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ABSTRACT

Pulmonary hypertension is a disease characterized by elevated pressures in the
blood vessels that supply the lungs. It is a progressive and incurable disease that
can lead to right heart failure and premature death if improperly managed. Close
monitoring plays an important role in management of patients with pulmonary hy-
pertension, as it facilitates the timely detection of disease progression and enables
the prompt administration of therapies that can alter the course of the disease. The
gold standard for monitoring disease progression is a right heart catheterization
(RHC) – a procedure that involves the insertion of a catheter, attached to a pressure
transducer, into the pulmonary vasculature to measure the pulmonary pressures.
This procedure is typically repeated several times during the course of a patient’s
life to monitor the response to therapies designed to reduce pulmonary pressures.
Although RHC is an important tool that can help guide the care of patients with
pulmonary hypertension, the procedure itself entails some risk to the patient and
can only be performed in hospitals that have the needed equipment and trained
personnel. Prior attempts to develop non-invasive alternatives for measuring pul-
monary pressures have primarily focused on the task of initial diagnosis, rather
than long-term monitoring of patients that have already been diagnosed. In this
work, we propose a novel deep learning paradigm for the non-invasive assessment
of pulmonary artery pressures. The method leverages electrocardiographic sig-
nals and, when available, cardiac ultrasound data to enable long-term monitoring
in these patients. We demonstrate that our method achieves strong performance
on an internal dataset from one hospital and generalizes well to the MIMIC-III
Waveform Database from a different hospital. Our approach provides a cheap and
accessible method that can be used to monitor patients with pulmonary hyperten-
sion at home. To the best of our knowledge, this work is the first to address the
task of longitudinal monitoring in patients with pulmonary hypertension.

1 INTRODUCTION

Pulmonary hypertension is a chronic and progressive disease estimated to affect around 1% of the
global population (Hoeper et al., 2016). It is characterized by high pressures in the pulmonary vas-
culature (blood vessels of the lungs) and is formally defined by a mean pulmonary artery pressure
(mPAP) greater than 20 mmHg (Humbert et al., 2022). If the disease is not well-controlled by med-
ications, it can lead to right heart failure and premature death. As a result, repeated hemodynamic
evaluations (measuring pulmonary artery pressures) are crucial for the diagnosis and long-term mon-
itoring and management. Currently, the gold standard for measuring these pressures is right heart
catheterization (RHC), an invasive procedure that involves threading a catheter through a major vein
in the body to the heart. This procedure entails risk, must be performed in a hospital setting, and is
limited to hospitals that have a catheterization suite and trained personnel.

In recent years, deep learning approaches have shown promise in assessing cardiac hemodynamics
from non-invasive data modalities. For instance, Tripathi et al. (2024) used cardiac magnetic reso-
nance imaging and information from electronic health records (EHR) and Suvon et al. (2024) used
electrocardiograms (ECG) and chest x-rays to detect elevated mean pulmonary capillary wedge
pressures (mPCWP) for heart failure patients. For assessing pulmonary hypertension, Zhao et al.
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Figure 1: Clinical impact of our proposed work.

(2025) used a combination of tabular and textual data from EHRs along with chest x-rays while Liu
et al. (2024b) used ECGs and chest x-rays to diagnose pulmonary hypertension. These methods,
however, focus on identifying patients who have pulmonary hypertension (the diagnosis task) rather
than longitudinally following patients who are known to have elevated pulmonary pressures.

In patients with pulmonary hypertension, the mPAP rarely normalizes, even with appropriate ther-
apy. The goal in these patients is therefore to reduce the pulmonary pressure as much as possible in
an attempt to prevent disease progression. Routine care therefore typically involves repeated RHCs
to assess changes in the mPAP as therapy is adjusted (Figure 1). For effective longitudinal moni-
toring in patients with known pulmonary hypertension, rather than detecting elevated pressures, we
propose a method to detect whether the mPAP has increased from its baseline value at any given
point in time. As an increase in mPAP reflects disease progression, methods that identify such in-
creases would directly influence therapy without the need for repeated invasive procedures. We
envision the impact of our work to be as illustrated in Figure 1.

Our approach leverages ECGs to enable cheap, accessible, and outpatient or at-home monitoring,
without the need for in-person hospital visits. In particular, we leverage single lead (Lead I) ECGs
for its convenience and widespread availability in wearable and handheld electronic devices. We
develop a flexible approach that can use ECGs as a single modality, when only ECGs are available,
or use a combination of ECGs and cardiac ultrasound data, when both modalities are available.

The main contributions of this work are:

• We propose an ECG-based method, which we refer to as PHAROS (Pulmonary
Hypertension Assessment fROm ECG Signals), and a multi-modal ECG and
echocardiography-based method, PHAROS+, for detecting pulmonary hypertension pro-
gression. To the best of our knowledge, our work is the first to address the task of longitu-
dinal monitoring in patients with pulmonary hypertension.

• We evaluate the model on two independent datasets and demonstrate that strong perfor-
mance is maintained despite a dataset shift.

