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Large language multimodal models 
for new‑onset type 2 diabetes 
prediction using five‑year cohort 
electronic health records
Jun‑En Ding 1,12, Phan Nguyen Minh Thao 2,12, Wen‑Chih Peng 2, Jian‑Zhe Wang 2, 
Chun‑Cheng Chug 2, Min‑Chen Hsieh 2, Yun‑Chien Tseng 2, Ling Chen 3, Dongsheng Luo 4, 
Chenwei Wu 8, Chi‑Te Wang 11, Chih‑Ho Hsu 5, Yi‑Tui Chen 7, Pei‑Fu Chen 9,10, Feng Liu 1 & 
Fang‑Ming Hung 6,7*

Type 2 diabetes mellitus (T2DM) is a prevalent health challenge faced by countries worldwide. In this 
study, we propose a novel large language multimodal models (LLMMs) framework incorporating 
multimodal data from clinical notes and laboratory results for diabetes risk prediction. We collected 
five years of electronic health records (EHRs) dating from 2017 to 2021 from a Taiwan hospital 
database. This dataset included 1,420,596 clinical notes, 387,392 laboratory results, and more 
than 1505 laboratory test items. Our method combined a text embedding encoder and multi-head 
attention layer to learn laboratory values, and utilized a deep neural network (DNN) module to merge 
blood features with chronic disease semantics into a latent space. In our experiments, we observed 
that integrating clinical notes with predictions based on textual laboratory values significantly 
enhanced the predictive capability of the unimodal model in the early detection of T2DM. Moreover, 
we achieved an area greater than 0.70 under the receiver operating characteristic curve (AUC) for 
new-onset T2DM prediction, demonstrating the effectiveness of leveraging textual laboratory data for 
training and inference in LLMs and improving the accuracy of new-onset diabetes prediction.

Type 2 diabetes mellitus (T2DM) and chronic metabolic diseases are health challenges faced by countries world-
wide. In recent years, the prevalence of chronic complications associated with T2DM has increased, including 
obesity, hypertension, hyperlipidemia, and heart disease1,2. As the risk of T2DM gradually increases worldwide, 
the World Health Organization (WHO) has proposed a common T2DM covenant and indicators to prevent 
long-term complications associated with the disease3. According to statistics from the Taiwan Health Promotion 
Administration, among the three most common chronic diseases in Taiwan, the prevalence of hyperglycemia/
T2DM among people aged 65 and over was 27.8% from 2017 to 2020, and the prevalence of hyperlipidemia 
during this time was 37.9%4.

In recent years, electronic health records (EHRs) have become the primary tool for recording patients’ medical 
conditions. This information is necessary to make medical decisions and includes the patient’s medical history, 
laboratory results, and imaging reports. As part of standard medical practice, this information is incorporated 
into a doctor’s notes to document and summarize patient care. Some studies on EHRs employ Support Vector 
Machines (SVM)5 for feature classification of T2DM or establish sequential deep learning methods to predict 
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T2DM based on the sequence of patients’ treatment records5. Despite the potential of machine learning for 
diagnostic prediction, extracting data from EHRs presents a significant challenge. EHRs often contain a mix of 
data in numeric, categorical, and other formats, making it challenging for fundamental machine learning mod-
els to handle medical terminology, complex sentence structures, textual ambiguity/uncertainty, and contextual 
understanding6.

In particular, more research has focused on using EHR and natural language processing (NLP) to predict 
chronic disease7,8. With the increasing volume of EHRs, structured and unstructured data types (such as text, 
CT scans, MRI images, etc.) are more frequently applied in deep learning research9. For example, researchers 
use the NLP model to identify cardiovascular disease (CVD) from EHRs10 or research in allergy, asthma, and 
immunology clinics11. Additionally, the existing NLP models developed over the past few years, rely solely on 
text data or ICD code, making it difficult to diagnose T2DM or chronic metabolic diseases12,13.

