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Neurosymbolic decision-making agents inherit many of the critical transparency and
interpretability benefits of planning-based symbolic agents but also face one of their cen-
tral challenges: the Symbol Grounding Problem (SGP). Grounding hand-crafted symbolic
planning domains to percepts typically requires training models with extensive annotated
data which hinders their applicability to broader problems. In this work we propose Act-to-
Ground (A2G), a framework for training grounding models for symbolic planners with weak
supervision obtained through environment interaction or demonstrations. We first cast the
grounding problem as an inference problem and 1) use satisfiability-based planning to pro-
vide weak supervision to the grounding model by exploiting knowledge already built into
the planning domain, 2) propose an MCMC sampler that enables sampling weak labels for
grounding planners, 3) improve neurosymbolic grounding performance via a score-matching
objective and 4) propose a learnability condition for learning grounding models for planners.

1. Introduction

Neurosymbolic architectures that combine neural models with symbolic reasoning face a
difficult challenge already identified in cognitive modeling: the symbol grounding problem
(SGP) (Harnad, 1990; Wang et al., 2019; Yu et al., 2023). The SGP is the problem of
connecting the abstract symbols internal to reasoning systems such as symbolic planners
to subsymbolic percepts originating from outside the system. While this is a challenging
problem, the benefits of transparency and interpretability enjoyed by symbolic systems,
in conjunction with the successes of deep-learning models in computer-vision and other
domains have, in recent years, motivated efforts towards addressing the SGP by learning
deep models to ground symbols on perceptions. This allows for the construction of hybrid
systems with perception and reasoning components that can be independently evaluated,
verified and modified if necessary.

An important area of application for symbol grounding models is in grounding symbolic
decision-making systems such as planners. Grounding these systems to sub-symbolic obser-
vations can greatly expand the applicability of symbolic planners, but training grounding
models for planners is hard due to the need of labeled examples of environment states (Lv
et al., 2022; Huang et al., 2019). To mitigate the data scarcity, many approaches forgo su-
pervision altogether and learn to plan in expressive latent-spaces in an unsupervized manner
Asai (2019); Asai and Fukunaga (2018); Xu et al. (2019); Barbin et al. (2022); Hafner et al.
(2022); Umili et al. (2021). While they can learn to plan effectively, these methods typically
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lose interpretability and transparency in decision making as planning no longer takes place
in interpretable human-designed planning domains.

In practical applications such as robotics, grounding planners to sub-symbolic percep-
tions is crucial to enable high-level task planning. In those applications, the SGP is often
tackled by a combination of pre-trained models for related tasks such as object detection
Martinez-Martin and Del Pobil (2020); Mallick et al. (2018) and manually constructed
heuristics which can work in controlled environments but require extensive engineering ef-
forts to construct. A related well-studied problem is grounding natural language utterances
and resolving object references using images and 3D point clouds Prabhudesai et al. (2019);
Achlioptas et al. (2020); Hsu et al. (2023); Hong et al. (2023). The problem is distinct from
grounding planning systems however, as human-specified planning domains are not neces-
sarily expressed in natural language and can involve symbols that cannot be determined by
object detection alone.

In this work, we propose Act-to-Ground (A2G), a framework for training grounding
models for a symbolic planners without labeled data by exploiting the domain knowledge
already encoded within the planning domain in conjunction with weak supervision signals
obtained through environment interactions or observed trajectories. In summary, our con-
tributions are: 1) we use satisfiability-based planning (Kautz et al., 1992; Kautz and Selman,
2006; Gocht and Balyo, 2017) to enable learning grounding models for symbolic planners,
2) we propose an MCMC sampler with randomized projections to enable sampling weak
labels for grounding planning problems, 3) we improve grounding model performance via
a score-matching objective Meng et al. (2022) and 4) propose a learnability condition for
neurosymbolic symbol grounding of planning domains related to the learnability of weakly
supervised learning. We evaluate our approach on two proposed learning settings for these
neurosymbolic agents: learning by interaction and learning from demonstrations. We also
independently evaluate the efficacy of our score-matching objective by comparing to previ-
ous work on neurosymbolic learning.

2. Related Work

The SGP poses a major challenge for neurosymbolic systems, particularly because obtaining
annotated data to train models with full supervision can be prohibitively expensive. Recent
work on end-to-end neurosymbolic learning (Daniele et al., 2022; Wang et al., 2019; Garnelo
et al., 2016) where the symbolic reasoning system is learned directly from data also faces
the SGP (Chang et al., 2020; Topan et al., 2021). While these methods achieve impressive
results in learning hybrid neural and symbolic functions, it is difficult to interpret and verify
the correctness of components separately. In this work, we want to verify the correctness
of the perception component so that later changes to the symbolic components that do not
affect perception can be made without hurting the agent’s performance.

