
Simplifying Dataflow Dialogue Design

Anonymous ACL submission

Abstract

In (Semantic Machines et al., 2020), a dataflow001
(DF) based dialogue system was introduced,002
showing clear advantages compared to many003
commonly used current systems. This was004
accompanied by the release of SMCalFlow,005
a practically relevant, manually annotated006
dataset, more detailed and much larger than any007
comparable dialogue dataset. Despite these re-008
markable contributions, the community has not009
shown further interest in this direction. What010
are the reasons for this lack of interest? And011
how can the community be encouraged to en-012
gage in research in this direction?013

One explanation may be the perception that this014
approach is too complex - both the the annota-015
tion and the system. This paper argues that this016
perception is wrong: 1) Suggestions for a sim-017
plified format for the annotation of the dataset018
are presented, 2) A basic implementation of019
the DF execution engine is released, which can020
serve as a sandbox allowing researchers to eas-021
ily implement, and experiment with, new DF022
dialogue designs. The hope is that these contri-023
butions will help engage more practitioners in024
exploring new ideas and designs for DF based025
dialogue systems.026

1 Introduction027

Traditional task oriented dialogue systems imple-028

ment a pipeline consisting of NLU (natural lan-029

guage understanding, converting the user input to a030

structured representation), which feeds into a DM031

(dialogue manager), implementing dialogue state032

tracking (DST) as well as a policy to decide what033

action to take next. Both the NLU and DM compo-034

nents can take different forms.035

Modern machine learning approaches have036

demonstrated large improvements in prediction ac-037

curacy for both the NLU and DM components (as038

well as end-to-end pipelines and other architec-039

tures), but for industrial applications, where strict040

control of the system behaviour is required, it is041

very common that the NLU is implemented as 042

a machine learning based intent/entity classifier, 043

while the DM is conceptually based on a finite 044

state machine (FSM)-like paradigm, typically with 045

the states and transitions manually defined. 046

The combination of intent/entity NLU, and FSM 047

based DM offer controllability and reduces the 048

training data requirements, but come at the cost 049

of reduced expressiveness of user requests, as well 050

as practical difficulty in scaling up the dialogue 051

design as more interaction scenarios are added. 052

2 Dataflow Dialogues 053

Microsoft’s Semantic Machines (SM) introduced a 054

dataflow dialogue system in (Semantic Machines 055

et al., 2020), which represents the user requests 056

as rich compositional (hierarchical) expressions, 057

which encode computational graphs. An engine 058

executes these computations, which results in ma- 059

nipulating the computational graphs, generating an 060

answer (possibly an error message), and option- 061

ally producing some side effects through API’s to 062

external services. 063

The prominent features of this system are: 064

• The system represents the dialogue history 065

as a set of graphs, where each computational 066

graph typically represents one user turn. 067

• it has a refer operation to search over the cur- 068

rent computational graphs (as well as external 069

resources) which allows easy look-up and re- 070

use of graph nodes which occurred previously 071

in the dialogue. 072

• it has a revise operation which allows modifi- 073

cation and reuse of previous computations 074

• it has an exception mechanism which allows 075

convenient interaction with the user (e.g. ask- 076

ing for missing information, and resumption 077

of the computation once the information is 078

supplied). 079

1

These features correspond to essential phenom-080

ena in natural conversations (referring to previ-081

ous turns, modifying previous requests, reacting082

to wrong information, etc.), which allows the sys-083

tem to handle these phenomena more effectively,084

and help mitigate the problem of DM scaling, com-085

pared to FSM-based DMs1.086

Extracting richer representation from the user re-087

quests, does increase the difficulty for the NLU task.088

To address this, the developers of the DF system089

