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Abstract: We propose an image-based, learned method for selective tabletop ob-
ject rearrangement in clutter using a parallel jaw gripper. Our method consists of
three stages: graph-based object sequencing (which object to move), feature-based
action selection (whether to push or grasp, and at what position and orientation)
and a visual correspondence-based placement policy (where to place a grasped
object). Experiments show that this decomposition works well in challenging set-
tings requiring the robot to begin with an initially cluttered scene, selecting only
the objects that need to be rearranged while discarding others, and dealing with
cases where the goal location for an object is already occupied – making it the
first system to address all these concurrently in a purely image-based setting. We
also achieve an ∼8% improvement in task success rate over the previously best
reported result that handles both translation and orientation in less restrictive (un-
cluttered, non-selective) settings. We demonstrate zero-shot transfer of our sys-
tem solely trained in simulation to a real robot selectively rearranging up to 15
everyday objects, many unseen during learning, on a crowded tabletop. Videos:
https://sites.google.com/view/selective-rearrangement.
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1 Introduction

Figure 1: 15-object selective rearrangement from a cluttered initial state. Given an initial ar-
rangement of everyday objects and an image specifying the goal arrangement, the robot learns to
remove objects that do not need repositioning (1-11) and repositions all other objects accurately
(12-15) as specified by the goal image (top left) resulting in the final arrangement (bottom left).

Repositioning objects to a desired configuration is rooted in the activities of daily living [1]. Many
skills underlie this capability – extracting useful information from raw perceptual data, performing
accurate object manipulation, and optimizing long-term sequential action planning – making object
rearrangement an essential challenge for both robotics and embodied AI [2]. Figure 1 illustrates our
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setting: faced with a tabletop with many everyday objects (clutter) the robot is tasked to rearrange
a subset of objects (selectivity) to a goal configuration, while discarding others in a bin. Another
challenge is in situations where the desired locations for some objects are already occupied (swap).
Object rearrangement has been studied in the context of both task and motion planning and learning.
However, existing methods do not concurrently address these three challenges. Our system is the
first to do so in a purely learned setting where the goal is given by a single RGB-D image.

In contrast to e.g., suction mechanisms, we use a parallel jaw gripper requiring object singulation
before grasping. Our method consists of three stages: graph-based object sequencing that picks the
next object to manipulate by minimizing the Graph Edit Distance (GED) between the current scene
graph and the goal scene graph, feature-based action selection that maps the RGB-D image to robot
actions (pushing or grasping) through a deep Q-learning framework, and a visual correspondence-
based placement policy that uses the cross-correlation of visual features between the grasped object
and the goal specification image to locate object placement. Experiments show the successful rear-
rangement of 3-7 objects with>90% completion (error<2.99 cm), and 16-20 objects with>82.33%
success (error <1.64 cm). We also achieve an ∼8% improvement in task success rate over the pre-
viously best reported result that handles both translation and orientation in a less restrictive setting
(uncluttered, non-selective). We demonstrate zero-shot transfer to a real robot (Figure 1) selectively
rearranging up to 15 everyday objects, many unseen during learning, on a crowded tabletop.

2 Related Work

Task and motion planning-based systems (TAMP) [3] either have a high-level task planner and a
low-level motion planner [4, 5, 6, 7, 8, 9, 10], or use sampling-based algorithms or optimization to
solve a single unified formulation of the problem [11, 12]. Some TAMP solutions rely on known ob-
ject models or a known environment [13, 9, 10], which makes it difficult to deploy them with novel
objects or where explicit object pose estimation is difficult to obtain. TAMP approaches that incorpo-
rate learning-based vision models, such as [14, 15, 16, 17] can adapt to novel objects/environments
while [14] is based on one initial scene image, [15] uses structural constrained predicates for plan-
ning, [16] depends on the knowledge of the environment, and [17] assumes round collision radius
for all object shapes, making it difficult to scale to adversarial environments (e.g., highly cluttered).
The number of possible action sequences increases exponentially with the number of objects and
changes in environment observability increase the difficulty of back-tracking and replanning.