Focusing on planning problems, some systems learn discrete latent representations from
observations of state transitions and automatically construct planning domains in that la-
tent space (Asai, 2019; Asai and Fukunaga, 2018; Barbin et al., 2022; Umili et al., 2021),
eliminating the need to annotate observations with symbolic states. Related methods (Mao
et al., 2022; Umili et al., 2024) also focus on latent-space planning by learning structured
transition models jointly with symbol grounding from trajectories. While the latent-spaces
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learned can be effective for planning or reasoning, they can be difficult to interpret and make
decision-making difficult to modify after training. Other methods adopt fully neural archi-
tectures for planning in latent space (Hafner et al., 2022; Xu et al., 2019). These methods
circumvent the SGP by only operating on neural representations. While they show impres-
sive planning and generalization abilities, they also tend to lack sufficient transparency and
interpretability and it is not possible to separate the perception from the decision making
sub-systems.

One approach for learning grounding models using information from planning domains
uses observations of state transitions annotated with the actions that induced them (Migi-
matsu and Bohg, 2022) and derive weak labels for the grounding model using the action
preconditions and effects. While related to our work, we consider the more general prob-
lem of deriving weak supervision from entire plans derived either from interacting with
the environment or given as observations. Another line of work (Li et al., 2024; Huang
et al., 2021) learns grounding models for human-designed reasoning systems but they are
not directly applicable to planning problems. Also related are works on learning models
with constraints (Xu et al., 2018; Ahmed et al., 2022, 2023) but those methods typically
assume a fixed constraint set. By decoupling the constraint set from the neural model itself
we allow full flexibility to learn accurate grounding models and also allow for the trained
model to be used by different agents that rely on the same grounding.

Another approach is to use large-scale pretrained multi-modal models (Zhang et al.,
2023) to perform the grounding. These models, trained on natural image-caption pairs
show remarkable ability in providing natural language descriptions of natural scenes but
are typically not trained to produce fine-grained descriptions and thus may suffer in some
domains.

3. Method

In this section, we introduce A2G, a framework for learning grounding models for neu-
rosymbolic planning agents. We first describe how weak labels for the grounding model are
obtained via satisfiability-based planning and discuss two learning settings. We then formu-
late the grounding problem as statistical inference, relate it to weakly-supervised learning,
and introduce a novel MCMC sampler for weak label sampling along with a score-matching
objective used in A2G.

Neurosymbolic Grounding via SAT-based Planning We define a classical planning
domain as ¥ = (S,0, L), where S is the set of states, O the set of operators, and L the
set of fluents. A state s € S assigns values to all fluents [ € L, and planning operators
are specified by preconditions and effects (Russell and Norvig, 2016). In a neurosymbolic
planning task, instead of directly observing the initial state sg, the agent receives a low-level
representation x ~ p(x | sg) (e.g., an image) and a goal description s;,. The agent must
generate a plan P to reach a goal state from sg.

The goal is to recover sy from x using a learning model, where the initial state is
represented by a vectorized label assignment z € Z. The model is denoted as py(z | x).
The space Z is discrete, structured by the planning problem. For instance, in a maze
environment, z may encode attributes like agent location or wall positions, with entries z;
indicating specific states (e.g., z; = a means the agent is at cell ).
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Figure 1: Overview of the learning by interaction setting for A2G. Blue arrows indicate
the forward pass where the agent predicts a grounding and derives a plan to execute in the
environment from it. The green arrows indicate the backward pass, where feedback from the
environment is translated into constraints for the satisfiability-based planner, which in turn
provides weak labels for the grounding model. The maze in the example however contains
an area not reachable by any plans (red), making it impossible to distinguish between some
groundings.

A SAT-encoding of a planning task is a formula F' = encode(X, s,), where any satisfying
assignment to variables in F' corresponds to a valid plan. A subset of variables in F' repre-
sents sg, which must be inferred from input and environment interactions. The grounding
model predicts sy to determine these variables and generate a plan P. The agent receives
feedback y, which must be expressible as a constraint in F', such as verifying that executing
P led to the goal. Given F' and y, we define a constraint set C(y, P, F') C S such that
all sg € C are consistent with feedback y and planning constraints. Similarly, C constrains
labels z of raw input x. With a slight abuse of notation, we let C denote this constraint set
over z. Before discussing model training, we introduce two key methods for forming these
constraint sets.