2 RELATED WORK

Data modalities for ML-based non-invasive pulmonary hypertension assessment. Prior studies
suggest that echocardiograms (echo) can be used to estimate pulmonary artery pressure (Yock &
Popp, 1984), and hence it can be used to follow patients with pulmonary hypertension (Humbert
et al., 2022). However, measurements from cardiac ultrasound require a trained sonographer, and
can vary depending on their skill level as well as the quality of the echocardiographic images ob-
tained. As a result, estimates of pulmonary artery pressure from echos have large errors (Fisher
et al., 2009; D’Alto et al., 2013; Slegg et al., 2021; Janda et al., 2011), making them unreliable
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for long-term monitoring and therapeutic decision-making. Some machine learning methods have
been introduced as attempts to improve the accuracy of echocardiography-guided estimates of pul-
monary artery pressures (Anand et al., 2024; Salehi et al., 2025; Leha et al., 2019), while others
have leveraged other data modalities, including cardiac magnetic resonance imaging (Cheng et al.,
2025; Swift et al., 2020), computed tomography pulmonary angiography (Xie et al., 2025; Sharkey
et al., 2022), and chest x-rays (Huang et al., 2025). Combinations of multiple modalities have also
been explored, such as tabular, textual, and x-ray (Zhao et al., 2025) or ECG and x-ray (Liu et al.,
2024b). Disadvantages of these methods are that they primarily address the diagnosis task and they
require patients to make an in-person visit to a hospital or imaging center to obtain the scans. Other
methods have used only readily available data such as electronic health records (Kogan et al., 2023),
phonocardiograms (Guo et al., 2025), and ECGs (DuBrock et al., 2024; Raghu et al., 2023a; Aras
et al., 2023; McLean et al., 2025; Suvon et al., 2025) to diagnose pulmonary hypertension. The goal
of our work is also to use readily available data, primarily ECGs, to enable outpatient or at-home
monitoring. Our method is flexible in the sense that it can be used when only an ECG available
and when both ECG and echocardiographic measurements are available. Moreover, instead of ad-
dressing the diagnosis task as done by prior work, our proposed method aims to identify disease
progression.

Non-invasive hemodynamics assessment from ECG. ECGs have been widely used in non-
invasive, deep learning-based health assessment, including detecting demographics and health con-
ditions (Abbaspourazad et al., 2024), sleep stages and disorders (Thapa et al., 2024), cardiac ar-
rhythmias (Hannun et al., 2019; Liu et al., 2024a), heart attacks (Acharya et al., 2017), heart failure
(Acharya et al., 2019), and hemodynamic abnormalities in patients with heart failure (Schlesinger
et al., 2022; 2025; Raghu et al., 2023b) or pulmonary hypertension (Schlesinger et al., 2022;
DuBrock et al., 2024; Aras et al., 2023; McLean et al., 2025; Suvon et al., 2025; Sadrawi et al.,
2021). The hemodynamics assessment methods all aim to distinguish elevated from non-elevated
pressures according to a predefined pressure threshold. The performance of these methods for esti-
mating mPAP vary widely and, more importantly, these methods may not be useful for longitudinal
monitoring as patients with pulmonary hypertension rarely have pressures that fall within the nor-
mal range. Instead of diagnosis, a few other methods have introduced hemodynamics estimation as
regression tasks using physiologic signals as input (Klein et al., 2025; Jeong et al., 2023; Sadrawi
et al., 2021). Klein et al. (2025) and Jeong et al. (2023) present methods that regress mPCWP
and Sadrawi et al. (2021) regress mPAP. However, regression errors exceed variability in the RHC
(Melillo et al., 2020) and clinically significant changes in pressure, making these methods unreliable
for long-term monitoring. In contrast to prior work, we use ECGs to classify disease progression in
pulmonary hypertension for the purpose of long-term monitoring and management.

3 METHOD

A RHC that definitively measures an elevated mPAP is required to make the diagnosis of pulmonary
hypertension. Consequently, virtually all patients who have this diagnosis have had at least one RHC
(Humbert et al., 2022). Using a dataset consisting of paired ECG and mPAP measurements from a
RHC, our task is therefore to develop a method that uses ECGs to non-invasively determine whether
there has been an increase in mPAP over time, thereby circumventing the need for repeated invasive
procedures (Figure 1).

3.1 PROBLEM FORMULATION

We formulate the pulmonary hypertension monitoring problem as an optimization problem where
the goal is to estimate the probability distribution of disease progression at time tj relative to pre-
vious time ti. More precisely, we estimate p(Yij |si, sj ,mi,∆t, fj) ∈ [0, 1], where Yij ∈ {0, 1} is
a binary label denoting whether the disease has progressed (i.e., the mPAP has increased) between
times ti and tj . We define disease progression as an increase in mPAP that is larger than a certain
threshold. That is, the ground truth label Y gt

ij = 1 when ∆mPAP = mj −mi > threshold

The time of the initial RHC and ECG is ti; ∆t = tj − ti > 0, is the time interval between the initial
ECG at time ti, and the current ECG at time tj ; si is the initial ECG obtained at time ti; sj is the
current ECG obtained at time tj ; mi is the known mPAP acquired via RHC at the time ti; mj is the

3
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Figure 2: Overview of PHAROS (dashed box) and PHAROS+ (solid box). Merging arrows denote
concatenation. Our models take two ECGs, si and sj , corresponding to time points ti and tj , respec-
tively, the baseline mPAP mi corresponding to the first ECG, and the time gap ∆t = tj − ti > 0. In
PHAROS+, we also input a vector of echo features fj corresponding to the most recent echo relative
to tj . The embeddings of all the inputs are concatenated and passed to a final MLP to output the
final prediction of disease progression.

mPAP at time tj ; fj represents additional features of the patient corresponding to time tj . In this
work, fj represents measurements from the echo most recent to time tj if available for the patient.

