ ✓ 0.754 1.000 0.442 0.4376

Cora Expansion ✗ ✗ 0.000 0.100 0.922 1.000
Cora Expansion ✗ ✓ 0.000 0.100 0.922 1.000
Cora Expansion ✓ ✓ 0.000 0.100 0.918 1.000

PolBlogs Denoising ✗ ✗ 0.992 0.702 0.0411 0.0412
PolBlogs Denoising ✗ ✓ 0.993 0.598 0.023 0.0218
PolBlogs Denoising ✓ ✓ 0.375 1.000 0.640 0.5927

PolBlogs Expansion ✗ ✗ 0.000 0.100 0.941 1.000
PolBlogs Expansion ✗ ✓ 0.000 0.100 0.938 1.000
PolBlogs Expansion ✓ ✓ 0.000 0.100 0.939 1.000

SGDM continues to outperform EDGE, the only comparable
single-graph method.

5.2. Graph Style Transfer Results

Unlike (T1) expansion and (T2) denoising, which seek
to use the generative model to refine subgraphs so that they
may better align with GT , (T3) Style Transfer instead mod-
ifies subgraphs so that they may align with some specified
property of interest. Thus, we introduce a task-specific
experimental and evaluation setup.

Style Transfer Tasks. We consider three different graph
properties to modify through style-transfer: (1) Sum of
Degrees: Given a subgraph with total degree DT , we wish
to modify it so that the resultant graph has DT + 3 as the
total degree, (2) Maximum Degree: Given a subgraph with
maximum degree DM , we wish to modify it so that the
result graph has DM + 3 as the maximum degree, and (3)
Number of Triangles: Given a subgraph with triangle count
τc, we wish to modify it so that the result graph has τc+3 as

7

Editing Partially Observable Networks via Graph Diffusion Models

Figure 2. Choice of Diffusion Models. SGDM continues to out-
perform EDGE when using GDSS and DiGRESS as backbones.
Indeed, these backbones improve the Consensus and Diversity as
well.

the total number of triangles. These properties are selected
because they can correspond to abstract concepts that may
be relevant to downstream tasks. For example, in a social
network, changing the sum of degrees or maximum degree
may simulate a new user becoming more connected over
time, while changing the number of triangles can reflect
how friends-of-friends may become connected.

Experimental Setup. For all style transfer tasks, we first
train a regressor, p(y|Gt, t) that predicts the target (e.g., max
degree) from the graph at time t, and use it with λ = 100 to
guide the reverse process as shown in Algorithm 2. Given
that predicting graph properties using GNNs can be difficult,
we report results for three different regressor backbones—
GCN, GIN, and Graph Transformer. Furthermore, we con-
sider generative models that have been trained with and
without positional encodings. We emphasize that while our
setup does follow that of Vignac et al. and Dhariwal &
Nichol, without the SGDM framework this task is mean-
ingless on single networks, as localized edits cannot be
performed. Evaluation. In Table 4, we report the average
of the mean absolute error between the target property of
interest and the resulting property from the generated graph
for 100 samples. Here we show results on the BAShapes
dataset when DiGRESS is used as the underlying diffusion
model, and provide additional results including qualitative
examples in the A.9.

Results. We make the following observations from Table 4.
First, we observe that using GLOBAL-CONTEXT improves
performance on the Sum-Degree and Max-Degree tasks, ir-
respective of the choice of regressor architecture. However,
GLOBAL-CONTEXT is not as helpful for changing the num-

Table 4. Graph Style Transfer. While SGDM can support localized
style transfer, single-graph DMs like EDGE cannot. Moreover,
we find that incorporating Global-Context can helps improve
performance on two out of three style transfer tasks.

Task Global-Context? Regressor Type MAE(↓)

Sum-Degree

✗ GCN 6.46
✗ GIN 6.81
✗ GTrans 6.48

✓ GCN 3.78
✓ GIN 3.62
✓ GTrans 3.45

Max-Degree

✗ GCN 24.73
✗ GIN 45.09
✗ GTrans 24.63

✓ GCN 9.3
✓ GIN 11.04
✓ GTrans 11.44

Num. Triangles

✗ GCN 9.18
✗ GIN 9.57
✗ GTrans 10.29

✓ GCN 19.6
✓ GIN 19.6
✓ GTrans 19.6

ber of triangles. We hypothesize that the LPEs may encode
information that makes it difficult to change the number of
triangles. Lastly, we note that while the choice of regressor
architecture does not significantly impact the performance
when GLOBAL-CONTEXT is used, it is influential when
they are not used, suggesting that incorporating them by
help stabilize training.

