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ABSTRACT

Critical to a free data market is private data selection, i.e. the model owner selects
and then appraises training data from the data owner before both parties commit
to a transaction. To keep the data and model private, this process shall evaluate
the target model to be trained over Multi-Party Computation (MPC). While prior
work suggests that evaluating Transformer-based models over MPC is prohibitively
expensive, this paper makes it practical for the purpose of data selection. Our
contributions are three: (1) a new pipeline for private data selection over MPC;
(2) emulating high-dimensional nonlinear operators with low-dimension MLPs,
which are trained on a small sample of the data of interest; (3) scheduling MPC
in a parallel, multiphase fashion. We evaluate our method on diverse Transformer
models and NLP/CV benchmarks. Compared to directly evaluating the target
model over MPC, our method reduces the delay from thousands of hours to tens of
hours, while only seeing around 0.20% accuracy degradation from training with
the selected data.

1 INTRODUCTION

Data selection & appraisal In today’s ML ecosystem, data and models are often owned by separate
parties. Examples include mobile users versus app providers, and small businesses versus marketing
firms. As model owners are interested in acquiring data to train their models from data owners, data
becomes a commodity to be valued and traded.

Cloud Server Clients
Basic information of the

model and data
1. Selection
preparation 
in the clear

Forward
pass

Entropy

Remaining data
indices in the clear Nｘ

2. Private
selection on

MPC

Time

Data transaction3. Seal the
deal in the clear 

Time

Figure 1: Three stages of our data selection workflow in chronological order.

In a free data market, no purchase commitment should be required unless both parties reach an
agreement, for which pre-purchase assessment is vital. It contains two steps: select the most valuable
data; (optionally) appraise the selected data. To model owners, pre-purchase selection is key to cost-
effectiveness. Extensive work already showed that datasets are often redundant and noisy (Settles,
2012; Katharopoulos & Fleuret, 2018; Mirzasoleiman et al., 2020; Ouyang et al., 2022); purchase
budgets should be spent on data points that are most likely to maximize model accuracy. To data
owners, selection allows them to reveal less data in exchange for the same monetary reward, which
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retains their data ownership and reduces privacy exposure. The need for judicious data selection is
further highlighted by that data candidates are often unlabeled (Hoi et al., 2006; Smith et al., 2018)
and have skewed label distributions (Kaur et al., 2019). This paper targets this issue.

Challenge: private selection Data selection and appraisal should be private: they should not leak
any data and model parameters; if a purchase agreement is eventually reached, the model owner
should learn no more beyond the data she is paying for. To select and appraise data, a common
algorithm is to run a model’s forward passes over data candidates and select based on the outcome
(see Section 2 for details). It can be made private by building atop Multi-Party Computation (MPC)
(Goldreich et al., 1987; Shamir, 1979; Yao, 1986): both parties (owners) jointly evaluate over the
candidate data, learning only the indices of selected data and the quality measurement.

However, evaluating Transformer models on MPC is expensive. A forward pass of BERT on a batch
of 4 requires 3252 communication rounds and over 245 GB data exchanged, taking around 0.76 hours
across commodity servers with GPUs. Most of the cost comes from executing nonlinear arithmetics
such as softmax, which is pervasive in Transformers. Some efficient Transformers works can improve
inference speed (Fu et al., 2021; You et al., 2022; Fu et al., 2022). But to support Transformer
inference over MPC, recent work approximates nonlinearity with cheaper linear operations (Li et al.,
2022; Dong et al., 2023; Chen et al., 2021). For data selection, they are not only too slow (hundreds
of GPU hours to select from tens of K data points) but also have poor results as this paper will show.

Goal & techniques Our goal is to accelerate private data selection for transformer-based models,
e.g. BERT and ViT, while retaining the training performance. Our key insight is that the nonlinearity
in Transformers can be fused and evaluated at low dimensions; fortunately, the resultant model
evaluation outcomes will be acceptable for the purpose of data selection, which only depends on how
the outcomes for individual data candidates compare to each other. We present a holistic selection
pipeline with three key techniques.

Nonlinearity emulated by multi-layer perceptron (MLPs). While existing MPC frameworks treat
individual nonlinear operations in isolation (e.g. Newton-Raphson iterations for reciprocal), we
fuse adjacent non-linear operators and emulate them altogether with a small MLP. The benefits are
twofold. (1) MLPs significantly reduce MPC costs because they not only serve as approximators
(converting nonlinear to linear operations) but also dimension reducers, e.g. substituting a 512-
dimensional softmax with 2-dimensional MLP. This sets us apart from prior work that approximates
a single nonlinear operation (e.g. reciprocal) with an MLP (Chen et al., 2022), which does not reduce
dimensions and therefore executes much slower. (2) MLPs are data-driven. They are trained atop the
distributions of the actual model activations, tailored to the datasets of interest. They only require a
small amount of training data, as few as several hundred on average in our experiment.

Multi-phase selection. For efficiency, the data/model owners jointly select data in multiple phases.
While early phases evaluate cheap selection models to filter most of the data, later phases run more
expensive selection models to select from the data that survived from earlier phases. This reduces the
total selection delay without compromising accuracy.

Parallel MPC executions. To further reduce the selection delay, the data/model owners batch network
latency-bound MPC operations and execute them in parallel to network bandwidth-bound MPC
operations; they further overlap the MPC communication and computation across different batches.
No prior MPC systems exploit such parallelism, to the best of our knowledge.