3.2 MODEL ARCHITECTURE

Our model architecture consists of an encoder that individually encodes si and sj , corresponding to
two different time points, an encoder for the baseline mPAP mi, and an encoder for the time gap
between the ECGs ∆t. We refer to this model as PHAROS. We additionally explore including echo
measurements for patients who have echos, train a separate model, and compare performance. The
model trained with echo parameters is referred to as PHAROS+. An overview of our architecture is
shown in Figure 2.

Encoding ECGs. As input to our model, we use Lead I ECGs due to its convenience and availability
on at-home and wearable health monitoring devices. Given two Lead I ECGs si and sj from two
different time points ti and tj , respectively, we encode each ECG using a ResNet-inspired (He et al.,
2016) 1D convolutional neural network (CNN). We use the same encoder weights for both ECGs.
The embeddings of si and sj from the ECG encoder are concatenated and fed to a multi-layer
perceptron (MLP) to fuse the embeddings.

Encoding the baseline mPAP mi and time gap ∆t. The baseline mPAP mi and time gap ∆t are
each input to their own MLPs to obtain embeddings of each value. Prior to training, the mPAP
values are normalized to have zero mean and unit variance in the training dataset. The values of ∆t
are scaled to be in units of months.

Encoding echo measurements as optional features. We train a version of our model, PHAROS+,
that optionally takes echo measurements as input when they are available for a patient. Each feature
type in the vector is normalized across the dataset to have zero mean and unit variance. Not all
patients have echos, and not all measurements are taken for the patients that do have echos. As a
result, there can be missing values. To account for this, we vectorize all possible features and fill in
missing values with zeros. We concatenate the features with a mask that identifies which elements
are missing. The result forms the echo input fj , which is passed through a MLP to obtain an echo
embedding.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Classifying disease progression. Finally, for determining disease progression, the fused ECG em-
bedding, the embeddings of mi and ∆t, and the echo embedding (for PHAROS+) are concatenated
and fed to a MLP that outputs the estimated probability of disease progression at tj . For the training
loss, we use the binary cross-entropy loss.

4 EXPERIMENTS

4.1 DATASETS

To train our model, a large source of time-aligned Lead I ECGs and mPAP measurements is required.
Although obtaining ECGs is typically routine procedure in preparation for RHCs, the ECG and RHC
are not done at the exact same time and could even be weeks apart. This data would have noisy
ground truth labels due to inherent variability in mPAP even within the same day (Rich et al., 1985)
or hour (Melillo et al., 2020). Therefore, large quantites of such well-aligned data is difficult to
obtain from the RHC procedures done in a catheterization lab of a hospital. Alternatively, patients
are sometimes admitted to intensive care units (ICU) with a pulmonary artery catheter left inside
the pulmonary artery to continuously monitor the mPAP in real-time. Essentially all ICU patients
also have continuous ECG monitoring. We therefore take advantage of this ICU data to train our
model. In our experiments, we verify that our model performance is maintained at larger time gaps
by evaluating on the subsets of data corresponding to longer ICU stays.

Massachusetts General Hospital (MGH) Dataset. We train, validate, and test our model on a
large private dataset from MGH. This dataset consists of waveform data recorded from ICU bedside
monitors, including Lead I ECG and pulmonary artery pressure waveforms. There are also echo
measurements for patients that had echos. More details about the echos are described in Appendix
A. We randomly split the dataset by patient into 80%, 10%, and 10% splits for training, validation,
and testing, respectively.

MIMIC-III Waveform Database (Moody et al., 2020; Johnson et al., 2016). We externally evalu-
ate our model on the publicly available MIMIC-III Waveform Database from PhysioNet (Goldberger
et al., 2000). This dataset was collected from ICUs at Beth Israel Deaconess Medical Center. We
use the subset of recordings that contain aligned Lead I ECG and pulmonary artery pressure wave-
forms. There are no echo measurements in this dataset, so when evaluating PHAROS+, we input
fully masked vectors.

4.2 DATA PRE-PROCESSING

We prepare the data by splitting up aligned continuous Lead I ECG and pulmonary artery pressure
waveforms into 10-second segments, the standard duration of outpatient ECGs (Sattar & Chhabra,
2023). The aligned waveforms are then filtered to ensure they have good signal quality and align-
ment, and poor quality waveforms are discarded. Further details are discussed in Appendix B. The
ECGs in the MGH dataset have a frequency of 120 Hz or 240 Hz and those in the MIMIC-III dataset
have a frequency of 125 Hz. Prior to inputting ECGs to our model, they are upsampled such that
si, sj ∈ R4096. The statistics of both datasets after pre-processing are shown in Table 1.