Learning by Interaction: In this learning setting the neurosymbolic agent interacts
with the environment to obtain supervision for its grounding model. Upon receiving the
observation xg, the agent samples a z ~ py(z|x¢) from the model and attempts to find a
plan P. Otherwise it selects a random plan. It then executes the plan, observes y and forms
the set C. In different problems the environment feedback y can take different forms, such
as whether the plan P was successful. Future work can consider more sophisticated plan-
ning strategies that can use information from the grounding model or the structure of the
planning domain to obtain informative supervision. Figure 1 summarizes the information
flow in our architecture in this setting.

Learning From Demonstrations: In this learning setting, the neurosymbolic agent
observes a fixed dataset of trajectories D = {(x’, P?,y%),i = 1...n}. In other words, the
agent observes a fixed dataset of initial observations, plans and feedback for those plans. In
general, both successful and unsuccessful trajectories can be included in the dataset, as they
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can both be informative. As before, the agent can then form the set C* for each observed
(x', P y").

There are other ways to form constraint sets depending on the available supervision.
For instance in the special case where 1 step demonstrations are observed, the learning
setting is similar to Migimatsu and Bohg (2022). In the rest of the work we focus on the
two learning settings above.

3.1. Learning the grounding model

The problem of learning py(z|x) can be considered with weakly supervised learning since
we have partial information about the label z from its constraints. The problem has been
investigated by (Li et al., 2024). Here we give it a formal treatment from the perspective
of statistical inference. The model should maximize the probability of z € C.

max L£(0) = logZpg(z]x) (1)

0
zeC

The problem is nontrivial for general problems as it requires the enumeration of z from the
constraint set C. To overcome the difficulty, one method is to find a lower bound of the
log-likelihood. In the spirit of variational inference (Blei et al., 2017), we introduce another
distribution ¢(z|x,C) and then get a lower bound of the original objective

E, [log pg(z|x) — log ¢(z|x,C)] < L(6), (2)
which is the negative KL divergence from ¢ to pg. The bound is tight when

_polzlx) .
q(z\x,C) = { OEZEC pe (2]x) ifzeC (3)

O0.W.

We reach the same training objective as (Li et al., 2024) but from a different perspective.
Note that it is typically difficult to sample from the distribution ¢ when py is parameter-
ized by a neural network. We later discuss how we employ MCMC sampling from ¢ to
optimize the objective. This objective is well connected to the theory of weakly supervised
learning. As long as the distribution py(z|x) places zero probability outside of C for a given
X, it maximizes the objective in (1), which means the problem might be underdetermined.
Therefore, our hope is that multiple training instances provided by all (C,x) pairs could
provide sufficient information for learning the grounding model. We summarize the analysis
in the following theorem.

Learnability of neurosymbolic symbol grounding: Here we informally state a learn-
ability condition for the grounding model. A formal treatment in relation to the learnability
of weakly supervised learning is available in the appendix.

Theorem 1 (Informally) Neurosymbolic grounding for planning agents is learnable if for a
given initial state sog € S, the corresponding observation x € X and two possible groundings,
an incorrect z € Z and the correct z* € Z, an agent observes at least one piece of supervision
y (e.g. a successful plan) that is consistent with one grounding but not the other.
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In terms of the learning by interaction setting, if there are aspects of an environment
state sg that are never involved in any plan the agent may execute, then it is not possible
for the agent to determine the correct grounding for sp. In terms of the learning from
demonstrations setting, the source distribution of trajectories additionally needs to place
some probability to sampling such plans and feedback. Figure 1 displays one such case,
where it is not possible for the agent to form a plan that differentiates the inaccessible parts
of the maze.

3.2. Improving Training of Neurosymbolic Grounding Models via Score
Matching

Minimizing the KL-divergence in (2) trains grounding models but has limitations. If py
assigns mass outside C, the gradient becomes uninformative. This issue arises because
optimizing (2) w.r.t. 6 tends to make py cover ¢, a well-known effect. The problem worsens
in high-dimensional Z due to the curse of dimensionality. To address this, we introduce
a score-matching (SM) objective (Meng et al., 2022) that encourages py to stay within ¢’s
support, improving approximation and stabilizing training while efficiently reusing MCMC
samples. The score matching objective between the model py and the distribution q is:

Jsm (X, y) = IEz’,z~r(z|x) [d(z7 Z/7 X, C)]

/ /
polax) _ a(@}x.C)
Po(2[x) q(z[x,C)