Workflow There are three stages in our proposed workflow: two in the clear and one over MPC.
As shown in Figure 1, in the beginning, the model owner and the data owner exchange some basic
information in the clear. For instance, the total amount of data and the amount of data that the model
owner plans to purchase. Next is the private multi-phase selection which is over MPC. Two parties
secretly share encrypted proxy model parameters and data to do a forward pass and get the entropy
value. We then rank them and select the top candidates based on their rank. The remaining data
points’ indices will be reused in the next phase. The comparison outcomes will be revealed and the
data indices are in the clear. Data will not be transferred among phases. The final transaction is in
the clear. After private data selection, the model owner pays for the data it wants and the data owner
sends out the data to seal the deal. More details in Section 4.
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Results We test SelectFormer with four target models, seven NLP/CV benchmarks, and a variety of
purchase budgets (20%–40%). We show that with commodity GPUs and typical Internet, our pipeline
can select from 10K–100K data points within tens of hours, one order of magnitude faster than prior
work. Using unmodified MPC protocol and framework, we provide a strong privacy guarantee. Our
selected data only results in just 0.20% lower accuracy compared to directly evaluating the target
model over MPC for selection, a gold method which is however 204×slower.

Contributions This work proposes a novel application of MPC – private data selection, and makes it
practical on large Transformer models. It achieves so via three new techniques:

• A data-driven MLP approximation that is uniquely tailored for data selection, instead of generic
inference.
• Multi-phase selection that progressively increases the selection models’ capability and reduces the
amount of data candidates.
• Parallel MPC executions that hide the delays of computation and communication rounds behind
that of communication data exchange.

2 BACKGROUND

2.1 ASSUMPTIONS ON SYSTEMS

Two parties The model owner possesses a pretrained Transformer model Mtarget and wants to
finetune it. The data owner owns the dataset D for selection. The model owner plans to buy B
datapoints (B < |D|) from dataset D which will be used to finetune the target model Mtarget. The
model owner has a private, small validation set, on which she wants to maximize the validation
accuracy. The two parties agree on B and that they will use MPC for selection.

Datapoints We follow a common premise in prior work on data selection: (Coleman et al., 2019;
Mahmood et al., 2022), the dataset D is unlabeled and might have an imbalanced class distribution,
which warrants careful selection before training. This premise is motivated by real-world situations
where data labels are scarce and data owners often lack the motivation, expertise, and authority to
label their data (Hoi et al., 2006; Smith et al., 2018).

Threat model Without alternation, we follow a semi-honest model widely used in prior security
research (Knott et al., 2021; Dong et al., 2023; Mohassel & Zhang, 2017): both parties faithfully
follow the MPC protocol but nevertheless attempt to learn each other’s private information (model
weights and datapoints) through their interactions. Notably, we do not deviate from protocols
implemented by well-known frameworks such as Crypten (Knott et al., 2021). As such, our privacy
guarantee is as strong as the underlying framework.

2.2 ALGORITHM FOUNDATIONS
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Figure 2: Transformers over MPC incurs high com-
munication and computation overhead. Showing
one forward pass of one layer (12 heads) over
a batch of 5 (maximum allowable on our GPU).
Hardware: Quadro RTX 4000. MPC framework:
Crypten (Knott et al., 2021).

(1) Maximum entropy selection Active learn-
ing (AL) (Settles, 2012) selects from unlabeled
data to maximize training performance. To ap-
praise an example x for training model M , AL
runs a forward pass of M over x (or query x with
M ) and computes the prediction entropy: higher
entropy implies lower model confidence, hence
a higher learning value of x. (2) Proxy mod-
els Querying all examples in D with Mtarget

can be slow. To this end, prior work uses a
lightweight model Mp called “proxy” for selec-
tion before training Mtarget with the selected
data (Coleman et al., 2019). To select valu-
able data, Mp’s prediction should resemble that
of Mtarget; hence Mp is often created as a
miniature version of Mtarget: examples include
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ResNet-18 as proxy for ResNet-50 (Coleman et al., 2019). We use simplified Transformers as proxy
models with fewer layers and attention heads.

2.3 TRANSFORMERS, MPC, AND OVERHEAD ANALYSIS

Transformers

We focus on transformer-based models (Vaswani et al., 2017). Each layer of these models features
a Multihead Attention paired with FeedForward. Both are succeeded by layer normalization and a
residual connection. Within the Multihead Attention, operations proceed sequentially from QKV
linear operation to the attention mechanism, and finally to an attention output.

MPC setting: 2PC We assume the most common MPC setting: secret sharing under two-party
computation (2PC) (Yang et al., 2019). The model owner randomly decomposes x into two shares,
x1 and x2 (such that x1 + x2 = x), retains x1, and convey x2 to the data owner. Analogously, the
data owner fragments y into y1 and y2 and transfers y2 to the model owner. These shares individually
disclose no information about the original numbers, x and y. Reconstruction of a number is possible
when both parties exchange their shares and sum them up.

To compute z = x+y, each party add their shares of x and y, yielding z1 = x1+y1 and z2 = x2+y2.
Both parties can retrieve z by adding z1 and z2. For multiplication, The parties can offline generate a
random triple called Beaver triples (Beaver, 1992), a, b, and c (such that ab = c). The elements of this
triple are then partitioned and disseminated amongst the parties, akin to x and y. The model owner
calculates ϵ1 = x1−a1, δ1 = y1−b1 while the data owner computes ϵ2 = x2−a2, δ2 = y2−b2. The
parties jointly reconstruct ϵ and δ. Subsequently, the model owner computes p1 = c1+ϵy1+δx1+ϵδ
and the data owner calculates p2 = c2 + ϵy2 + δx2, enabling the retrieval of p = xy. Throughout
this procedure, all intermediate computations, including ϵ1, ϵ2, δ1 and δ2 maintain the confidentiality
of x, y and p, precluding any information leakage.

Major overheads comes from that MPC lacks native support for nonlinear operations, such as
softmax, logarithmic, and exponential, which are pervasive in Transformers. In response, MPC
frameworks provide corresponding linear approximations. Unfortunately, the overhead is still high.
Figure 2 shows the cost of the operations for one transformer block. As shown in the table, the cost
of nonlinear arithmetic dominates. Notably, softmax contributes 81.9% communication data and
142 communication rounds. The overheads become prohibitive for data selection, which needs to
evaluate Transformers on tens of thousands of data points over MPC. We show this in Section 5.

