
Weight Diffusion for Future: Learn to Generalize in
Non-Stationary Environments

Mixue Xie
Beijing Institute of Technology

mxxie@bit.edu.cn

Shuang Li�
Beijing Institute of Technology

shuangli@bit.edu.cn

Binhui Xie
Beijing Institute of Technology
binhuixie@bit.edu.cn

Chi Harold Liu
Beijing Institute of Technology

chiliu@bit.edu.cn

Jian Liang
Kuaishou Technology

liangjian03@kuaishou.com

Zixun Sun
Tencent

sunzixun@126.com

Ke Feng
Tencent

richardfeng@tencent.com

Chengwei Zhu
Tencent

chavezzhu@tencent.com

Abstract

Enabling deep models to generalize in non-stationary environments is vital for
real-world machine learning, as data distributions are often found to continually
change. Recently, evolving domain generalization (EDG) has emerged to tackle
the domain generalization in a time-varying system, where the domain gradually
evolves over time in an underlying continuous structure. Nevertheless, it typically
assumes multiple source domains simultaneously ready. It still remains an open
problem to address EDG in the domain-incremental setting, where source domains
are non-static and arrive sequentially to mimic the evolution of training domains.
To this end, we propose Weight Diffusion (W-Diff), a novel framework that utilizes
the conditional diffusion model in the parameter space to learn the evolving pattern
of classifiers during the domain-incremental training process. Specifically, the
diffusion model is conditioned on the classifier weights of different historical do-
main (regarded as a reference point) and the prototypes of current domain, to learn
the evolution from the reference point to the classifier weights of current domain
(regarded as the anchor point). In addition, a domain-shared feature encoder is
learned by enforcing prediction consistency among multiple classifiers, so as to
mitigate the overfitting problem and restrict the evolving pattern to be reflected
in the classifier as much as possible. During inference, we adopt the ensemble
manner based on a great number of target domain-customized classifiers, which
are cheaply obtained via the conditional diffusion model, for robust prediction.
Comprehensive experiments on both synthetic and real-world datasets show the
superior generalization performance of W-Diff on unseen domains in the future.

1 Introduction

Domain generalization (DG) deals with a fundamental problem in modern machine learning [13, 46,
47], where performance degeneration often occurs when deep models encounter out-of-distribution
(OOD) data [38, 56]. The goal of DG is to learn a model that can perform well on unseen target
domains by leveraging labeled data from multiple related but different source domains [23, 19, 57, 22].

� Corresponding author. Code is available at https://github.com/BIT-DA/W-Diff.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/BIT-DA/W-Diff

Despite of abundant works on DG and promising progress so far, they typically embark upon the
generalization among stationary and discrete environments [29], where the distribution shift among
domains is obvious and remains static over time. In contrast, there have emerged several works
on evolving domain generalization (EDG) [24, 29, 51, 2, 44, 50] in recent years, where the data
distribution gradually shifts in an underlying continuous structure, e.g., the age-related structural
changes in the optic nerve in ocular diseases [12]. But most of EDG methods still assume multiple
source domains simultaneously ready, which may be impractical in real world. As the data distribution
constantly evolves along time, training data from new data distributions will continue to emerge.
Hence, equipping models with lifelong learning ability is crucial for their practical applications.

Despite of the fact that existing researches on continual learning [16, 32, 5] have studied the em-
powerment of lifelong learning, their focus is on maintaining the performance of seen tasks, instead
of generalizing on unseen domains in the future. Therefore, it is still an open problem to achieve
evolving domain generalization in the domain-incremental setting, where source domains sequentially
arrive to mimic the dynamics of training domains. To this end, previous work EvoS [45] models the
features from each domain as a Gaussian distribution and proposes to capture the evolving pattern at
the feature level by leveraging self-attention mechanism to generate the feature mean and variance for
future domain based on those of historical domains. However, the assumption that features adhere to
a Gaussian distribution may not always be applicable. Different from EvoS, we propose to excavate
evolving pattern at the parameter level and further achieve domain-customized parameter generation.

Inspired by neural network diffusion [42] that there exist specific parameter patterns in optimized
model layers and these patterns can be modeled with diffusion model, we propose to capitalize
on the strong modeling ability of diffusion models to capture the evolving pattern of optimized
classifiers across domains. To achieve this, we propose a Weight Diffusion (W-Diff) approach, which
is specialized for EDG in the domain-incremental setting. Specifically, to address the problem of
inaccessible historical data, we maintain a first-in-first-out (FIFO) queue to store the optimized
classifier weights of historical domains. The stored classifier weights of each historical domain
serve as a reference point to calculate the change between the classifier weights of current domain
(regarded as the anchor point) and that of corresponding historical domain. The changes of classifier
weights between the anchor point and different reference points provide evolving patterns at different
time intervals, which can be utilized to make the modeling of evolving patterns more robust.

In addition, for guidance on how to switch from a reference point to the anchor point, we condition
the diffusion model on the class prototypes of current domain along with the reference point. Then,
the conditional diffusion model is trained to model the distribution of residual classifier weights,
i.e., the change of classifier weights between the anchor point and reference point. Meanwhile, to
reduce the overfitting of the feature encoder and to restrict the evolutionary pattern to be reflected
only in the classifier as much as possible, we learn a domain-shared feature space by enforcing the
predictions from different classifiers to be consistent. Finally, during the inference stage, we adopt
weights ensemble to give robust predictions based on a great number of generated classifier weights
by the diffusion model that is conditioned on current class prototypes and different reference points.

Contributions: 1) We study the under-explored area of evolving domain generalization in the
domain-incremental setting and explore the innovative usage of diffusion model for this problem.
2) We propose a novel weight diffusion (W-Diff) approach to capture the evolutionary pattern at
the parameter level, orthogonal to previous feature level approaches. Capitalizing on the strong
generative ability of diffusion model, W-Diff can generate customized parameters by controlling the
condition and make robust predictions via weights ensemble. 3) Comprehensive experiments on both
synthetic and real-world datasets verify the effectiveness and superiority of W-Diff on generalization.

2 Related Work

Evolving Domain Generalization (EDG) learns the evolving pattern underlying in multiple source
domains to achieve generalization capability on the unseen future target domains over time [2, 50,
24, 52, 44, 29]. To name a few, SDE-EDG [50] introduces stochastic differential equations (SDEs)
to model the evolving pattern through individual temporal trajectories. DRAIN [2] builds on the
Bayesian framework and leverages LSTM to infer the future status of the whole network. However,
most of these methods, except for DRAIN, require multiple source domains to be simultaneously
available. Very recently, EvoS [45] focuses on EDG with sequentially arriving domains, considering

2

the low efficiency of training the model from scratch once the accumulated domains are updated. It
assumes that features for each domain follow a Gaussian distribution and then models the evolving
pattern of the feature distribution, while this assumption is not always suitable. Besides, in the
generalization process of multiple consecutive target domains, the statistics generated from previous
timestamps are used as inputs to the attention mechanism to generate the statistics at next timestamp,
which in turn serve as the input for next generation. This manner is likely to cause error accumulation
if previous generation is not accurate. Orthogonal to EvoS [45], we proposes to mine the evolving
pattern at the model parameter level and further implement domain-oriented parameter generation via
controlling the condition of the diffusion model to avoid the potential error accumulation in EvoS.

Continual Learning (CL) focuses on the scenario where the model is trained on a sequence of
tasks, and the model is required to adapt to current task and meanwhile maintain the performance
on previous tasks [53, 16, 5, 39, 43, 32, 11]. The literature on this field is abundant. Most of
the techniques can be categorized into architecture-based [34, 9], representation-based [4, 43, 10],
regularization-based [16, 53, 32] and replay-based [5, 39, 11]. In this work, we also continually train
models on sequential domains, but the goal is to generalize well on novel domains in the near future.

Parameter Generation has been gaining great interests with the rise of diffusion models [42, 8, 21,
54]. For example, p-diff [42] directly generates high-performing neural network parameters from
random noises with a standard latent diffusion model, which verifies the feasibility of modeling the
parameter distribution via diffusion models. Nevertheless, p-diff uses unconditional diffusion model
and can only generate parameters for in-distribution data. G.pt [28] collects the loss, error or return
of task model checkpoints during training as the condition for the diffusion model. However, it is
designed for a single dataset to which the training data belongs, thus struggling with distribution shifts.
D2NWG [36] uses CLIP [30] to extract features for each sample and leverages Set Transformer [18]
to generate dataset encoding from these features. Then, the diffusion model is conditioned on the
dataset encoding. But labeled training set samples of a new dataset are required to obtain the dataset
encoding, which is infeasible in unlabeled target domains. In addition, ProtoDiff [8] and MetaDiff
[54] generate prototype classifiers for the meta-test stage by conditioning the diffusion model on
the information (e.g., the prototypes in [8] and the gradients in [54]) from the support set. Yet, they
concentrate on few-shot learning and the support set requires labeled data, which is unavailable in the
target domain of EDG. By contrast, we aims at capturing the evolving pattern among source domains
and leveraging it to enable generalization on future target domains without any labeled target data.