6. Conclusion
We proposed a novel subgraph-based diffusion model
(SGDM) to support editing tasks on a single, partially ob-
servable network. In particular, SGDM uses subgraph sam-
pling and global context to convert single-graph training
into learning over a collection of subgraphs and is flexible
to choice of diffusion backbone. Notably, this allows us to
use expressive GDDM backbones, such as DiGRESS, that
were previously prohibited due to quadratic memory require-
ments. We also formalized three conditional graph editing
tasks—namely, expansion, denoising, and style transfer—
that can be used for graph refinement with our framework.
Lastly, we introduced a new evaluation protocol for our prob-
lem setting and performed extensive empirical evaluation to
demonstrate the benefits of our proposed framework, as well
as the utility of the proposed editing tasks. For future work,
we will expand our evaluation to include downstream task
performance and our framework to support editing dynamic
graphs.

8

Editing Partially Observable Networks via Graph Diffusion Models

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements

This work was performed while PT was an intern at Adobe
Research. DK is also partially supported by the National Sci-
ence Foundation under CAREER Grant No. IIS 1845491,
Army Young Investigator Award No. W9-11NF1810397,
and Adobe, Amazon, Facebook, and Google faculty awards.
Any opinions, findings, and conclusions or recommenda-
tions expressed here are those of the author(s) and do not
reflect the views of funding parties. PT thanks Ekdeep
Singh Lubana for useful discussions during the course of
this project.

References
Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den

Berg, R. Structured denoising diffusion models in dis-
crete state-spaces. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), 2021.

Bergmeister, A., Martinkus, K., Perraudin, N., and Watten-
hofer, R. Efficient and scalable graph generation through
iterative local expansion. In Proc. Int. Conf. on Learning
Representations (ICLR), 2024.

Cao, N. D. and Kipf, T. Molgan: An implicit gen-
erative model for small molecular graphs. CoRR,
abs/1805.11973, 2018.

Chanpuriya, S., Musco, C., Sotiropoulos, K., and
Tsourakakis, C. E. On the power of edge independent
graph models. In Proc. Adv. in Neural Information Pro-
cessing Systems (NeurIPS), 2021.

Chen, X., He, J., Han, X., and Liu, L. Efficient and degree-
guided graph generation via discrete diffusion modeling.
In Proc. Int. Conf. on Machine Learning (ICML), 2023.

Dhariwal, P. and Nichol, A. Q. Diffusion models beat gans
on image synthesis. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), 2021.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable struc-
tural and positional representations. In Proc. Int. Conf.
on Learning Representations (ICLR), 2022.

Eliassi-Rad, T., Caceres, R. S., and LaRock, T. Incom-
pleteness in networks: Biases, skewed results, and some
solutions. In Proc. Int. Conf. on Knowledge Discovery &
Data Mining (KDD), 2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gupta, S. K. and Khandelwal, A. Reconstruction conjec-
ture for graphs isomorphic to cube of a tree. CoRR,
abs/1207.1875, 2012.

Hanneke, S. and Xing, E. P. Network completion and survey
sampling. In Proc. Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), 2009.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), 2020.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded diffusion models for high
fidelity image generation. J. Mach. Learn. Res. (JMLR),
23, 2022.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Learning
categorical distributions. In Proc. Adv. in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Hoogeboom, E., Heek, J., and Salimans, T. simple diffusion:
End-to-end diffusion for high resolution images. arXiv
preprint arXiv:2301.11093, 2023.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In Proc. Int. Conf. on Machine Learning
(ICML), 2022.

Jo, J., Kim, D., and Hwang, S. J. Graph genera-
tion with destination-driven diffusion mixture. CoRR,
abs/2302.03596, 2023.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2022.

Kawar, B., Song, J., Ermon, S., and Elad, M. JPEG artifact
correction using denoising diffusion restoration models.
CoRR, abs/2209.11888, 2022.

Kawar, B., Ganz, R., and Elad, M. Enhancing diffusion-
based image synthesis with robust classifier guidance. In
Trans. Mach. Learn. Res. (TMLR), 2023.

9

Editing Partially Observable Networks via Graph Diffusion Models

Kim, M. and Leskovec, J. The network completion problem:
Inferring missing nodes and edges in networks. In Proc.
Int. Conf. on Data Mining (SDM), 2011.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
CoRR, abs/1611.07308, 2016.

Kulikov, V., Yadin, S., Kleiner, M., and Michaeli, T. Sinddm:
A single image denoising diffusion model. In Proc. Int.
Conf. on Machine Learning, (ICML), 2023.

Leskovec, J. and Faloutsos, C. Sampling from large graphs.
In Proc. Int. Conf. on Knowledge Discovery & Data Min-
ing (KDD), 2006.

Liao, R., Li, Y., Song, Y., Wang, S., Nash, C., Hamilton,
W. L., Duvenaud, D., Urtasun, R., and Zemel, R. Efficient
graph generation with graph recurrent attention networks.
In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2019.