3 RELATED WORKS

Data selection and appraisal Our work builds on the idea of using a miniature version (proxy) of
the target model as the selector (Coleman et al., 2019). Yet, proxies alone are still too expensive for
MPC as we will show in Section 5. Xu et al. (2022) investigates data appraisal over MPC. Contrasting
to us, they assume labeled data (a strong assumption in practice), which allows them to appraise data
via forward influence functions. Unlike us focusing on Transformer models, they only demonstrated
logistic regression tasks. Mindermann et al. (2022) introduces RHO loss that quantifies by how much
data candidates would reduce the loss on a small holdout set if the model were to train the candidates.
They then select data based on RHO loss. Their methods inspire our bootstrap dataset. However, they
rely on labeled data, whereas we focus on a more challenging setting – selecting unlabeled data.

MPC inference of neural networks Existing research has developed discretized DNN training with
a customized two-party protocol (Agrawal et al., 2019) and MPC-friendly approximations to speed
up CNN. Chou et al. (2018) develop an optimization framework that minimizes the approximation
error of order two polynomial to ReLU. Mishra et al. (2020) alleviates this problem by using a set of
heuristics along with Neural Architecture Search (NAS). Mohassel & Zhang (2017) proposes a costly
approximation of softmax by replacing exponential with ReLU functions on high-dimension inputs.

MPCFORMER (Li et al., 2022) and PUMA (Dong et al., 2023) directly address efficient Transformer
inference over MPC. MPCFORMERis implemented based on Crypten (Knott et al., 2021) framework
and its key idea is that approximate nonlinear operations in the student model and then distill it;

4



Published as a conference paper at ICLR 2025

PUMA proposes new approximations for faster secure inference in a three-party setting. Bolt (Pang
et al., 2024) proposes a new Transformer inference framework. Compared to us, they miss the
key opportunities of reducing nonlinearity dimensions and using learned approximators (MLPs).
Furthermore, MPCFORMER’s model distillation approach is ill-suited to data selection, where labeled
data for distillation is lacking. As Section 5 will show, they perform poorly in data selection.

4 METHOD

4.1 HIGH-LEVEL WORKFLOW

Pre-selection bootstrap: Prior to the selection, the two parties exchange meta-information in the
clear: the purchase budget B, the secure computation framework, the target model architecture type,
pre-processing methods, and the metadata about the S, which includes the number of data points.

The model owner purchases bootstrap data Sboot which constitutes a small fraction of the purchase
budget B. The data owner randomly samples Sboot from S; the purchase requires no selection and
incurs no MPC overhead. The model owner will use Sboot to generate proxy models M̂1..N , as will
be described below.

Multipass selection For efficiency, the selection process is a progressive sieve: earlier phases run
smaller selector models for quickly filtering a majority of redundancy, whereas later phases run
larger selector models for slower, more precise selection. Concretely, both parties jointly execute
N selection phases over MPC. A phase i downselects dataset Si−1 to the set Si with a selectivity
αi = |Si|/|Si−1|, αi < 1.

In phase i, the model owner queries the dataset Si−1 with a proxy model M̂i. The query is executed
as a forward pass of M̂i on Si−1 on MPC. The forward pass computes the prediction entropy values,
which are encrypted. Next, both parties jointly find the indices of |Si| highest entropy values:
execute the QuickSelect algorithm with O(|Si−1|) pairwise comparisons between entropy values;
the comparison is over MPC, each taking 8 communication rounds and transferring 432 bytes. A
comparison does not reveal its inputs (entropy values) but only the binary outcome. Finally, the
indices of data points with the highest prediction entropy constitute the input Si for the next phase.

Candidate Data S0

Proxy model 1

Target Model Training

Nｘ

Proxy model 2

Mtarget Mg

M1 

M2 

Ex vivo training
Selected
Data

Bottom L
layers

Initialize 
MLPs

Target model Proxy models

S1

S2

Finetune on  
Sboot  

(in vivo training) 

Finetune
on Sboot

Figure 3: Our high-level workflow. Left: proxy model generation. Right: multi-phase selection. Mg

is the base model for the proxy models M̂1..N . More details in subsection 4.2.

N phases result in the final dataset SN . The model owner may offer to buy SN , or request an appraisal
of SN before buying. For appraisal, both parties jointly compute an average entropy over SN and
reveal the average entropy. If the average entropy is sensitive, both parties can jointly compute if the
(encrypted) average exceeds a pre-defined threshold and only reveals the one-bit outcome.

Privacy guarantees The following information is kept private: dataset S; parameters of Mtarget

and M̂1..N ; the prediction outcome and entropy. The following is revealed: the rank of prediction
entropy; the architecture (operations) of M̂1..N ; the number of data points and budget.
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DistilBERT BERT ViT-small ViT-base
SST2 QNLI QQP AGNEWS YELP SST2 QNLI QQP AGNEWS YELP Cifar10 Cifar100 Cifar10 Cifar100

Ours 82.34 71.46 71.53 88.49 60.18 84.59 73.68 72.73 89.04 61.33 96.46 69.11 96.61 68.42

Random 79.08 70.34 66.18 86.43 58.09 79.58 73.56 68.84 87.85 59.16 94.69 43.99 95.63 63.21
(vs. Ours) -3.26 -1.12 -5.35 -2.06 -2.09 -5.01 -0.12 -3.89 -1.19 -2.17 -1.71 -25.12 -0.98 -5.21

Oracle 82.32 71.44 71.51 89.19 59.93 86.06 74.62 73.08 89.74 60.8 96.87 68.4 96.94 67.85
(vs. Ours) -0.02 -0.02 -0.02 0.70 -0.25 1.47 0.94 0.35 0.70 -0.53 0.41 -0.71 0.33 -0.57

Table 1: Ours are consistently higher than Random across all models and benchmarks and are close
to Oracle (gold accuracy).