For validation and testing on the MGH dataset and for external evaluation on MIMIC-III, the pairs
of ECGs, si and sj , are randomly sampled offline and saved to ensure we evaluate on the exact
same pairs each time. During training, we randomly sample different pairs in an online fashion,
allowing pairs to vary at each epoch to make full use of the large training data. We validate every
approximately 5.4 million pairs sampled across all ICU stays and refer to this as one epoch. For
all data splits, ECGs in a sampled pair always come from the same ICU stay and the number of
sampled pairs per ICU stay is proportional to its duration. We compute the mPAPs mi and mj from
the aligned pulmonary artery pressure waveform corresponding to si and sj , respectively.

4.3 IMPLEMENTATION, TRAINING, AND EVALUATION DETAILS

Implementation. The ECG encoder is a 1D CNN that begins with a convolutional layer of size (1,
64) followed by a residual block of size (64, 256) and a global pooling layer, leading to embeddings
of si and sj that have a size of 256 each. The two embeddings are concatenated and a two-layer
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MGH Dataset MIMIC-III

# patients 7894 N/A
# ICU stays 8213 295

# 10-sec aligned Lead I ECG and mPAP 63.3 million 1.1 million
Average aligned waveform duration per ICU stay 1.7 days 0.7 days

# patients with echos 3885 N/A
# ICU stays with echos 4121 N/A

# echos 7993 N/A

Age (years, mean ± std) 64 ± 14 N/A
Sex (female, %) 30.3% N/A

Table 1: Statistics of the parts of the MGH and MIMIC-III Waveform (Moody et al., 2020) datasets
that contain aligned Lead I ECG and pulmonary artery pressure waveforms. Numbers shown corre-
spond to the data after pre-processing.

MLP with layer sizes of (512, 256) is used to combine them into an embedding of size 256. The
MLPs for mi and ∆t have the same architecture. Both are two-layer MLPs with layer sizes of (32,
32) that map their respective scalar inputs to embeddings of size 32. The echo inputs consist of 57
measurements and a mask of the same size to indicate missing values. They are concatenated to
give fj ∈ R114. The MLP that embeds fj consists of two layers with sizes of (64, 32), yielding an
embedding of size 32. Finally, all the embeddings are concatenated and fed to a three-layer MLP
with layer sizes (256, 256, 1) to obtain the final classification. More details about the architecture
are presented in Appendix C.

Measurements of mPAP are generally presumed to have inherent variability, so small increases in
mPAP should not be considered disease progression. In fact, Melillo et al. (2020) have shown that
the standard deviation of differences between two mPAP measurements in a single RHC procedure
is 3.9 mmHg. Considering this, we use a ∆mPAP threshold of 4 mmHg to define the ground truth
positive class. That is, for every ECG pair corresponding to ∆mPAP > 4 the ground truth label
is Y gt

ij = 1. This threshold results in a positive class prevalence of 0.1990 in the MGH dataset and
0.1841 in MIMIC-III.

Training. We train our models using binary cross-entropy loss and the AdamW optimizer
(Loshchilov & Hutter, 2019) with a batch size of 256, learning rate of 1 × 10−6, and weight de-
cay of 0.01. Each model is trained for 20 epochs or until the validation loss converged as defined by
early stopping after at least 5 epochs. Models were trained on a single NVIDIA RTX A6000 GPU,
with training time taking around 32 hours. We use the validation AUC to select the best model and
report results on the test split of the MGH dataset and externally evaluate on MIMIC-III.

Evaluation. We evaluate our models on several common binary classification metrics, includ-
ing Area Under the Receiver Operating Characteristic Curve (AUC), Brier score, Area Under the
Precision-Recall Curve (AUPRC), positive predictive value (PPV, also known as precision), and
negative predictive value (NPV). The probability threshold used to binarize model outputs for the
PPV and NPV was the threshold corresponding to a sensitivity (also known as recall or true positive
rate) of 80%, as commonly done in related work (Schlesinger et al., 2022; Raghu et al., 2023b). To
calculate statistical measures of uncertainty for all metrics, sets of inputs were randomly drawn with
replacement from the test set to produce 10 bootstrapped datasets with equal size to the original test
dataset. The reported errors represent one standard deviation computed using the results across the
10 bootstraps.