Method Robot Action Clutter Selectivity
Grasping
DexNet [18] GRASP 4 7
GPD [19] GRASP 4 7
VPG [20] PUSH&GRASP 4 7
Target object retrieval
Mech Search [21] GRASP 4 4
Murali et al. [22] GRASP 4 4
MORE [23] PUSH&GRASP 4 4
Rearrangement
NeRP [24] GRASP 7 7
IFOR [25] GRASP 7 7
TRLB [10] SUCTION 4 7
ReorientBot [26] SUCTION 4 7
Ours PUSH&GRASP 4 4

Table 1: Related Manipulation Tasks

Deep learning-based systems have relaxed
some of these constraints by incorporating
learning-based models in perception, planning
and actuation. They have been shown to learn
general policies to handle varied rearrangement
tasks [27, 28, 29, 30, 31, 32], e.g., highly-
cluttered, partially-observable environments or
deformable objects. Our work is related to
learning-based methods for grasping in clut-
ter [18, 19, 20, 33], target object retrieval [21,
22, 23], and rearrangement [24, 25, 10, 26] (Ta-
ble 1). Most related to our work, Zeng et al.
[20] and Tang et al. [33] proposed using deep
Q-learning to learn synergies between push and
grasp to improve grasping accuracy in densely cluttered environment. Inspired by [20] and [33], we
adapt collaborative PUSH and GRASP to solve highly cluttered environments for object rearrange-
ment tasks. Different from previous works, we learn action primitives, distinguish objects to rear-
range from those to discard, and plan sequential actions simultaneously making this the first work to
concurrently solve image-based selective object rearrangement in a cluttered tabletop environment.

3 Learning a Selective Rearrangement Policy

We decompose the rearrangement problem into three parts: object sequencing (which object to re-
locate next), action selection (how to manipulate it), and object placement (where to place a grasped
object). We rely on three primitives: pushing objects (PUSH), picking them up (GRASP), and placing
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Figure 2: System overview. Our system uses RGB-D images as input and builds a scene graph
based on the object segmentation given by UOIS-Net-3D [34]. Graph-based object sequencing
(subsection 3.3) selects the optimal object for next rearrangement and we mask the Q-value map
for GRASP with its segmentation mask. Then the system picks the highest Q-value action candidate
from PUSH and GRASP Q-value maps and executes the action Figure 3a. If GRASP is chosen and
successfully executed, the system locates the PLACE of the grasped object (Figure 3b).

them at target locations (PLACE). PUSH and GRASP can be initiated by the robot at any time, how-
ever PLACE can only be performed if the robot is already holding an object. This suggests a natural
decomposition into our three part strategy. When the robot is not holding an object, it must make a
decision on which object to manipulate next (object sequencing). After choosing an object, it must
decide whether (and how) to push the selected object or whether (and how) to pick it up (action
selection). When holding an object, it must decide where to place it (object placement). We model
object sequencing as a supervised learning problem on graph transformations (subsection 3.3), ac-
tion selection as a Partially Observable Markov Decision Process (POMDP) (subsection 3.1), and
object placement as a supervised learning problem (subsection 3.2).

3.1 Feature-based Action Selection: PUSH or GRASP

The choice of whether to PUSH or GRASP (and at what location and orientation) is Markovian since
it is based solely on the current state (object poses). Further, the state is partially observable – we do
not assume the robot has direct access to full state information, it needs to be inferred from images.
Hence, we formulate the problem of selecting whether to push or pick up an object (and at what
location and orientation) as a goal-conditioned POMDP – a tuple (S,G,A, p,R,Ω,O, γ, ρ0, ρg)
where S is the state space, G is the set of goals, A is the action space, p(st+1|st,at) is the time-
invariant (unknown) dynamics function, R : S × A → R is the reward function, Ω is a set of
observations, O is a set of conditional observation probabilities, γ ∈ [0, 1] is the discount factor,
ρ0 is the initial state distribution, and ρg is the goal distribution. The objective is to obtain a policy
π(at|st,g) to maximize the expected sum of rewards E[

∑
tR(st,g)], where the goal is sampled

from ρg and the states are sampled according to s0 ∼ ρ0, and st+1 ∼ p(st+1|st,at).