released SMCalFlow - the largest dialogue dataset090

to date, manually annotated using the expressive091

compositional DF format, presumably the result of092

thousands of man hours of work. The dialogues093

in this dataset cover diverse common tasks, which094

can be relevant and interesting for developers of095

practical task oriented dialogue systems.096

In the same paper, they also show that using097

the DF paradigm can be advantageous even with-098

out requiring manual preparation of rich anno-099

tations (demonstrated on the MultiWOZ dataset100

Budzianowski et al. (2018)). Instead, the origi-101

nal intent/entity style annotation is automatically102

translated into DF expressions.103

3 Practical Applications104

Developers of actual applications, constrained by105

business goals, are often unable to take advantage106

of the recent advances achieved in dialogue system107

research. One of the most common reason for that108

is the need for the developers to be able to closely109

control the behaviour of the application, and be able110

to quickly adapt it whenever errors are discovered111

or specifications evolve.112

For this reason, approaches allowing manual con-113

trol (as opposed to black box approaches where114

control can only be asserted through engineering115

of the training data) are often preferred.116

One example is the use of FSM based DMs.117

These can be closely controlled, as they are based118

on manually created rules, which makes them very119

easy to use when creating simple applications.120

However, FSMs are notoriously difficult to scale121

up, especially when it comes to tasks with multiple122

possible execution paths.123

The DF paradigm can be used for such appli-124

cations, using manually crafted rules to closely125

1No claim is being made here that the DF approach can
theoretically represent more complex user requests than the
FSM approach, rather that it can practically be significantly
easier to handle complex requests using DF.

control the application, while potentially reducing 126

developer efforts as applications grow. 127

4 Complexity 128

More than a year has passed since the publication 129

of the original DF paper, the release of SMCalFlow, 130

and a related public leader-board. Despite the ob- 131

vious theoretical and practical advantages of the 132

DF approach, and the potential for further improve- 133

ments, the community has shown only limited in- 134

terest in following this work. 135

Why is this the case? This paper hypothesizes 136

that the reason may be a perception that the DF 137

approach is inherently too complex (both the an- 138

notation, and the implementation), and that this 139

perception is a result of two factors. First, the com- 140

plexity of the annotation of SMCalFlow (which 141

is the only dedicated DF dataset available), and 142

second, the fact that the implementation of the SM- 143

CalFlow executable functions is excluded from the 144

released code. The lack of documentation and of 145

explanation of the design decisions behind the an- 146

notation, only exacerbates this perception. 147

In order to encourage the community to engage 148

in this line of research, this paper tries to counter 149

this misconception, by following two directions: 150

1. By releasing a basic implementation of the 151

SMCalFlow execution engine2. Since this rep- 152

resents the work of one person during a lim- 153

ited time, only a part of the functionality of 154

SMCalFlow is implemented, but it should al- 155

low readers to get familiar enough with the DF 156

approach, so that they can easily implement 157

their own ideas in this framework. 158

2. Explore (and demonstrate) ways to simplify 159

SMCalFlow. Specifically, simplifying the an- 160

notation format in a way which reduces the 161

effort for annotators (and readers), as well as 162

for the NLU component, while maintaining 163

its ability to be correctly executed. 164

This paper also tries to emphasize that DF is 165

not a monolithic system, with fixed functionality, 166

applications, tools, formats and implementation. 167

Rather, it is a general approach; a paradigm, which 168

can have different interpretations and flavours, and 169

which is ready for further research as well as prac- 170

tical uses. 171

2The code will be released by the time of publication.

