Simplifying Dataflow Dialogue Design

Anonymous ACL submission

Abstract

In (Semantic Machines et al., 2020), a dataflow
(DF) based dialogue system was introduced,
showing clear advantages compared to many
commonly used current systems. This was
accompanied by the release of SMCalFlow,
a practically relevant, manually annotated
dataset, more detailed and much larger than any
comparable dialogue dataset. Despite these re-
markable contributions, the community has not
shown further interest in this direction. What
are the reasons for this lack of interest? And
how can the community be encouraged to en-
gage in research in this direction?

One explanation may be the perception that this
approach is too complex - both the the annota-
tion and the system. This paper argues that this
perception is wrong: 1) Suggestions for a sim-
plified format for the annotation of the dataset
are presented, 2) A basic implementation of
the DF execution engine is released, which can
serve as a sandbox allowing researchers to eas-
ily implement, and experiment with, new DF
dialogue designs. The hope is that these contri-
butions will help engage more practitioners in
exploring new ideas and designs for DF based
dialogue systems.

1 Introduction

Traditional task oriented dialogue systems imple-
ment a pipeline consisting of NLU (natural lan-
guage understanding, converting the user input to a
structured representation), which feeds into a DM
(dialogue manager), implementing dialogue state
tracking (DST) as well as a policy to decide what
action to take next. Both the NLU and DM compo-
nents can take different forms.

Modern machine learning approaches have
demonstrated large improvements in prediction ac-
curacy for both the NLU and DM components (as
well as end-to-end pipelines and other architec-
tures), but for industrial applications, where strict
control of the system behaviour is required, it is

very common that the NLU is implemented as
a machine learning based intent/entity classifier,
while the DM is conceptually based on a finite
state machine (FSM)-like paradigm, typically with
the states and transitions manually defined.

The combination of intent/entity NLU, and FSM
based DM offer controllability and reduces the
training data requirements, but come at the cost
of reduced expressiveness of user requests, as well
as practical difficulty in scaling up the dialogue
design as more interaction scenarios are added.

2 Dataflow Dialogues

Microsoft’s Semantic Machines (SM) introduced a
dataflow dialogue system in (Semantic Machines
et al., 2020), which represents the user requests
as rich compositional (hierarchical) expressions,
which encode computational graphs. An engine
executes these computations, which results in ma-
nipulating the computational graphs, generating an
answer (possibly an error message), and option-
ally producing some side effects through API’s to
external services.
The prominent features of this system are:

* The system represents the dialogue history
as a set of graphs, where each computational
graph typically represents one user turn.

* it has a refer operation to search over the cur-
rent computational graphs (as well as external
resources) which allows easy look-up and re-
use of graph nodes which occurred previously
in the dialogue.

* it has a revise operation which allows modifi-
cation and reuse of previous computations

* it has an exception mechanism which allows
convenient interaction with the user (e.g. ask-
ing for missing information, and resumption
of the computation once the information is
supplied).

These features correspond to essential phenom-
ena in natural conversations (referring to previ-
ous turns, modifying previous requests, reacting
to wrong information, etc.), which allows the sys-
tem to handle these phenomena more effectively,
and help mitigate the problem of DM scaling, com-
pared to FSM-based DMs'.

Extracting richer representation from the user re-
quests, does increase the difficulty for the NLU task.
To address this, the developers of the DF system
released SMCalFlow - the largest dialogue dataset
to date, manually annotated using the expressive
compositional DF format, presumably the result of
thousands of man hours of work. The dialogues
in this dataset cover diverse common tasks, which
can be relevant and interesting for developers of
practical task oriented dialogue systems.

In the same paper, they also show that using
the DF paradigm can be advantageous even with-
out requiring manual preparation of rich anno-
tations (demonstrated on the MultiwOZ dataset
Budzianowski et al. (2018)). Instead, the origi-
nal intent/entity style annotation is automatically
translated into DF expressions.

3 Practical Applications

Developers of actual applications, constrained by
business goals, are often unable to take advantage
of the recent advances achieved in dialogue system
research. One of the most common reason for that
is the need for the developers to be able to closely
control the behaviour of the application, and be able
to quickly adapt it whenever errors are discovered
or specifications evolve.

For this reason, approaches allowing manual con-
trol (as opposed to black box approaches where
control can only be asserted through engineering
of the training data) are often preferred.