We define the state s as the poses of N objects in the scene. The actions a ∈ A consist of
the choice of action ψ, end-effector position x and planar orientation θ: a = (ψ, x, θ), ψ ∈
{PUSH, GRASP} , x ∈ R3, θ ∈ R. We choose a sparse reward for actions - 1.0 for successful GRASP
and 0.5 for successful PUSH. The higher reward for GRASP incentivizes the robot to prioritize it over
PUSH when both are available. We consider a PUSH successful if the pixel-wise change in the depth
image after a PUSH is larger than a pre-defined threshold. The intuition behind designing the PUSH
reward this way is that we only use it for singulating objects in clutter where direct GRASP is not
available, not for object rearrangement. A GRASP is considered successful if the antipodal distance
between the parallel-jaw gripper fingers after a GRASP attempt is higher than a pre-defined thresh-
old. Observation ot is defined as the RGB-D image captured by a statically mounted camera. The
goal specification og is the RGB-D image of the goal arrangement from the same camera viewpoint.

Given the current observation ot we use fully convolutional neural networks (FCNs) to model Q-
functions that estimate the expected reward for each PUSH and GRASP candidate. The deep Q-
learning framework is shown in Figure 3a. A 121-layer DenseNet [35] pretrained on ImageNet [36]
is used to extract visual features from raw RGB-D images. In each FCN, we have three 1 × 1
convolutional layers; we apply batch normalization and ReLU activation before every convolutional
layer. After FCN, we upsample with bilinear mode to have a pixel-wise Q-value estimate of the
same size as input images. Each pixel unit in the Q-value map corresponds to the expected reward
for executing an action at this pixel location. For each action we model end-effector orientation
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(a) Feature-based Action Selection (b) Correspondence-based Reposition
Figure 3: Subpolicies. (a) A deep Q-learning framework maps the visual observations to actions,
similar to [20]. (b) The grasped object placement is conditioned on the cross-correlation between
the visual feature of the goal scene and the local features of the grasped object.

by rotating ot to 16 different orientations. Thus we have 32 pixel-wise Q-value maps (16 each for
PUSH and GRASP). Each represents the Q-value estimate of executing the corresponding action at
that orientation at all pixel locations. At each timestep t, before the robot chooses the next action,
we mask all 16 GRASP Q-value maps with the output from the graph-based object rearrangement
sequencing module (Figure 3b) to rule out objects that do not currently need to be repositioned.
Following this, the robot picks an action (PUSH or GRASP) with the highest Q-value and executes it
at the corresponding pixel location and end-effector orientation.

Loss is calculated by computing the temporal difference (TD) between the estimated reward and the
actual obtained reward after execution. We only compute the loss for the selected pixel/pose (where
the robot will take the next action); all other pixels/poses backpropagate with loss 0. We generate
the label for PUSH at time t, yPUSH

t , by calculating the depth image change after the push – if it is
higher than a predefined threshold we consider the PUSH successful, yPUSH

t = 0.5. For GRASP, we
obtain the label at time t, yGRASP

t , via the feedback signal from the gripper, if the antipodal distance
between parallel jaws is larger than a predefined threshold, we consider the gripper is holding the
object and hence the GRASP is successful, yGRASP

t = 1. We use a Huber Loss for both PUSH and
GRASP. For action executed at time t, let yt denote the label, Qt denote the estimated reward. The
TD is given by |Qt − yt|, and the primitive learning loss is calculated as:

Lp =

{
1
2 (Qt − yt)2, |Qt − yt| < 1,
|Qt − yt| − 1

2 , otherwise.

3.2 Correspondence-based Reposition: Where to PLACE

We model finding PLACE pose at time t as a template matching problem [37] conditioned on the
current observation ot, the goal specification og , and the successfully executed GRASP τt−1 at
time t − 1. We use a pretrained ResNet [38] to extract visual feature maps for both ot and og .
Let φ(ot) denote the visual feature map for ot. Given the executed GRASP τt−1 = (xt−1, θt−1),
where xt−1 represents the GRASP location and θt−1 represents the end-effector rotation, we crop
a visual feature segment φ(ot−1)[τt−1] with a predefined crop window size centered at xt−1,
and we consider φ(ot−1)[τt−1] as a template for the grasped object (Figure 3b). The cross-
correlation between φ(ot−1)[τt−1] and φ(og) outputs a similarity distribution showing the re-
semblance between φ(ot−1)[τt−1] and the local features at every placement in φ(og) given by
ϕsimilarity
t = φ(ot−1)[τt−1] ∗ φ(og).