Baseline Comparison. We compare PHAROS and PHAROS+ to the current non-invasive standard
for longitudinal monitoring – pressure estimation using echo data (Humbert et al., 2022). In an
echo, the peak velocity of tricuspid regurgitation (the abnormal backflow of blood from the right
ventricle to the right atrium) can be often be measured in patients with pulmonary hypertension.
This velocity is used to compute the pressure gradient between the right atrium and ventricle using
gi = 4v2i , where gi is the pressure gradient and vi is the peak tricuspid regurgitation velocity from
the echo at time ti (Yock & Popp, 1984). From this, the pulmonary artery systolic pressure (PASP),
which is approximately equal to the right ventricular systolic pressure (RVSP), can be computed as
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PASPi ≈ RV SPi = gi + RAP , where RAP is the pressure in the right atrium. RAP cannot be
measured on an echo, so a constant value is commonly assumed and simply added to g to estimate
RV SP . Likewise, we assume that RAP is some constant and does not change in time. Therefore,
given two velocities vi and vj from ti and tj , respectively, we can compute the change in PASP
as ∆PASP = PASPj − PASPi = (gj + RAPj) − (gi + RAPi) = gj − gi. To convert
∆PASP to ∆mPAP we use the widely accepted equation proposed by Chemla et al. (2004) to
get ∆mPAP = 0.61 × ∆PASP . To compute the binary classification metrics described above,
we use sigmoid(∆mPAP - thresh) to convert our computations to probabilities, where
thresh=4 is the ∆mPAP threshold used to define the positive class.

5 RESULTS AND DISCUSSION

5.1 EVALUATION ON THE MGH DATASET

Our results on the MGH dataset are shown in Table 2. PHAROS achieves a strong performance,
significantly outperforming the echo baseline on all metrics. In PHAROS+, by including echo data
when available, the AUC, Brier score, AUPRC, and PPV improve. This shows that echo measure-
ments can help the model achieve better performance when it is available. The NPV of PHAROS+
decreases slightly compared to PHAROS, but remains significantly higher than the echo baseline.
Overall, our method significantly outperforms the current standard for non-invasive longitudinal
monitoring. We also note that the performance of PHAROS+ when only using ECG data (i.e.,
masking out echo data for all inputs) is similar to the performance of PHAROS which was trained
without echo.

Model Eval Inputs AUC (↑) Brier (↓) AUPRC (↑) PPV (↑) NPV (↑)

Echo Baseline – 0.5147 ± 0.0789 0.2523 ± 0.0256 0.1932 ± 0.0676 0.1765 ± 0.0390 0.8750 ± 0.0720

PHAROS ECG 0.7803 ± 0.0010 0.1312 ± 0.0003 0.4932 ± 0.0023 0.3289 ± 0.0010 0.9236 ± 0.0006

PHAROS+ ECG only 0.7809 ± 0.0009 0.1307 ± 0.0002 0.4895 ± 0.0021 0.3267 ± 0.0010 0.9235 ± 0.0005

PHAROS+ ECG + Echo 0.7827 ± 0.0009 0.1296 ± 0.0002 0.4979 ± 0.0019 0.3305 ± 0.0009 0.9211 ± 0.0004

Table 2: Performance of PHAROS and PHAROS+ on the MGH dataset. (↑ indicates higher is better
and ↓ indicates lower is better.)

5.2 EVALUATION ON THE MGH DATASET FOR LARGER TIME GAPS

We examine the effect of large time gaps on performance. Plots for PHAROS and PHAROS+ are
shown in Figure 3. In general, the models maintain strong performance and slightly improves, albeit
with larger standard error, as the time gap increases up to a duration of 45 days. This is a promising
finding, as it indicates the potential for PHAROS and PHAROS+ to perform well on larger time
gaps beyond the span of typical ICU lengths of stay.

Figure 3: AUC for 0 < min(∆t) <= 45 on the MGH dataset for PHAROS (left) and PHAROS+
(right).

7
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5.3 EXTERNAL EVALUATION ON THE MIMIC-III WAVEFORM DATABASE

In our previous analysis (Table 2), we found that when given ECGs only, PHAROS+ has a similar
performance to PHAROS on our internal dataset, and when echo data is available, PHAROS+ per-
forms better. PHAROS+ would therefore be the model to use in practice, so we focus on this model
for external evaluation. We use the MIMIC-III Waveform Database (Moody et al., 2020), which was
collected from a different hospital, to verify that performance translates to other patient populations.
The waveforms in MIMIC-III do not have associated echo measurements, so we can only evaluate
PHAROS+ using ECGs and need to fully mask the input vector fj . Our results are shown in Table 3.
We find that despite a performance gap, our model still performs well with an AUC above 0.7 and a
slight increase in NPV. These results demonstrate good generalization to unseen data distributions.

Dataset Eval Inputs AUC (↑) Brier (↓) AUPRC (↑) PPV (↑) NPV (↑)

MGH ECG only 0.7809 ± 0.0009 0.1307 ± 0.0002 0.4895 ± 0.0021 0.3267 ± 0.0010 0.9235 ± 0.0005

MIMIC-III ECG only 0.7052 ± 0.0007 0.1649 ± 0.0002 0.3145 ± 0.0011 0.2375 ± 0.0006 0.9550 ± 0.0004

Table 3: Performance of PHAROS+ on MIMIC-III compared to MGH. (↑ indicates higher is better
and ↓ indicates lower is better.)