We choose to use py(z|x) as the sampling distribution r, but we don’t need to consider the
gradient of # for sampling. Given the form of the optimal ¢ distribution in (3), if z’ and
z are both in C, then the objective is zero. If they both are outside of C, then ¢ has zero
probabilities for both of them, providing no information about the ratio in pg. We only
need to consider the case when one of them is in C and the other is not. Let z’ € C and
z € S\C. While technically ¢(z|x,C) is zero in this case, we encourage the model to have
a much larger probability at z’ than z. For example, the difference of log probability is a
large number w € R, say 1000. Then, we compute the loss:

(4)

d(z,7',x,C) = (log )2

e Po(Z]x) po(2z'|x)
o 2x:0) = 4 B @0 198 pEk S 5)
0, otherwise,
and form the proxy objective:
Jsm(0) =Byt prui) [1(Z € C N2z ¢ CO)l(2,2,%:0)] . (6)

The gradient for (6) w.r.t. 6 is easy to compute using automatic differentiation. To
get a sample z’ we can re-use samples from the ¢ distribution we obtain through MCMC
sampling, which will be discussed later. The sample z is obtained from the model py(z|x).
Initially, z is very likely to not be in C; when it is hard to draw a z ¢ C, it means py is
well trained. In the calculation, we check z against the constraint set C which is not very
computationally expensive in practice by making use of incremental SAT-solving (Gocht
and Balyo, 2017) to accelerate the computation.
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We combine the new score-matching training objective with the KL.-divergence objective.
Note that both objectives force py move toward the same optimal distribution (3).

~

min B, [~ log py(2}x)] + aJun (6) (7)

where « is a hyperparameter controlling the balance between the two terms. Here the
expectation with respect ¢ is estimated with a few MCMC samples from ¢. In the opti-
mization procedure, we often apply the annealing technique over g to improve the learning

performance: ¢(z|x,C) (pg(z\x))% for z € C. Here 7 can be annealed during training.

By improving the approximation of ¢ by pg, the auxiliary objective also helps improve
training consistency. This is because the gradient of Jsar is specifically designed to be
informative even if pg places low probability mass inside C. This is especially important
when the space of groundings Z is high dimensional, as in that setting it is more likely for
py to place low probability in C due to the curse of dimensionality.

3.3. MCMC sampler for sampling from ¢ in planning problems

Since it is not possible to sample from ¢ directly and rejection sampling is difficult to apply
when Z has high dimensions, we use MCMC sampling. First, we initialize a chain by
sampling z ~ py(z|x) and projecting the sample inside of C. The projection is computed
by randomly masking entries of z and filling them in with a SAT solver, increasing the
masking probability until a solution is found. The proposal distribution acts similarly: We
first perturb the previous z by uniformly changing some of its entries and then we project
the perturbed grounding back into C. Then the acceptance ratio is computed using g,
which in turn depends on py. By masking randomly and gradually increasing the masking
probability, we ensure that we always reach another element of C. Algorithm 1 in the
appendix formally describes the procedure.

4. Experiments

In this section we present three experiments to val-

idate our methodology. In our first experiment, we Method Grounding Accuracy
demons.trate the learnlng by mtera.ctlon paradlgm. for SoftenSG 59.49 + 4.23
grounding neurosymbolic agents in a maze naviga- A2G 65.32 + 2.83
tion domain. In the second experiment, we demon- Supervized 86.46 & 0.28
strate the learning by demonstration paradigm us- GPT-4o 53.33

. .. . . Llama3.2-11b 44.18

ing photorealistic renderings of Blocksworld, a tradi- LlaVA-13b 35.80

tional planning problem. In the final experiment we
demonstrate the improved grounding performance of Table 1: Comparison of methods in
our method by comparing against previous work in learning by interaction in the maze
grounding hand-written equations. domain.

Evaluation metrics: Since we focus on training

grounding models for planners, we evaluate methods based on their accuracy in grounding
individual symbols over the test set. However, in the handwritten-formula experiment we
also include the accuracy of the final computation result for consistency with previous
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work. The main baseline we compare against is SoftenSG (Li et al., 2024). In experiments
1 and 2 we also include include an unrealistic fully supervised baseline, where a model is
trained with ground truth groundings to obtain a theoretical limit of performance for weakly
supervised methods and 3 multimodal models GPT-40, Llama3.2-vision-11b, and LLaVA-
13b (Liu et al., 2023). Additional details on prompts and model settings are available in
the Appendix.

4.1. Experiment 1: Learning by Interaction

In this experiment we evaluate our approach to learning grounding models in the learning
by interaction setting in a maze navigation domain.

Task: We randomly generate mazes of size 5 x 5 and uniformly select two free positions
as the starting and goal position. We render each maze into a single image. The space of
groundings Z consists of 25 categorical variables of 4 categories each, corresponding to the
states of cells in the maze, namely agent, goal, wall or clear. The environment feedback y
indicates whether each step of the plan achieved a goal state. We generate 800 mazes for
training, 100 for validation and 100 for testing. The code used to generate the dataset and
the SAT encoding of the maze problem are available alongside our training code.