Different from [37], we also apply cross-correlation between depth images odepth
g and odepth

t : ϕdepth
t =

φ(odepth
t ) ∗ φ(odepth

g ), which outputs a pixel-wise distribution over the workspace indicating whether
a pixel location is occupied by objects in the current scene or in the goal scene. The prediction for
PLACE is given by: ϕPLACE

t = ϕsimilarity
t −ϕdepth

t . By lowering the value for occupied pixels we avoid
placing the grasped object on top of other objects or at goal positions of other objects. ϕPLACE

t is
a pixel-wise prediction and each pixel represents a potential placement for the grasped object; to
model the end-effector rotation of PLACE, we rotate the current image ot to 16 different orientations
as input and pick the one with the highest prediction value. The non-occupied location in φ(og)

with the highest cross-correlation value is considered as the best PLACE τ place
t for the grasped object.

If a match cannot be found in og , i.e. the similarity score is below a predefined threshold for all
pixel locations, the object is placed aside in the bin. The training loss for PLACE policy learning
is cross-entropy. The ground-truth goal position and orientation of the grasped object are extracted
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directly from the simulator. We generate the label yPLACE
t by assigning value 1 to the pixel at the goal

location of the grasped object; all other pixels are set to 0. The learning objective is to maximize
the visual feature extraction model’s prediction accuracy given a goal image and a template. While
we rotate the input image in 16 different directions to differentiate placing orientations, only assign
value 1 for the one with correct goal orientation. The rearrangement loss is calculated as:

Lr = −yPLACE
t log φPLACE

t + (1− yPLACE
t ) log(1− φPLACE

t ).

3.3 Graph-based Object Sequencing: Which Object is Next

Algorithm 1: ACC-GRAPH GENERATION

Input: camera observation O of a scene.
Output: accessibility graph G = (V, E).

1 E ← ∅, V ← ∅,V ′ ← ∅
2 Get segmentation from UOIS-Net-3D(O)
3 Each segmented object maps to v ∈ V ′
4 Create robot vertex vr, V ← {vr}
5 while ∃v ∈ V’ and v /∈ V do
6 for every vi ∈ V do
7 for every vj ∈ V ′ do
8 if linear distance path (vi, vj)

is collision-free then
9 E ← E ∪ {(vi, vj)}

10 V ← V ∪ {vj}
11 V ′ ← V ′ − {vj}
12 return G = (V, E)

Graph Generation We construct an accessibil-
ity graph representing reachable traversal paths
from the robot end-effector location to every ob-
ject. Unlike [39] (which assumes a known geome-
try for objects and uses the graph for target object
retrieval tasks), we use UOIS-Net-3D [34] to pro-
vide a set of object segmentation masks from raw
RGB-D images. We consider each segmented ob-
ject as a vertex v ∈ V in the scene graph and add
vr as the robot vertex. An edge e ∈ E between a
pair of vertices means a collision-free end-effector
path exists between them. The graph generation
algorithm is shown in algorithm 1. Examples of
generated scene graphs are in the supplement. The
traversal path from the robot vertex to an object vertex in the generated scene graph captures the
shortest path from the robot base that object including objects blocking the straight line path.

Algorithm 2: OBJECT REARRANGE-
MENT SEQUENCING

Input: accessibility graphs of the current
and the goal scene, Gt = (Vt, Et)
and Gg = (Vg, Eg).

Output: selected object v ∈ Gt for next
rearrangement.