4.2 GENERATING PROXY MODELS IN DETAIL

A proxy model M̂i is characterized by < li, wi, di >: Li transformer layers with Ai attention heads
each (width), in which the nonlinear modules are substituted by MLPs with hidden dimension di and
the GeLU functions are substituted by ReLU functions. FFN is also removed from proxy models. As
shown in Figure 3, the model owner generates proxy models M̂1..N as follows:

• Extract a sub-model Mg from Mtarget. Mg comprises L bottom layers from Mtarget where
L = max(l1..N ), with all the weights copied over. Mg serves as the backbone for M̂1..N .
• Finetune Mg on the bootstrap data Sboot. This serves two purposes: (1) collecting sample input/out-
put of Mg’s nonlinear modules, which will be used to train the MLPs that substitute these nonlinear
modules; (2) roughly adapting Mg to a sample from the dataset S. Initialize M̂1..N by pruning the
width and depth of Mg .
• Ex vivo MLP training. For each transformer block in a proxy model, randomly initialize three MLPs.
Train them separately on the input/output of nonlinear modules collected from the previous step.
More training data following the same distribution as the input/output will be randomly generated as
data augmentations. See subsection 4.3 for details.
• In vivo MLP training. Substitute the nonlinear modules in M̂i with the MLPs trained in the
previous step. Further finetune the resultant model M̂i on Sboot end-to-end. This co-tunes MLPs (the
approximate portion of M̂i) and the remaining exact portion.

The model owner schedules the selection by setting {< li, wi, di >}i=1..N for N phases. As
described above, the principle of schedule is progressive: increasingly higher l/w/d for later phases.
Given a budget B, SelectFormer determines the schedule via offline grid search. See Section 5.
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Figure 4: Training MLPs for substituting the non-linearity in Transformer models

4.3 APPROXIMATION MLPS FOR NON-LINEAR OPERATIONS

Our theoretical foundation is Hornik et al. (1989): MLPs are able to approximate any function at
any desired degree of accuracy, as long as the function is continuous on a closed and bounded subset
of Rn. A transformer’s nonlinear modules satisfy this condition (Goodfellow et al., 2016). We use
standard MLPs, each comprising one ReLU layer sandwiched between two linear layers. Of a proxy
model, MLPs substitute the following nonlinear modules as shown in Figure 4:

• Softmax in the attention module. At each transformer layer, a substitute MLP maps along the last
dimension of the input and has the same input/output shape as the original softmax operation.
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Figure 5: Across a variety of budgets, Ours consistently outperforms Random and are comparable
with Oracle (gold accuracy). Target model: DistilBERT.

• LayerNorm in the attention module. At each transformer layer, a substitute MLP emulates the
reciprocal operation in LayerNorm. Of the LayerNorm, its learnable weights and bias in the affine
functions are loaded from the original LayerNorm layers in Mg . Its numerator is computed directly
on MPC because the total number is a constant and it needs just cheap summation and multiplication.
• Softmax over logits and the subsequent entropy computation. At the top of the model, a substitute
MLP emulates the two modules combined. The MLP input shape is the same as that of softmax. The
output will be the entropy itself.

A proxy model of layer l comprises 2l + 1 MLPs in total; they have the identical hidden dimension
albeit different weights. Different proxy models may have MLPs of different hidden dimensions, set
as part of the schedule as described above.

Training MLPs MLPs need to be trained on the sample input/output of the nonlinear modules
being substituted. While we can use such input/output observed in finetuning Mg over bootstrap data
(Sboot), the data amount is inadequate: randomly sampled Sboot must be small (3521 datapoints on
average in our experiments) in order to save the budget for private selection.

We address the problem with the empirical observation that inputs to a nonlinear module largely follow
a parametric Gaussian distribution (Chen et al., 2022). As such, from the actually observed inputs,
the model owner estimates the Gaussian distribution parameters ⟨µ, σ⟩ and uses such parameters to
synthesize training inputs and outputs.

For a given nonlinear module in Mg , an instance of ⟨µ, σ⟩ is estimated and one dataset (5.12 million
data points) is synthesized once, which is used to train the MLPs that substitute this particular
nonlinear module in all proxy models M̂1..N . There are three synthesized datasets: Ssm, Sln, and
Sse. This is shown in Figure 4. Note that M̂1..N with MLPs inserted will be further finetuned as
described above. The MLP training is very cheap compared with the selection over MPC, which can
be measured in minutes.

4.4 IO SCHEDULING

Our proxy models perform a sequence of matrix multiplication and ReLU. Operating on high-
dimensional inputs are bound by the network bandwidth; after being projected into lower dimensions,
the operations succeeding the activation functions are bound by network latency. To this end, (1)
SelectFormer stacks and coalesces the latency-bound modules from multiple batches, reducing the
number of communication rounds and improving the computation throughput. (2) Furthermore,
SelectFormer exploits computation and communication parallelism across batches, executing a
module whenever its needed resources become available. For instance, while data exchange is
occurring for one batch, computations for the subsequent batches can be performed concurrently.
Such co-execution is only limited by data dependencies and the available memory of a party to hold
operation inputs.