Limnios, S., Selvaraj, P., Cucuringu, M., Maple, C., Reinert,
G., and Elliott, A. Sagess: Sampling graph denoising
diffusion model for scalable graph generation. CoRR,
2023.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Gool, L. V. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proc. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2022.

Luhman, T. and Luhman, E. Improving diffusion model ef-
ficiency through patching. CoRR, abs/2207.04316, 2022.

Mahdi Karami, Igor Krawczuk, V. C. Multi-resolution graph
diffusion. In ICLR 2024 Workshop on Machine Learning
for Genomics Explorations, 2024.

Manvel, B. On reconstructing graphs from their sets of
subgraphs. J. Comb. Theory, Ser. B, 21(2), 1976.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. SPECTRE: spectral conditioning helps to overcome
the expressivity limits of one-shot graph generators. In
Proc. Int. Conf. on Machine Learning (ICML), 2022.

McGregor, A. and Sengupta, R. Graph reconstruction from
random subgraphs. In Int. Coll. on Automata, Languages,
and Programming (ICALP), LIPIcs, 2022.

Newman, M. E. J. Networks: An Introduction. Oxford
University Press, 2010.

Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., and
Anandkumar, A. Diffusion models for adversarial purifi-
cation. In Proc. Int. Conf. on Machine Learning (ICML),
2022.

Nikankin, Y., Haim, N., and Irani, M. Sinfusion: Training
diffusion models on a single image or video. In Proc. Int.
Conf. on Machine Learning (ICML), 2023.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In Proc. Int. Conf. on Artificial
Intelligence and Statistics (AISTATS), 2020.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In Proc. Int. Conf. on Machine
Learning (ICML), 2021.

Rendsburg, L., Heidrich, H., and von Luxburg, U. Netgan
without GAN: from random walks to low-rank approxi-
mations. In Proc. Int. Conf. on Machine Learning (ICML),
2020.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proc. Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

Saharia, C., Chan, W., Chang, H., Lee, C. A., Ho, J., Sali-
mans, T., Fleet, D. J., and Norouzi, M. Palette: Image-to-
image diffusion models. In Proc. Special Interest Group
on Computer Graphics and Interactive Techniques Conf.
(SIGGRAPH), 2022a.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E. L., Ghasemipour, S. K. S., Lopes, R. G., Ayan,
B. K., Salimans, T., Ho, J., Fleet, D. J., and Norouzi,
M. Photorealistic text-to-image diffusion models with
deep language understanding. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2022b.

Seshadhri, C., Sharma, A., Stolman, A., and Goel, A. The
impossibility of low-rank representations for triangle-rich
complex networks. In Proc. Natl. Acad. Sci. USA, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Proc. Int. Conf. on Artificial Neural Networks (ICANN),
2018.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In Proc. Int. Conf. on Machine
Learning (ICML), 2015.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2019.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score match-
ing: A scalable approach to density and score estimation.
In Proc. Conf. on Uncertainty in Artificial Intelligence
(UAI)), 2019.

10

Editing Partially Observable Networks via Graph Diffusion Models

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. In Proc. Int. Conf. on Learning
Representations (ICLR), 2023.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang,
F., Xie, X., and Guo, M. Graphgan: Graph representation
learning with generative adversarial nets. In Proc. Conf.
on Adv. of Artificial Intelligence (AAAI), 2018.

Wang, H., Yin, H., Zhang, M., and Li, P. Equivariant and
stable positional encoding for more powerful graph neural
networks. In Proc. Int. Conf. on Learning Representations
(ICLR), 2022.

Wang, Z., Jiang, Y., Zheng, H., Wang, P., He, P., Wang, Z.,
Chen, W., and Zhou, M. Patch diffusion: Faster and more
data-efficient training of diffusion models. arXiv preprint
arXiv:2304.12526, 2023.

Xiao, Z., Kreis, K., and Vahdat, A. Tackling the generative
learning trilemma with denoising diffusion gans. In Proc.
Int. Conf. on Learning Representations (ICLR), 2022.

Xie, Y., Shi, C., Zhou, H., Yang, Y., Zhang, W., Yu, Y.,
and Li, L. MARS: markov molecular sampling for multi-
objective drug discovery. In Proc. Int. Conf. on Learning
Representations (ICLR), 2021.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao,
Y., Shao, Y., Zhang, W., Yang, M., and Cui, B. Diffu-
sion models: A comprehensive survey of methods and
applications. CoRR, abs/2209.00796, 2022.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
Gnnexplainer: Generating explanations for graph neural
networks. In Proc. Adv. in Neural Information Processing
Systems (NeurIPS), 2019.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In Proc. Int. Conf. on Machine Learn-
ing (ICML), 2018.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. In Proc. Int. Conf. on Machine Learning
(ICML), 2019.