1 n← Vt.size
2 Initialize an array sim[1, ..., n]← 0
3 for every vi ∈ Vt do
4 Git ← Gt − {vi}
5 sim[i]← Sim GNN(Git , Gg)
6 selected← arg max sim[1, ..., n]
7 return Vt[selected]

Object Sequencing Let ot and og denote the cur-
rent and the goal scenes, and Gt, Gg denote the
current and the goal scene graphs. We establish
a list of sub-graphs of Gt by individually remov-
ing each vertex and its related edges. We cal-
culate the similarity between each sub-graph and
the goal graph through a pretrained SimGNN [40],
previously shown to be an excellent approxima-
tor (MSE < 1.18 × 10−3). The graph similarity
corresponds to the Graph Edit Distance (GED) be-
tween graphsG1 andG2 – the number of edit oper-
ations in the optimal alignment that transform G1

into G2, where an edit operation on a graph is an
insertion or deletion of a vertex/edge or relabelling
of a vertex (isomorphic graphs have GED 0). The removed vertex (object) from the highest similar-
ity sub-graph is selected to be rearranged next. The robot thus chooses the object responsible for the
largest difference between the current and goal scene graphs, to keep the number of task completion
actions as low as possible. We show the process of choosing next object to rearrange in algorithm 2.

Loss Calculation We use A∗ to calculate the ground-truth GED between graphs [41], since the
scene graphs are small. To scale up to complex graphs in the future (where the ground-truth GED
might be inaccessible or computationally expensive to obtain) we use SimGNN to approximate GED
for all graphs instead of using the ground-truth GED. We transform the ground-truth GED between
G1 and G2 to ground-truth similarity labels y in the range (0, 1] [40]:

y = e−Norm GED(G1,G2) Norm GED(G1, G2) =
GED(G1, G2)

(|G1|+ |G2|)/2
where |G| is the number of vertices in G. Let si denote the similarity prediction output between
Git and Gg from SimGNN and yi, i = 1, ..., N denote the ground-truth similarity label. We use the
cross-entropy loss for the graph-based object rearrangement sequencing:

Ls = −
N∑
i=1

[yi log si + (1− yi) log(1− si)].
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After selecting an object for rearrangement, its placement is located as described in subsection 3.2.

4 Evaluation

4.1 Experimental Results in Simulation

We use a position controlled Franka Panda arm with a parallel-jaw gripper in Pybullet [42]. A
simulated RealSense D415 RGB-D camera with resolution 640× 480 is statically mounted. A side
bin is placed to hold objects removed from the workspace.

Method Rotation Swap Clutter Selectivity Init. #obj. Goal #obj. Completion ↑ Position Error ↓
NeRP [24] 7 4 7 7 3-8 3-8 94.56± 0.73 1.90± 1.30
IFOR [25] 4 4 7 7 1-9 1-9 81.80 2.70± 2.30

Ours

4 7 7 7 3-7 3-7 96.67± 1.67 1.29± 0.91
4 4 7 7 3-7 3-7 90.00± 3.00 2.99± 2.37
4 7 7 4 3-7 1-5 97.33± 0.67 1.41± 2.70
4 4 7 4 3-7 1-5 97.00± 1.00 1.81± 2.66
4 7 4 4 16-20 5-10 85.67± 2.33 1.64± 0.44
4 4 4 4 16-20 5-10 82.33± 2.67 1.22± 0.93

Table 2: Task Completion (mean %) and Position Error (10−2m). Init./Goal #obj. is the number
of objects in the initial/goal scene respectively. NeRP [24] and IFOR [25] are state-of-the-art models
for image-based tabletop rearrangement. Statistics quoted here are from their original paper (code-
bases not publicly available). NeRP is restricted to translation. Since we handle both translation and
rotation we compare with IFOR. We achieve a higher task completion (90%) than IFOR (81.8%)
in the same setting (reduced clutter, no selectivity, but swaps may be needed). We handle signifi-
cantly more complex cases than either previous model (e.g., last row of the table shows concurrent
challenges handled by our system: high clutter, selectivity, with swaps needed).

We conduct 6 sets of simulations (3 random seeds each, 100 episodes) with variations shown in
Table 2. In each episode, we randomly pick 3 ≤ N ≤ 20 YCB objects [43] and select a subset (or
allN ) to rearrange.Objects to be rearranged are placed at random goal positions and orientations and
an RGB-D image is captured. This image is the goal specification. Next, we randomly reposition
and rotate all these objects and add the remaining objects (those not designated for rearrangement) at
randomly generated positions and orientations.The resulting scene is the initial state of the episode.