Experiment Settings: We run a maximum of 500 training epochs and use early stopping
with patience 50 based on the grounding accuracy over the validation set. In each training
epoch we sample batches of 64 mazes, run an episode in each one in parallel and update
the model. As a result we run a maximum of 500 episodes per maze. We omit SSL from
this comparison as its performance is not competitive. We also run a fully supervised
benchmark for comparison. We use a ResNet pre-trained on the ImageNet-1000 dataset as
the backbone of the model and replace the prediction head with a simple MLP. Finally, we
use our modified MCMC sampler for both methods. Additional reproducibility details are
available in the appendix.

Results: Table 1 summarizes the results of this experiment. Due to the large output
space, the task is very difficult for both training methods. In fact, even the fully supervised
benchmark cannot perfectly learn the task. Nevertheless, A2G offers significant performance
improvement over SoftenSG. The large output space means that the KL term alone may not
have sufficiently informative gradients for many samples since it leads to approximations
that cover ¢, making training inefficient. In addition, since the SM loss in A2G strongly
encourages the model to predict valid groundings, part of the performance improvement
may also be due to additional supervision through environment interaction.This is evident
from the increase in samples usable for plan construction during A2G training, which rises
to 5-10%, compared to less than 1% with the baseline. This aligns with the previously
discussed learnability condition, where more diverse supervision helps resolve ambiguities
and improve grounding accuracy. Task success results are provided in the appendix for
completeness. Interestingly. the pretrained foundation models perform relatively poorly as
they are not trained for producing fine-grained descriptions
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4.2. Experiment 2: Learning by Demonstration

In this experiment we evaluate A2G in the learning from demonstrations setting with tra-
jectories generated using Photorealistic Blocksworld (Asai, 2018).

Dataset: Blocksworld is a classical plan-

ning problem where objects are either Grounding Accuracy

Method
stacked or placed on a table. We gener- BlocksWorld  BlocksWorldLarge
ate problems with 5 obJe(?ts by creatmg‘a SoftenSG PP 4187 & 631
random state, then executing random valid  a2c 73.52 + 3.63 91.15 + 4.23
actions to reach a goal state. The opti-  gypervized 97.93 + 0.47 100 + 0.00
mal plan between these states serves as the  GPT-4o0 43.30 -

. . C . Llama3.2-11b 10.33 -
demonstration, with y consisting of the plan | ;A 6.33 i

and goal state. To enhance the supervision
signal, we include the goal state description Table 2: Comparison of methods in the
when constructing constraints. A ground- learnjng by demonstration paradigm in the
ing z includes 5 categorical variables, each BlocksWorld domain.

with 6 categories representing possible ob-

ject positions (the table or other objects). We create two datasets: Blocksworld with 1000
samples and BlocksworldLarge with 3000 samples, using an 80/10/10 split for training,
validation, and testing. The SAT encoding is available with our training code.

Experiment Settings: We run a maximum of 500 training epochs and use early stopping
with patience 50 based on the grounding accuracy over the validation set. As before, we
omit SSL from this comparison as its performance is not competitive and only run Stage
1 training. We also run a fully supervised benchmark for comparison. We use a ResNet
pre-trained on ImageNet-1k as the backbone of the model and replace the prediction head
with 5 different MLPs, one for each object in the scene. Finally, we use our modified MCMC
sampler for both methods. Additional reproducibility details are available in the appendix

Results: As shown in Table 2, A2G significantly outperforms the baseline, likely due to
better approximation of the ¢ distribution. However, it still lags behind full supervision,
though it nearly matches it on the larger dataset. This gap may stem from the learn-
ability challenge identified in Section 3: in Blocksworld, optimal plans can solve multiple
initial states, potentially omitting details needed for accurate grounding. The larger dataset
mitigates these ambiguities by providing more varied plans, suggesting that demonstration
datasets should include diverse, exploratory trajectories to better constrain symbol ground-
ing. Task success results are in the appendix. Pretrained foundation models remain weak,
with A2G significantly outperforming them, as these models generate high-level descriptions
(e.g., "the red cylinder is on the left”) rather than fine-grained ones.

4.3. Experiment 3: Improving Training Consistency

In this experiment, we evaluate the learning performance of our method on a simpler prob-
lem to validate the efficacy of our score-matching objective. We compare our algorithm
against SoftenSG (Li et al., 2024), as well as SSL, a stochastic variant of the semantic
loss Xu et al. (2018) as the original is not tractable in this setting, on a handwritten for-
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mula dataset (Li et al., 2020). While A2G enables learning grounding models in planning
domains, we also evaluate in this setting to have a side-to-side comparison with prior work.