6 CONCLUSION

In this work, we proposed a multi-modal approach that uses ECGs and echos for addressing the novel
task of non-invasively identifying pulmonary hypertension progression, defined by an increase in
mPAP between two timepoints of ∆mPAP > 4 mmHg. The performance of PHAROS, trained us-
ing only ECGs, was improved upon by PHAROS+, which used ECGs and was also able to incorpo-
rate echo data when available to boost performance. Our models demonstrated strong performance
across various metrics, even for time gaps of up to 45 days. The discriminatory ability of PHAROS
and PHAROS+ is significantly above what is obtained used echocardiographic measurements alone.
Indeed, the AUC for the estimating pulmonary artery pressures using echocardiography is close to
random (0.5), suggesting that this is not reliable method for estimating changes in pulmonary artery
pressures. By contrast, our results argue that more reliable estimates of pulmonary artery pressure
changes can be obtained with single-lead ECG signals, which do not require a highly trained opera-
tor for data acquisition. The inadequacy of echocardiographic information for assessing changes in
pulmonary artery pressures is further highlighted by the fact that the PHAROS+, which uses ECG
and echo data, has only modest improvement over PHAROS, which only uses ECG data.

External validation of PHAROS+ on the MIMIC-III Waveform Database demonstrated good dis-
criminatory ability, albeit worse than what was observed in the MGH dataset. Nevertheless, the
NPV (at a threshold corresponding to 80% recall) remains strong (> 95%) in this cohort. The high
NPVs in both the MGH and MIMIC datasets argue that a negative result from PHAROS/PHAROS+
does not suggest that corresponding pulmonary artery pressure is elevated, at a threshold that ensures
a true positive rate of 80%.

REFERENCES

Salar Abbaspourazad, Oussama Elachqar, Andrew Miller, Saba Emrani, Udhyakumar Nallasamy,
and Ian Shapiro. Large-scale training of foundation models for wearable biosignals. In ICLR,
2024.

U Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, and Muhammad
Adam. Application of deep convolutional neural network for automated detection of myocardial
infarction using ecg signals. Information Sciences, pp. 190–198, 2017.

U Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muhammad Adam,
and Ru San Tan. Deep convolutional neural network for the automated diagnosis of congestive
heart failure using ecg signals. Applied Intelligence, 49:16–27, 2019.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Vidhu Anand, Alexander D. Weston, Christopher G. Scott, Garvan C. Kane, Patricia A. Pellikka,
and Rickey E. Carter. Machine learning for diagnosis of pulmonary hypertension by echocardio-
graphy. Mayo Clinic Proceedings, 99(2):260–270, 2024.

Mandar A. Aras, Sean Abreau, Hunter Mills, Lakshmi Radhakrishnan, Liviu Klein, Neha Mantri,
Benjamin Rubin, Joshua Barrios, Christel Chehoud, Emily Kogan, Xavier Gitton, Anderson
Nnewihe, Deborah Quinn, Charles Bridges, Atul J. Butte, Jeffrey E. Olgin, and Geoffrey H.
Tison. Electrocardiogram detection of pulmonary hypertension using deep learning. Journal of
Cardiac Failure, 29(7):1017–1028, 2023.

Denis Chemla, Vincent Castelain, Marc Humbert, Jean-Louis Hébert, Gérald Simonneau, Yves
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A ECHO PARAMETERS

To train PHAROS+, we incorporated the echo parameters shown in Table 4. This table also shows
the number of times each feature appeared in our dataset. When a parameter had more than one
value recorded within a single echo procedure, the mean of the values was used as input.

B FILTERING ECGS AND PULMONARY ARTERY PRESSURE WAVEFORMS
FOR QUALITY AND ALIGNMENT

Both the MGH and MIMIC-III datasets consisted of raw waveforms obtained from ICU bedside
monitors. These waveforms can be noisy due to external factors such as motion from the patient
or other artifacts. Sometimes patients could be disconnected from the monitor resulting in a flat or
nonsensical signal. As a result, after separating the continuous waveforms into 10-second segments,
we processed the data as follows:

• We removed all segments where the magnitude of the ECG voltage exceeded 5 mV or the
max - min voltage was less than 0.1 mV.

• We removed all segments where the mPAP computed from the pulmonary artery pressure
(PAP) waveform exceeded 80 mmHg, the minimum of the waveform was less than −10
mmHg, the mPAP was less than 0, the pulse pressure (max - min) was greater than 80, or
the pulse pressure was less than 2 mmHg.

• We removed all segments where the number of peaks in the ECG did not match that of the
PAP waveform.

1. We performed R-peak detection on the ECG segment using NeuroKit2, specifically
the ecg clean and ecg peaks functions with the default keyword arguments.

2. For the PAP waveform, we used the function scipy.signal.find peaks()
with keyword arguments prominence=10 and distance=sampling rate /
4, where sampling rate is the signal frequency in each dataset and 4 is an estimate
of the maximum possible beats per second obtained from 240 beats per minute divided
by 60 seconds per minute.