2

5 Simplifying SMCalFlow172

The DF approach is an object-oriented paradigm,173

which describes user requests as executable pro-174

grams. Annotation is practically a programming175

task, translating a user’s request to a program,176

whose execution will satisfy the user’s request.177

These programs consist of two types of functions:178

base DF-framework functions (like refer and re-179

vise), and application specific functions (e.g. Cre-180

ateEvent for SMCalFlow).181

In designing the application specific functions,182

the developers need to come up with a consis-183

tent design for a set of functions, which can be184

combined together to describe and execute user185

requests.186

As mentioned above, multiple alternative de-187

signs are possible. Each design results in a trade-off188

between coverage of possible user requests, good189

programming practices (such as clarity, modularity190

and low complexity of the programs, and hence191

of the annotations), efficiency of execution, the192

demands it puts on the NLU component, etc.193

In the following, a simplified annotation is pre-194

sented, with the motivation to dispel the perception195

that SMCalFlow is too complex. The starting point196

of this work is SMCalFlow, since creating a new197

dataset was beyond the resources available for this198

work. The price to pay for this is twofold. First, the199

new design is tied to the original style. Creating200

a new dataset (or a completely new annotation for201

an existing dataset) would allow complete freedom202

in suggesting a new annotation style, but would203

require intensive labour. Second, once a new de-204

sign has been defined for the annotation style, the205

original dataset needs to be transformed to the new206

design. The transformation process is a necessary207

step, but not the primary focus of this paper.208

While DF is not inherently complicated, finding209

a good design is a challenging task. A novel as-210

pect of this challenge is the need for the design to211

function correctly within the DF paradigm, e.g. use212

the refer and revise operators. Indeed, one of the213

motivations of this work is the hope that the com-214

munity can suggest interesting new designs, which215

can serve as templates for further applications.216

The work progressed by taking one original an-217

notation at a time, defining the simplified anno-218

tation for it, and then implementing the needed219

DF functions (iteratively modifying the implemen-220

tation to ensure new functions can interact con-221

sistently with previously implemented functions).222

Due to limited resources, only a small portion of 223

the original expressions were inspected, concentrat- 224

ing on the domain of event creation/update, which 225

covers only part of SMCalFlow’s more than 300 226

functions. Hopefully, the released implementation 227

can serve as a useful example, and motivate inter- 228

ested researchers to expand this work. 229

Note that SM released a modified version of 230

SMCalFlow (Platanios et al., 2021), which also 231

represents a kind of annotation simplification, but 232

focusing on improving NLU accuracy, rather than 233

understandability. This paper uses the original SM- 234

CalFlow version. 235

5.1 Simplification Mechanism 236

Due to the size of the dataset, manual simplification 237

is clearly not feasible, therefore all simplifications 238

were done programmatically. The full dataset was 239

simplified, without trying to filter out some of the 240

"irregular" annotations in the original dataset. 241

For convenience, the simplified format uses 242

Python style expressions (as opposed to the Lisp 243

style S-expressions in the original dataset), as this 244

format is generally more familiar (the released sys- 245

tem itself is written in Python). 246

The simplification was practically done by im- 247

plementing a set of tree transformation rules, which 248

convert specified sub-trees of the original expres- 249

sions into simplified sub-trees (the transformation 250

code is part of the release). A few tens of such rules 251

were implemented (additional rules will be needed 252

as more SMCalFlow functions are implemented). 253

The simplification is applied to the whole dataset, 254

resulting in a simplified dataset, which can be used 255

by the same pipeline used in the original paper. 256

5.2 Simplification Approach 257

The design principles (which are heuristic, and not 258

mutually exclusive) for the simplifications were: 259

1) Retain only necessary information in the anno- 260

tation, 2) Avoid explicit logical steps, 3) Move 261

logic from the annotation to the implementation, 4) 262

Group and reuse repeating sequences of functions. 263

Practically this means: Try to omit any informa- 264

tion which can be deterministically inferred from 265

context (or possibly, which can be guessed). Keep 266

only information which can not be inferred. Specif- 267

ically, logical steps which can be inferred from 268

context, are moved from the annotation into the 269

implementation of the functions. For example, ex- 270

plicit type casts which are clear from the context 271

3

Program Length
Original Annotation (11, 37, 58)
Simplified Annotation (2, 13, 22)

Table 1: Program length of the two annotation styles.
Length is measured as number of seq2seq target tokens,
when translating user request to annotation. Showing
(.25, .50, .75) quantiles over the entire dataset.