3 Preliminaries

3.1 Problem Formulation

We consider the evolving domain generalization (EDG) in the domain-incremental setting. For-
mally, during training phase, we are given T sequentially arriving source (training) domains:
S = {D1,D2, . . . ,DT }, which are collected at timestamps t1 < t2 < . . . < tT , respectively.
Each domain is defined as Dt = {xti, yti}N

t

i=1, t = 1, . . . , T , where xti is the i-th sample from the
t-th domain, yti ∈ {0, 1, . . . , C − 1} is the category label of sample xti, and N t, C are the number
of training samples in the t-th domain and the number of categories, respectively. In the domain-
incremental setting, we can only access current domain Dt at timestamp tt and historical domains
{D1, . . . ,Dt−1} are unavailable. This takes into account the data storage burden, privacy concerns
and the dynamic evolution of the source domain. Following previous EDG works [24, 29, 2], the
label set is the same among domains, but the data distribution of domains is assumed to continuously
evolve over time in some patterns. And our goal is to generalize the model, which is composed of a
feature encoder Eψ parameterized with ψ and a classifier HW parameterized with W, on unseen K
target (testing) domains in the future: T = {DT+1, . . . ,DT+K}. To tackle this problem, we propose
to model the evolving pattern at the parameter level via the conditional diffusion model and generate
customized parameters for future domains by controlling the condition of the diffusion model.

3.2 Diffusion Model

Diffusion models have achieved tremendous success in computer vision by modeling the probability
transformation from a prior Gaussian distribution to the target distribution [14, 40]. They typically

3

comprise a diffusion process to progressively add Gaussian noise to data in a multi-step Markov
chain and a denoising process to recover data from the noise via reversing the diffusion process.

Diffusion process. Given a clean data point x0 sampled from a real data distribution q(x), i.e.,
x0 ∼ q(x), the diffusion process is characterized as a Markov chain which slowly adds random
Gaussian noise to x0 in S steps, obtaining a sequence of noisy samples: x1, . . . ,xS . Formally, this
process is expressed as

q(x1:S |x0) =

S∏
s=1

q(xs|xs−1), q(xs|xs−1) = N (xs;
√

1− βsxs−1, βsI), (1)

where {βs ∈ (0, 1)}Ss=1 is a variance schedule, N represents Gaussian distribution, and I is the
identity matrix. And the forward diffused sample at step s, denoted as xs, can be directly obtained in
a single step by Eq. (2) without iteratively adding noise:

xs =
√
ᾱsx0 +

√
1− ᾱsε, ε ∼ N (0, I), (2)

where ᾱs =
∏s
s′=1(1− βs′). When step size S approaches infinity, xS is equivalent to a data point

from an isotropic Gaussian distribution, i.e., the prior Gaussian distribution N (0, I).

Denoising process. Given a start noise xS ∼ N (0, I), the denoising process moves backward on
the multi-step Markov chain as s decreases from S to 1 to remove the noise at each step s, finally
recovering the clean data. Concretely, the formulation of the denoising process at step s is denoted as

xs−1 = µθ(xs, s) + σsε =
1√

1− βs

(
xs −

βs√
1− ᾱs

Eθ(xs, s)

)
+ σsε, (3)

where µθ(xs, s) = 1√
1−βs

(
xs − βs√

1−ᾱs
Eθ(xs, s)

)
and Eθ(·, ·) is a denoising model parameterized

with θ to estimate the noise. σs is a variance hyperparameter that is theoretically set to σ2
s = βs

in most diffusion works [14, 26]. During the training stage, the denoising model Eθ is trained by
minimizing the following loss Ldiff to minimize the noise estimation error:

Ldiff = Ex0,s,ε

[
‖ε− Eθ(

√
ᾱsx0 +

√
1− ᾱsε, s)‖2

]
. (4)

Conditional diffusion model. The way of conditional diffusion models to generate samples is
analogous to the unconditional one, except for the added conditional information. Specifically, as in
most conditional diffusion works [25, 17], the denoising model Eθ(xs, s) is replaced with Eθ(xs, s, c),
where c denotes the condition, e.g., class labels, texts, images, etc. The matched condition c regulates
the sample generation in a supervised manner to ensure the desired image content. And inspired by
the generating of specific image contents via introducing conditional information to diffusion models,
we propose to achieve domain-oriented parameter generation by controlling the diffusion condition.

4 Methodology

With the preliminary knowledge of EDG in the domain-incremental setting and diffusion models, we
will present the details of Weight Diffusion (W-Diff) in this section. We begin with how to obtain the
data for diffusion model training in Section 4.1 and then model the evolving pattern of parameters via
the conditional diffusion model in Section 4.2. Finally, the inference procedure of W-Diff to generate
customized classifiers is presented in Section 4.3. The overview of W-Diff is illustrated in Fig. 1.

4.1 Per-domain Parameter Fitting in Domain-Incremental Setting

In our approach, we try to capture the evolving pattern in optimized model parameters across domains
and further generate customized parameters for target domain via leveraging the learned pattern.
Considering the unaffordable training cost if modeling the whole parameters for relatively large
models, we choose to excavate the evolutionary pattern in the task-specific head, e,g., the classifier
for classification tasks. Nevertheless, the remaining parts of the task model would overfit to current
domain and cause degraded generalization if without any processing. To avoid this, we learn a
domain-shared feature encoder for all domains and a domain-specific classifier for each domain
during the domain-incremental training. As t increases from 1 to T , once the training stage on

4

Weight Diffusion
(Training)

Task Model Training

reference point queue 𝑄!
(global)

anchor point queue 𝑄!(local)

𝒙"#

𝒇"#

𝒑"
#,#

ℒ%&#

⊕

∆𝑾!
","! ⊝

noise

⊕

condition 𝖈'
#,#"

Denoising U-Net ℇ𝜽

𝑸
𝑲𝑽

𝑸
𝑲𝑽

𝑸
𝑲𝑽

𝑸
𝑲𝑽

ℒ%)*#

𝑾𝒕

Feature
Encoder
𝐸𝝍

�̈�𝒕"

𝑾'
#

prototype
matrix

weight matrix of
historical domain

residual
weight matrix

�̈�"#|%!| �̈�#-.… �̈�𝒕" …

𝒟.

𝒟#-.

𝒟#

…
…

𝒟/

𝒟/0.

…

Tr
ai

ni
ng

D
om

ai
n

Te
st

in
g

D
om

ai
n

𝒟/01
×

weight matrix of
current domain

× concatenate

𝑾2-.
#

𝝁2-.#

𝑾.
#

𝝁.#

…𝑾1
#

𝝁1#

𝑾'
#

𝝁'#

… 𝑾2
#

𝝁2#
𝝁'#

ℒ3"44#

𝝐

⊕stop gradient ⊝ element-wise subtraction

prototype queue 𝑄# (local)

… …

Figure 1: Overview of W-Diff. The reference point queue Qr stores classifier weights of recent |Qr|
historical domains, and the anchor point queueQa and prototype queueQp store the updated classifier
weights and prototype matrix at each iteration after the warm-up stage on current domain. Ltcon is the
prediction consistency loss to learn a domain-shared feature space and Ltce is the cross-entropy loss.
The conditional diffusion model Eθ is trained with the noise estimation error loss Ltdiff to model the
evolving pattern of classifiers, conditioned on historical reference point and current prototype matrix.

domain Dt ends, the classifier weights with the best validation performance on the validation set of
Dt, denoted as Ẅt ∈ RC×df , is stored in the reference point queue Qr, where df the dimension
of deep features output by the feature encoder Eψ. Qr is a global FIFO queue with the maximum
length L and is used to calculate the change of classifier weights between current domain and a given
historical domain in Section 4.2, which reflects the evolving pattern at the parameter level.