3. If the difference in number of peaks between the ECG and PAP waves exceeded 1, we
discarded the segment.

• We removed all segments where the mPAP range was too large.
1. We found the R-peaks in the ECG as previously described.
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Measurement Count

AORTIC SINUS INDEX POST 1 11946
RIGHT ATRIUM INDEX MEDIAL-LATERAL (1) 8795

BODY SURFACE AREA (1) 7528
EJECTION FRACTION (1) 7499

LEFT VENTRICLE INTERNAL DIAMETER END DIASTOLE (1) 7447
LEFT VENTRICLE INTERNAL DIAMETER END SYSTOLE (1) 7390
LEFT VENTRICLE EJECTION FRACTION - QUINES RAW (1) 7389

INTERVENTRICULAR SEPTUM THICKNESS (1) MM 7260
LEFT VENTRICLE POSTERIOR WALL THICKNESS (1) MM 7259

LEFT ATRIUM DIMENSION ANTERIOR-POSTERIOR (1) 6640
LEFT VENTRICLE APICAL CONTRIBUTION (1) 5949

WEIGHT 5929
HEIGHT 5914

PHS CV ECHO AV SINUS INDEX 1 5806
ASCENDING AORTA DIAMETER (1) MM 5173

RIGHT ATRIUM PRESSURE ESTIMATED (1) 5096
RIGHT VENTRICLE TO RIGHT ATRIUM PRESSURE GRADIENT (1) 4995

TRICUSPID VALVE PEAK VELOCITY (1) 4995
RIGHT VENTRICLE PEAK SYSTOLIC PRESSURE (1) 4966

ASCENDING AORTA INDEX 1 4902
ASCENDING AORTA INDEX POST 1 4902

LEFT ATRIUM DIMENSION SUPERIOR-INFERIOR (1) MM 4567
LEFT ATRIUM DIMENSION MEDIAL-LATERAL (1) MM 4537
RIGHT ATRIUM DIMENSION SUPERIOR-INFERIOR (1) 4533

RIGHT ATRIUM INDEX SUPERIOR-INFERIOR POST 4340
RIGHT ATRIUM INDEX SUPERIOR-INFERIOR (1) 4340
RIGHT ATRIUM INDEX MEDIAL-LATERAL POST 4301
RIGHT VENTRICLE LINEAR DIMENSION (1) MM 3451

LEFT ATRIAL VOLUME (1) 2652
LEFT ATRIAL VOLUME INDEX (1) 2632

INFERIOR VENA CAVA DIAMETER (1) MM 1877
LEFT VENTRICULAR OUTFLOW TRACT VELOCITY (1) 1300

RIGHT VENTRICLE PULSE DOPPLER S WAVE (1) 1284
RIGHT VENTRICLE TAPSE (1) 1251

AORTIC VALVE PEAK GRADIENT (1) 810
AORTIC VALVE MEAN GRADIENT (1) 780
MITRAL VALVE PEAK GRADIENT (1) 737
MITRAL VALVE MEAN GRADIENT (1) 734

AORTIC VALVE PROSTHETIC PEAK GRADIENT (1) 640
AORTIC VALVE PROSTHETIC MEAN GRADIENT (1) 635

MITRAL VALVE GRADIENT HR (1) 614
LEFT VENTRICULAR OUTFLOW TRACT DIAMETER (1) 359

AORTIC VALVE AREA (1) 320
AORTIC VALVE AREA INDEX (1) 298

RIGHT VENTRICLE BASAL DIAMETER (1) 281
MITRAL VALVE PROSTHETIC MEAN GRADIENT (1) 280
MITRAL VALVE PROSTHETIC PEAK GRADIENT (1) 280

RIGHT VENTRICLE FRACTIONAL AREA CHANGE (FAC) (1) 271
PERICARDIUM EFFUSION DIMENSION 1 (1) MM 261

AORTIC VALVE DISTANCE TO CANNULA TIP MM 249
TRICUSPID VALVE PROSTHETIC MEAN GRADIENT (1) 207
TRICUSPID VALVE PROSTHETIC PEAK GRADIENT (1) 207

LEFT VENTRICULAR OUTFLOW TRACT TIME VELOCITY INTEGRAL (1) 156
PULMONARY ARTERY MAIN - DIMENSION (1) 137

PERICARDIUM EFFUSION DIMENSION 2 (1) MM 126
PULMONARY ARTERY RIGHT - DIMENSION (1) 121
PULMONARY ARTERY LEFT - DIMENSION (1) 108

Table 4: Echo measurements used in PHAROS+ and the number of measurements for each feature
across the full dataset.
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2. Using the indices of a consecutive pair of R-peaks, we found the corresponding sec-
tions in the PAP waveform. Each section corresponds to the PAP wave for one heart
beat.

3. Using the PAP waveform sections, we computed the mPAP for each heart beat.
4. If any of the mPAPs were outside the range of ±3σmPAP , where σmPAP is the stan-

dard deviation, we discarded the segment.
• We removed all segments where the systolic PAP, diastolic PAP, and mPAP were inconsis-

tent.
1. We found the R-peaks in the ECG as previously described.
2. Using the indices of a consecutive pair of R-peaks, we found the corresponding sec-

tions in the PAP waveform. Each section corresponds to the PAP wave for one heart
beat.

3. Using the PAP waveform sections, we computed the mPAP and systolic and diastolic
PAPs for each heart beat.

4. If any heart beat had a corresponding systolic PAP less than or equal to the mPAP or
diastolic PAP greater than or equal to the mPAP, the segment was discarded.