can be omitted. Similarly, when needed informa-272

tion is missing in the user input, but can be inferred273

from the context, the simplified annotation should274

then include only the supplied information, and the275

logic to infer the missing information is left for the276

function implementation.277

Finally, the simplified annotation tries to avoid278

fragments of the original annotation which serve279

only "formal" purposes, and instead tries to style280

the annotation to be closer to a more natu-281

ral/comprehensible description of the user requests.282

Please see the appendix for examples.283

5.3 Executing Simplified Annotations284

At execution time, an additional step (which can285

be viewed as the inverse of the dataset simplifica-286

tion step) translates the simplified annotation to a287

fully executable expression. This is done, again, by288

implementing tree transformation rules (for each289

function), which can add deterministically infer-290

able missing information/steps (e.g. casting in-291

put to the right type, or performing other conver-292

sions/functions based on input type).293

5.4 Simplification Results294

Since the original code to execute SMCalFlow was295

not released (and documentation not supplied), it296

is impossible to verify that the suggested simplifi-297

cations in fact correctly implement the same logic298

(nor what that logic actually is) (in fact this was299

one of the motivations for this paper). Some exam-300

ples of simplification are shown in the appendix,301

but it can only be left to the readers to inspect the302

simplified annotations and the code and draw their303

own conclusions.304

Table 1 shows the results of a comparison of the305

annotation lengths of the original and simplified306

annotations, confirming that the simplification does307

make the annotation significantly shorter (adding308

more simplification rules, as more functions are309

implemented, is expected to further reduce the310

length). In addition to being shorter, the simplified311

annotations are also more understandable (unfortu-312

nately, this can not be shown with simple objective 313

measures), which should reduce annotation efforts 314

when creating new training data. 315

To verify that the simplified annotations do not 316

increase the burden on the NLU component, the 317

translation pipeline of the original paper was used 318

to train and evaluate seq2seq models using the sim- 319

plified dataset. The result shows no degradation in 320

translation accuracy (in fact a slight improvement 321

in exact match, from 72.8% to 73.8%). With the 322

significant decrease in annotation length, it could 323

be expected that translation accuracy would actu- 324

ally improve. Possible explanations why this did 325

not happen could be that the simplifications are 326

highly regular, or the fact that the coverage of the 327

simplification rules is only partial. 328

6 Further Work 329

With the released execution code, deeper probing 330

and exploration can become possible, compared to 331

having access only to the SMCalFlow dataset. 332

Particular areas of interest may include: 333

Evaluation: in addition to the exact-match metric 334

for translation accuracy, other metrics can be used, 335

such as comparison of execution results, graph 336

structure similarity, etc. 337

Using the graph structure: the graph structure 338

(at different points of the execution) can be used by 339

prediction models. For example, the user request 340

could be recursively translated into a hierarchical 341

graph using graph self attention as well as attention 342

to previous graphs before/after execution. 343

Different design patterns which are beneficial to 344

specific parts of the system. For example, the exe- 345

cution of a computation graph could emit various 346

types of information which would then be useful 347

for subsequent prediction models. 348

And of course, completing the design and imple- 349

mentation of a full working SMCalFlow system. 350

7 Conclusion 351

This paper argues that dataflow dialogue systems 352

are worthy of more attention from the community. 353

In order to lower the barrier of entry into this 354

field, a simplified version of a DF dataset, which 355

is designed to be more easily understandable, has 356

been described. This is accompanied by the re- 357

lease of a basic implementation of a DF system, 358

which should allow interested researchers to easily 359

implement their own designs and extensions. 360

4

References361

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang362
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-363
madan, and Milica Gašić. 2018. MultiWOZ - a large-364
scale multi-domain Wizard-of-Oz dataset for task-365
oriented dialogue modelling. In Proceedings of the366
2018 Conference on Empirical Methods in Natural367
Language Processing, pages 5016–5026, Brussels,368
Belgium. Association for Computational Linguistics.369

Elman Mansimov and Yi Zhang. 2021. Semantic pars-370
ing in task-oriented dialog with recursive insertion-371
based encoder.372

Emmanouil Antonios Platanios, Adam Pauls, Subhro373
Roy, Yuchen Zhang, Alexander Kyte, Alan Guo, Sam374
Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob375
Andreas, and Dan Klein. 2021. Value-agnostic con-376
versational semantic parsing. In ACL-IJCNLP 2021.377

Semantic Machines et al. 2020. Task-oriented dialogue378
as dataflow synthesis. Transactions of the Associa-379
tion for Computational Linguistics, 8:556–571.380

Pengcheng Yin, Hao Fang, Graham Neubig, Adam381
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam382
Thomson, and Jacob Andreas. 2021. Compositional383
generalization for neural semantic parsing via span-384
level supervised attention. In 2021 Conference of385
the North American Chapter of the Association for386
Computational Linguistics: Human Language Tech-387
nologies, pages 2810–2823. Association for Compu-388
tational Linguistics.389

5

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
http://arxiv.org/abs/2109.04500
https://www.microsoft.com/en-us/research/publication/value-agnostic-conversational-semantic-parsing/
https://www.microsoft.com/en-us/research/publication/value-agnostic-conversational-semantic-parsing/
https://www.microsoft.com/en-us/research/publication/value-agnostic-conversational-semantic-parsing/
https://www.microsoft.com/en-us/research/publication/task-oriented-dialogue-as-dataflow-synthesis/
https://www.microsoft.com/en-us/research/publication/task-oriented-dialogue-as-dataflow-synthesis/
https://www.microsoft.com/en-us/research/publication/task-oriented-dialogue-as-dataflow-synthesis/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/
https://www.microsoft.com/en-us/research/publication/compositional-generalization-for-neural-semantic-parsing-via-span-level-supervised-attention/