Zahirnia, K., Schulte, O., Nadaf, P., and Li, K. Micro and
macro level graph modeling for graph variational auto-
encoders. In Proc. Adv. in Neural Information Processing
Systems (NeurIPS), 2022.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), 2018.

Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Revisiting
graph neural networks for link prediction. In Proc. Adv. in
Neural Information Processing Systems (NeurIPS), 2020.

Zhang, Q. and Chen, Y. Fast sampling of diffusion mod-
els with exponential integrator. In Proc. Int. Conf. on
Learning Representations (ICLR), 2023.

Zhang, Q., Song, J., Huang, X., Chen, Y., and yu Liu, M.
Diffcollage: Parallel generation of large content with
diffusion models. In Proc. Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2023.

Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., and
Wu, S. A survey on deep graph generation: Methods
and applications. In Proc. Conf. on Learning on Graphs
(LOG), 2022.

11

Editing Partially Observable Networks via Graph Diffusion Models

A. Appendix
A.1. Denoising Results

We include our detailed results for denoising here. EDGE uses the degree sequence to help guide the reverse process of large
scale graphs. Here, we include a “cheatcode” that uses the “target” degree and observed subgraph (instead of the observed
degree sequence). In some sense, this provides the complete information needed to recover the unobserved target graph.

Table 5. Graph Denoising, BA-Shapes.
Method SGDM? PE? Conditioning? Consensus (↑) Diversity (↑) Sparsity (≊ 1) Edge Overlap (≊ 1)

EDGE ✓ ✓ Obs. Degree + Subst. 0.256 0.903 0.874 0.8212
EDGE ✓ ✓ Target Degree + Subst. 0.580 0.976 0.797 0.753

EDGE ✓ ✓ Obs. Degree + Subst. 0.341 0.928 0.762 0.721
EDGE ✓ ✓ Target Degree + Subst. 0.544 0.979 0.720 0.6838

EDGE ✗ ✗ Obs. Degree + Subst. 0.954 0.834 0.055 0.04273
EDGE ✗ ✗ Target Degree + Subst. 0.950 0.852 0.063 0.04562

EDGE ✗ ✓ Obs. Degree + Subst. 0.996 0.733 0.019 1.519
EDGE ✗ ✓ Target Degree + Subst. 0.996 0.736 0.020 1.560

GDSS ✓ ✗ Subst. 0.098 0.979 0.373 0.58165
GDSS ✓ ✓ Subst. 0.023 0.825 0.578 0.89488

DiGRESS ✓ ✓ Subst. 0.184 0.589 0.914 –
DiGRESS ✓ ✓ Subst. 0.007 0.239 1.016 –
DiGRESS ✓ ✓ No Subst. 0.016 0.421 1.026 –

Table 6. Graph Denoising, CORA.
Method SGDM? PE? Conditioning? Consensus (↑) Diversity (↑) Sparsity (≊ 1) Edge Overlap (≊ 1)

EDGE ✓ ✗ Obs. Degree + Subst. 0.587 1.000 0.591 0.58509
EDGE ✓ ✗ Target Degree + Subst. 0.731 0.999 0.588 0.58188

EDGE ✓ ✓ Obs. Degree + Subst. 0.754 1.000 0.442 0.43763
EDGE ✓ ✓ Target Degree + Subst. 0.836 1.000 0.441 0.43677

EDGE ✗ ✗ Obs. Degree + Subst. 0.916 0.915 0.115 0.09570
EDGE ✗ ✗ Target Degree + Subst. 0.873 0.931 0.118 0.09387

EDGE ✗ ✓ Obs. Degree + Subst. 0.965 0.798 0.057 0.04864
EGDE ✗ ✓ Target Degree + Subst. 0.978 0.999 0.067 0.05109

GDSS ✓ ✓ Subst. 0.029 0.723 0.970 0.92559
GDSS ✓ ✗ Subst. 0.619 1.000 0.322 0.30592

DiGRESS ✓ ✓ None 0.402 0.998 2.546 –
DiGRESS ✓ ✓ Subst. 0.438 0.874 0.865 0.82835

12

Editing Partially Observable Networks via Graph Diffusion Models

Table 7. Graph Denoising, PolBlogs.
Method SGDM? PE? Conditioning? Consensus (↑) Diversity (↑) Sparsity (≊ 1) Edge Overlap (≊ 1)

EDGE ✓ ✗ Obs. Degree + Subst. 0.713 1.000 0.340 0.31515
EDGE ✓ ✗ Target Degree + Subst. 0.605 1.000 0.437 0.4044