5 EVALUATION

5.1 EXPERIMENT SETUP

Models & datasets For NLP, we choose target models as BERT (12 layers) and DistilBERT (6
layers), with 12 attention heads and a hidden dimension of 768. For vision, we chose the target model
as ViT, with the same architecture as BERT. We chose benchmarks with at least tens of thousands
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 Emulated w/ MLP? DistilBERT Accuracy BERT Accuracy 

MLPsm MLPse MLPln SST2 QQP AGNEWS SST2 QQP AGNEWS 

Ours ✓ ✓ ✓ 82.80±0.98 71.63±0.91 87.75±1.00 84.33±1.30 72.31±1.21 88.37±1.58 

NoAttnSM  ✓ ✓ 82.48±1.27 (-0.32) 71.85±1.11 (+0.22) 89.58±0.43 (+1.83) 85.14±0.46 (+0.81) 74.15±0.56 (+1.84) 89.55±0.66 (+1.18) 

NoAttnLN ✓ ✓  81.83±0.78 (-0.97) 71.68±0.44 (+0.05) 87.20±1.49 (-0.55) 83.95±0.73 (-0.38) 72.76±0.94 (+0.45) 89.08±0.47 (+0.71) 

NoApprox    82.02±0.80 (-0.78) 70.42±1.00 (-1.21) 88.99±0.50 (+1.24) 84.79±1.00 (+0.46) 72.26±0.91 (-0.06) 89.30±0.45 (+0.93) 
 

Table 2: Using MLPs to emulate Transformer nonlinearity results in minor accuracy degradation
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Figure 6: Our method reduces the end-to-end delays by two orders of magnitude. As in Section 4, 1
phase selection selects data using a proxy model with a hidden dimension of 16.

of data points which warrant selection. Following prior work (Xu et al., 2022) to construct the
training set with imbalanced labels, we remove some data points from the original benchmarks.
Our imbalanced NLP benchmarks include binary classification from GLUE (Wang et al., 2018):
SST2 (42K), QNLI (58K), and QQP (149K); and multilabel classification (Zhang et al., 2015): AG
news (40K) and Yelp review full (188K). Our vision benchmarks are two multilabel benchmarks
CAFAR-10 (10K) and CIFAR-100 (6K). Note that we do not change the test set.

We implement our scheme based on Crypten (Knott et al., 2021), a popular MPC framework. We
run data/model owners on separate GPUs (Nvidia Quadro RTX 4000) with Intel(R) Xeon(R) Silver
4210 CPU; we control the network bandwidth (100 MB/sec) and latency (100 ms) between them to
emulate a wide-area network condition. We report: (1) the test accuracy of the target model, after
being trained with the selected data; (2) the delay of the data selection process over MPC.

These results are derived using two-phase data selection unless specified otherwise. In the first phase,
for NLP tasks, we employ a proxy model with a single layer and a dimensionality of 2, while for CV
tasks, a proxy model with three layers and the same dimensionality is utilized. In the second phase, a
proxy model with three layers and a dimensionality of 16 is applied for these two tasks.

Baselines We evaluate our method against the following baselines.

1. Random selects data randomly from the data owner. It incurs zero MPC overhead.
2. Oracle queries data using the target model. Under our framework (Section 2), we consider that it
leads to gold test accuracy. Yet, it incurs prohibitive MPC overhead as will be shown.
3. MPCFORMER (Li et al., 2022) is a closely related project that minimizes the cost of evaluating
transformers over MPC. We implement this baseline to adopt MPCFORMER’s key optimizations for
evaluating proxy models: linear operators for approximating nonlinearity and model distillation for
recovering accuracy. For a fair comparison, MPCFORMER uses the same proxy model architecture
as ours, and initializes the proxy models in the same way; runs distillation on the same amount of
bootstrap data. Note that we cannot directly compare to PUMA (Dong et al., 2023), which is designed
under 3 compute parties.
4. Bolt (Pang et al., 2024)’s MPC framework contains linear approximations for nonlinear operations.

5.2 END-TO-END RESULTS

Selection delays Our method significantly reduces the delays. Compared to Oracle, our method’s
delay is lower by two orders of magnitude as shown in Figure 6. For instance, to select 20% from 42K
data points (SST2 benchmark, DistilBERT model), our experiment takes around 20 hours whereas
Oracle would take 3740 hours.

Selection efficacy Our method effectively selects training data that best boosts the test accuracy.
Table 1 zooms in on a typical purchase budget (20%). Compared to Random, our test accuracy

8



Published as a conference paper at ICLR 2025

P
ro
xy
?

M
LP
?

2
P
h
as
e?

IO
?

Oracle

P ✓

PM ✓ ✓

PMT ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓

1

10

100

1000

10000

O
ra
cl
e P

P
M

P
M
T

O
u
rs

1

10

100

1000

O
ra
cl
e P

P
M

P
M
T

O
u
rs

D
e
la
y/
h
rs

SST2 SST2 CIFAR-10

1

10

100

1000

10000

O
ra
cl
e P

P
M

P
M
T

O
u
rs

1

10

100

1000

O
ra
cl
e P

P
M

P
M
T

O
u
rs

CIFAR-10

DistilBERT BERT ViT-small ViT-base

Legend

Figure 7: Delay reduction by our techniques. The results also show that using proxy models alone
(variant “P” in the figure,) is not enough.

is consistently higher across all NLP and CV benchmarks. The benefit is particularly pronounced
on challenging tasks such as CIFAR-100, on which our accuracy is higher by 25.11%/5.21% on
ViT-small/base. Compared to Oracle, our test accuracy is comparable: only 0.08% – 0.58% lower for
DistillBERT and BERT, and even 0.13% and 0.15% higher for ViT-base and ViT-small.

Across different purchase budgets of 25%, 30%, and 40%, our method also leads to strong accuracy.
Compared to Random, our accuracy is 2.23% higher on average, and up to 5.14%. Compared to
Oracle, our average accuracy is only 0.91% lower on average, and as low as 0.01%. See the Appendix
for detailed results.

From a different angle to view our efficacy: to reach a given accuracy, our method demands a much
lower budget. As shown in Figure 5, to be on par with our test accuracy on a budget of 20%, Random
would need a budget of 70% (BERT on QNLI), a budget of 90% (DistilBERT on SST2), and a budget
of 100% (DistilBERT on YELP and BERT on YELP/SST2).