One example is the use of FSM based DMs.
These can be closely controlled, as they are based
on manually created rules, which makes them very
easy to use when creating simple applications.
However, FSMs are notoriously difficult to scale
up, especially when it comes to tasks with multiple
possible execution paths.

The DF paradigm can be used for such appli-
cations, using manually crafted rules to closely

"No claim is being made here that the DF approach can
theoretically represent more complex user requests than the
FSM approach, rather that it can practically be significantly
easier to handle complex requests using DF.

control the application, while potentially reducing
developer efforts as applications grow.

4 Complexity

More than a year has passed since the publication
of the original DF paper, the release of SMCalFlow,
and a related public leader-board. Despite the ob-
vious theoretical and practical advantages of the
DF approach, and the potential for further improve-
ments, the community has shown only limited in-
terest in following this work.

Why is this the case? This paper hypothesizes
that the reason may be a perception that the DF
approach is inherently too complex (both the an-
notation, and the implementation), and that this
perception is a result of two factors. First, the com-
plexity of the annotation of SMCalFlow (which
is the only dedicated DF dataset available), and
second, the fact that the implementation of the SM-
CalFlow executable functions is excluded from the
released code. The lack of documentation and of
explanation of the design decisions behind the an-
notation, only exacerbates this perception.

In order to encourage the community to engage
in this line of research, this paper tries to counter
this misconception, by following two directions:

1. By releasing a basic implementation of the
SMCalFlow execution engine®. Since this rep-
resents the work of one person during a lim-
ited time, only a part of the functionality of
SMCalFlow is implemented, but it should al-
low readers to get familiar enough with the DF
approach, so that they can easily implement
their own ideas in this framework.

2. Explore (and demonstrate) ways to simplify
SMCalFlow. Specifically, simplifying the an-
notation format in a way which reduces the
effort for annotators (and readers), as well as
for the NLU component, while maintaining
its ability to be correctly executed.

This paper also tries to emphasize that DF is
not a monolithic system, with fixed functionality,
applications, tools, formats and implementation.
Rather, it is a general approach; a paradigm, which
can have different interpretations and flavours, and
which is ready for further research as well as prac-
tical uses.

2The code will be released by the time of publication.

5 Simplifying SMCalFlow

The DF approach is an object-oriented paradigm,
which describes user requests as executable pro-
grams. Annotation is practically a programming
task, translating a user’s request to a program,
whose execution will satisfy the user’s request.
These programs consist of two types of functions:
base DF-framework functions (like refer and re-
vise), and application specific functions (e.g. Cre-
ateEvent for SMCalFlow).

In designing the application specific functions,
the developers need to come up with a consis-
tent design for a set of functions, which can be
combined together to describe and execute user
requests.

As mentioned above, multiple alternative de-
signs are possible. Each design results in a trade-off
between coverage of possible user requests, good
programming practices (such as clarity, modularity
and low complexity of the programs, and hence
of the annotations), efficiency of execution, the
demands it puts on the NLU component, etc.

In the following, a simplified annotation is pre-
sented, with the motivation to dispel the perception
that SMCalFlow is too complex. The starting point
of this work is SMCalFlow, since creating a new
dataset was beyond the resources available for this
work. The price to pay for this is twofold. First, the
new design is tied to the original style. Creating
a new dataset (or a completely new annotation for
an existing dataset) would allow complete freedom
in suggesting a new annotation style, but would
require intensive labour. Second, once a new de-
sign has been defined for the annotation style, the
original dataset needs to be transformed to the new
design. The transformation process is a necessary
step, but not the primary focus of this paper.

While DF is not inherently complicated, finding
a good design is a challenging task. A novel as-
pect of this challenge is the need for the design to
function correctly within the DF paradigm, e.g. use
the refer and revise operators. Indeed, one of the
motivations of this work is the hope that the com-
munity can suggest interesting new designs, which
can serve as templates for further applications.

The work progressed by taking one original an-
notation at a time, defining the simplified anno-
tation for it, and then implementing the needed
DF functions (iteratively modifying the implemen-
tation to ensure new functions can interact con-
sistently with previously implemented functions).