Learning Domain-Shared Feature Encoder. In the domain-incremental setting, we can only access
the data from current domain, which prohibits us from utilizing conventional DG methods that require
to access multiple domains simultaneously to learn domain-invariant feature representations. To
tackle this problem, we resort to the stored different classifiers in Qr. Intuitively, if domain-shared
feature representation is learned, classifiers from different domains should give similar predictions
for a given data sample. Hence, at timestamp tt, we train the task model on the t-th domain Dt by
minimizing the consistency loss Ltcon to learn a domain-shared feature space:

Ltcon =
1

1 + |Qr|
· 1

N t
· 1

C

∑t

t′=t−|Qr|

∑Nt

i=1
KL(p̄ti‖p

t,t′

i),

p̄ti =
1

1 + |Qr|
∑t

t′=t−|Qr|
pt,t

′

i , pt,t
′

i =

{
softmax(sg(Wt)× f ti), t′ = t

softmax(sg(Ẅt′)× f ti), t′ < t
, (5)

where f ti = Eψ(xti) ∈ Rdf , | · | is the length of the object and sg(·) denotes stopping gradients. Ẅt′

is the stored classifier weights of historical domain Dt′ and Wt is current classifier weights on Dt.
Learning Domain-Specific Classifier. As t increases from 1 to T , domain-specific classifier is
directly learned by incrementally training the task model via the supervision loss Ltce on domain Dt:

Ltce =
1

N t

∑Nt

i=1
CrossEntropy

(
softmax(Wt × f ti), yti

)
. (6)

Overall, when training on domain Dt, the task model is optimized by the following total loss Lttotal:

Lttotal = Ltce + λLtcon, (7)

where λ is a tradeoff hyperparameter to balance the two losses.

5

Collecting Data for Diffusion Model Training. Considering that parameters at the early stage are
unstable, we start to collect the training data for diffusion model after the warm-up stage of the task
model is over on corresponding domain. Specifically, when training on the t-th domain, the warm-up
epochs of the task model account for ρ ∈ (0, 1) of the total training epochs on domain Dt, where
ρ is a hyperparameter. After the warm-up stage, the updated classifier weights Wt ∈ RC×df via
back-propagating the gradients of Lttotal and the updated prototype matrix µt ∈ RC×df via Eq. (8)
are respectively stored into the anchor point queue Qa and prototype queue Qp at each iteration.

µt[c] :=
nt · µt[c] +

∑B
i=1 p

t,t
i [c] · f ti

nt +B
, c = 0, 1, . . . , C − 1,

nt := nt +B. (8)

µt[c] is the c-th row of µt, i.e., the prototype of class c on domain Dt based on all data in the seen
batches after the warm-up stage on Dt. B is the batch size of task model. nt counts the total number
of samples in seen batches after the warm-up stage and is initialized to 0 at the start of training on
each domain. pt,ti [c] is the predicted probability of xti belonging to class c via current classifier of
domain Dt. Here, using predicted probability instead of ground-truth label to compute prototypes
avoids the issue of missing categories in a batch and the inaccessibility of labels in testing domains.

In implementation, Qa and Qp are both FIFO queue with the maximum length M , i.e., the training
batch size of the diffusion model. When they are full, the training of the conditional diffusion model
starts. Note that Qa and Qp are only used during the training phase and are locally used on each
domain. That is, they are initialized to empty at the beginning of the training stage on each domain.

4.2 Modeling Parameter Evolution Pattern with Conditional Diffusion Model

Having prepared the data for diffusion model training, we can utilize them to learn the evolving
pattern of parameters during the domain-incremental training process of the task model. To be
specific, we use the difference between the classifier weights of current domain and that of a given
historical domain to represent the evolution of parameters:

∆Wt,t′

m = Wt
m − Ẅt′ , (9)

where Wt
m, m = 1, 2, . . . ,M, is the classifier weights of current domain Dt, which is cached in the

anchor point queue Qa when training the task model on Dt. And Ẅt′ is the classifier weights of
the historical domain Dt′ from the reference point queue Qr, t′ ∈ {t− |Qr|, . . . , t− 1}. Hence, the
residual classifier weights {∆Wt,t′

m }Mm=1 represent how to evolve from a reference point to the anchor
point. Moreover, to guide the evolution, we provide the paired condition for each residual classifier
weight matrix ∆Wt,t′

m , where the paired condition is formulated as ct,t
′

m = Ẅt′ ⊕ µtm ∈ RC×df×2

and⊕ denotes concatenating. The additional condition provides the information about the the starting
point and knowledge about the distribution of data in the feature space, which is rightly the anchor
point, i.e., the optimized classifier, needs to adapt to. Then, when the task model is incrementally
trained on the t-th domain, the conditional diffusion model is also incrementally trained to minimize
the following noise estimation error loss Ltdiff in Eq. (10), so as to learn how to generate the desired
residual classifier weights when given the reference point and prototype matrix as the condition.

Ltdiff = EẄt′∈Qr,Wt
m∈Qa,ε∼N (0,I),s

[
‖ε− Eθ(

√
ᾱs ·∆Wt,t′

m +
√

1− ᾱsε, s, ct,t
′

m)‖2
]
. (10)

In implementation, the conditional diffusion model adopts the similar U-Net structure as LDM [31]
and uses a hybrid conditioning way, i.e., the condition is injected both in the cross-attention and
input sides. In Eq. (10), different reference points could enrich the diversity of training data for the
conditional diffusion model and provide the evolving pattern at different time intervals.

4.3 Generating Customized Classifiers in Inference Phase

After finishing the training on domain DT , we can use the conditional diffusion model to gen-
erate customized classifiers for a given testing domain Dtest. Firstly, we calculate the proto-
type matrix µtest of domain Dtest via µtest[c] = 1

Ntest

∑Ntest

i=1 p̄testi [c] · f testi , where p̄testi =
1
|Qr|

∑
Ẅt′∈Qr

softmax(Ẅt′ × f testi), c = 0, 1, . . . , C − 1. Here, we use the more robust average

6

prediction of multiple classifiers to compute the prototype matrix in the inference phase. Then, given
each reference point Ẅt′ in Qr along with the prototype matrix µtest, we can generate Mg residual
classifier weights: {∆Wtest,t′

j }Mg

j=1 by substituting the denoising net in Eq. (3) with its conditional
version and applying the denoising process with condition ctest,t

′
= Ẅt′ ⊕ µtest. Ultimately, we

use the following average weight ensemble W̄test as the final classifier for label predicting on Dtest:

W̄test =
1

|Qr|
1

Mg

∑
Ẅt′∈Qr

∑Mg

j=1
(Ẅt′ + ∆Wtest,t′

j). (11)

In this way, we capitalize on the powerful modeling and generating ability of conditional diffusion
model to cheaply produce a great number of target-customized classifiers, which offers more robust
and accurate predictions. The pseudo codes of training and testing procedures are in Appendix C.

5 Experiments

5.1 Experimental Setup

Benchmark Datasets. We evaluate W-Diff on both synthetic and real-world datasets [2, 48], includ-
ing two text classification datasets (Huffpost, Arxiv), three image classification datasets (Yearbook,
RMNIST, fMoW) and two multivariate classification datasets (2-Moons, ONP). Except for syn-
thetic datasets 2-Moons and RMNIST that use the rotation angle as a proxy for time, all other datasets
collect real-world data with the distribution shift over time. Following [45], the number of source
and target domains is set as Yearbook: (T = 16,K = 5), RMNIST: (T = 6,K = 3), fMoW:
(T = 13,K = 3), Huffpost: (T = 4,K = 3), Arxiv: (T = 9,K = 7), 2-Moons: (T = 9,K = 1),
ONP: (T = 5,K = 1). For each source domain, we randomly divide the data into training and
validation sets in the ratio of 9 : 1. For more details on datasets, please refer to Appendix D.1.

Network Details. For the task model, we follow the usage in [48, 45]. For the conditional diffusion
model, we implement it in a U-Net similar to LDM [31]. Please refer to Appendix D.2 for details.

Training Details. For all datasets, we set the batch size B = 64, the loss tradeoff λ = 10 and the
maximum length L = 8 for the reference point queue Qr. To optimize the task model, we adopt
the Adam optimizer with momentum 0.9. As for the warm-up hyperparameter ρ, we ρ = 0.6 for
Huffpost, fMoW and ρ = 0.2 for Arxiv, Yearbook, RMNIST, 2-Moons, ONP. For the conditional
diffusion model, we set the maximum diffusion step S = 1000 and use the AdamW optimizer with
batch size M = 32, where M is also the maximum length of queue Qa and Qp. And the number of
generated residual classifier weights based on each reference point is set to Mg = 32 in the inference
stage. All experiments are conducted using the PyTorch packages and run on a single NVIDIA
GeForce RTX 4090 GPU with 24GB memory. Three independent experiments with different random
seeds are repeated for each task to report the mean and standard deviation (std) of accuracy, which is
denoted in the format of “mean ± std” in the table. Please refer to Appendix D.3 for more details.