C MODEL ARCHITECTURE

The detailed architecture of PHAROS+ is shown below. PHAROS follows the same architecture, but
without the MLP encoding the echo parameters, and with a MLP decoder that takes in 320 features
instead of 352.

1 PHAROSPlus(
2 (encoder): ECGPairPADeltatEncoder(
3 (ecg_encoder): CNN1D(
4 (conv1): Conv1d(1, 64, kernel_size=(17,), stride=(1,), padding=same

, bias=False)
5 (bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
6 (res_blocks): ModuleList(
7 (0): ResidualBlock(
8 (conv1): Conv1d(64, 256, kernel_size=(17,), stride=(1,),

padding=same, bias=False)
9 (bn1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
10 (conv2): Conv1d(256, 256, kernel_size=(17,), stride=(12,), bias

=False)
11 (bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
12 (pool): MaxPool1d(kernel_size=12, stride=12, padding=0,

dilation=1, ceil_mode=False)
13 (identity_layer): Conv1d(64, 256, kernel_size=(1,), stride=(1,)

, bias=False)
14 )
15 )
16 (global_avg_pool): AdaptiveAvgPool1d(output_size=1)
17 )
18 (ecg_fuser): Sequential(
19 (0): Linear(in_features=512, out_features=512, bias=True)
20 (1): ReLU()
21 (2): Dropout(p=0.4, inplace=False)
22 (3): Linear(in_features=512, out_features=256, bias=True)
23 )
24 (hemodynamics_encoder): Sequential(
25 (0): Linear(in_features=1, out_features=32, bias=True)
26 (1): ReLU()
27 (2): Dropout(p=0.4, inplace=False)
28 (3): Linear(in_features=32, out_features=32, bias=True)
29 )
30 (time_encoder): Sequential(
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31 (0): Linear(in_features=1, out_features=32, bias=True)
32 (1): ReLU()
33 (2): Dropout(p=0.4, inplace=False)
34 (3): Linear(in_features=32, out_features=32, bias=True)
35 )
36 (echo_parameters_encoder): Sequential(
37 (0): Linear(in_features=114, out_features=64, bias=True)
38 (1): ReLU()
39 (2): Dropout(p=0.4, inplace=False)
40 (3): Linear(in_features=64, out_features=32, bias=True)
41 )
42 )
43 (decoder): MLP(
44 (layers): Sequential(
45 (0): Linear(in_features=352, out_features=256, bias=True)
46 (1): ReLU()
47 (2): Dropout(p=0.4, inplace=False)
48 (3): Linear(in_features=256, out_features=256, bias=True)
49 (4): ReLU()
50 (5): Dropout(p=0.4, inplace=False)
51 (6): Linear(in_features=256, out_features=1, bias=True)
52 )
53 )
54 )

D MODEL PERFORMANCE AT DIFFERENT ∆mPAP THRESHOLDS

In this work, we define disease progression as an increase in mPAP greater than 4 mmHg and trained
our models with this threshold. In practice, however, other thresholds can be informative as well. For
instance, in some cases, an increase in mPAP can expected, such as when withdrawing medication
(e.g., due to adverse events). A model trained with a larger threshold could be useful for ruling out
increases in mPAP beyond a certain value. We studied the impact of the ∆mPAP classification
threshold on performance by training different PHAROS+ models with thresholds ranging from 0
to 7 mmHg. The results are plotted in Figure 4. As the threshold increases, AUC increases. This
is likely because larger changes in mPAP are more distinguishable in the ECGs, leading to better
performance.

Figure 4: AUC of PHAROS (left) and PHAROS+ (right) when trained at different ∆mPAP thresh-
olds. Error bars are present but are too small to see.

E ABLATION STUDY OF ∆t AND mi

An ablation study of ∆t and the baseline mPAP mi was conducted. The results are presented in
Table 5. We see that both ∆t and mi improved AUC, with mi contributing much more to the results
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than ∆t. This makes sense because the dataset we used to train our models consisted of ICU stays
with short time scales, an average duration of 1.7 days, as shown in Table 1. Within such close time
intervals, the baseline mi would be a stronger predictor of changes in mPAP than ∆t.

∆t mi AUC (↑) Brier (↓) AUPRC (↑) PPV (↑) NPV (↑)

✗ ✗ 0.6081 ± 0.0007 0.1567 ± 0.0003 0.2704 ± 0.0010 0.2281 ± 0.0005 0.8671 ± 0.0008

✓ ✗ 0.6101 ± 0.0009 0.1565 ± 0.0004 0.2720 ± 0.0015 0.2297 ± 0.0009 0.8681 ± 0.0006

✗ ✓ 0.7812 ± 0.0004 0.1299 ± 0.0003 0.5025 ± 0.0014 0.3315 ± 0.0012 0.9219 ± 0.0005

✓ ✓ 0.7827 ± 0.0009 0.1296 ± 0.0002 0.4979 ± 0.0019 0.3305 ± 0.0009 0.9211 ± 0.0004

Table 5: Ablation study of the ∆t and baseline mPAP (mi) model inputs in PHAROS+. The results
shown are for the MGH dataset. (↑ indicates higher is better and ↓ indicates lower is better.)
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