Due to limited resources, only a small portion of
the original expressions were inspected, concentrat-
ing on the domain of event creation/update, which
covers only part of SMCalFlow’s more than 300
functions. Hopefully, the released implementation
can serve as a useful example, and motivate inter-
ested researchers to expand this work.

Note that SM released a modified version of
SMCalFlow (Platanios et al., 2021), which also
represents a kind of annotation simplification, but
focusing on improving NLU accuracy, rather than
understandability. This paper uses the original SM-
CalFlow version.

5.1 Simplification Mechanism

Due to the size of the dataset, manual simplification
is clearly not feasible, therefore all simplifications
were done programmatically. The full dataset was
simplified, without trying to filter out some of the
"irregular” annotations in the original dataset.

For convenience, the simplified format uses
Python style expressions (as opposed to the Lisp
style S-expressions in the original dataset), as this
format is generally more familiar (the released sys-
tem itself is written in Python).

The simplification was practically done by im-
plementing a set of tree transformation rules, which
convert specified sub-trees of the original expres-
sions into simplified sub-trees (the transformation
code is part of the release). A few tens of such rules
were implemented (additional rules will be needed
as more SMCalFlow functions are implemented).

The simplification is applied to the whole dataset,
resulting in a simplified dataset, which can be used
by the same pipeline used in the original paper.

5.2 Simplification Approach

The design principles (which are heuristic, and not
mutually exclusive) for the simplifications were:
1) Retain only necessary information in the anno-
tation, 2) Avoid explicit logical steps, 3) Move
logic from the annotation to the implementation, 4)
Group and reuse repeating sequences of functions.

Practically this means: Try to omit any informa-
tion which can be deterministically inferred from
context (or possibly, which can be guessed). Keep
only information which can not be inferred. Specif-
ically, logical steps which can be inferred from
context, are moved from the annotation into the
implementation of the functions. For example, ex-
plicit type casts which are clear from the context

Program Length
Original Annotation (11, 37, 58)
Simplified Annotation (2, 13, 22)

Table 1: Program length of the two annotation styles.
Length is measured as number of seq2seq target tokens,
when translating user request to annotation. Showing
(.25, .50, .75) quantiles over the entire dataset.

can be omitted. Similarly, when needed informa-
tion is missing in the user input, but can be inferred
from the context, the simplified annotation should
then include only the supplied information, and the
logic to infer the missing information is left for the
function implementation.

Finally, the simplified annotation tries to avoid
fragments of the original annotation which serve
only "formal" purposes, and instead tries to style
the annotation to be closer to a more natu-
ral/comprehensible description of the user requests.
Please see the appendix for examples.

5.3 Executing Simplified Annotations

At execution time, an additional step (which can
be viewed as the inverse of the dataset simplifica-
tion step) translates the simplified annotation to a
fully executable expression. This is done, again, by
implementing tree transformation rules (for each
function), which can add deterministically infer-
able missing information/steps (e.g. casting in-
put to the right type, or performing other conver-
sions/functions based on input type).

5.4 Simplification Results

Since the original code to execute SMCalFlow was
not released (and documentation not supplied), it
is impossible to verify that the suggested simplifi-
cations in fact correctly implement the same logic
(nor what that logic actually is) (in fact this was
one of the motivations for this paper). Some exam-
ples of simplification are shown in the appendix,
but it can only be left to the readers to inspect the
simplified annotations and the code and draw their
own conclusions.

Table 1 shows the results of a comparison of the
annotation lengths of the original and simplified
annotations, confirming that the simplification does
make the annotation significantly shorter (adding
more simplification rules, as more functions are
implemented, is expected to further reduce the
length). In addition to being shorter, the simplified
annotations are also more understandable (unfortu-

nately, this can not be shown with simple objective
measures), which should reduce annotation efforts
when creating new training data.

To verify that the simplified annotations do not
increase the burden on the NLU component, the
translation pipeline of the original paper was used
to train and evaluate seq2seq models using the sim-
plified dataset. The result shows no degradation in
translation accuracy (in fact a slight improvement
in exact match, from 72.8% to 73.8%). With the
significant decrease in annotation length, it could
be expected that translation accuracy would actu-
ally improve. Possible explanations why this did
not happen could be that the simplifications are
highly regular, or the fact that the coverage of the
simplification rules is only partial.

6 Further Work

With the released execution code, deeper probing
and exploration can become possible, compared to
having access only to the SMCalFlow dataset.