EDGE ✓ ✓ Obs. Degree + Subst. 0.375 1.000 0.640 0.59266
EDGE ✓ ✓ Target Degree + Subst. 0.469 1.000 0.686 0.6356

EDGE ✗ ✓ Obs. Degree + Subst. 0.993 0.598 0.023 0.02181
EDGE ✗ ✓ Target Degree + Subst. 0.991 0.539 0.018 0.0170

EDGE ✗ ✗ Obs. Degree + Subst. 0.992 0.702 0.0411 0.0412
EDGE ✗ ✗ Target Degree + Subst. 0.992 0.717 0.042 0.03972

GDSS ✓ ✗ Subst. 0.683 1.000 0.353 0.31975
GDSS ✓ ✓ Subst. 0.010 0.605 1.078 0.97685

DiGRESS ✓ ✓ Subst. 0.8239 0.99603 0.60938 –
DiGRESS ✓ ✓ No Subst. 0.886 1.000 2.125 0.42513

A.2. Expansion Results

We include our detailed results for expansion here. EDGE uses the degree sequence to help guide the reverse process of large
scale graphs. Here, we include a “cheatcode” that uses the “target” degree and observed subgraph (instead of the observed
degree sequence). In some sense, this provides the complete information needed to recover the unobserved target graph.

Table 8. Graph Expansion, BA-Shapes.
Method SGDM? PE? Conditioning? Consensus (↑) Diversity (↑) Sparsity (≊ 1) Edge Overlap (≊ 1)

EDGE ✗ ✓ Obs. Degree + Subst 0.000 0.100 0.930 1.000
EDGE ✗ ✓ Target Degree + Subst. 0.044 0.618 0.958 1.000

EDGE ✗ ✗ Obs. degree + Subst. 0.000 0.100 0.930 1.000
EDGE ✗ ✗ Target Degree + Subst. 0.030 0.598 0.960 1.000

EDGE ✓ ✗ Obs. Degree + Subst. 0.055 0.100 0.930 1.000
EDGE ✓ ✗ Target Degree + Subst. 0.589 0.511 1.002 1.000

EDGE ✓ ✓ Obs. Degree + Subst. 0.055 0.100 0.930 1.000
EDGE ✓ ✓ Target Degree + Subst. 0.594 0.511 1.002 1.000

GDSS ✓ ✗ Subst. 0.296 0.983 1.707 1.000
GDSS ✓ ✓ Subst. 0.869 0.565 8.798 1.000

DiGRESS ✓ ✓ Subst. 0.309 0.616 1.039 1.000
DiGRESS ✓ ✓ None 0.550 1.000 5.738 1.000

13

Editing Partially Observable Networks via Graph Diffusion Models

Table 9. Graph Expansion, CORA.
Method SGDM? PE? Conditioning? Consensus (↑) Diversity (↑) Sparsity (≊ 1) Edge Overlap (≊ 1)

EDGE ✗ ✗ Obs. Degree + Subst. 0.000 0.100 0.922 1.00
EDGE ✗ ✗ Target Degree + Subst. 0.020 0.520 0.944 1.00

EDGE ✗ ✓ Obs. Degree + Subst. 0.000 0.100 0.922 1.000
EDGE ✗ ✓ Target Degree + Subst. 0.020 0.493 0.940 1.000

EDGE ✓ ✗ Obs. Degree + Subst. 0.000 0.100 0.925 1.00
EDGE ✓ ✗ Target Degree + Subst. 0.550 0.510 1.001 1.00

EDGE ✓ ✓ Obs. Degree + Subst. 0.000 0.100 0.918 1.000
EDGE ✓ ✓ Target Degree + Subst. 0.542 0.535 1.000 1.000

GDSS ✓ ✗ Subst. 0.246 1.000 5.098 1.000
GDSS ✓ ✓ Subst. 0.223 1.000 10.730 1.000

DiGRESS ✓ ✓ Subst. 0.117 0.933 1.831 1.000
DiGRESS ✓ ✓ None 0.142 0.968 1.755 1.000

Table 10. Graph Expansion, PolBlogs.
Method SGDM? PE? Conditioning? Consensus (↑) Diversity (↑) Sparsity (≊ 1) Edge Overlap (≊ 1)

EDGE ✗ ✗ Obs. Degree + Subst. 0 0.100 0.941 1.000
EDGE ✗ ✗ Target Degree + Subst. 0.046 0.909 0.998 1.000

EDGE ✗ ✓ Obs. Degree + Subst. 0 0.100 0.938 1.000
EDGE ✗ ✓ Target Degree + Subst. 0.046 0.888 0.994 1.000

EDGE ✓ ✗ Obs. Degree + Subst. 0.000 0.100 0.939 1.000
EDGE ✓ ✗ Target Degree + Subst. 0.681 0.363 1.002 1.000