In recent years, large language models (LLMs) have been trained successfully using large corpuses and have 
shown significant effectiveness in natural language processing tasks14,15. The most popular research used open 
datasets, such as the MIMIC series collected by the Medical Information Mart for Intensive Care (MGH)16. 
Such datasets include numerical values, categories, and other formats. However, the MIMIC data are limited 
by the small sample size and do not adequately represent the diversity of data formats needed for LLMs clinics 
and training tasks. Numerous medical studies on LLMs face constraints arising from the restricted availability 
of corpus samples of clinical notes17, such as the MIMIC or UK Biobank dataset18, or from inherent imbalances 
possibly related to specific diseases19. These constraints may lead to biases in the predictive capabilities and 
usability of LLMs in clinical settings. These models undergo training on large amounts of textual data, enabling 
them to discern intricate statistical relationships embedded within words and phrases. Furthermore, researchers 
have begun to combine modality data with LLMs20. This method addresses the complexities of data extraction 
and the challenges associated with textual modeling utilizing tabular data. Such NLP applications include text 
classification21,22 and even extend into the realm of clinical prediction within the intricate landscape of the 
medical field23,24.

In this study, we propose a novel large language multimodal models (LLMMs) framework that integrates 
clinical notes and textual laboratory values for new-onset T2DM prediction. The main contributions of our 
work are as follows:

•	 We have collected five years of EHRs and laboratory results to research the use of LLMs and multimodal data 
for predicting new-onset T2DM.

•	 We propose a method for converting laboratory values to text and evaluating its effectiveness in training 
LLMs. This approach addresses missing patient data and improves LLM contextual learning.

•	 We propose a method for post hoc explanation and disease risk assessment using LLMs combined with 
Shapley Additive exPlanations (SHAP)25 values to visualize textual laboratory values.

The sections of this paper are organized as follows. In “Related work” section, we summarize the limitations 
of machine learning (ML) techniques and briefly present the existing works applying LLMs in the healthcare 
domain. “Data collection and study design” section provides an overview of data collection. Our proposed 
approach is given in “Method” section. To demonstrate the effectiveness of our model, we conducted extensive 
experiments and early prediction of new-onset T2DM in “Results” section. Finally, in “Interpretable attention in 
textual laboratory results” section, we conduct a textual interpretable risk assessment of LLMMs in “Interpretable 
attention in textual laboratory results” section.

Related work
The limitations of machine learning methods
This section examines the shortcomings of classical ML techniques, like SVM and XGBoost26, when handling 
large-scale EHRs. These methods are challenged by inherent complexities within EHR data such as missing 
entries, skewed sample sizes, and the computational burden of processing massive datasets26. While XGBoost’s 
tree-based structure alleviates some of these challenges, a significant limitation persists with traditional ML 
methods; they are incapable of effectively modeling and predicting diseases using a variety of data modalities, 
including text, images, and tabular data.

Predictive assessments in clinical settings are crucial for estimating a patient’s risk of developing diseases, 
their potential response to treatment, and the likely course of their condition27. Traditionally, ML methods such 
as logistic regression28 and random forest29 have been used for these disease prediction tasks. However, a key 
limitation of these approaches is their inability to effectively model the time-dependent nature of medical events, 
such as the order in which diagnoses, procedures, and medications occur. Instead, they often focus primarily on 
whether these events are present or absent as features, without considering the importance of their sequence.

Large language models
Most LLMs require prior knowledge of specific domains and are trained for specific tasks and data30. These 
models undergo extensive training using large datasets and have shown impressive capabilities in various NLP 
applications including language generation, machine translation, and answering questions31. LLMs have the 
potential to help healthcare professionals identify medical conditions32. By examining patient information, 
including medical history and test results, these models can produce diagnoses and propose additional tests33–35. 
This contributes to reducing diagnostic errors, streamlining diagnostic procedures, and improving the overall 
standard of healthcare36.
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Moreover, LLMs can revolutionize various aspects of medical practice, including improving diagnostic preci-
sion, forecasting disease progression, and aiding clinical decision-making37,38. By analyzing extensive medical 
datasets, LLMs can quickly acquire specialized expertise in various medical fields such as radiology, pathology, 
and oncology39,40. These models can be refined using domain-specific medical literature, maintaining their cur-
rency and relevance. In addition, its adaptability to various languages and contexts promotes enhanced global 
access to medical knowledge and expertise.