(Yield
 :output (DeleteCommitEventWrapper
 :event (DeletePreflightEventWrapper
 :id (:id
 (singleton
 (:results
 (FindEventWrapperWithDefaults
 :constraint (EventOnDateTime
 :dateTime (DateAtTimeWithDefaults
 :date (Tomorrow)
 :time (NumberAM
 :number #(Number 10.0)))
 :event (Constraint[Event])))))))))

Figure 1: Example 1 - Original annotation

A Annotation Simplification Examples390

In this section, two examples are given for annota-391

tion simplification.392

The annotations are shown in both the text and393

the computational graph formats. The graphs are394

constructed from the text, and are basically equiv-395

alent to the text format, but slight modifications396

occur during the graph construction process.397

Some details are given as to how the simplifica-398

tion principles mentioned in section 5.2 are applied399

to the example annotations.400

These examples are intended to demonstrate the401

feasibility of automatically simplifying the original402

annotation (further, or different, simplification is403

clearly possible).404

More important than the simplification process405

is the final form of the simplified annotations. The406

goal of this paper is to demonstrate that concise,407

understandable, and yet fully descriptive and ex-408

ecutable annotations are possible, and that imple-409

menting them does not have to be complex.410

The simplified form of the annotation can be411

used by the pipeline described in (Semantic Ma-412

chines et al., 2020), or by the methods described413

e.g. in (Platanios et al., 2021), (Yin et al., 2021),414

(Mansimov and Zhang, 2021).415

A.1 Example 1416

In this example, the user request is:417

"Cancel my 10 AM tomorrow"418

Figure 1 and 3 show the original annotation for419

this request in text and graph forms, respectively,420

while figure 2 and 4 show the same for the simpli-421

fied annotation.422

As explained in 5.2, simplification rules are used423

to remove operations which can be inferred from424

context. In this example:425

• The Yield function is removed, as it is added426

as the top level function in every annotation.427

DeleteEvent(
 AND(
 starts_at(
 Tomorrow()),
 starts_at(
 NumberAM(10))))