We add objects in testing that were not seen in training to show the system’s adaptability to novelty.
We differentiate task difficulty by measuring the degree of scene clutter, the degree of selectivity
(how many of the objects are designated for rearrangement), and how many swap actions are needed.
Let P = {(x1, y1), ..., (xn, yn)} denote object positions. We define a clutter coefficient:

c(P) = − log { 1

n

n∑
i

√
(xi − x̂i)2 + (yi − ŷi)2}, x̂i = kNN(y), ŷi = kNN(x),

in which kNN(y),kNN(x) estimates x̂i, ŷi through k-nearest neighbor regression on every other
object’s position. We consider arrangements with c(P) ≥ 1.0 as ‘cluttered’ (examples in supplement
Appendix A). In selective episodes, a proper subset of initial objects is in the goal arrangement.
Hence, the system must identify which objects need to be manipulated. Some episodes require
swaps, where the goal positions of certain objects are initially occupied by others. This requires the
robot to first move the blocking object and then reposition the original object to be rearranged.

We evaluate our method with three metrics: (1) Task completion is the percentage of completion in
all rearrangement episodes. We consider an episode to be complete when all target objects are placed
within 5 cm from their goal position (consistent with [25]) and all non-target objects are placed aside.
(2) Position error is the average Euclidean distance between the desired arrangement and the final
arrangement achieved. (3) Planning steps is the average number of actions the robot takes in each
completed episode. It is a measure of the planning efficiency of the learned rearrangement policy.

Our system performs rearrangement in a variety of settings, generalizing readily from 3-20 objects
(Table 2, Figure 4). Task completion is calculated over all test episodes; planning steps and posi-
tion error are only reported on successful episodes. The task completion rate decreases as the task
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(a) 3-7 objects (b) 16-20 objects
Figure 4: Average Planning Steps Tasks with target selection require fewer planning steps, in-
troducing swap actions in the task setting increases planning steps. The number of planning steps
increases as the number of objects in the scene grows.

setting becomes more difficult, the position error is stable across all task settings, which indicates
an accurate placement prediction from the sub-policy shown in Figure 3b. In selective episodes, our
system has a higher task completion rate than non-selective episodes when other task settings are the
same. We ascribe this to the graph-based object sequencing module (subsection 3.3) that prioritizes
removing non-target objects over rearranging target objects, thus decreasing the clutter coefficient
of the current scene and potentially improving the success rate (see supplement Table 2 for details).
The task completion rate decreases in situations with high clutter and swap actions. With increased
clutter, it is more difficult to find ’buffer’ locations for objects whose goal positions are occupied by
other objects or objects that are occupying others’ goal locations.

NeRP [24] and IFOR [25] are state-of-the-art models for image-based tabletop rearrangement. Like
IFOR, our method includes planar rotation alignment of objects (examples in supplement subsec-
tion B.2) while NeRP only considers translations. Compared to IFOR we achieve a 8.2% higher task
completion rate in the same task setting at a comparable rotation error (ours:13.89◦, IFOR:13.70◦).

In Figure 4, we observe that when the task setting remains the same, the number of planning steps
increases as the number of objects increases. When target selection is involved, the number of plan-
ning steps decreases, as the object sequencing mechanism prioritizes removing non-target objects
from the table, leaves a more sparse arrangement of objects in the workspace, potentially reducing
subsequent task difficulty. The introduction of swap actions, however, significantly increases the
number of planning steps in each task completion. The swap action requires the robot to sample
‘buffer’ locations for objects whose goal position is occupied, place objects at ‘buffer’ locations,
remove the ‘placeholder’ objects at their goal positions and then reposition the objects at their goal
locations. This process naturally adds more required actions towards task completion.

Two noteworthy recent rearrangement systems are TRLB [10] and ReorientBot [26]. Both rely on
suction mechanisms to manipulate objects in clutter without the need to singulate them. TRLB relies
on the initial and goal states being fully specified as object poses with a focus on fast planning for
rearrangement and ReorientBot relies on the goal state being fully specified as object poses. Our
task is sufficiently different (gripper instead of a suction mechanism, goal specified only by a single
image) making a direct comparison between our work and these two systems infeasible.