Data collection and study design
In this study, we collected five-year EHRs from the Far Eastern Memorial Hospital (FEMH) Taiwan hospital 
database from 2017 to 2021, including 1,420,596 clinical notes, 387,392 laboratory results, and more than 1505 
laboratory test items. The database included clinical notes and laboratory results, as described in Table 2. The 
study was approved by the FEMH Research Ethics Review Committee (https://​www.​femh-​irb.​org/) and data has 
been de-identified. All ethics review work and data collection were carried out in accordance with the ethics 
committee’s standard guidelines and regulations (https://​www.​femh-​irb.​org/​index.​php/​regul​ations).

In this research, we employed a multi-stage filtering process to focus on clinically relevant information, spe-
cifically for patients with new-onset T2DM. Our data collection and preprocessing workflow was as described 
in Fig. 2A,C, and followed these steps: First, we filtered the patient’s visit history to include only outpatient visits. 
Next, we identified the outpatient visit with the smallest time difference between the first onset testing records, 
as shown in Fig. 2B. This visit likely represents the closest encounter to the initial detection of T2DM. Finally, 
we included the records closest to the new onset of T2DM in our training samples. We identified individuals 
as positive samples if they had two successive abnormal laboratory values recorded prior to T2DM diagnosis. 
Specifically, these values are hemoglobin (HbA1c) � 6.5% and fasting plasma glucose (FPG) � 126 mg/dL. 
Table 1 presents the demographic information of new-onset diabetes patients with comprehensive biochemical 
testing. This filtered data served as the foundation for pre-training LLMs in our research, and we also extended 
31 standard T2DM-related indicators as input features in our LLMMs for prediction; these detailed indica-
tors are listed in “Appendix”. To enhance the ability of LLMs to process unstructured data, we will incorporate 
value-to-text encoding for patient laboratory values. Further details on this approach will be provided in “4.4” 
section. Table 2 illustrates a brief overview of our input data format, detailing clinical notes as well as numeric 
and textual laboratory values. The remaining group consists of numerical data that explicitly includes items 
related to laboratory results.

Method
Large language multimodal models
The majority of LLMs can be trained on large-scale text data before being applied as downstream models. 
However, most EHRs contain numerical information (e.g., age, length of hospital stay, and laboratory values) 
and categorical information, limiting LLMs in prediction tasks on modality data. In our study, we investigated 
two methods of pre-training: (1) we used a multimodal technique that combines text embedding encoders with 
multi-head attention mechanisms fused on laboratory data; (2) we transformed the laboratory results of patients 
with chronic conditions into textual data and tokenized textual laboratory text to pre-train the LLMs. In our 
first submodel pipeline, we developed an LLM pre-training unimodal method to extract text feature embedding 
from the EHR corpus as shown in Fig. 1b (top).We used primary language unimodal methods such as BERT41, 
RoBERTa42, BiomedBERT43, Flan-T544, and GPT-245 for various tokenization and pre-training techniques on our 
FEMH corpus, allowing the model to comprehend a significant amount of domain-specific clinical knowledge 
and contextual semantics.

Large quantitative feature encoding
For our feature selection, we selected representative laboratory test items associated with T2DM as our second 
submodel input, as shown in “Appendix”. In clinical terms, this approach allows LLMMs to identify groups at 
similar risk for T2DM. We first address missing values in each blood test by imputing them with mean values. 
Then, the data is normalized using Z-scores. During training, a simple deep neural network (DNN) is employed 
to extract key blood test characteristics, as illustrated in Fig. 1b (bottom panel). Subsequently, these extracted 
features are combined with the latent features of text already learned by the unimodal language models. This 
submodel is then integrated with the LLMs, which fuse the combined features within a latent space, incorporating 
both the extracted blood test characteristics and the semantic information from the T2DM corpus.