EDGE ✓ ✓ Obs. Degree + Subst. 0.000 0.100 0.939 1.000
EDGE ✓ ✓ Target Degree + Subst. 0.652 0.392 1.002 1.000

GDSS ✓ ✗ Subst. 0.217 1.000 5.444 1.000
GDSS ✓ ✓ Subst. 0.305 1.000 14.174 1.000

DiGRESS ✓ ✓ Subst. 0.034 0.991 1.153 1.000
DiGRESS ✓ ✓ None 0.031 0.994 1.134 1.000

A.3. Style Transfer Results

14

Editing Partially Observable Networks via Graph Diffusion Models

Table 11. Graph Style Transfer
Task PE? Regressor Type MAE(↓)

Sum-Degree

✗ GCN 6.46
✗ GIN 6.81
✗ GTrans 6.48

✓ GCN 3.78
✓ GIN 3.62
✓ GTrans 3.45

Max-Degree

✗ GCN 24.73
✗ GIN 45.09
✗ GTrans 24.63

✓ GCN 9.3
✓ GIN 11.04
✓ GTrans 11.44

Num. Triangles

✗ GCN 9.18
✗ GIN 9.57
✗ GTrans 10.29

✓ GCN 19.6
✓ GIN 19.6
✓ GTrans 19.6

A.4. Experimental Figures

15

Editing Partially Observable Networks via Graph Diffusion Models

Figure 3. Effect of Diffusion Backbone on Denoising

A.5. Generating Large Graphs with Subgraph-based Diffusion

Here, we demonstrate that our proposed subgraph-based diffusion framework performs comparably with other generative
graph models. We use a simple “stitching” based algorithm: (1) we generate an ego-graph around a particular node, and (2)
stitches the subgraphs together. Positional encodings are used in lieu of node-ids as the positional encodings of additional
nodes can be approximated using perturbation theory.

16

Editing Partially Observable Networks via Graph Diffusion Models

Figure 4. Effect of Diffusion Backbone on Expansion. Not that while it appears that No SGDM-EDGE has better consensus, note that it
also has significantly lesser sparsity.

A.6. Expanded Related Work

Here, we expand on the related work introduced in Sec. 2. In brief, diffusion-based generative models consist of two parts:
(i) a forward process, in which data, x0 ∼ q(x), is gradually transformed to a reference distribution through the addition
of some noise over time ϵt, and (ii) reverse process, which takes samples from the reference distribution and attempts to
denoise the samples over time to synthesize samples from the original data distribution.

Early graph diffusion models closely followed the formulation of diffusion models for image synthesis, and ignored the
discreteness of graph data when designing these processes. For example, Niu et al. (2020) use a multivariate standard
Gaussian as the reference distribution and add Gaussian noise to the adjacency matrix when the performing the forward
step. After the final reverse step is completed, the continuous graph is discretized. While their discrete-time score-based
formulation leads to permutation invariant generation (e.g., different node permutations of a graph have the same probability),
intermediate representations are continuous, reducing their interpretability and requiring 1000+ steps to generate good
samples. Jo et al. (2022) propose a continuous-time system of stochastic differential equations to jointly capture the
dependency of nodes and graph topology. However, since the forward process still adds Gaussian noise to the adjacency
matrix, it also suffers from cumbersome sampling.

17

Editing Partially Observable Networks via Graph Diffusion Models

Algorithm 3 Large Graph Generation with SGDM
Input: pθ:trained reverse process, Hist-Global: distribution of observed global context, Hist-GraphSize: distribution of

observed subgraph sizes
Output: GG = (AG,XG,CG,QG): generated graph
S = {}

while ∃Ci ∈ C not SAMPLED do
n← SAMPLE(Hist-GraphSize)
CST ← SAMPLE(Hist-Global, n)
St=T ← qn(·)
for t = T to 0 do

Qt ← Local-Context(St)
St ← Qt

St−1 ← pθ(St,C)
(At−1,Xt−1,C,Qt)← St−1

end
S ← St=0

end
▷ Use Global-Context to Merge Subgraphs.
SG = COALESCE(S)

return SG

Figure 5. Example of Stitching. Compared against several other large-scale generative models, including auto-encoder, recurrent and
diffusion based models, we see that our proposed subgraph-based diffusion framework is able to generate graphs qualitatively similar
graphs to the training sample. Visualization of other methods is reproduced from (Chen et al., 2023).

A Gaussian reference distribution and noising process was well-suited for image synthesis, as it not only enabled tractable
formulations of the forward/reverse processes, but also supported natural image inductive biases. Namely, that adding
Gaussian noise in the forward process will remove high frequency components (style) before low frequency components
(content), allowing models to learn to “paint” pictures. Because graphs are discrete, structured data, Gaussian noise/priors are
not as applicable since they destroy the sparsity and alter topological properties, leading to subpar performance. Therefore,
more recent graph diffusion models have focused on the discrete diffusion processes (Austin et al., 2021; Hoogeboom et al.,
2021).