Particular areas of interest may include:

Evaluation: in addition to the exact-match metric
for translation accuracy, other metrics can be used,
such as comparison of execution results, graph
structure similarity, etc.

Using the graph structure: the graph structure
(at different points of the execution) can be used by
prediction models. For example, the user request
could be recursively translated into a hierarchical
graph using graph self attention as well as attention
to previous graphs before/after execution.

Different design patterns which are beneficial to
specific parts of the system. For example, the exe-
cution of a computation graph could emit various
types of information which would then be useful
for subsequent prediction models.

And of course, completing the design and imple-
mentation of a full working SMCalFlow system.

7 Conclusion

This paper argues that dataflow dialogue systems
are worthy of more attention from the community.
In order to lower the barrier of entry into this
field, a simplified version of a DF dataset, which
is designed to be more easily understandable, has
been described. This is accompanied by the re-
lease of a basic implementation of a DF system,
which should allow interested researchers to easily
implement their own designs and extensions.

References

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026, Brussels,
Belgium. Association for Computational Linguistics.

Elman Mansimov and Yi Zhang. 2021. Semantic pars-
ing in task-oriented dialog with recursive insertion-
based encoder.

Emmanouil Antonios Platanios, Adam Pauls, Subhro
Roy, Yuchen Zhang, Alexander Kyte, Alan Guo, Sam
Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob
Andreas, and Dan Klein. 2021. Value-agnostic con-
versational semantic parsing. In ACL-IJCNLP 2021.

Semantic Machines et al. 2020. Task-oriented dialogue
as dataflow synthesis. Transactions of the Associa-
tion for Computational Linguistics, 8:556-571.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2810-2823. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
https://www.microsoft.com/en-us/research/publication/value-agnostic-conversational-semantic-parsing/
https://www.microsoft.com/en-us/research/publication/value-agnostic-conversational-semantic-parsing/
https://www.microsoft.com/en-us/research/publication/value-agnostic-conversational-semantic-parsing/
https://www.microsoft.com/en-us/research/publication/task-oriented-dialogue-as-dataflow-synthesis/
https://www.microsoft.com/en-us/research/publication/task-oriented-dialogue-as-dataflow-synthesis/
https://www.microsoft.com/en-us/research/publication/task-oriented-dialogue-as-dataflow-synthesis/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/

(Yield
:output (DeleteCommitEventWrapper
tevent (DeletePreflightEventWrapper
:id (:id
(singleton
(:results
(FindEventWrapperWithDefaults
:constraint (EventOnDateTime

:dateTime (DateAtTimeWithDefaults
:date (Tomorrow)
:time (NumberAM

:number #(Number 10.0)))
:event (Constraint[Event])))))))))

Figure 1: Example 1 - Original annotation

A Annotation Simplification Examples

In this section, two examples are given for annota-
tion simplification.

The annotations are shown in both the text and
the computational graph formats. The graphs are
constructed from the text, and are basically equiv-
alent to the text format, but slight modifications
occur during the graph construction process.

Some details are given as to how the simplifica-
tion principles mentioned in section 5.2 are applied
to the example annotations.

These examples are intended to demonstrate the
feasibility of automatically simplifying the original
annotation (further, or different, simplification is
clearly possible).

More important than the simplification process
is the final form of the simplified annotations. The
goal of this paper is to demonstrate that concise,
understandable, and yet fully descriptive and ex-
ecutable annotations are possible, and that imple-
menting them does not have to be complex.

The simplified form of the annotation can be
used by the pipeline described in (Semantic Ma-
chines et al., 2020), or by the methods described
e.g. in (Platanios et al., 2021), (Yin et al., 2021),
(Mansimov and Zhang, 2021).

A.1 Example 1

In this example, the user request is:
"Cancel my 10 AM tomorrow"

Figure 1 and 3 show the original annotation for
this request in text and graph forms, respectively,
while figure 2 and 4 show the same for the simpli-
fied annotation.

As explained in 5.2, simplification rules are used
to remove operations which can be inferred from
context. In this example:

* The Yield function is removed, as it is added
as the top level function in every annotation.

DeleteEvent(
AND (
starts_at(
Tomorrow()),
starts_at(
NumberAM(10))))

Figure 2: Example 1 - Simplified annotation

At execution time, a wrapping Yield is auto-
matically added back.