Figure 2: Example 1 - Simplified annotation

At execution time, a wrapping Yield is auto- 428

matically added back. 429

• The event deletion operation is origi- 430

nally realized as a two step process 431

(DeletePreflightEventWrapper, DeleteCom- 432

mitEventWrapper), first ensuring the correct 433

event is found, requesting confirmation from 434

the user, and then deleting it through a call 435

to an external API. In the original annotation, 436

these steps are explicitly mentioned, but in 437

the simplified version, this is replaced with 438

one operation (DeleteEvent). At execution 439

time, this is converted back to two separate 440

functions. 441

• The input to the delete event function is origi- 442

nally an event id (presumably a unique integer 443

identifying the event), and the id is explicitly 444

extracted from the found event in a separate 445

step. In the simplified annotation, there is no 446

need for this additional step. Instead, the im- 447

plementation of DeleteEvent knows how to 448

handle different input types. Specifically, it 449

can apply the necessary conversions: if the 450

input is an Int, it will be used as the event id. 451

If the input is an Event, it will be used as is. If 452

the input is multiple Events, then the singleton 453

function will be added to wrap the input. If 454

the input is a specification of an event, then 455

a FindEvents function is added to wrap the 456

input. 457

• The original annotation calls the function 458

DateAtTimeWithDefaults, presumably apply- 459

ing some logic to fill missing time information. 460

In the simplified annotation, this kind of logic 461

is moved from the annotation to the function 462

implementation. 463

• The original function EventOnDateTime, 464

with an empty "formal" parameter "Con- 465

straint[Event]" is removed in the simplifica- 466

tion. 467

• The new function starts_at (which can han- 468

dle various types of input) replaces the old 469

6

id

getattr

pos1

results

getattr

pos1

Tomorrow

DateAtTimeWithDefaults

date

10.0

NumberAM

number

time

EventOnDateTime

dateTime

Event

event

FindEventWrapperWithDefaults

constraint

pos2

singleton

pos2

DeletePreflightEventWrapper

id

DeleteCommitEventWrapper

event

Yield

output

Figure 3: Example 1 - Original graph

Tomorrow

starts_at

AND

10

NumberAM

number

starts_at

DeleteEvent

Figure 4: Example 1 - Simplified graph

functions to specify the time constraints.470

The resulting simplified annotation is more con-471

cise. More importantly, it is, arguably, more under-472

standable, and "closer" to the user request, without473

losing any necessary information.474

A.2 Example 2475

In this example, the user request is:476

"Change on Sunday at Jeffs from 10:00 to477

10:30 AM to 10:00 am to 2:00 pm."478

Figure 5 and 7 show the original annotation, in479

text and graph formats, respectively, for the second480

example. Figures 6 and 8 show the same for the481

simplified annotation.482

This example annotation uses an assignment con- 483

struct, which defines separate mini-graphs which 484

can be re-used within one annotation. While use- 485

ful, it can make the annotation more difficult to 486

understand, and require more effort to annotate. 487

Assignments are kept in the simplified annota- 488

tion, but specific simplification rules try to remove 489

unnecessary use of assignments. Alternative anno- 490

tation designs could altogether avoid the definition 491

of separate mini-graphs, directly reusing parts of 492

the main graph. 493

In this example, the assignments can automati- 494

cally be completely removed by the simplification 495

rules, as after successive simplification steps, no 496

mini-graph is used in multiple places. 497

Explanation of the original annotation and its 498

simplification: 499

• Assigns label x0 to "Sunday at 10:00AM" 500

• Assigns the label x1 to the computation: "find 501

an event at location ’Jeffs’, starting at x0, and 502

ending at 10:30AM after x0". The fragment 503

"start at x0 and end after x0" is simplified to 504

just "start at x0". After this, x0 appears only 505

once in the graph, so the x0 mini-graph can 506

be directly attached to the x1 mini-graph. 507

• Assigns the label x2 to "the date of x1 (the 508

found event), and time 10AM" 509

• The main computation then tries to update x1 510

(the found event) to start at x2 (10AM at the 511

date of x1), and end at 2PM after x2. Updat- 512

ing x1 to have the date of x1 is automatically 513

removed, leaving just "start at 10AM, end at 514

2PM". After this, x2 is not used any more, 515

and x1 is used only once, so it is attached to 516

the main computation. 517

Again, the simplified annotation is shorter and, 518

arguably, clearer, while retaining all the necessary 519

information of the user request. 520

7

(let
 (x0
 (DateAtTimeWithDefaults
 :date (NextDOW
 :dow #(DayOfWeek "SUNDAY"))
 :time (NumberAM
 :number #(Number 10.0)))
 x1
 (singleton
 (:results
 (FindEventWrapperWithDefaults
 :constraint (Constraint[Event]
 :end (?=
 (TimeAfterDateTime
 :dateTime x0
 :time (HourMinuteAm
 :hours #(Number 10.0)
 :minutes #(Number 30.0))))
 :location (?= #(LocationKeyphrase "jeffs"))
 :start (?= x0)))))
 x2
 (DateAtTimeWithDefaults
 :date (:date
 (:start x1))
 :time (NumberAM
 :number #(Number 10.0))))
 (Yield
 :output (UpdateCommitEventWrapper
 :event (UpdatePreflightEventWrapper
 :id (:id x1)
 :update (Constraint[Event]
 :end (?=
 (TimeAfterDateTime
 :dateTime x2
 :time (NumberPM
 :number #(Number 2))))
 :start (?= x2))))))

Figure 5: Example 2 - Original annotation

UpdateEvent(
 AND(
 ends_at(
 HourMinuteAm(
 hours=10,
 minutes=30)),
 at_location(#jeffs),
 starts_at(
 NextDOW(#SUNDAY)),
 starts_at(
 NumberAM(10))),
 AND(
 ends_at(
 NumberPM(2)),
 starts_at(
 NumberAM(10))))