4.2 Ablation Studies

Target Object Selection: In selective rearrangement, the objects in the goal scene (target objects)
might be a subset of those in the initial scene. We evaluate the significance of using ResNet to
obtain an accurate visual feature cross-correlation and target object classification by testing 2 differ-
ent encoder-decoder structured visual feature extractors, ResNet [38] and U-Net [44]. We measure
the match success rate, average position prediction error and target object classification accuracy
over 100 different initial and goal arrangements. The choice of visual feature extraction model is
crucial because it directly affects the accuracy of target object identification and reposition. Experi-
ments show that ResNet achieves match success rate of 93.33%, position error <2.04 cm and target
classification accuracy of 98.58% with 1-20 objects (details in supplement subsection B.3).
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Scene Graph 10 20

N/A 35.13±3.55 45.22±4.70
Position 19.94±4.93 29.29±3.52
Accessibility 15.61±3.84 25.45±3.88

Table 3: Scene Graph Comparisons. Aver-
age planning steps vs. # of objects in the initial
scene. All scenarios have 10 target objects.

Graph-based Object Sequencing: To verify the
importance of graph-based object sequencing to
minimize the number of actions, we test two scene
graph generation methods and measure their im-
pact on the average number of planning steps.
We also consider the situation when no sequenc-
ing mechanism is used (no scene graph) and the
robot picks the next object only based on PUSH and
GRASP Q-value estimates. We generate the scene graph in two ways; a position-based approach
which captures the basic spatial relationships among objects and an accessibility approach (subsec-
tion 3.3 algorithm 1). We perform object sequencing (algorithm 2) given the scene graph Gt and
the goal scene graph Gg . Compared with no sequencing, using the accessibility graph decreases
planning steps by 55.56% (10 objects) and by 43.71% (20 objects). Compared with the position-
based approach, using the accessibility graph decreases planning steps by 21.72% (10 objects) and
by 13.11% (20 objects) thus confirming the efficacy of graph-based object sequencing. A detailed
analysis is in the supplement subsection B.4.

4.3 Demonstration on a Physical Robot

Figure 5: Robot experiments.

We test our system on a Panda robot arm with a parallel-
jaw gripper, and a statically-mounted RGB-D camera
overlooking the tabletop (Figure 5). A bin next to the
workspace holds the redundant (non-target) objects. Ob-
jects included in the demonstration vary across experi-
ments, including a collection of 20 daily use objects (e.g.
peanut butter jar, ketchup bottle). The robot demonstration
generalizes to novel objects not available during training.
We show zero-shot transfer from simulation to a real robot setting in the video.

5 Limitations

Our system has several limitations. (1) 6 DOF rotation. We are limited to planar object rotations.
We do not currently handle 6 DOF object reorientation, and our system is poor at orienting rotation-
ally symmetric natural objects (e.g., oranges). (2) Cluttered final state. Even though our method
solves difficult rearrangement tasks with cluttered initial object arrangements, it struggles with sce-
narios where the desired goal arrangement is cluttered. Unsurprisingly, this is a significant challenge
for other existing systems too – with a large number of objects it turns into a difficult packing or
stacking problem. (3) Segmenting objects. Our system is object-centric – we use scene segmenta-
tion to build scene graphs and sequence objects. Incorrect object segmentation produces inaccurate
object sequencing and performance degradation. (4) Underlying motion planner limitations. In
some experiments, we experienced difficulties with joint limits being reached when the initial grasp
for an object turns out to not be feasible for object placement in the new location or when the robot
carrying an object collides with another object. We believe limitations 1,3 and 4 can be addressed
respectively by expanding the action space in the action selection module, better/multiple cameras,
and improved image segmentation techniques and trajectory-aware obstacle-avoiding planners.

6 Conclusions

We proposed an effective image-based learned method for selective tabletop object rearrangement
in clutter. Our simulated experiments provide evidence that the method works well in challenging
settings which require the robot to begin with an intially cluttered scene, select only the objects
that need to be rearranged while discarding others, deal with cases where the target location for an
object is already occupied - making the system the first of its kind to be able to address all these
concurently. Ablation studies provide an analysis of system performance. We also demonstrate
zero-shot transfer of our system to a real robot and generalization to unseen objects.
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