* The event deletion operation is origi-
nally realized as a two step process
(DeletePreflightEventWrapper, DeleteCom-
mitEventWrapper), first ensuring the correct
event is found, requesting confirmation from
the user, and then deleting it through a call
to an external API. In the original annotation,
these steps are explicitly mentioned, but in
the simplified version, this is replaced with
one operation (DeleteEvent). At execution
time, this is converted back to two separate
functions.

* The input to the delete event function is origi-
nally an event id (presumably a unique integer
identifying the event), and the id is explicitly
extracted from the found event in a separate
step. In the simplified annotation, there is no
need for this additional step. Instead, the im-
plementation of DeleteEvent knows how to
handle different input types. Specifically, it
can apply the necessary conversions: if the
input is an Int, it will be used as the event id.
If the input is an Event, it will be used as is. If
the input is multiple Events, then the singleton
function will be added to wrap the input. If
the input is a specification of an event, then
a FindEvents function is added to wrap the
input.

* The original annotation calls the function
DateAtTimeWithDefaults, presumably apply-
ing some logic to fill missing time information.
In the simplified annotation, this kind of logic
is moved from the annotation to the function
implementation.

* The original function EventOnDateTime,
with an empty "formal" parameter "Con-
straint[Event]" is removed in the simplifica-
tion.

e The new function starts_at (which can han-
dle various types of input) replaces the old

pos2

FindEventWrapperWithDefaults

dateTime

DateAtTimeWithDefaults

Figure 3: Example 1 - Original graph

DeleteEvent

1\

AND

A%

starts_at starts_at

i G

number

Figure 4: Example 1 - Simplified graph

functions to specify the time constraints.

The resulting simplified annotation is more con-
cise. More importantly, it is, arguably, more under-
standable, and "closer" to the user request, without
losing any necessary information.

A.2 Example 2

In this example, the user request is:

"Change on Sunday at Jeffs from 10:00 to
10:30 AM to 10:00 am to 2:00 pm."

Figure 5 and 7 show the original annotation, in
text and graph formats, respectively, for the second
example. Figures 6 and 8 show the same for the
simplified annotation.

This example annotation uses an assignment con-
struct, which defines separate mini-graphs which
can be re-used within one annotation. While use-
ful, it can make the annotation more difficult to
understand, and require more effort to annotate.

Assignments are kept in the simplified annota-
tion, but specific simplification rules try to remove
unnecessary use of assignments. Alternative anno-
tation designs could altogether avoid the definition
of separate mini-graphs, directly reusing parts of
the main graph.

In this example, the assignments can automati-
cally be completely removed by the simplification
rules, as after successive simplification steps, no
mini-graph is used in multiple places.

Explanation of the original annotation and its
simplification:

* Assigns label x0 to "Sunday at 10:00AM"

* Assigns the label x1 to the computation: "find
an event at location ’Jeffs’, starting at x0, and
ending at 10:30AM after x0". The fragment
"start at x0 and end after x0" is simplified to
just "start at Xx0". After this, x0 appears only
once in the graph, so the xO mini-graph can
be directly attached to the x1 mini-graph.

Assigns the label x2 to "the date of x1 (the
found event), and time 10AM"

The main computation then tries to update x1
(the found event) to start at x2 (10AM at the
date of x1), and end at 2PM after x2. Updat-
ing x1 to have the date of x1 is automatically
removed, leaving just "start at 10AM, end at
2PM". After this, x2 is not used any more,
and x1 is used only once, so it is attached to
the main computation.

Again, the simplified annotation is shorter and,
arguably, clearer, while retaining all the necessary
information of the user request.

(let
(x0
(DateAtTimeWithDefaults
:date (NextDOW
:dow #(DayOfWeek "SUNDAY"))
:time (NumberAM
:number #(Number 10.0)))
x1
(singleton
(:results
(FindEventWrapperWithDefaults
:constraint (Constraint[Event]
tend (?=
(TimeAfterDateTime
:dateTime x0
:time (HourMinuteAm
thours #(Number 10.0)
:minutes #(Number 30.0))))
:location (?= #(LocationKeyphrase "jeffs"))
istart (2= x0)))))
x2
(DateAtTimeWithDefaults
:date (:date
(:start x1))
:time (NumberAM
:number #(Number 10.0))))
(Yield
:soutput (UpdateCommitEventWrapper
tevent (UpdatePreflightEventWrapper
:id (:id x1)
:update (Constraint[Event]
tend (?=
(TimeAfterDateTime
:dateTime x2
:time (NumberPM
:number #(Number 2))))
rstart (2= x2))))))