Multi‑head attention fusion
We designed an attention module to calculate two domain embeddings for the attention score and to improve 
the individual unimodal contributions to the overall model prediction. We concatenated two embeddings, the 
text representation from LLM encoders and the blood representation from the DNN outputs. Thus, we used 
a multi-head attention module to facilitate an improved fusion of features from the two domains in the latent 
space. This attention mechanism allows us to perform a dot-product operation on text and blood vectors. We 
concatenated embedding vectors as query, key, and value for the attention module to generate attention-weighted 
matrices. By comparing the relevance of a query and key, attention weights determine the importance of each 
value in answering the current query, where a higher attention weight indicates a greater significance of the value 
for the query’s resolution. Next, to enhance latent feature fusion, we used the final concatenated encoded features 
from multi-head attention embedding with LLMs and DNN output vectors for the final fully connected layers. 
Furthermore, to visualize interpretable contextual text and provide corresponding importance, we calculated 

https://www.femh-irb.org/
https://www.femh-irb.org/index.php/regulations
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Shapley values based on the attention weight outputs of LLMMs, offering a comprehensive interpretability of 
our contextualized corpus in “Interpretable attention in textual laboratory results” section.

Conversion of laboratory values to text
Traditionally, disease modeling has primarily relied on numerical laboratory values. However, for most blood 
test items, there exist variations where different patients have different measurement items, or measurements are 
taken at different time points, leading to a problem of laboratory value sparsity, as illustrated in Fig. 1a. Recent 

Fig. 1.   The overall framework of the LLMMs. Panel (a) shows the values-to-text for training language models 
after textualizing laboratory values. Panel (b) demonstrates that LLMMs propose unimodal language models 
and DNN modules to extract and embed features from clinical notes and laboratory values. Then, multi-head 
attention modules are used for final feature fusion for downstream classification tasks.

Fig. 2.   The research methodology encompasses the study procedures for T2DM in EHR and laboratory 
tests. Panel (A) illustrates the process of filtering longitudinal EHR data for new-onset T2DM patients. Panel 
(B) delineates the procedure for grouping patients’ laboratory test data by selecting the shortest time interval 
between consecutive visits. Panel (C) presents the overall data preprocessing steps, which involve filtering for 
new-onset T2DM cases and converting the final values into text format.
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studies have utilized the manual insertion of identical templates as pseudo-notes (e.g., “Given the vitals: pulse is 
{value}...”) into textual laboratory values 46,47. Inspired by this perspective, we consider more nuanced approaches 
in our numerical-to-textual conversion process, we calculated the time difference between all records prior to 
the onset of diabetes and the point of recent diabetes occurrence for each patient in the training data. Subse-
quently, we grouped these records based on their temporal proximity to the diabetes onset. Our training dataset 
includes objective information extracted from the SOAP (Subjective, Objective, Assessment, Plan) components 
of nursing reports. These reports include entries such as, “blood pressure/pulse measurement upload data–>BP: 
mmHg; PR: 72 /min [OU], No apparent diabetic retinopathy (No DR)”. These unstructured data contain vital signs 
recorded by professional nurses and laboratory test results, thereby preserving crucial symptomatic information 
about the patients.

To address this challenge, we first followed the process outlined to extract data on laboratory values from 
patients, then performed non-text serialization encoding and generated encoder-to-text embedding. This facili-
tated more direct corpus encoding for our LLMMs. This approach mitigates the issue of sparse data in testing 
items and overcomes the limitation of LLMs in predicting textual outcomes from solely numerical features. In 
addition, it helps to address the scenario in which patients have missing data for most of their laboratory test 
items.