Table 1: Accuracy (%) on Huffpost and Arxiv. The best and second best results in the incremental
setup are bolded and underlined, respectively. (Huffpost: K = 3, Axriv: K = 7)

Method Incremental
training

Access
multiple
domains

Huffpost
Accuracy (%) ↑

Arxiv
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst

Offline 7 3 72.74 71.50 69.63 57.49 52.38 49.28
IRM [1] 7 3 71.04 70.31 68.97 51.11 45.89 42.86

CORAL [37] 7 3 71.34 70.08 68.68 50.98 45.77 42.71
Mixup [55] 7 3 73.34 71.16 69.29 57.58 52.77 49.62
LISA [49] 7 3 72.19 70.24 68.60 56.53 52.41 49.67

GI [24] 7 3 68.06 66.32 64.64 53.43 49.19 46.13
IncFinetune 3 7 73.57 71.98 69.80 56.22 52.43 49.37
Mixup [55] 3 7 73.07 71.52 69.44 56.64 52.95 49.97
EWC [16] 3 7 73.64 71.53 68.99 56.60 52.78 49.73

SI [53] 3 7 72.58 71.50 69.61 49.98 47.27 44.77
A-GEM [5] 3 7 72.23 71.16 69.10 52.02 48.91 46.03
DRAIN [2] 3 7 73.42 71.75 69.69 56.04 52.07 48.97
EvoS [45] 3 7 73.42 72.36 70.19 56.60 53.15 50.19

W-Diff 3 7 73.91±0.19 72.29±0.14 70.40±0.12 56.66±0.11 53.43±0.10 50.70±0.20

7

Table 2: Accuracy (%) on Yearbook, RMNIST and fMoW. The best and second best results in the
incremental setup are bolded and underlined. (Yearbook: K = 5, RMNIST: K = 3, fMoW: K = 3)

Method Incremental
training

Access
multiple
domains

Yearbook
Accuracy (%) ↑

RMNIST
Accuracy (%) ↑

fMoW
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst DT+1 OOD

avg.
OOD
worst

Offline 7 3 89.30 88.46 86.81 98.15 92.14 83.89 72.43 59.76 49.85
IRM [1] 7 3 97.09 94.52 92.58 95.10 85.05 72.52 64.77 54.92 46.51

CORAL [37] 7 3 95.94 91.79 88.84 93.04 79.10 62.96 62.14 51.42 42.19
Mixup [55] 7 3 94.98 91.12 88.35 97.11 89.66 79.63 70.27 57.73 48.04
LISA [49] 7 3 95.51 92.97 91.29 96.21 87.04 75.15 70.05 55.52 44.61
CDOT [27] 7 3 95.17 92.90 91.46 97.96 90.19 79.67 - - -
CIDA [41] 7 3 92.36 90.67 88.45 97.43 89.19 78.32 - - -

GI [24] 7 3 97.42 96.37 95.73 97.78 91.00 82.46 61.62 50.83 42.78
LSSAE [29] 7 3 93.93 92.12 88.75 96.73 90.36 82.13 59.15 48.66 41.38
IncFinetune 3 7 96.61 94.72 93.48 98.62 92.80 84.61 65.52 53.99 45.23
Mixup [55] 3 7 90.21 89.83 88.43 98.43 92.38 83.45 64.84 52.00 42.54
SimCLR [6] 3 7 95.94 93.07 89.65 98.23 90.98 81.05 64.97 53.20 44.71
SwAV [3] 3 7 97.37 94.27 91.44 98.08 90.85 80.96 66.47 54.51 45.29
EWC [16] 3 7 97.18 95.12 93.64 98.56 92.02 82.80 66.23 54.55 45.80

SI [53] 3 7 97.09 94.67 93.48 98.61 93.27 85.65 66.61 54.89 46.46
A-GEM [5] 3 7 94.36 90.96 88.88 95.99 86.95 75.45 54.54 47.61 41.13
SGP [32] 3 7 95.65 92.92 91.39 97.12 88.97 78.05 - - -

DRAIN [2] 3 7 96.23 94.71 93.73 98.52 93.09 85.75 67.22 55.05 46.24
EvoS [45] 3 7 97.37 95.53 94.78 98.64 93.84 87.04 67.18 54.64 45.86

W-Diff 3 7 97.32±0.23 95.03±0.17 94.05±0.31 98.70±0.04 94.12±0.12 87.36±0.20 68.80±0.19 55.86±0.16 46.51±0.23

Table 3: (a): Error rate (%) on 2-Moons and ONP (K = 1). (b): Ablation study on RMNIST.
Method Error rate (%) ↓

2-Moons ONP
Offline 22.4±4.6 33.8±0.6

LastDomain 14.9±0.9 36.0±0.2
IncFinetune 16.7±3.4 34.0±0.3
CDOT [27] 9.3±1.0 34.1±0.0
CIDA [41] 10.8±1.6 34.7±0.6

GI [24] 3.5±1.4 36.4±0.8
DRAIN [2] 3.2±1.2 38.3±1.2
EvoS [45] 2.5±1.0 33.1±0.6

W-Diff 1.5±1.0 32.9±0.5

(a)

Method Conditioning
way for Eθ

Loss Computed W̄test based on ∗ Accuracy (%) ↑
Ltcon Qr

noise-added
Qr

diffusion DT+1 OOD
avg.

OOD
worst

variant A hybrid - - - X 98.48 91.69 81.87
variant B - X - - - 98.55 93.70 86.91
variant C - X X - - 98.47 93.82 87.28
variant D - X - X - 98.55 93.78 87.13
variant E cross_attn X - - X 97.98 91.68 83.19
variant F concat X - - X 98.44 92.93 85.03
W-Diff hybrid X - - X 98.70 94.12 87.36

(b)

Evaluation Metrics. We report the generalization performance on K target domains in the future,
including the average accuracy “OOD avg.” (1

K

∑K
k=1 Accuracy(DT+k)) and the worst accuracy

“OOD worst” (mink∈{1,...,K}Accuracy(DT+k)) on K target domains and the accuracy on DT+1.

5.2 Main Results

We provide the quantitative results in Table 1, 2, 3(a), where the results of baselines in the non-
incremental and incremental scenarios are reported from [45]. For ONP dataset, we notice that
previous continuous domain adaptation methods (CDOT and CIDA) and EDG methods (GI and
DRAIN) all perform worse than the Offline method that trains the task model on the cumulation of
all source domains. In contrast, our W-Diff still obtains superior accuracy to previous state-of-the-art
method (EvoS) on this challenging dataset, which validates the superiority of W-Diff. Besides, our
W-Diff also achieves the best results on Huffpost, Arxiv, RMNIST and fMoW, in terms of the OOD
worst accuracy. These results benefit from the modeling of parameter evolution pattern and the more
robust predictions via the weight ensemble based on the conditional diffusion model. For Yearbook
dataset, DRAIN, which models the evolution of whole model parameters via LSTM, is inferior to
EvoS, which models the evolution of domain-level feature distribution. It suggests that modeling
the evolving pattern at the feature level may be more appropriate for Yearbook, which also explains
why W-Diff does not obtain the state-of-the-art performance on Yearbook. But our W-Diff still
obviously outperforms DRAIN. Overall, we can observe that W-Diff surpasses the baselines in the
incremental-training setup on six out of seven datasets, which shows the superiority of W-Diff.

5.3 Analytical Experiments

Ablation Study. Firstly, the significant performance drop of variant A in Table 3(b) suggests that
learning domain-invariant feature representations is necessary for EDG in the domain-incremental
setting. Otherwise, the feature encoder could easily overfit to current domain, prohibiting the
task model from generalization. Then, we try different ways to construct the average weight
ensemble W̄test, including variant C which directly uses the historical classifier weights in Qr,
i.e., W̄test = 1

|Qr|
∑

Ẅt′∈Qr
Ẅt′ , and variant D which augments classifier weights by adding small

8

(a) Visualization of decision boundary on 2-Moons.

RMNIST

(b) t-SNE visualization of features.

Figure 2: (a): Decision boundary of EvoS [45] and W-Diff on 2-Moons, where we incrementally train
the model until the t-th domain and then visualize the decision boundary for future domain Dt+1.
(b): visualization of features from target domains, where different colors represent different domains.

(a) Visualization of classifier weights. (b) Results when evaluating in batch-data stream.

Figure 3: (a): Visualization of classifier weights for DT+1, T = 6, on RMNIST and their accuracy
range. Ẅt′ , t′ = 1, . . . , 6, is the reference point from Qr, Ŵ7|t′ is the generated Mg classifier
weights based on Ẅt′ , and W7 is the average weights of D7 fine-tuned classifier weights in the
last 200 iterations. (b): Accuracy of EvoS and W-Diff on RMNIST and Huffpost datastes, where
W-Diffstream denotes W-Diff is evaluated with batch-data stream for each target domain.

noises to the weights in Qr, i.e., W̄test = 1
|Qr|

1
Mg

∑
Ẅt′∈Qr

∑Mg

j=1(Ẅt′ + noisej), noisej ∼
Uniform(−0.01, 0.01). The inferior results of variant B, C and D indicate that W-Diff benefits from
generating meaningful and customized classifier weights via controlling the condition of diffusion
model. Finally, different conditioning ways for the diffusion model are explored, including variant
E which injects the condition only in the cross-attention, and variant F which injects the condition
only in the input by concatenating the condition with diffused residual classifier weights. Results of
variant E and F are both unsatisfactory. This is probably due to the large gap between the residual
classifier weights in the input side and the full classifier weights in the condition side, which makes
the information interaction hard. And injecting the condition only on the input side can lead to
insufficient information interaction. Empirically, we find that the hybrid manner works best.