Dataset: Following Li et al. (2024), we limit formulas to length 7, using 20% of training
data for validation and the test set for testing. Each formula is a sequence of images,
classified into 14 classes (digits 0-9 and operators +, —, X, ). Supervision is a numerical
result of the formula’s computation.

Experiment Settings: We compare

Only with the top two methods from (Ll Method  Grounding Accuracy Result Accuracy
et al., 2024) due to the large gap with SSL 6701 £ 2.62 6.29 + 1.49
others: SSL Xu et al. (2018) and the SoftenSG 57.24 + 41.35 44.55 + 43.89
approach by Li et al. (2024). A sim- A2G 98.59 + 0.16 90.42 + 1.05
ple convolutional network is used for all
methods. Models train for up to 2000 Table 3: Comparison of methods on the handwrit-
epochs with early stopping after 200 ten formula dataset, averaging over 8 runs for each
epochs of no validation improvement. method and reporting average and standard devi-
We perform training in two stages with ation grounding and result accuracy. The addition
different settings of 7. Additional de- of the score-matching objective stabilizes training
tails are available in the Appendix. and results in better performance on average.

Results: Table 3 summarizes the re-

sults. Our SoftenSG results at first glance deviate from the original paper, but the best run
achieves 98.9% grounding accuracy and 92.6% result accuracy, closely matching the values
reported in the original paper, and A2G’s average. However, averaging over multiple runs
reveals high variance and lower mean performance due to training instability.

Figure 2 (Appendix) illustrates this instability: some runs collapse, predicting the same
class for all inputs, likely due to low probability mass within constraints, rendering gradients
uninformative. Some runs recover quickly, while others do not. Consequently, SoftenSG has
lower mean performance and higher variance than A2G. The SM objective in A2G ensures
informative gradients even when valid solutions have low probability, stabilizing training.

5. Discussion

In this work we propose A2G, a framework for training neural grounding models for neu-
rosymbolic planning agents with weak supervision. While we focus on two ways to obtain
supervision, our framework is general and compatible with other sources of knowledge gath-
ered from the environment or obtained from an expert in a human-in-the-loop setting. We
leave the exploration of such supervision schemes to future work.

One limitation of A2G when learning by interaction is that it does not incorporate
sequential information from the trajectory. In the environments we consider that is not a
major problem, however, in partially observable domains this may not suffice. Future work
can explore how to interleave sensing and decision making to maximize symbol grounding
supervision. In turn this can inform trajectory collection for training from demonstration.
In addition, our learnability condition indicates that weak supervision may not be sufficient
for training accurate grounding models in all domains and points to using unsupervised
methods such as contrastive learning to supplement model training.

10
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Appendix

Learnability of neurosymbolic symbol grounding

The framework of neurosymbolic symbol grounding corresponds to a weakly-supervised
learning problem, where each observed y defines the set of labels C. Consider a tuple (x,y)
sampled from the data distribution p(x,y). By construction, the true grounding z* € Z
is always in the label set C and other z € C are distractor labels. We can consider the
ambiguity degree (Cour et al., 2011) for this problem:

v = sup Pr z e (). (8)
(x,y)EX XY, Z2EZ:

p(x,y)>0,2#2"

x,9)~p(x,y) (

The problem is learnable in the small ambiguity degree condition, where v < 1 (Liu and
Dietterich, 2014). Simply put, as long as a distractor label does not always co-occur with the
true label, then the problem is learnable. We now connect this learnability condition with
planning problems to establish the learnability of neurosymbolic grounding for planning
agents.

Consider the neurosymbolic grounding problem, where x € X is a representation of sg
(e.g. an image), z € Z describes sp and y is the observed feedback. These define a set C as
before. It is easy to see that if there is an initial state sy represented by x and with correct
grounding z* such that:

Yy e, p(x,y) >0, 3z € Z,z#2",2€C,

then the ambiguity degree v = 1. In other words, if there is an incorrect grounding
z that always co-occurs with the correct one, then it is not possible to learn the correct
classifier p(z|x) because it is not possible to determine which grounding is correct for x.
Therefore, this problem maps directly to the small ambiguity degree condition.
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MCMC Algorithm

IN PLANNING DOMAINS

Algorithm 1 MCMC for Grounding Planners

Function Step(z, v, C)

z < Perturb(z) ;

¢ < RandMask(z,v) ;
(sat,z’) «+ SAT(¢,C)