5.3 COMPARISON WITH MPCFORMER AND BOLT

 BERT Accuracies/% Delay/hrs 
SST2 QNLI QQP SST2 QNLI QQP 

MPCFORMER 50.92 50.54 36.82 279 388 998 
Ours 84.59 (+33.67) 73.68 (+23.14) 72.73 (+35.91) 37 (-242) 51 (-337) 131 (-867) 

 

Table 3: Compared to MPCFORMER, our method
results in much higher test accuracy and much
lower delays. On GLUE benchmarks which were
also evaluated and reported by MPCFORMER. Target
model: BERT. Proxy model: 1 transformer layer
with 1 head + 3 transformer layers with 12 heads.

As shown in Table 3, our method simultaneously
delivers much higher test accuracy (by 23%–
36%) and much shorter (by 7×) selection delays.
The reasons are twofold. (1) MPCFORMER’s
longer delays come from that it approximates
individual nonlinear operators with linear coun-
terparts; it does not reduce model dimension as
we do. (2) MPCFORMER’s lower accuracy comes
from that its proxy models come from the dis-
tillation of the target model, a process requiring
ample, representative training data. This is at
odds with data selection: Sboot is the only data available for distillation; it has a small size and skewed
labels. The skewness propagates from Sboot to proxy models, to selected data, and to the target model.
As a result, the trained target model is biased towards predicting the majority class in the training set.
This results in poor accuracy if the test and train sets have different majority classes, sometimes even
worse than random guess (e.g. QQP in Table 3). See subsection 7.2 for the comparison with Bolt.

5.4 ABLATION STUDY

Crypten incurs minor accuracy loss We validate that our choice of the Crypten framework (Knott
et al., 2021), which executes ML on a finite ring, introduces minor accuracy loss. On SST2 with the
default budget (5% for Sboot; 20% total), private selection fully executed on Crypten results in test
accuracy of 83.37%, which is even slightly (0.5%) higher than executing on PyTorch.

MLP for non-linearity (1) Delay. Our use of MLP reduces the selection delay by two orders of
magnitude, e.g. from 3740 hours to around 20 hours for DistilBERT on SST2. This is shown in Figure
7, by the difference between P and PM. (2) Accuracy. The use of MLP incurs minor degradation
in the test accuracy. The results are shown in Table 2, by the difference between Ours to NoApprox.
On SST2, ours is 0.78% higher with DistilBERT and only 0.46% lower with BERT. On AGNEWS,
ours are just 1.24% lower with DistilBERT and 0.93% lower with BERT. On QQP, it’s 1.21% and
0.05% higher respectively. Among the three MLPs, softmax in the attention module shows a higher
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Totl 
Phs 

MLP  
dims 

# proxy layers 
Selectivity 

DistilBERT Accuracy BERT Accuracy 

DistilBT BERT SST2 QQP SST2 QQP 
1 16 1 1 100%*à20% 82.91 71.28 83.49 64.48 
2 2à16 1à1 1à3 100%*à30%à20% 82.00 (-0.91) 71.62 (+0.34) 85.21 (+1.72) 73.07 (+8.59) 
3 2à8à16 1à1à1 1à3à3 100%*à50%à30%à20% 83.37 (+0.46) 72.90 (+1.62) 84.52 (+1.03) 73.48 (+9.00) 

*: include bootstrap data 

Table 4: Our multi-phase selection improves accuracy in general. Three example schedules (with 1,
2, and 3 total phases, respectively) and their test accuracies are shown.

impact on accuracy than the other two. As shown in Table 2 and across all the datasets, by the
difference between Ours to NoAttnSM. Using softmax approximation MLP is just 0.75% lower with
DistilBERT and 0.99% lower with BERT on average; by the difference between Ours to NoAttnLN,
our approximations of LayerNorm only decreases the performance by 0.76% with DistillBERT and
0.16% higher with BERT on average. This is justified by the higher cost that our AttentionSM reduces
data communication by 42×, while AttentionLN only reduces 8.25×.

Efficacy of multi-phase selection (MPS) We compare MPS to single-phase selection (SPS), in
which the proxy model is the same as the one used in the last phase of MPS; it has all our other
optimizations. (1) MPS reduces delays significantly. Compared to SPS, the two-phase selection
reduces the total delay by 33%–61% across all the benchmarks. Because MPS runs a much smaller
proxy model in phase 1 to filter most datapoints. The advantage is more pronounced for large models
such as BERT, where the efficiency gap between the proxy models in phase 1 is even larger. (2) MPS
improves accuracy moderately. We focus on two representative benchmarks SST2 and QQP (binary
and multi-label classification). The results are in Table 4. Going from one phase to two/three phases
results in tangible accuracy gain (around 1%); notably BERT sees accuracy gain as high as 1.72%
(SST2) and 8.59% (QQP). We attribute the gain to MPS being more selective for the finally selected
datapoints, which have been sieved through multiple proxy models, small and big.

Sizes of proxy models Multi-layer proxy models increase the selection delay while may improve the
test accuracy. Our experiments show that: for small target models on challenging benchmarks (e.g.
ViT-small on CIFAR-100), the test accuracy from a three-layer proxy outperforms a one-layer proxy
significantly (by 17.33%); on other benchmarks, 1+ layers only result in a minor increase in the test
accuracy. On CIFAR-100, a three-layer ViT-base proxy model is 11.32% higher than a one-layer
with 66.6% lower efficiency. Their accuracies are 0.26% higher than Oracle’s on average, but with
4× higher efficiency. It is worth trading some extent of efficiency for much higher accuracy by a
multi-layer proxy model, especially on difficult datasets like CIFAR-100.