Decision Boundary Visualization on Future Domain. In Fig. 2(a), the model is incrementally
trained until the training stage on the t-th domain Dt finishes. Then we visualize the decision
boundary on the next future domain Dt+1, t = 8, 9. From the results, we can see that the decision
boundary of W-Diff adapts to the evolution of domains better than that of EvoS, which shows the
superiority of W-Diff in addressing evolving domain generalization in the domain-incremental setup.

t-SNE Visualization of Features. In this qualitative experiment, we visualize the features of future
target domains for RMNIST dataset to show the effectiveness ofLtcon. From Fig. 2(b), we can observe
that features from different target domains align well. To some extent, it verifies the effectiveness of
Ltcon to learn a domain-shared feature space, which contributes to the mitigation of distribution shift.

Visualization of Generated Classifier Weights. In Fig. 3(a), we plot the generated classifier weights
for domainDT+1, T = 6, on RMNIST, as well as the accuracy range onDT+1 of generated classifier
weights based on different reference points. In Fig. 3(a), some generated weights locate close to
the average fine-tuned weights W7, showing that W-Diff generates domain-customized classifiers.

9

Table 4: Accuracy (%) of W-Diff on RMNIST dataset using different conditions. (K = 3)

Method Condition Accuracy (%) ↑
DT+1 OOD avg. OOD worst

W-Diff reference point ⊕ prototype matrix 98.70 94.12 87.36
W-Diff scaled reference point‡ ⊕ prototype matrix 98.69 94.17 87.46

‡ denotes the reference point is scaled by the factor η = 1.5− 1
1+e−∆t , where ∆t is the timestamp

difference between the reference point and anchor point.

Besides, Ŵ7|1, Ŵ7|2, Ŵ7|3 are similar, while Ŵ7|4, Ŵ7|5, Ŵ7|6 are different, due to the more
pronounced differences among reference points Ẅ4, Ẅ5, and Ẅ6. This implies that the evolution
pattern may be different at different time intervals. And these diverse and high-performing generated
weights based on different reference points could conduce to more robust predictions.

Evaluating in Batch-Data Stream. In addition to the inference way in Section 4.3, we also provide
another version, where the data in target domain arrives batch by batch. Concretely, we use the
iterative manner in Eq. (8) along with the average prediction in Section 4.3 to update the prototype
matrix µtest, once a batch of data fromDtest arrives. Then, we compute the average weight ensemble
W̄test via Eq. 11 for this data batch. Fig. 3(b) shows the results on RMNIST and Huffpost. The two
manners present similar results and users can choose appropriate manner based on their scenarios.

Equipping Condition with Timestamp Difference. In this part, we try to explicitly incorporate the
timestamp difference between the anchor point and reference point into the condition of diffusion
model. Concretely, we scale the reference point Ẅt′ in the condition ct,t

′
by a factor η, where

η = 1.5− 1
1+e−∆t and ∆t = tt− tt′ is the timestamp difference between reference and anchor points.

More distant reference points have larger ∆t and are weakened. The results on RMNIST dataset are
given in Table 4, where the average and worst accuracies of target domains improve slightly. The
insignificant performance improvement may be due to the fact that our approach implicitly takes the
timestamp difference into account via the domain-incremental training and residual classifier weights.

Results with Larger Backbones. We try larger backbones on the fMoW dataset by replacing the

Table 5: Accuracy (%) of W-Diff on fMoW dataset with differ-
ent backbones. (K = 3)

Backbones parameters
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst

DenseNet-121 (growth rate=32) 64.5MB 68.80 55.86 46.51
DenseNet-169 (growth rate=32) 114.4MB 70.20 56.81 47.50
DenseNet-201 (growth rate=32) 161.8MB 70.38 56.28 46.40
DenseNet-161 (growth rate=48) 230.8MB 71.28 57.36 47.33

DenseNet-121 with DenseNet-
169/201/161 [15], respectively. The
results are provided in Table 5.
When applying lagers backbones,
our method still works well and
further performance improvements
are obtained. This benefits from
the consideration of only modeling
the evolution of classifier weights,
instead of the whole network
parameters. Otherwise, the training difficulty and huge memory burden from the conditional diffusion
model would be unbearable, despite of the greater feature extraction capability of larger backbones.

6 Conclusion

This work delves into the under-explored problem of evolving domain generalization in the domain-
incremental setting, where the source domain is also non-stationary and dynamically evolves. To
tackle this, we propose a Weight Diffusion (W-Diff) approach to capture the evolving pattern across
domains at the parameter level and further generate customized classifiers for future domains. W-Diff
innovatively leverages the conditional diffusion model to learn the evolution of classifiers from
historical domain to current domain, conditioned on the historical classifier weights and current
prototype matrix. Extensive results on synthetic and real-world datasets verify the efficacy of W-Diff.

Acknowledgements

This paper was supported by National Key R&D Program of China (No. 2021YFB3301503), the
National Natural Science Foundation of China (No. 62376026), and also sponsored by Beijing Nova
Program (No. 20230484296), CCF-Tencent Rhino-Bird Open Research Fund and KuaiShou.

10

References
[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization.

arXiv:1907.02893, 2019.

[2] G. Bai, C. Ling, and L. Zhao. Temporal domain generalization with drift-aware dynamic neural
networks. In ICLR, 2023.

[3] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning of
visual features by contrasting cluster assignments. In NeurIPS, 2020.

[4] H. Cha, J. Lee, and J. Shin. Co2l: Contrastive continual learning. In ICCV, pages 9496–9505,
2021.

[5] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
A-GEM. In ICLR, 2019.

[6] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. In ICML, pages 1597–1607, 2020.

[7] L. Deng. The MNIST database of handwritten digit images for machine learning research [best
of the web]. SPM, 29(6):141–142, 2012.

[8] Y. Du, Z. Xiao, S. Liao, and C. Snoek. Protodiff: Learning to learn prototypical networks by
task-guided diffusion. In NeurIPS, 2023.

[9] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach. Adversarial continual learning.
In ECCV, volume 12356, pages 386–402, 2020.

[10] E. Fini, V. G. T. da Costa, X. Alameda-Pineda, E. Ricci, K. Alahari, and J. Mairal. Self-
supervised models are continual learners. In CVPR, pages 9611–9620, 2022.

[11] R. Gao and W. Liu. DDGR: continual learning with deep diffusion-based generative replay. In
ICML, pages 10744–10763, 2023.

[12] H. E. Grossniklaus, J. M. Nickerson, H. F. Edelhauser, L. A. Bergman, and L. Berglin. Anatomic
alterations in aging and age-related diseases of the eye. IOVS, 54(14):ORSF23–ORSF27, 2013.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[14] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In CVPR, pages 2261–2269, 2017.

[16] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. arXiv:1612.00796, 2016.

[17] G. Kwon and J. C. Ye. Diffusion-based image translation using disentangled style and content
representation. In ICLR, 2023.

[18] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework for
attention-based permutation-invariant neural networks. In ICML, volume 97, pages 3744–3753,
2019.

[19] H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature
learning. In CVPR, pages 5400–5409, 2018.

[20] S. Li, C. H. Liu, Q. Lin, Q. Wen, L. Su, G. Huang, and Z. Ding. Deep residual correction
network for partial domain adaptation. TPAMI, 43(7):2329–2344, 2021.

[21] S. Lutati and L. Wolf. Ocd: Learning to overfit with conditional diffusion models. In ICML,
pages 23157–23169, 2023.

11

[22] F. Lv, J. Liang, S. Li, J. Zhang, and D. Liu. Improving generalization with domain convex game.
In CVPR, pages 24315–24324, 2023.

[23] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature
representation. In ICML, pages 10–18, 2013.

[24] A. Nasery, S. Thakur, V. Piratla, A. De, and S. Sarawagi. Training for the future: A simple
gradient interpolation loss to generalize along time. In NeurIPS, pages 19198–19209, 2021.

[25] H. Ni, C. Shi, K. Li, S. X. Huang, and M. R. Min. Conditional image-to-video generation with
latent flow diffusion models. In CVPR, pages 18444–18455, 2023.

[26] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In ICML,
pages 8162–8171, 2021.

[27] G. Ortiz-Jiménez, M. E. Gheche, E. Simou, H. P. Maretic, and P. Frossard. CDOT: continuous
domain adaptation using optimal transport. arXiv:1909.11448, 2019.