// Modify z randomly.
// Mask perturbed z.
// Complete (.

if sat then
|  return z’

else
| return None
end
Function RunChain(pg, ¢,%,n,C)
1+ 0 z~ pp(z|x) ; // Initialization.
z < Project(z,C) ; // Fix z if invalid.
while 7 < n do
v+ 0.1
while v <1 do
z' + Step(z,v,C) ; // Next sample.
if z’ = None then
‘ v<v+0.1; // Mask more.
else
| break
end
end

!
e fz((z‘l)’:acc)) . // Acceptance ratio.

a~U(0,1)
if a <r then
| z<+ 2
end
14141

end

Improved training stability of A2G

Figure 2 (a) illustrates example training curves for the two methods, A2G and SoftenSG.
The run with the KL objective alone exhibits instability, as just after epoch 600, the per-
formance of the model collapses for a few epochs. While it does start to recover some
time later, it is difficult to predict when and if that may occur and as a result standard
convergence checks such as early stopping may terminate training. Figure 2 (b) shows the
confusion matrix over the validation set at epoch 630, just after the performance drop.

Additional training details

In this section we provide additional details for model training in our experiments. We run
all experiments on a server with 4 NVIDIA RTX 2080Ti GPUs, and an Intel(R) Core(TM)
19-9940X processor with 130 GB of memory. We use exponential decay for the « hyperpa-
rameter with an inital value of 2.

Hand written formulas experiment: As in the original SoftenSG work, we perform
training in two stages in this experiment. We anneal v in Stage 1 and set it to 0 in Stage
2, where we sample from ¢ by rejection sampling on pyg. We apply the score-matching term
in both stages. We use the MCMC sampler with fixed projections for both methods and
use the same hyperparameters as reported in the original experiments. Table 4 shows the
per-stage breakdown of performance.
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SoftenSG confusion matrix at epoch 630
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Figure 2: Example of training inconsistency using for training grounding models in the
hand-written formula dataset without SM. Due to poor approximations, it is possible for
the model during training to place low probability mass on valid groundings and get trapped
due to uninformative gradients. (left) shows the validation accuracy for SoftenSG (blue)
in comparison to A2G (orange) that uses the score-matching objective. (right) Shows the
confusion matrix on the validation set for epoch 630 for SoftenSG. This indicates that at this
step in the optimization, the model makes predictions inconsistent with the observations,
likely placing low mass within the constraints of a given observation. As a result, it gets
trapped for a few epochs, taking time to recover and leading to poor training.

Method Grounding Accuracy Result Accuracy
SSL 67.01 &+ 2.62 6.29 + 1.49
SoftenSG - Stage 1 82.09 £+ 3.03 25.43 £+ 6.58
SoftenSG - Stage 142 57.24 + 41.35 44.55 £ 43.89
A2G - Stage 1 89.00 £ 1.90 44.35 + 6.18
A2G - Stage 142 98.59 + 0.16 90.42 + 1.05

Table 4: Comparison of methods on the handwritten formula dataset, averaging over 8
runs for each method and reporting average and standard deviation grounding and result
accuracy. The addition of the score-matching objective stabilizes training and results in
better performance on average with high consistency.

For all methods we use the LeNet-5 architecture with batch size 64 and 10 steps of
MCMC sampling. We use the same hyperparameters as Li et al. (2024) for SSL and the
KL-only method. For G2A, the optimizer we use SGD learning rate 0.01 for Stage 1 and
Adam with learning rate le-4 in stage 2. We set the a hyperparameter to 0.01 to control
the loss balance. In all methods we use exponential annealing for v with initial value of 2.
During stage 2 training, we set w to infinity and use the same samples as KL, decreasing
the probability of illegal samples and increasing the probability of legal ones.
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Maze experiment:  We use batch size 64 and 10 steps of MCMC sampling. For the
optimizer we use Adam with learning rate 0.01. We use exponential annealing for v with
initial value of 2. For G2A, we set the a hyperparameter to 0.01 to control the loss balance
and make use of gradient clipping with norm of 1.

Blocksworld experiment:  We use batch size 64 and 5 steps of MCMC sampling to
control running time. For the optimizer we use Adam with learning rate 0.01. We use
exponential annealing for v with initial value of 2. For G2A, we set the o hyperparameter
to 0.001 to control the loss balance and make use of gradient clipping with norm of 1.

Additional Analysis of Task Completion Performance

In this section, we provide additional quantitative results for the performance of the planning
agent under various conditions. The analysis focuses on the agent’s performance in the maze
environment using the trained grounding models, as well as comparisons in the blocksworld
domain.