Results
Single modality methods comparison
In our study, we initially validated the quantitative metrics of single modality using traditional machine learning 
methods. We selected common machine learning algorithms as the baseline for evaluating single modality labo-
ratory test values, including Logistic Regression, K-Nearest Neighbors (KNN), K-Means, SVM, Random Forest, 
XGBoost, CatBoost and DNN. In Table 3, we can observe that the linear classifier such as logistic regression only 
achieved an accuracy of 0.79, while KNN and K-Means showed improved performance. Tree-based methods 
such as Random Forest, XGBoost, and CatBoost were able to effectively achieve accuracies above 0.85 under 
different metric measurements. Finally, we compared the performance of a three-layer DNN on quantitative 
metrics and found that it had lower performance in precision and recall. It’s worth noting that the experimental 
results above demonstrate that while using ML methods on a single modality has some predictive power, it is 
limited by making predictions based on unstructured data.

Modality data for early T2DM prediction
To improve early prediction and risk of T2DM before the appearance of clinical symptoms, this task used predic-
tive models based on relevant clinical notes or laboratory values, formulated as a binary classification problem. 
We evaluated the combination of three data formats as inputs for LLMMs training: (A) textual laboratory values, 
(B) clinical notes, and (C) laboratory values. Afterward, we evaluated early T2DM prediction based on either 
unimodal language models with different NLP frameworks or LLMMs architectures, as shown in Table 3.

Table 1.   Comparison of demographics between Diabetes and Non-diabetes Groups.

Demographics Diabetes (n = 6929) Non-diabetes (n = 23,665) Significant

Age 67.08 55.09 t = − 52.45, p < 0.05

Sex/gender (M/F) 3867/3062 11668/11997 χ
2 = 90.45, p < 0.05

FPG 138.87 (13.60) 132.85 (9.43) t = − 41.80, p < 0.05

HbA1c 7.03 (0.35) 6.89 (0.18) t = − 44.59, p < 0.05

Table 2.   An overview of the LLMMs’ training format, including corpus and modality details.

Modality Data type (Task code) Description Example

Corpus Textual laboratory values (A) The laboratory examination section comprises the text descrip-
tion of laboratory items and the corresponding value

Free T4:1.42, TSH:1.450, HDL Cholesterol:57, BUN:22, Choles-
terol T:146, Estimated GFR(MDRD):60, Glucose AC:148, ALT 
(SGPT):29, Uric Acid:6.5, Creatinine:1.22, K:4.5, Triglycer-
ide:66, LDL Cholesterol:88

Corpus Clinical note (B)
The notes document the patient’s chief complaint, present 
illness, past medical and surgical history, physical examination 
findings, and assessment

This is a 56-year-old male patient with underlying hypertension 
and gout, with ophthalmic history of left eye retinal detachment 
status post pars plana vitrectomy with encircling buckling in 
2016. This time, he complained of right eye with floaters since 
2020.10, and he came to us and retinal breaks of right eye were 
noted. Therefore, a focal laser was applied. However, the patient 
complained of progressive visual field defect and blurred vision 
of right eye in recent days. Upon examination, decreased right 
eye vision (0.1) was found. Fundus examination showed retinal 
detachment from the upper parts with breaks. Pars plana 
vitrectomy was suggested. He received surgery on 2020.12.24. 
After surgery, he was admitted for further treatment

Numerical data Laboratory values (C) Record the biochemical data and test indicators
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First, we evaluated early T2DM prediction based on unimodal language model predictions using only textual 
laboratory data. The majority of unimodal language model predictions could only be made using laboratory terms 
in non-sequential semantic order, such as “K:4.1, HGB:14.1, Platelet:260, ALT (SGPT):12.”. Within the unimodal 
GPT-2 framework, we identified laboratory sequence patterns in groups undergoing the same disease evaluations, 
achieving an accuracy of 0.78 and precision and F1-scores of 0.77. We can assert that groups undergoing blood 
tests for the same disease (such as hypertension or heart disease) exhibit identical test items and sequences in 
textual information. Then, our analysis indicated that integrating clinical notes with predictions based on textual 
laboratory data significantly enhances the predictive capability of the unimodal model in the early detection of 
T2DM. Finally, in our proposed LLMMs, we incorporated quantifiable laboratory values with unimodal language 
models to perform attention fusion. The experimental results revealed that even using only textual laboratory and 
laboratory values, performance was enhanced compared to the unimodal effect. We also contemplated utilizing 
unimodal language models for clinical notes, textual laboratory values, and laboratory values in LLMMs, which 
can achieve a performance score of over 0.90 across different LLMs architectures.