[28] W. S. Peebles, I. Radosavovic, T. Brooks, A. A. Efros, and J. Malik. Learning to learn with
generative models of neural network checkpoints. arXiv:2209.12892, 2022.

[29] T. Qin, S. Wang, and H. Li. Generalizing to evolving domains with latent structure-aware
sequential autoencoder. In ICML, pages 18062–18082, 2022.

[30] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In ICML, volume 139, pages 8748–8763, 2021.

[31] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In CVPR, pages 10674–10685, 2022.

[32] G. Saha and K. Roy. Continual learning with scaled gradient projection. In AAAI, pages
9677–9685, 2023.

[33] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of BERT: smaller,
faster, cheaper and lighter. arXiv:1910.01108, 2019.

[34] J. Serrà, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In ICML, volume 80, pages 4555–4564, 2018.

[35] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In ICLR, 2021.

[36] B. Soro, B. Andreis, H. Lee, S. Chong, F. Hutter, and S. J. Hwang. Diffusion-based neural
network weights generation. arXiv:2402.18153, 2024.

[37] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In ECCV
Workshops, pages 443–450, 2016.

[38] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt. Measuring robustness to
natural distribution shifts in image classification. In NeurIPS, 2020.

[39] R. Tiwari, K. Killamsetty, R. K. Iyer, and P. Shenoy. GCR: gradient coreset based replay buffer
selection for continual learning. In CVPR, pages 99–108, 2022.

[40] A. Ulhaq, N. Akhtar, and G. Pogrebna. Efficient diffusion models for vision: A survey.
arXiv:2210.09292, 2022.

[41] H. Wang, H. He, and D. Katabi. Continuously indexed domain adaptation. In ICML, volume
119, pages 9898–9907, 2020.

[42] K. Wang, Z. Xu, Y. Zhou, Z. Zang, T. Darrell, Z. Liu, and Y. You. Neural network diffusion.
arXiv:2402.13144, 2024.

[43] Y. Wang, Z. Huang, and X. Hong. S-prompts learning with pre-trained transformers: An
occam’s razor for domain incremental learning. In NeurIPS, 2022.

12

[44] B. Xie, Y. Chen, J. Wang, K. Zhou, B. Han, W. Meng, and J. Cheng. Enhancing evolving
domain generalization through dynamic latent representations. In AAAI, pages 16040–16048,
2024.

[45] M. Xie, S. Li, L. Yuan, C. H. Liu, and Z. Dai. Evolving standardization for continual domain
generalization over temporal drift. In NeurIPS, 2023.

[46] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang. Resolution adaptive networks for
efficient inference. In CVPR, pages 2366–2375, 2020.

[47] L. Yang, H. Jiang, R. Cai, Y. Wang, S. Song, G. Huang, and Q. Tian. Condensenet V2: sparse
feature reactivation for deep networks. In CVPR, pages 3569–3578, 2021.

[48] H. Yao, C. Choi, B. Cao, Y. Lee, P. W. Koh, and C. Finn. Wild-time: A benchmark of in-the-wild
distribution shift over time. In NeurIPS, 2022.

[49] H. Yao, Y. Wang, S. Li, L. Zhang, W. Liang, J. Zou, and C. Finn. Improving out-of-distribution
robustness via selective augmentation. In ICML, pages 25407–25437, 2022.

[50] Q. Zeng, C. Shui, L.-K. Huang, P. Liu, X. Chen, C. Ling, and B. Wang. Latent trajectory
learning for limited timestamps under distribution shift over time. In ICLR, 2023.

[51] Q. Zeng, W. Wang, F. Zhou, C. Ling, and B. Wang. Foresee what you will learn: Data
augmentation for domain generalization in non-stationary environments. arXiv:2301.07845,
2023.

[52] Q. Zeng, W. Wang, F. Zhou, G. Xu, R. Pu, C. Shui, C. Gagné, S. Yang, C. X. Ling, and B. Wang.
Generalizing across temporal domains with koopman operators. In AAAI, pages 16651–16659,
2024.

[53] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In ICML,
pages 3987–3995, 2017.

[54] B. Zhang, C. Luo, D. Yu, X. Li, H. Lin, Y. Ye, and B. Zhang. Metadiff: Meta-learning with
conditional diffusion for few-shot learning. In AAAI, pages 16687–16695, 2024.

[55] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In ICLR, 2018.

[56] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy. Domain generalization: A survey. TPAMI,
45(4):4396–4415, 2023.

[57] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang. Domain generalization with mixstyle. In ICLR, 2021.

13

Appendix Contents

A. Broader Impacts & Limitations
B. Notation Table
C. Algorithm of W-Diff
D. Experimental Setup Details
E. More Results

A Broader Impacts & Limitations

Broader Impacts. In this work, we explore the evolving domain generalization in the domain
incremental setting. The ability to continually learn from dynamic source domains and leverage the
learned evolving pattern to generalize on unseen domains in the future may benefit relevant non-
stationary scenarios, e.g., advertisement recommendation with continually emerging new training
data and autonomous driving with distribution shift over time or geographical position, etc. It reduces
the time and cost for labeling data of target domain and avoids the low efficiency of training the model
from scratch with all saved domains once new training domain is available. Yet, for high-security
demanding scenarios, the prediction from the model should be adopted with caution to avoid severe
accidents, as failures can occur in our method when facing significant distribution shifts.

Limitations. Our work presents a way to capture the evolving pattern at the parameter level via
capitalizing on the powerful modeling ability of conditional diffusion model. Yet, like any research,
our work is not absolutely perfect. There are indeed some limitations that should be acknowledged.
Firstly, the task considered in this paper limits to the classification. In the future, we may extend our
method to more diverse tasks, e.g., regression tasks. Besides, considering the training cost, we only
model the evolution of classifiers. Perhaps, it is feasible to consider more parameters by mapping
them into a low-dimensional latent space, but achieving the accurate encoding and decoding is not
easy. We leave this for a future work.

B Notation Table

Given the large number of notations used throughout the paper, we provide an overall notation
description in Table 6 to ease the burden on readers.

Table 6: Notation description

Data-related
T the number of source domains
K the number of target domains
C the number of categories
c the index of categories (c ∈ {0, 1, . . . , C − 1})
t, t′ the index of domains (t, t′ ∈ {1, 2, . . . , T +K})
Dt the t-th domain
tt the timestamp which the t-th domain is collected at
N t the number of samples in the t-th domain
xti the i-th sample in the t-th domain
yti the category label of the i-th sample in the t-th domain (yti ∈ {0, 1, . . . , C − 1})
S a sequence of source (training) domains (S = {D1,D2, . . . ,DT })
T a sequence of target (testing) domains (T = {DT+1, . . . ,DT+K})
Dtest a testing domain (Dtest ∈ T)

Task model-related
B batch size of task model
Eψ feature extractor
ψ parameters of the feature extractor
df the dimension of of deep features output by the feature encoder
f ti the deep features of the i-th sample in the t-th domain (f ti = Eψ(xti) ∈ Rdf)
HW classifier

14

W parameters of the classifier
Qr the reference point queue
L the maximum length of Qr

Ẅt′ the saved classifier weights in Qr for the t′-th domain (Ẅt′ ∈ RC×df)
Wt the current classifier weights of the t-th domain (Wt ∈ RC×df)
µt the current prototype matrix of the t-th domain (µt ∈ RC×df)
µt[c] the c-th row of µt
nt the total number of samples in seen batches after the warm-up stage on domain Dt

pt,t
′

i the prediction for the i-th sample in the t-th domain by the classifier of domain Dt′

pt,t
′

i [c] the c-th element of pt,t
′

i
p̄ti the average prediction for the i-th sample in the t-th domain
Qa the anchor point queue, which stores the classifier weights of current domain
Qp the prototype queue, which stores the prototype matrices of current domain
M the maximum length of Qa and Qp
m the index of the object in Qa and Qp (m ∈ {1, 2, · · · ,M})
µtm the m-th prototype matrix in the prototype queue Qp of the t-th domain
Wt

m the m-th classifier weights in the anchor point queue Qa of the t-th domain
∆Wt,t′

m residual classifier weights (∆Wt,t′

m = Wt
m − Ẅt′)

ct,t
′

m condition of the conditional diffusion model (ct,t
′

m = Ẅt′ ⊕ µtm ∈ RC×df×2)
ρ warm-up hyperparameter (ρ ∈ (0, 1))
λ tradeoff hyperparameter
Ltcon the consistency loss on the t-th domain
Ltce the cross-entropy loss on the t-th domain
Lttotal the total loss on the t-th domain (Lttotal = Ltce + λLtcon)

Diffusion model-related
S diffusion steps
s, s′ the index of diffusion steps (s, s′ ∈ {1, 2, . . . , S})
q(x) distribution of variable x
x0 the original data point from q(x)
xs the noisy data point at the s-th diffusion step
βs the variance used at the s-th diffusion step (βs ∈ (0, 1))
ᾱs the product of all (1− βs′) until the s-th diffusion step (ᾱs =

∏s
s′=1(1− βs′))

ε random noise
Eθ denoising model
θ parameters of the denoising model
σs a variance hyperparameter
c condition of the denoising model
Ltdiff noise estimation error loss on the t-th domain
Mg the number of generated classifier weights based on each reference point
µtest the estimated prototype matrix of the testing domain Dtest during inference stage
ctest,t

′
the condition of diffusion model for domain Dtest (ctest,t

′
= Ẅt′ ⊕ µtest)

∆Wtest,t′

j the j-th generated residual classifier weights, conditioned on ctest,t
′

W̄test the average ensemble weights for the testing domain Dtest
Others

I identity matrix
N (·, ·) Gaussian distribution

E mathematic expectation
R real number
‖ · ‖ L2-Norm
| · | the length of an object

KL(·‖·) Kullback-Leibler divergence
sg(·) stopping gradients of an object

softmax(·) normalized exponential function
⊕ concatenating operation

i, j, k indices

15

C Algorithm of W-Diff

The training and testing procedures of W-Diff are presented in Algorithm 1 and 2.