Figure 6: Example 2 - Simplified annotation

SUNDAY

DayOfWeek

NextDOW

dow

DateAtTimeWithDefaults

date

10.0

NumberAM

number

time

setx0

SET

results

getattr

pos1

x0

TimeAfterDateTime

dateTime

10.0

HourMinuteAm

hours

30.0

minutes

time

EQ

Event

end

jeffs

LocationKeyphrase

EQ

location

x0

EQ

start

FindEventWrapperWithDefaults

constraint

pos2

singleton

setx1

date

getattr

pos1

start

getattr

pos1

x1

pos2

pos2

DateAtTimeWithDefaults

date

10.0

NumberAM

number

time

setx2

let

pos1

id

getattr

pos1

x1

pos2

UpdatePreflightEventWrapper

id

x2

TimeAfterDateTime

dateTime

2

NumberPM

number

time

EQ

Event

end

x2

EQ

start

update

UpdateCommitEventWrapper

event

Yield

output

pos2

Figure 7: Example 2 - Original graph

10

HourMinuteAm

hours

30

minutes

ends_at

AND

jeffs

at_location

SUNDAY

NextDOW

dow

starts_at

10

NumberAM

number

starts_at

UpdateEvent

event

2

NumberPM

number

ends_at

AND

10

NumberAM

number

starts_at

constraint

Figure 8: Example 2 - Simplified graph

8

B Example Dataflow Function521

In order to demonstrate that writing DF programs522

is not complex, this section shows an example im-523

plementation of a simple DF function, and using it524

in a non-trivial mini dialogue, taking advantage of525

the DF framework functionality.526

The code snippet implements the simple function527

of integer addition. The Python code in figure 9 is528

(almost) executable by the released DF execution529

code (minor details are modified for the sake of530

clarity).531

The definition consists of Three main blocks:532

• Function signature definition. In this case,533

declaring two inputs of type Int (named pos1,534

pos2), and setting the output type to Int.535

• Validity checks on the inputs (optional). In536

this example, missing input will trigger the537

exception mechanism.538

• The code executing the function (optional). In539

this case, the values of the inputs are added,540

and a new Int node, with its value set to the541

calculated sum, is created and attached as re-542

sult.543

Once this function is defined, the execution en-544

gine can execute DF expressions using this func-545

tion. For example, executing the expressions:546

’Add(2,Add(3,5))’547

’revise(old=Int?(3), new=Int(6))’548

(corresponding to the user requests: "add 2 to the549

sum of 3 and 5", followed by550

class Add(Node):
 def __init__(self):
 super().__init__(Int)
 self.add_signature('pos1', Int)
 self.add_signature('pos2', Int)

 def valid_input(self):
 If 'pos1' not in self.inputs:
 raise Exception(“Add is missing the first parameter”, self)
 If 'pos2' not in self.inputs:
 raise Exception(“Add is missing the second parameter”, self)

 def exec(self):
 p1 = self.get_data('pos1')
 p2 = self.get_data('pos2')
 res = p1 + p2
 d = construct('Int(%d)' % res)
 self.set_result(d)

Figure 9: Code snippet implementing ’Add’

21

Add0

pos1

Add11

pos1

33

Add2

pos1

54

pos2

Add10

pos2

85

pos2

106

38

revise7

old

69

pos1

new

1112

pos2

1313

Figure 10: Graph context after executing two user turns.
Right: result of first turn, using the Add function (blue
dashed arrows point to result nodes). Left: Result of
executing the revise turn: the graph whose root is node
Add0 is duplicated as a graph whose root is Add11,
sharing inputs with the old graph, but replacing the
original input (3) to node Add2 by the new input (6) to
Add10 (which is the duplication of Add2).

"make it 6 instead of 3"), builds the graphs 551

shown in figure 10. 552

For the first expression, it checks that inputs to 553

all nodes are valid, and recursively executes the 554

calculation, setting the results of all the nodes to 555

the corresponding addition results. 556

For the second expression, the system finds the 557

relevant computational graph and the node to be 558

replaced, and then creates a duplicate of the graph, 559

replacing the old input node with the new one, and 560

finally executing (evaluating) the new graph. 561

9

	Introduction
	Dataflow Dialogues
	Practical Applications
	Complexity
	Simplifying SMCalFlow
	Simplification Mechanism
	Simplification Approach
	Executing Simplified Annotations
	Simplification Results

	Further Work
	Conclusion
	Annotation Simplification Examples
	Example 1
	Example 2

	Example Dataflow Function