MLP hidden dimensions To decide di, we conduct a grid search to find the best values, which
are included in our selection schedules shown in Table 4. We mainly do this grid search on SST2,
validate the hyperparameters on QQP before applying the same settings to other datasets. A higher
dimension like 16 has good accuracy on different datasets while not incurring much more latency.
Multi-phase selection can reduce lots of latency, hence, we pick hidden dimension combinations that
can bring more accuracy gain. For the 2 Phase, we choose (2, 16) which has the highest accuracy on
larger datasets and target models, such as BERT on QQP. For the 3 Phase, we choose (2, 8, 16). It
has the highest accuracy with DisitilBERT on SST2, with BERT on QQP, and suboptimal accuracy
on other experiments.

IO scheduling This optimization reduces the end-to-end selection delays by 1.3-1.4×, as shown in
Figure 7, the difference between Ours and PMT. The reduction comes from overlapping the MPC
computation and the communication rounds. their communication latency is hidden. The reduction
depends on hardware: device computation bandwidth and the network latencies.

6 CONCLUDING REMARKS

This paper addresses the private selection of imbalanced, unlabelled data. We propose data selection
on MPC, preserving privacy while evaluating data. Overcoming computational challenges, we
introduce a data-aware MLP approximation for non-linear modules, tailored to different datasets for
reduced latency. Our multi-phase selection mechanism enhances proxy models’ efficiency across
diverse benchmarks.
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7 APPENDIX

7.1 MLP APPROXIMATION IS TIED TO DATA SELECTION

Inspired by the outstanding performance of our MLP approximations for nonlinear modules, one
question was raised: is the good performance of MLP approximations because of its inference
capability? Our further experiments show that our MLP approximation is tied to data selection,
instead of general model inference.

Following Li et al. (2022), we replace three nonlinear modules in a BERT-base model with our
approximations: Attention Softmax, Attention LayerNorm, and Feedforward Network Layernorm.
There are 3*12 = 36 MLPs in the BERT model. In the experiments, two LayerNorm approximations
are always data-aware, while there are both data-aware and fixed approximations of Softmax because
of varying attention masks. The BERT with MLP approximation will be fine-tuned on the benchmark
before inference.

Three versions of attention softmax approximations achieve no better than random guess perfor-
mances: (1) Using fixed MLP for attention softmax and changing the mask value to -3 instead of a
very negative value for simpler distribution. Our BERT with approximation achieves only 52.92%
accuracy. (2) Using data-aware attention softmax approximation, which zeros out masked values on
MLP outputs, has 49.08% accuracy. If we normalize the remaining values to [0, 1], the accuracy
remains 49.08%. To better understand the influence of each nonlinear approximation, we did an
ablation study that keeps just one kind of MLPs (12 of them) in BERT. However, none of them
achieve better than 50.92% accuracies. We further notice that adding just one attention softmax
MLP to the model has no impact on the inference accuracy. But adding one layernorm MLP will
degrade the accuracy by 0.85% on average. These results show that having just one MLP will hurt the
inference performance a lot; having 12 or even 36 MLPs will degrade model performance drastically.
(3) Removing the attention mask to make MLP data-aware. It always has 50.92% accuracies, no
matter with all three approximations or just one approximation.

The poor inference performance and good data selection performance show that the MLP approxima-
tion is specifically suitable for data selection while impractical for model inference directly.

7.2 COMPARISON WITH BOLT

We compare with Bolt (Pang et al., 2024)’s polynomial softmax approximation by replacing MLPs in
our 2-phase proxy models while keeping other nonlinear layers intact. This approach ensures the
highest softmax accuracy but the largest delay. Bolt achieves an accuracy of 69.04%± 11.86%, ours
achieves 84.59%± 0.95%, and MPCFORMER achieves 50.92%. With proxy models trained on Sboot,
Bolt outperforms MPCFORMER. However, our method surpasses Bolt by 15.55% in accuracy and had
a lower standard deviation, demonstrating better robustness against the biased Sboot. Notably, if full
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approximations (e.g., reciprocal and layer normalization) are applied, Bolt’s accuracy is expected to
decrease further, reducing its effectiveness compared to our methods.

7.3 ADDITIONAL EXPERIMENTS RESULTS
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Figure 8: Multi-phase selection achieves a better trade-off between accuracy and delay in data
selection. 2-phase proxy model: 1 layer with 1 attention head and a dimension of 2, 3 layers with 12
attention heads and a dimension of 16; 1-phase proxy model: 3 layers with 12 attention heads and a
dimension of 16.

# phases #MLP dims 
Dis/lBERT BERT 

SST2 QQP SST2 QQP 

1 

2 83.94 71.90 84.52 64.06 
4 85.32 70.06 83.94 63.13 
8 82.11 73.43 86.58 64.20 

16 82.91 71.28 83.49 64.48 
Average 83.57 71.67 84.63 63.97 

2 

(2, 2) 82.91 72.30 84.86 72.79 
(2, 8) 82.45 69.84 81.88 69.30 

(2, 16) 82.00 71.62 85.21 73.07 
(4, 16) 82.57 72.19 83.49 72.56 

Average 82.48 71.49 83.86 71.93 

3 

(2, 2, 2) 81.77 70.92 83.37 71.67 
(2, 2, 8) 80.62 71.85 85.55 71.31 

(2, 2, 16) 82.11 72.35 84.75 73.08 
(2, 8, 8) 82.57 70.79 85.21 72.77 

(2, 8, 16) 83.37 72.90 84.52 73.48 
(2, 16, 16) 81.65 71.46 86.01 71.75 
Average 82.01 71.71 84.90 73.47 

 

Table 5: Multi-phase selection is able to significantly reduce runtime and maintain comparable
accuracy. On QQP, three-phase selection achieves 9.5% higher accuracy than using one phase. Main
results: 16, (2,16), (2,8,16).