Algorithm 1: Training procedure for W-Diff

Input: sequentially arriving source domains S = {D1,D2, . . . ,DT }, feature encoder Eψ ,
classifier HW, conditional diffusion model Eθ, reference point queue Qr with length L,
anchor point queue Qa with length M , prototype queue Qp with length M , batch size B,
loss tradeoff hyperparameter λ, warm-up hyperparameter ρ, maximum diffusion step S,
training iterations ITS of task model, inner iterations IDM for updating diffusion model.

1 Initialize model parameters ψ as ψ0, W as W0, θ as θ0 and set Qr = ∅.
2 for t = 1 to T do
3 Set ψt = ψt−1, Wt = Wt−1, θt = θt−1, Qa = ∅, Qp = ∅, µt = 0, nt = 0.
4 for iter = 1 to ITS do
5 Lttotal = 0.
6 Randomly sample a batch of data {xti, yti}Bi=1 from domain Dt.
7 Get the deep features of samples: {f ti = Eψ(xti)}Bi=1.
8 Calculate the supervision loss Ltce in Eq. 6.
9 Lttotal+ = Ltce.

10 if t > 1 then
11 Calculate the consistency loss Ltcon in Eq. 5.
12 Lttotal+ = Ltcon.

13 Update ψt and Wt by backpropagating the gradients of Lttotal.
14 if (iter > ρ · ITS) ∧ (t > 1) then
15 Update prototype matrix µt via Eq. (8).
16 Push Wt into Qa and µt into Qp: Qa ←Wt, Qp ← µt.
17 if |Qa| == M then
18 for inner_iter = 1 to d IDM

|Qr| e do
19 Sample diffusion step size s ∼ Uniform(1, . . . , S) and ε ∼ N (0, I).
20 Calculate the noise estimation error loss Ltdiff via Eq. (10).
21 Update θt by backpropagating the gradients of Ltdiff .

22 Push the classifier weights with the best performance on the validation set of Dt, denoted as
Ẅt, into Qr: Qr ← Ẅt.

23 return Final ψT ,θT , Qr.

D Experimental Setup Details

D.1 Dataset Description

Huffpost (license: CC0: Public Domain) from [48] comprises 63, 907 news headlines from the
Huffington Post, with the time span from 2012 to 2018. These news headlines belong to 11 categories:
“Black Voices”, “Business”, “Comedy”, “Crime”, “Entertainment”, “Impact”, “Queer Voices”, “Sci-
ence”, “Sports”, “Tech” and “Travel”. This dataset reflects changes in news content and style over
time. Follwoing [45], the first 4 years are used for training (T = 4) and the last 3 years are used
for testing (K = 3). For each training domain, we randomly divide the data into training set and
validation set in the ratio of 9 : 1.

Arxiv (license: CC0: Public Domain) in [48] is a large-scale dataset, including 2, 057, 952 paper
titles from 2007 to 2022. It reflects the change over time as research fields evolve. The task is to
classify a research paper into one of 172 categories based solely on its title. For this dataset, we use
data from the first 9 years as source domains (T = 9) and data from the last 7 years as target domains
(K = 7). For each source domain, the data is randomly divided into training set and validation set in
the ratio of 9 : 1.

16

Algorithm 2: Testing procedure for W-Diff

Input: sequentially arriving target domains T = {DT+1,DT+2, . . . ,DT+K}, feature encoder
EψT , conditional diffusion model EθT , reference point queue Qr, number of categories
C, batch size B, maximum diffusion step S, number of generated residual weights Mg

based on each reference point.
1 for k = 1 to K do
2 Set Dtest = DT+k.

3 Calculate the prototype matrix µtest vai µtest[c] = 1
Ntest

∑Ntest

i=1 p̄testi [c] · f testi , where
p̄testi = 1

|Qr|
∑

Ẅt′∈Qr
softmax(Ẅt′ × f testi), f testi = EψT (xtesti), c = 0, . . . , C − 1.

4 for Ẅt′ ∈ Qr do
5 Generate Mg residual classifier weights: {∆Wtest,t′

j }Mg

j=1 by substituting the denoising
net in Eq. (3) with EθT and applying the denoising process with condition
ctest,t

′
= Ẅt′ ⊕ µtest.

6 Obtain the average weight W̄test = 1
|Qr|

1
Mg

∑
Ẅt′∈Qr

∑Mg

j=1(Ẅt′ + ∆Wtest,t′

j).

7 Get the final label predictions on domain Dtest: {ŷtesti = argmaxc p
test
i [c]}Ntest

i=1 , where
ptesti = softmax(W̄test × f testi).

8 return Label Predictions {{ŷT+k
i }NT+k

i=1 }Kk=1.

Yearbook (MIT license) dataset comes from [48]. It collects 37, 189 grayscale yearbook photos
from 128 American high schools, with the time span from 1930 to 2013. The resolution of photos
is 32× 32. Photos from different years reflect changes in fashion trends and social norms over the
decades. The task is to classify the genders from a yearbook photo. It is worth mentioning that we
only use this dataset to evaluate the generalization performance of different methods in classification
tasks. Following [45], we group the data into domains at four-year intervals, resulting in 21 domains.
And the first 16 domains are used as source domains (T = 16), with the last 5 domains as target
domains (K = 5). For each source domain, we randomly select 90% of samples as the training split
and 10% of samples as the validation split. And for each target domain, we evaluate on its all data.

RMNIST (license: CC BY-SA 3.0) is constructed from MNIST dataset [7] which contains grayscale
images of digits from 0 to 9. The image resolution is 28× 28. RMNIST first randomly divides all
data in MNIST into 9 groups and then creates 9 domains by rotating the 9 groups by 0◦, 10◦, . . . , 80◦,
respectively. The rotation angle is used to simulate the evolving data distribution over time. Following
[45], we use the first 6 domains (T = 6) as source domains and the last 3 domains as target domains
(K = 3). Similarly, we split each source domain into training and validation sets in the ratio of 9 : 1.

fMoW (license: https://github.com/fMoW/dataset/blob/master/LICENSE) dataset is from
[48], which consists of 141, 696 RGB satellite images from 2002 to 2017. The visual features in these
satellite images change over time due to human and environmental activities. The image resolution is
224× 224 and the task is to classify the functional purpose of the buildings or land in a image into
one of 62 categories. For this dataset, we consider each year as a separate domain. And the first 13
domains are used for training (T = 13), while the last 3 domains are used for testing (K = 3). The
ratio of training data to validation data for each source domain is 9 : 1.

2-Moons (license: https://github.com/BaiTheBest/DRAIN/blob/main/LICENSE) from [2]
is constructed from 2-entangled moons dataset, where the lower moon with label 0 and the upper
moon with label 1 contain 100 data points, respectively. 2-Moons creates 10 domains by counter-
clockwise rotating the 200 data points at an interval of 18◦. Similar to RMNIST, the rotation angle
simulates the evolving of data distribution. Following [2], the first 9 (T = 9) domains are used as
source domain and the last domain is used as target domain (K = 1).

Online News Popularity (ONP) (license: CC BY 4.0) in [2] summarizes a heterogeneous set of
features related to the articles published by Mashable in a two-year period. This dataset is divided
into 6 domains by time, and the goal is to predict whether an article is popular in social networks
based on its features. Following [2], we use the first 5 domains for training (T = 5) and the last
domain for testing (K = 1).