Table 3.   Performance comparison of unimodal and LLMMs in new-onset T2DM prediction using different 
modality combinations of A, B, and C.

Architecture Modality Model Accuracy Recall Precision F1-score

Machine Learning Classifier C

Logistc Regeression 0.79 0.79 0.79 0.73

KNN 0.83 0.83 0.81 0.81

K-Means 0.83 0.83 0.82 0.81

SVM 0.78 0.78 0.80 0.71

Random Forest 0.86 0.86 0.85 0.85

XGboost 0.86 0.86 0.85 0.85

CatBoost 0.86 0.86 0.85 0.85

DNN (Three-layer) 0.85 0.53 0.74 0.61

Unimodal A

BiomedBERT 0.65 0.65 0.66 0.65

ClinicalBERT 0.61 0.61 0.61 0.61

SciFive 0.66 0.66 0.66 0.66

RoBERTa 0.65 0.65 0.65 0.65

Flan-T5-base-220M 0.62 0.62 0.67 0.62

Flan-T5-large-770M 0.79 0.79 0.78 0.79

BERT 0.66 0.66 0.66 0.66

GPT-2 0.78 0.78 0.77 0.77

Unimodal A+B

BiomedBERT 0.82 0.82 0.82 0.82

ClinicalBERT 0.78 0.78 0.79 0.77

SciFive 0.76 0.76 0.76 0.76

RoBERTa 0.83 0.83 0.83 0.83

Flan-T5-base-220M 0.81 0.81 0.82 0.81

Flan-T5-large-770M 0.93 0.93 0.93 0.93

BERT 0.79 0.79 0.79 0.79

GPT-2 0.93 0.93 0.93 0.93

LLMMs A+C

BiomedBERT 0.81 0.81 0.80 0.80

ClinicalBERT 0.81 0.81 0.80 0.80

SciFive 0.81 0.81 0.80 0.80

RoBERTa 0.80 0.80 0.79 0.80

Flan-T5-base-220M 0.80 0.80 0.80 0.80

Flan-T5-large-770M 0.81 0.81 0.81 0.81

BERT 0.82 0.82 0.80 0.81

GPT-2 0.81 0.81 0.79 0.81

LLMMs (A+B) + C

BiomedBERT 0.93 0.93 0.93 0.93

ClinicalBERT 0.90 0.90 0.90 0.91

SciFive 0.93 0.93 0.93 0.93

RoBERTa 0.92 0.92 0.92 0.92

Flan-T5-base-220M 0.93 0.93 0.93 0.93

Flan-T5-large-770M 0.92 0.92 0.93 0.92

BERT 0.93 0.93 0.93 0.93

GPT-2 0.92 0.92 0.92 0.92
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Longitudinal T2DM risk prediction based on textual laboratory corpus
Current practice in most clinical settings relies on blood tests to confirm a preliminary diagnosis of T2DM. 
To proactively predict the risk of developing T2DM, we estimated the likelihood of new-onset T2DM at time 
intervals of 90, 180, 270, and 365 days. We then evaluated the model’s performance using AUC and areas under 
precision-recall curves (AUPRC) metrics. To train and evaluate our model, we first selected patients with T2DM 
onset records from the textual laboratory data and combined them with an equal number of randomly sampled 
negative samples.