Benchmarks SST2 QNLI QQP AGNEWS YELP 

Dis;lBERT Ours SelectviaFull Random Ours SelectviaFull Random Ours SelectviaFull Random Ours SelectviaFull Random Ours SelectviaFull Random 

20% 82.80±0.98 82.32±0.68 79.08±1.65 71.12±1.52 71.44±1.35 70.34±1.74 71.63±0.91 71.51±1.51 66.18±3.54 87.75±1.00 89.19±0.27 86.43±0.66 60.04±0.16 59.93±0.16 58.09±0.60 

25% 82.75±1.41 83.97±1.01 77.61±0.82 71.04±1.56 72.72±1.09 69.95±0.93 72.04±0.56 73.18±1.29 68.67±1.11 88.06±1.56 89.35±0.38 87.67±0.46 60.38±0.13 60.63±0.20 58.43±0.20 

30% 83.35±0.59 83.97±0.77 78.67±0.23 71.10±1.05 72.87±0.92 70.72±0.94 72.10±0.73 74.04±0.52 69.46±0.58 88.28±1.71 89.50±0.32 88.02±0.72 60.86±0.21 61.14±0.21 58.90±0.27 

40% 83.30±1.06 83.88±1.32 80.21±0.81 72.03±1.32 72.92±1.06 70.92±0.19 73.43±1.23 73.97±0.61 69.76±0.54 89.72±0.28 89.73±0.26 87.81±0.66 60.92±0.27 61.15±0.24 59.13±0.49 
 

Table 6: Our methods are robust against the increase in purchase budget. We have consistently better
accuracy than Random by a large margin and achieve comparable performance with Oracle, up to
40% budget. Ours: 2-phase selection. 1 layer with 1 attention head and a dimension of 2 in phase 1,
3 layers with 12 attention heads and a dimension of 16 in phase 2.
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 Dis$lBERT BERT 
SST2 QNLI QQP AGNEWS YELP SST2 QNLI QQP AGNEWS YELP 

40% 80.21%±0.81 70.92%±0.19 69.76%±0.54 87.81%±0.66 59.13%±0.49 80.99%±1.74 73.15%±0.99 71.07%±0.85 88.36%±0.67 59.85%±0.55 
50% 79.79%±1.22 70.34%±0.70 71.07%±0.27 88.48%±0.44 59.59%±0.23 80.85%±0.73 72.98%±1.58 71.59%±1.20 88.92%±0.35 60.06%±0.30 
60% 80.41%±0.80 71.47%±1.06 71.76%±1.08 88.84%±0.63 59.73%±0.18 82.39%±0.95 73.01%±0.98 72.28%±0.75 88.80%±0.86 59.73%±0.88 
70% 80.53%±1.68 71.63%±0.58 72.92%±0.47 89.02%±0.20 59.74%±0.32 82.78%±0.41 74.02%±1.35 72.47%±0.65 88.73%±0.37 60.46%±0.33 
80% 81.08%±0.94 71.40%±0.79 72.69%±1.03 89.42%±0.44 59.98%±0.24 83.00%±1.04 75.29%±0.76 72.90%±0.44 89.42%±0.29 60.56%±0.51 
90% 82.50%±1.00 72.39%±0.67 73.73%±1.08 89.45%±0.35 59.96%±0.50 82.73%±1.40 74.37%±1.33 73.22%±1.05 89.21%±0.23 60.28%±0.26 
100% 83.60%±0.92 73.20%±0.57 73.85%±0.94 89.67%±0.23 60.36%±0.11 82.78%±1.91 74.83%±1.84 73.66%±0.62 89.58%±0.52 60.39%±0.60 

 

Table 7: Accuracies of randomly selecting more data to train the target model. Compared with our
selection accuracies in the main body, Random needs much more data. 100% YELP and 90% QQP
data is necessary for our 20% selection with DistilBERT; 100% YELP and SST2, 80% QQP and
AGNEWS are necessary to match our 20% budget performance of BERT.

 Dis%lBERT BERT ViT-small ViT-base 
SST2 QNLI QQP AGNEWS YELP SST2 QNLI QQP AGNEWS YELP Cifar10 Cifar100 Cifar10 Cifar100 

Ours 82.34±1.01 71.46±1.06 71.53±0.77 88.49±0.55 60.18±0.20 84.59±0.95 73.68±1.64 72.73±0.60 89.04±0.43 61.33±0.40 96.46±0.25 69.11±1.16 96.61±0.17 68.42±1.44 
Random 79.08±1.65 70.34±1.74 66.18±3.54 86.43±0.66 58.09±0.60 79.58±1.83 73.56±1.35 68.84±0.74 87.85±0.54 59.16±0.43 94.69±0.37 43.99±0.93 95.63±0.50 63.21±1.78 
(vs. Ours) -3.26 -1.12 -5.35 -2.06 -2.09 -5.01 -0.12 -3.89 -1.19 -2.17 -1.71 -25.12 -0.98 -5.21 
Oracle 82.32±0.68 71.44±1.35 71.51±1.51 89.19±0.27 59.93±0.16 86.06±0.79 74.62±1.39 73.08±1.86 89.74±0.38 60.80±1.33 96.87±0.17 68.40±1.71 96.94±0.23 67.85±1.35 
(vs. Ours) -0.02 -0.02 -0.02 +0.70 -0.25 +1.47 +0.94 +0.35 +0.70 -0.53 +0.41 -0.71 +0.33 -0.57 

 

Table 8: Ours are consistently higher than Random across all models and benchmarks and are close
to Oracle (gold accuracy). Compared with Table 1, standard deviations of 5 runs are added.

15


	Introduction
	Background
	Assumptions on systems
	Algorithm foundations
	Transformers, MPC, and overhead analysis

	Related works
	Method
	High-level workflow
	Generating proxy models in detail
	Approximation MLPs for Non-linear Operations
	IO scheduling

	Evaluation
	Experiment Setup
	End-to-End Results
	Comparison with MPCFORMER and Bolt
	Ablation Study

	Concluding remarks
	Appendix
	MLP Approximation is tied to data selection
	Comparison with Bolt
	Additional Experiments Results