17

https://github.com/fMoW/dataset/blob/master/LICENSE
https://github.com/BaiTheBest/DRAIN/blob/main/LICENSE

Table 7: Configuration of the U-Net Eθ on different datasets with hybrid conditioning way.
Dataset Huffpost Arxiv Yearbook RMNIST fMoW 2-Moons ONP

Input-shape 11× 128× 3 172× 128× 3 2× 32× 3 10× 128× 3 62× 256× 3 2× 128× 3 2× 128× 3
Diffusion steps 1000 1000 1000 1000 1000 1000 1000
Noise schedule linear linear linear linear linear linear linear

Channels 64 64 64 64 64 32 64
Depth 1 1 1 1 1 1 1

Channel Multiplier 1,2,4 1,2,2 1 1,2,4 1,2 1,2,4 1,2
Attention Resolutions 4,2,1 4,2,1 1 4,2,1 2,1 4,2,1 2,1

Head Channels 32 32 32 32 32 32 32
Transformer Depth 1 1 2 1 1 1 1

Batch Size 32 32 32 32 32 32 32
Learning Rate 8e-5 8e-5 5e-4 5e-4 8e-5 5e-4 5e-4

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW

Table 8: Training details on different datasets.
Dataset B Epochs ρ IDM Optimizer Learning Rate λ L M Mg

Huffpost 64 50 0.6 20 Adam 2e-5 10 8 32 32
Arxiv 64 5 0.2 5 Adam 2e-5 10 8 32 32

Yearbook 64 50 0.2 5 Adam 1e-3 10 8 32 32
RMNIST 64 50 0.2 5 Adam 1e-3 10 8 32 32

fMoW 64 25 0.6 30 Adam 2e-4 10 8 32 32
2-Moons 64 150 0.2 10 Adam 1e-3 10 8 32 32

ONP 64 50 0.2 10 Adam 1e-4 10 8 32 32

D.2 Network Details

For the backbone of the task model, Huffpost and Arxiv apply pretrained DistilBERT base model
[33] along with a bottleneck layer [20] to reduce the feature dimensions into 128. The bottleneck
layer is implemented as the combination of a linaer layer, BatchNorm and ReLU. Yearbook uses the
4-layer convolutional network in [48], RMNIST adopts the ConvNet in [29], and fMoW employs
the ImageNet-pretrained DenseNet-121 [15] along with a bottleneck layer [20] to reduce the feature
dimensions into 256. Meanwhile, 2-Moons uses a MLP with two hidden layers of hidden size 64 and
128, and ONP adopts a MLP with one hidden layer of hidden size 128.

For the conditional diffusion model, we implement it in a U-Net architecture similar to LDM [31] and
make some modifications to better suit our method. Detailed modifications can be found in the code
provided in the supplementary material. In Table 7, we provide detailed configurations for U-Net Eθ
on different datasets. Please refer to original paper [31] for the meaning of different hyperparameters.

D.3 Training Recipe

Training details on different datasets are given in Table 8, where B is the batch size for the task model,
IDM is the inner iterations for updating Eθ, λ is the loss tradeoff hyperparameter, ρ is the warm-up
hyperparameter, L is the maximum length of the reference point queueQr, M is the maximum length
of the anchor point queue Qa and prototype queue Qp, and Mg is the number of generated residual
classifier weights based on each reference point. All experiments are conducted using the PyTorch
packages and run on a single NVIDIA GeForce RTX 4090 GPU with 24GB memory.

E More Results

E.1 Hyperparameter Sensitivity

In Fig. 4(a), we test the sensitivity of W-Diff to the loss tradeoff hyperparameter λ, the maximum
length L of the reference point queue Qr and the number Mg of generated residual classifier
weights based on each reference point, where λ ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 50.0}, L ∈ {1, 2, 4, 8},
Mg ∈ {8, 16, 32, 64, 128}. We find that larger Mg results in more weights for ensemble and seems
to be better. W-Diff is a little bit sensitive to λ and L. Empirically, λ = 10.0 and larger L work well.

18

0.1 0.5 1 5 10 5080.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

OO
D

av
g.

 a
cc

. (
%

)

1 2 4 8
L

80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

8 16 32 64 128
Mg

80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

(a) Hyperparameter sensitivity.

0 5 10 15 20
Iterations (×103)

0.000
0.005
0.010
0.015
0.020
0.025 RMSNIT

Huffpost

(b) Loss curve of Lt
diff

Figure 4: (a): Sensitivity of W-Diff to hyperparameters λ, L,Mg on RMNIST. (b): The loss curve of
Ltdiff on RMNIST and Huffpost when training conditional diffusion model on the second domain.

Table 9: Memory cost and inference time of diffusion model on different datasets.
Yearbook RMNIST fMoW Huffpost Arxiv 2-Moons ONP

Number of parameters (MB) for the conditional diffusion model Eθ
2.31 41.62 27.23 41.62 20.01 10.52 15.51

Time (s) for generating Mg = 32 residual classifier weights in a batch,
where denoising step S = 1000

12 23 71 24 181 21 16

E.2 Convergence of Diffusion Model Training

In Fig. 4(b), we plot the loss curve of Ltdiff , when the conditional diffusion model is incrementally
trained on the second source domain. Form the results, we see that the noise estimation error loss
Ltdiff steadily decreases and finally converges, demonstrating that using the FIFO queue to cache
the recent M classifier weights and prototype matrices after the warm-up stage is feasible for the
diffusion model training. Storing all checkpoints after the warm-up stage provides lost of training
data for diffusion model but requires more storage cost. By contrast, using a FIFO queue with a fixed
length balances the storage cost and the diversity of training data.

E.3 Memory and Time Cost of Diffusion Model

In Table 9, we list the model size and inference time of the conditional diffusion model on different
datasets. Since the diffusion model only models the evolving pattern of the classifier weights which
are the parameters of a linear layer, the model size that is measured by the number of parameters is
small on all datasets. Besides, the inference time when forwarding the diffusion model for 1000 times
to generate a batch of residual classifier weights is moderate. Concretely, forwarding the condition
diffusion model for one time requires ≤ 181 ms. Certainly, acceleration techniques, e.g., DDIM [35]
can be used to further reduce the inference time.

E.4 Significance test (t-test) of W-Diff.

D
T

+
1

OO
D

av
g.

OO
D

wo
rs

t
D

T
+

1

OO
D

av
g.

OO
D

wo
rs

t
D

T
+

1

OO
D

av
g.

OO
D

wo
rs

t
D

T
+

1

OO
D

av
g.

OO
D

wo
rs

t
D

T
+

1

OO
D

av
g.

OO
D

wo
rs

t0

10

20

30

40

-lo
g(

p-
va

lu
e)

W-Diff vs. EvoS
-log(0.05)
Huffpost
Arxiv

Yearbook
RMNIST
fMoW

Figure 5: t-test for W-Diff vs EvoS [45], where a
significance level of 0.05 is adopted.

To comprehensively evaluate the effectiveness
of W-Diff, we conduct the significance test (t-
test) on Huffpost, Arxiv, Yearbook, RMNIST
and fMoW datasets. Concretely, a significance
level of 0.05 is applied. If the p-value is less
than 0.05, then the accuracy difference between
EvoS [45] and W-Diff is statistically significant.
For clearer explanation, the -log(p) of each p-
value is plotted. In Fig. 5, the majority of the
-log(p) of the performance comparison between
EvoS [45] and W-Diff are larger than -log(0.05),
which means that W-Diff is statistically superior
to EvoS [45] at most datasets.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have stated the contribution of our work in the introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of the work in Section A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

Justification: Our work is a methodological level design and does not propose new theories.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the implementation details in Section D and provide the
code in the supplementary material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]

Justification: The datasets used in our paper are from previous work and are publicly
available. We have provided the dataset details in Section D and the URL for downloading
in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the problem setting in Section 3.1 and the experimental
details in Section 5.1 and D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the mean and standard deviation in the main experiments
when independently running each task with three random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have pointed out the used GPU in Section D and the number of parameters
for the conditional diffusion model in Section E.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have preserve anonymity in all submitted materials.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential social impacts in Section A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

23

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets and models used in the paper are all public and from previous
works.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets and models used in the paper are from previous works and are
public. We have cited related papers in our work and provided the license in Section D.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Neither crowdsourcing nor research with human subjects is used.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Diffusion Model

	Methodology
	Per-domain Parameter Fitting in Domain-Incremental Setting
	Modeling Parameter Evolution Pattern with Conditional Diffusion Model
	Generating Customized Classifiers in Inference Phase

	Experiments
	Experimental Setup
	Main Results
	Analytical Experiments

	Conclusion
	Broader Impacts & Limitations
	Notation Table
	Algorithm of W-Diff
	Experimental Setup Details
	Dataset Description
	Network Details
	Training Recipe

	More Results
	Hyperparameter Sensitivity
	Convergence of Diffusion Model Training
	Memory and Time Cost of Diffusion Model
	Significance test (t-test) of W-Diff.