Figure 3 illustrates the performance of various unimodal language models in predicting the onset of T2DM at 
different timeframes (T days). Notably, textual post-processing of laboratory reports helps mitigate the challenge 
of imbalanced data samples in our training dataset. Furthermore, the experiments demonstrated consistent and 
stable prediction performance across different prediction timeframes for various LLMMs. Interestingly, some 
models even exhibited performance improvements as the prediction window increased. For example, Biomed-
BERT achieved an AUC and AUPRC of 0.72 for predictions made 365 days in advance. Similarly, the larger 
Flan-T5 model maintained an AUC and AUPRC above 0.70 across all prediction stages.

Fig. 3.   Evaluating the performance of different unimodal LLMs in predicting early T2DM T Days in advance 
trained on textual laboratory values.
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Interpretable attention in textual laboratory results
The SHAP was developed from game theory and generates Shapley values to explain the importance of features. 
Particularly, SHAP-based approaches have been employed as a baseline for feature importance interpretation 
in hemorrhagic stroke data (e.g., time-series vital signs) 48. In SHAP-based interpretability research for EHR, 
the most significant clinical features for predicting various diseases were identified through SHAP analysis. 
This analysis incorporated pre-trained Word2Vec embeddings and either a Bidirectional Gated Recurrent Unit 
(BiGRU) architecture 49 or a multimodal transformer for clinical notes visualization and interpretation 50. Given 
LLMs’ superior ability in contextual understanding, we propose an interpretable approach for analyzing com-
plex corpora of textual lab values and clinical notes. Our method leverages this contextual strength to provide 
meaningful explanations. We began by pre-training the LLMs to emphasize word positioning during the encod-
ing process, which allows for the computation of attention scores. Subsequently, we utilized the SHAP values 
to analyze the combined corpus of clinical notes and textual laboratory data. This visualization tool helps us 
understand the individual contributions of words within the corpus. By highlighting each word’s positive or 
negative influence on predicting specific clinical terms from the LLMMs output, SHAP values enhanced the 
model’s clinical interpretability.

Figure 4 showcases a sample analysis of a non-diabetic patient using SHAP values. Red highlights indicate 
words associated with a higher risk of disease onset, while blue highlights indicate lower risk factors specific to 
this case. This visualization reveals the complex interplay between clinical indicators and predicted outcomes. 
In Fig. 4a, focusing on the non-diabetic case from the laboratory textual data, lighter colors represent low-risk 
test items. These include key indicators such as glucose and A1C levels, which can provide early warning signs 
of potential T2DM. Conversely, we analyze the effectiveness of SHAP values for feature importance using the 
diabetes patient case shown in Fig. 4b. This case depicts a diabetic patient with multiple chronic disease histories 
and a blood sugar level of 220 mg/dL. Our analysis reveals that the most influential feature is T2DM, while other 
significant features contributing substantially to the prediction outcome include various health conditions such 
as hypertension, depression, and dementia. By identifying and analyzing critical keywords within the narrative, 
the model unveils the intricate relationship between textual data and T2DM outcomes, providing comprehensive 
insight into the prediction process.

Discussion
The global trend of EHR data collection presents hospitals with significant challenges, particularly when sample 
sizes exceed one hundred thousand patients. Traditional machine learning algorithm packages like Synthetic 
Minority Over-sampling Technique (SMOTE) 51 often struggle with computational and memory constraints at 
this scale. In our study, we evaluated the effectiveness of mean and median imputation methods for handling 
missing data in new-onset cases, as depicted in Fig. 5. Our findings revealed that the choice between these two 
imputation techniques had minimal impact on the performance of most models. Notably, ClinicalBERT and 
BioBERT, which leverage specialized domain knowledge and serve as the foundation for LLMs, demonstrated 
superior performance. These models achieved comparatively high AUC and Accuracy (ACC) scores in predict-
ing new-onset diabetes cases.