Gutput

UpdateCommitEventWrapper @ @ @
et

UpdatePreflightEventWrapper DateAtTimeWithDefaults @ DateAtTimeWithDefaults

‘update jd fime
Start'Bnd pos2 \pos| number pos2"\pos1 pos2 umber
1 (5] D L] [0] G [] < ommmmamiz— (][] [rones
‘pos2 “\posl onstraint

() Crmesrepuerine > G []

fime \dateTime

Qo> ()

umber

S

Start. focation

SUNDAY

Figure 5: Example 2 - Original annotation

UpdateEvent (
AND (
ends_at(
HourMinuteAm(
hours=10,
minutes=30)),
at_location(#jeffs),
starts_at(
NextDOW (#SUNDAY)),
starts_at(
NumberAM(10))),
AND (
ends_at (
NumberPM(2)),
starts_at(
NumberAM(10))))

Figure 6: Example 2 - Simplified annotation

Figure 7: Example 2 - Original graph

UpdateEvent

/:n:u-amz N

R R

starts_at ends_at starts_at starts_at

at_location ends_at

Figure 8: Example 2 - Simplified graph

B Example Dataflow Function

In order to demonstrate that writing DF programs
is not complex, this section shows an example im-
plementation of a simple DF function, and using it
in a non-trivial mini dialogue, taking advantage of
the DF framework functionality.

The code snippet implements the simple function
of integer addition. The Python code in figure 9 is
(almost) executable by the released DF execution
code (minor details are modified for the sake of
clarity).

The definition consists of Three main blocks:

* Function signature definition. In this case,
declaring two inputs of type Int (named posl,
pos2), and setting the output type to Int.

* Validity checks on the inputs (optional). In
this example, missing input will trigger the
exception mechanism.

* The code executing the function (optional). In
this case, the values of the inputs are added,
and a new Int node, with its value set to the
calculated sum, is created and attached as re-
sult.

Once this function is defined, the execution en-
gine can execute DF expressions using this func-
tion. For example, executing the expressions:
"Add (2,Add(3,5))’

"revise (old=Int?(3), new=Int (6))’

(corresponding to the user requests: "add 2 to the
sum of 3 and 5", followed by

Add,
posli 052
1
2, 10, Add,
pos2 7 0s 1
e
5, 8, 3,

Figure 10: Graph context after executing two user turns.
Right: result of first turn, using the Add function (blue
dashed arrows point to result nodes). Left: Result of
executing the revise turn: the graph whose root is node
Addy is duplicated as a graph whose root is Adds1,
sharing inputs with the old graph, but replacing the
original input (3) to node Adds by the new input (6) to
Addy (which is the duplication of Addy).

"make it 6 instead of 3"), builds the graphs
shown in figure 10.

For the first expression, it checks that inputs to
all nodes are valid, and recursively executes the
calculation, setting the results of all the nodes to
the corresponding addition results.

For the second expression, the system finds the
relevant computational graph and the node to be
replaced, and then creates a duplicate of the graph,
replacing the old input node with the new one, and
finally executing (evaluating) the new graph.

class Add(Node) :
def init (self):
super (). init (Int)
self.add signature('posl', Int)
self.add signature('pos2', Int)

def valid input (self):
If 'posl' not in self.inputs:

raise Exception(“Add is missing the first parameter”, self)

If 'pos2' not in self.inputs:

raise Exception(“Add is missing the second parameter”, self)

def exec(self):
pl = self.get data('posl')
p2 = self.get data('pos2')
res = pl + p2
d = construct ('Int(%d)' % res)
self.set result(d)

Figure 9: Code snippet implementing *Add’

	Introduction
	Dataflow Dialogues
	Practical Applications
	Complexity
	Simplifying SMCalFlow
	Simplification Mechanism
	Simplification Approach
	Executing Simplified Annotations
	Simplification Results

	Further Work
	Conclusion
	Annotation Simplification Examples
	Example 1
	Example 2

	Example Dataflow Function