Instead of using multivariate Gaussian’s as the reference distribution and Gaussian noise during the forward process, Vignac
et al. (2023) uses a uniform distribution over different types of edge and nodes types as the reference distribution and
performs edge/node edits to simulate changing the particular edge/node category. Since the reference distribution is over the
categorical edge/node, they cast the training objective as correctly classifying the edge/node type as each time step, which is
much simpler than learning each node/edge. Moreover, they find that defining the transition probabilities in terms of the
marginal distribution over the edge/node anchors observed in the training distribution (instead of uniform) can substantially
decrease the number of denoising steps and improve the overall generation quality. Lastly, to circumvent limitations in
GNN expressiveness, DIGRESS leverages the discrete intermediate steps to compute structural features at each time step.
However, we note that DiGRESS is expensive to train on large graphs and expects only categorical edges/nodes, which can
be limiting for real-datasets.

In order to improve the scalability of graph diffusion models, while retaining high-fidelity, Chen et al. (2023) (EDGE)

18

Editing Partially Observable Networks via Graph Diffusion Models

Table 12. Large Graph Generation using Subgraph Diffusion. On the PolBlogs dataset, we compare the performance of our proposed
subgraph diffusion framework against several large graph generation methods. The performance of other generative models is reproduced
from (Chen et al., 2023). Better performance is obtained models which produce graphs whose statistics are closer to the training graph,
without having memorized the training graph (Edge Overlap << 100).

Edge Overlap Power Law Exp. Num. Triangle Clustering Coeff. Characteristic Path Length Assortativity Coeff.

Training Graph 100 1.414 1 0.226 2.738 -0.221
OPB (Chanpuriya et al., 2021) 24.5 1.395 0.667 0.150 2.524 -0.143
HDOP (Chanpuriya et al., 2021) 16.4 1.393 0.687 0.153 2.522 -0.131
CELL (Rendsburg et al., 2020) 26.8 1.385 0.810 0.211 2.534 -0.230
CO (Chanpuriya et al., 2021) 20.1 1.975 0.045 0.028 2.502 0.068
TSVD (Seshadhri et al., 2020) 32.0 1.373 0.872 0.205 2.532 -0.216
VGAE (Kipf & Welling, 2016) 3.6 1.723 0.05 0.001 2.531 -0.086
GRNN (You et al., 2018) 9.6 1.333 0.354 0.095 2.566 0.096
EDGE (Chen et al., 2023) 16.5 1.398 0.977 0.217 2.647 -0.214
SGDM(Ours) 9.44 1.384 1.301 0.308 2.612 -0.264

proposes an alternative discrete denoise process, which uses an empty graph as the reference distribution and defines the
forward process as sequentially removing edges to an empty state. In order to effectively scale to large graphs, EDGE limits
the number of “active” nodes by only conditioning the propagation step on whether a nodes degree has changed from t
to t− 1. Furthermore, since the degree distribution is closely related to many graph properties, EGDE conditions on the
degree distribution (since they use a discrete process), a tangential benefit of their discrete process. Jo et al. (2023) (DRuM)
learns distribution over possible trajectories using Schrodinger’s Bridges, instead of the a single point, in order to ensure that
intermediate steps are well-aligned with the true data-distribution. Lastly, we note that our work is contemporary to Limnios
et al. (2023), which also uses sampling and reconstruction to improve the scalability of diffusion models (in particular
DiGress). However, there are several differences: namely, SGDM is a framework that is flexible to the choice of underlying
diffusion model, uses both global/local contexts to improve the performance, and does not require discrete node feature ids
to perform the reconstruction step. Furthermore, in addition to SGDM, we also formalize several network editing tasks and
demonstrate that SGDM can be used to effectively perform these tasks.

19

Editing Partially Observable Networks via Graph Diffusion Models

Table 13. SAMPLED Dataset Statistics. After performing 2-hop ego net sampling, we obtain the following dataset statistics. Note, that
while the average and median number of edges is large for PolBlogs, we perform SUBSAMPLING to control this size. Furthermore, note
that since average graph size is now more mangeable, we can also perform batching to reduce training time.

Dataset Num. Graphs Avg. Nodes Med. Nodes Avg. Edges Med. Edges

BA-Shapes 700 159 91 1,300 502
PolBlogs 1,222 486 519 15,768 17,129
CORA 2,485 139 92 524 296

A.7. Experimental Details

We trained all models using Tesla T4s (16GB GPU Memory, 124GB RAM). To ensure fair comparison across methods and
prevent overfitting to a corrupted graph, all models are trained for at most 24 hours or 5000 epochs, which ever came first.
All metrics are reported over 10 generated samples. When computing edge overlap, we first sort the graph by the degree
sequence and then compare.