For complex unstructured EHRs, we provide an approach as a reference to enhance the clinical interpret-
ability of SHAP values in a multimodal corpus derived from our proposed LLMMs. In our case study as shown in 
Fig. 6A, highlights significant SHAP values in the clinical report. Additionally, we utilize the feature importance 

Fig. 4.   The comparison and visualization of the interpretation sample of diabetics and non-diabetics with 
SHAP values.
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predicted by LLMMs in our analysis of the clinical report. In Fig. 6B, the horizontal axis represents SHAP values, 
extending from 0 as the baseline. Each row depicts a distinct feature, color-coded to indicate its impact. Red 
sections denote a positive influence on the prediction, while blue sections indicate a negative influence. Color 
intensity corresponds to the magnitude of the feature value. We can observe that being 71 years old and having 
Type 2 diabetes positively influence the model’s attention, particularly corresponding well with a diabetes history 
of over 20 years. This provides good explanatory power for these factors. Furthermore, Fig. 6C identifies impor-
tant hidden chronic disease-related medical terms such as “impression”, “renal”, and “visited”. These observations 
substantiate that the multimodal SHAP approach offers valuable clinical reference points.

In our study limitations, two key points emerge. Firstly, while LLMs demonstrate proficiency in addressing 
single-modality text problems, there remains substantial scope for extended research in the realm of unstructured 
and structured EHRs. For instance, LLMs could potentially be employed for imputation of missing values, or 

Fig. 5.   Performance of new-onset T2DM prediction in LLMMs based on mean and meidan imputation 
methods in various backbone models.

Fig. 6.   Visualization of important interpretability using SHAP values in the case study of T2DM. Panel (A) 
shows the predicted SHAP values after the LLMMs, highlighting the key points of a T2DM case. Panel (B) 
represents the degree of importance (red) and negative impact (blue) of clinical token text based on SHAP 
values. Panel (C) shows the summarized importance of features by sorting SHAP values in descending order.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20774  | https://doi.org/10.1038/s41598-024-71020-2

www.nature.com/scientificreports/

to enhance the fusion of predictions and explanations across different modalities. Secondly, the training sam-
ples derived from a single hospital’s database, subject to privacy constraints, may limit the model’s capacity for 
generalized inference.

Conclusions
In conclusion, this study explored the potential of LLMs with attention mechanisms for integrating clinical 
notes and laboratory data. We introduced a novel approach using textual laboratory data, demonstrating that 
the selection of pre-trained LLMs significantly enhances the performance of T2DM classification. Our experi-
ments yielded promising results, with both AUC and AUPRC exceeding new-onset T2DM prediction scores of 
0.70 when using LLMs on textual laboratory values. Furthermore, we investigated LLMs equipped with attention 
modules. By applying Shapley values to textual lab values, we enabled these LLMs to provide interpretable insights 
from clinical notes. In future research, we can focus on developing models that serve as real-time, effective risk 
alert systems for clinicians and patients.

Data availibility
The data for this study was collected from the research database of Far Eastern Memorial Hospital in Taiwan with 
permission. Due to patient privacy protection, the availability of the data is restricted and not publicly accessible. 
We will release the relevant research code (https://​github.​com/​Ding1​119/​LLMMs_​FEMH/​tree/​main) to ensure 
the reproducibility of our experiments. For further research and data access, please contact the corresponding 
author on reasonable request.

Appendix

•	 Blood test items: eGFR (MDRD), CRP, High Sensitivity CRP, HDL Cholesterol, LDL Cholesterol, Glucose PC 
120min, Glucose PC 90min, Glucose random, Apolipoprotein A1, Glucose, PC 15 min, Cholesterol T, Creati-
nine, Glucose random (POCT), Na, Glucose PC, Glucose AC, HGH (Growth Hormone), Total LDH, Glucose 
PC 180min, HbA1c, C-Peptide 6min, Glucose PC 60min, BUN, Glucose AC (POCT), K, eGFR (CKD-EPI 
Cystatin C), Glucose PC 30min, Triglyceride, ALT (SGPT), AST (SGOT), Creatinine (POCT).
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