MAZE ENVIRONMENT

We begin by presenting the task completion performance of the agent in the maze envi-
ronment, using the grounding models trained as described in the main paper (as seen in
Table 5):

Method Task Success %

SoftenSG 12.00 £ 0.70
A2G 14.90 + 3.21
Supervised 20.40 £+ 4.80

Table 5: Task success rates in the maze environment for different grounding methods.

For all methods, including the supervised one, the task completion performance is lim-
ited. This is due to the sensitivity of the planning process to errors in the grounding
component, where even minor inaccuracies can result in invalid maze configurations (e.g.,
no cell being designated as the goal position). To address this, we employ a decoding proce-
dure that refines the validity of the predicted outputs—a common approach in multi-label
classification problems.

In this procedure, groundings are decoded by first selecting the agent’s position based on
the corresponding class logits for each maze cell. Next, the goal position is identified. For
the remaining cells, each is classified as either clear or a wall based on the associated class
probabilities. The application of this decoding strategy results in a marked improvement
in task success rates (as seen in Table 6):

The decoding process notably enhances grounding performance, leading to improved
task success rates. There are various methods to decode groundings from a trained model
or integrate decoding within the training process. Since A2G does not impose constraints
on the grounding model’s parameterization, existing standard procedures can be applied,
and we leave further exploration of these methods to future work.
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Method Task Success %

SoftenSG 68.90 + 2.98
A2G 76.60 £+ 6.53
Supervised 89.10 £+ 1.59

Table 6: Task success rates in the maze environment after applying a decoding procedure
to refine groundings.

MazeE PER-CELL

As mentioned in Section 4.2 of the main paper, the challenge in the maze environment
stems from the large output space. We intentionally chose to apply A2G to this challenging
problem to highlight its performance improvements over previous approaches. A more
standard approach would involve learning a ”per-cell” classifier that independently predicts
the state of each maze cell (i.e., clear, wall, agent, goal). This problem is significantly
simpler, and both A2G and the baseline methods can achieve 100% grounding accuracy.
Below, we show the results of this experiment, emphasizing the improved data efficiency of
A2G (as seen in Table 7):

Method Task Success % # of Interactions

SoftenSG 100 = 0.00 (2.84 4 0.31) x 10
A2G 100 + 0.00 (1.44 4 0.20) x 10

Table 7: Task success rates and number of interactions required to achieve 100% accuracy
in the simpler per-cell classification task in the maze environment.

Both methods achieve 100% task success eventually, as they both achieve 100% ground-
ing accuracy. However, A2G requires significantly fewer environment interactions, demon-
strating improved data efficiency.

BLOCKSWORLD DOMAIN

Finally, we present the task performance of A2G without decoding in the blocksworld
domain, including results for the larger blocksworld dataset (as seen in Tables 8 and 9):

Method Task Success %

SoftenSG 0.00 £+ 0.0
A2G 19.60 £ 3.01
Supervised 94.83 £+ 0.51

Table 8: Task success rates in the Blocksworld dataset without decoding.
In both datasets, A2G significantly outperforms the baseline but falls short of the su-

pervised benchmark. Similar to the maze environment, small errors in grounding can result
in invalid predictions (e.g., two blocks being placed on the same block), preventing the
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Method Task Success %

SoftenSG 0.00 £ 0.0
A2G 67.18 + 5.32
Supervised 100 £+ 0.00

Table 9: Task success rates in the BlocksworldLarge dataset without decoding.

agent from forming a valid plan. Consequently, the baseline does not achieve sufficient ac-
curacy to solve the task. A decoding procedure that respects such constraints could further
improve the performance of both methods, and we consider this a direction for future work.

Prompting
and settings for multimodal models.

For grounding using multimodal models we
iterated on different prompts and output
strategies using the validation set of each
dataset. In doing so, we decided to use
structured output decoding through Ope-
nAD’s structured output API and the corre-
sponding Ollama API to ensure controlled
generation of symbols for the grounding
task. We use the following prompts:

Maze domain:

Figure 3: Example images from the
photorealistic-blocksworld dataset (left) and
maze environment (right).

Describe the given image as a 5x5 maze. First find the player position. Then
the robot position, corresponding to the goal. Then the trees and the empty
positions. Then generate the maze. Make sure the maze you write matches the
maze in the picture. First think in steps. Then provide your answer as a json,
filling each row with the corresponding object.

Blocksworld domain:

Describe this image in terms of On relationships between blocks. Always think
in detail in steps, reasoning about the blocks. For each block, decide what is
below it. Then write out the grid according to your reasoning as a json.

The structured output models are available alongside our training code.
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