We use the official released code by DiGRESS (https://github.com/cvignac/DiGress), EDGE (https:
//github.com/tufts-ml/graph-generation-EDGE) and GDSS (https://github.com/harryjo97/
GDSS). Our evaluation set-up, metrics and editing tasks were implemented using PyTorch Geometric (Fey & Lenssen, 2019)
and PyTorch. Our code can be accessed at https://github.com/pujacomputes/sgdm.

For the SAMPLING function, we use 2-hop ego networks and, for SUBSAMPLING, perform uniform randomly subsampling
to obtain subgraphs of maximum graph-size 50 for training. For GLOBAL-CONTEXT, we use the top-two non-zero
eigenvectors of GT ’s Laplacian. Hyper-parameters and architectures suggested by each method’s authors are used. However,
to incorporate global context, we use the following strategy, inspired by how vision diffusion models incorporate positional
coordinates (Luhman & Luhman, 2022; Wang et al., 2023): (i) we project the global context vector to the same size of the
node’s hidden representation vector (ii) at each message passing layer, we add the global context projection to each node
representation.

As discussed in Sec. 2 and Sec. A.6, EDGE uses the degree sequence to help guide large models in the reverse process. We
include additional refinement results that show the performance of EDGE when using the observed subgraph and the target
degree sequence. This can be seen as giving the reverse process a “cheat-code”, since all the information to recover the
unobserved, clean subgraph has been provided. We note that using EDGE directly with the observed subgraph’s degree
distribution (without global-context) requires that we perform graph-alignment with respect to the observed subgraph. Using
global context with the observed degree helps avoid this alignment issue for feature-less graphs as ids can be matched using
the global context. While we directly filled in (removed) edges when working with DiGRESS, GDSS uses a real-valued
adjacency matrix. Therefore, when performing expansion, we would fill in the maximum value at a given time t for the
edges that we wished to condition upon. Lastly, we note that while our expansion task definition appears similar to link
prediction, this task and the discuss in-painting approach also provides support for filling in missing features. Since EDGE
does not support features at this time, we only present results for subgraph denoising.

20

https://github.com/cvignac/DiGress
https://github.com/tufts-ml/graph-generation-EDGE
https://github.com/tufts-ml/graph-generation-EDGE
https://github.com/harryjo97/GDSS
https://github.com/harryjo97/GDSS
https://github.com/pujacomputes/sgdm

Editing Partially Observable Networks via Graph Diffusion Models

A.8. Alternative Instantiations

We used k-hop ego networks for the SAMPLING functions as we desired a node-centric sampling scheme and induce
subgraphs from a randomly selected subset of larger graphs to perform SUBSAMPLING. We were motivated from the
perspective that particular nodes may be unreliable and lead to corruptions in the observed graph. For example, we can
imagine malicious users in a social network. Given that the majority of nodes (and their surrounding neighborhoods) are not
corrupted and nodes (users) are expected to have some similar behaviors, learning a distribution over the induced ego-centric
subgraphs will allow information transfer between the majority, uncorrupted nodes and the corrupted ones.

While we use random subsampling and ego-nets in our experiments, alternatives are also possible (Leskovec & Faloutsos,
2006). For example, instead of effectively doing Breadth First Search, we can also do random walk sampling, forest fire
sampling, or potentially node2vec style sampling starting from each node in the observed graph so that we can balance the
amount of global network structure or local network structure captured in each subgraph. While the above provide different
strategies for generating node-centric graphs, we can also define a SAMPLING function that is not node-centric but still
satisfies the criteria introduced in Sec. 4. For example, we can use METIS to obtain a non-overlapping graph partition and
extend each partition by 1-hop to make sure to share information across partitions. The choice of SAMPLING function helps
control how many times a single node is seen over the collection of all subgraphs.

We note that the choice of SUBSAMPLING function is also flexible in SGDM. While we used uniform node sampling for its
ease of use, it is also possible to perform SUBSAMPLING with other strategies. For example, we can use a distribution biased
by node degree instead of a uniform distribution. Lastly, we note that there are several choices for GLOBAL-CONTEXT as
well. For example, instead of Laplacian Positional vectors, we can use position aware embeddings (You et al., 2019), which
computes a distance between a node and a set of anchor nodes.

21

Editing Partially Observable Networks via Graph Diffusion Models

A.9. Additional Experimental Results

Figure 6. Digress, (BAShapes, Cora, PolBlogs) Denoising.

Figure 7. EDGE, (BAShapes, Cora, PolBlogs) Denoising.

22

