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Abstract

Performance of state-of-the-art deep learning methods is often impacted when evaluated
on data coming from unseen acquisition settings, hindering their approval by the regula-
tory agencies and incorporation to the clinic. In recent years, several techniques have been
proposed for improving the generalizability of models by using the target data and their
corresponding ground truths. Some of those approaches have been adopted in histopathol-
ogy, however they either focus on pixel-level predictions or simple tile level classification
tasks with or without target labels. In this work, we investigate adversarial strategies in
weakly supervised learning frameworks in digital pathology domain without access to the
target labels, thereby strengthening the generalizability to unlabeled target domains. We
evaluate several strategies on Camelyon dataset for metastatic tumor detection tasks and
show that some methods can improve the average F1-score over 10% for the target domain.

1. Introduction

Despite the popularity of computer aided diagnosis tools for Digital Pathology (DP),
widespread use of these algorithms is hampered by the inherent variation between images
of diverse origin (Howard et al., 2021) (in staining, thickness, patient demographics, etc.)
known as domain shift. Therefore, a strategy that enables us to build more generalizable
models is desired. Among different methods, Marini et al. (2022) propose a Domain Ad-
versarial Neural Network (DANN) (Ganin et al., 2015) to tackle stain heterogeneity with
an understanding of domain rooted in Whole Slide Image (WSI) coloring. The Conditional
Domain Adversarial Network (CDAN) proposed by Long et al. (2017) also facilitates do-
main alignment by utilizing the discriminative information offered by main-task classifier
predictions.

This paper focuses on Unsupervised Domain Adaptation (UDA) and addresses domain
shift caused by scanner variations in weakly supervised metastatic tumor detection. We
explore DANN, CDAN, and the impact of changing the position of the domain discriminator
in attention MIL and TransMIL (Shao et al., 2021) networks.
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2. Methods and Experimentations

We propose to adapt MIL models by combining the discriminators (G) in DANN and CDAN
at two locations: 1) after a shallow encoder (loci), where G would receive instance-level
samples. In this way, the feature alignment between domains will be provided by a shallow
encoder that maps the embeddings from the frozen encoder into an overlapping latent space;
2) G is positioned after the embedding aggregation step (locb), that is, after the attention
mechanism in attention-MIL or mean pooling of patch tokens after the last transformer
layer in TransMIL. This ensures domain alignment on the aggregated instances that are
forwarded to the final slide-level classifier. The adapted MIL pipelines for DANN and
CDAN are depicted in Figure 1(a) and 1(b), illustrating each integration location.

(a) (b)

Figure 1: Overview of the two UDA approaches. a) shows locb and b) loci.

2.1. Experimental Setup

The experiments used a combination of the publicly available Camelyon16 and Camelyon17
datasets (Litjens et al., 2018), which contains 1399 WSI of lymph nodes (metastatic and
healthy) stained with Hematoxylin and Eosin, from three different scanners, five hospitals.

Scanner 1 (S1) data (from three different medical centers digitized by the same scanner)
was used as the source (Ns = 544), while Scanner 2 (S2) data (from two hospitals) and
Scanner 3 (S3) data (from one facility) comprised the target dataset (Nt2 = 253 and Nt3 =
100), on which the model is to improve its generalizability. The source dataset was split
into 5 non-overlapping subsets (each 20%) stratified by medical center and tumor label, for
5-fold Cross-Validation (CV). The UDA training had S2 as target and was evaluated on S3.

10, 000 tiles at 40× magnification were extracted from each WSI. Image patches were
stain normalized by Tellez et al. (2019) to account for stain variation from multiple acqui-
sition centers. A ResNet-50 (He et al., 2016) pre-trained on DP images via BYOL self-
supervised learning strategy (Grill et al., 2020; Abbasi-Sureshjani et al., 2021) was used to
extract intermediate features and the backbone weights remained frozen for computational
efficiency. The attention network in attention MIL had 5 fully connected layers, followed by
batch normalization and dropout (p=0.5). The transformer used Nystrom approximation
(Xiong et al., 2021) for Self-Attention (SA) with 3 layers and 8 heads in each multi-head SA
block. The main-task classifier had 2 fully connected layers. The discriminator had 3 layers
in CDAN and 2 in DANN. ReLU is used as activation function. The Adam optimizer with a
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learning rate of 10−3 was used. The adversarial contribution to the updates of the network
parameters preceding the domain discriminator G was defined as λ = 2

1+exp(−γp) − 1, with

p ∈ (0, 1] the relative progress of the training.
The UDA strategies were compared with three baselines: source only (S1), target only

(S2), and balanced data (combining source and target data, with new stratification). Target
labels were only used to settle the baseline and evaluating the adapted models (never for
UDA). Model selection relied on macro-average validation F1-score. The performance on S3
was obtained using the model with the closest average F1-score to S2 in the CV experiments.

3. Results and Conclusion

The results in Table 1 show UDA improves the performance on the target, indicating higher
retention of domain agnostic features. The F1-score gap for S2 is reduced by at least 10%,
while the models still generalize to S3. The more severe gap for S2 than S3, beyond persisting
staining differences after stain normalization, could be attributed to the slide thickness as
explained by our pathologist. Moreover, the attention heatmaps showed the effectiveness of
UDA to reduce bias towards light coloring that may be irrelevant to the network outcome.

No UDA method clearly outperformed the rest, possibly due to limited bandwidth
for domain alignment with a frozen backbone. More complex methods with additional
hyperparameters may be required. UDA led to a slight decline in source domain performance
that can be addressed by continual learning methods such as Bándi et al. (2022).
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Table 1: Results of different UDA strategies on CAMELYON dataset, 5-fold CV a

Method S1 S1 → S2b S3
MIL Experiment avg. F1 avg. F1 F1S1 − F1S2(↓) avg. F1

Balanced data 85.2(1.0) 80.4(3.2) - 87.8(2.2)
Source only 86.9(3.6) 68.4(2.1) 19.2(3.9) 83.0
DANN @ loci 83.6(2.6) 74.0(6.3) 9.6(2.0) 82.6
CDAN @ locb 86.2(6.2) 80.2(3.0) 6.0(3.2) 85.2

DANN @ locb 87.6(4.3) 81.4(3.2) 6.2(1.1) 86.0
CDAN @ loci 83.0(3.2) 79.4(3.0) 3.6(1.2) 83.4

A
tt
en
ti
on

M
IL

Target only (S2) - - 88.4(6.1) -

Balanced data 88.5 85.1 - 92.9
Source only 86.3(4.2) 67.6(7.8) 18.7(3.6) 84.0
DANN @ locb 85.6(3.6) 79.3(2.2) 6.3(1.5) 85.8
CDAN @ locb 86.4(2.1) 79.0(2.5) 7.0(0.4) 85.0

T
ra
n
sM

IL

Target only (S2) - 90.5(5.3) - -
aPercentages with standard deviation. Best in bold, second underlined; bArrow for adaptation direction.
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