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ABSTRACT

We propose an accurate and interpretable fine-grained cross-view localization
method that estimates the 3 Degrees of Freedom (DoF) pose of a ground-level
image by matching its local features with a reference aerial image. Unlike prior
approaches that rely on global descriptors or bird’s-eye-view (BEV) transforma-
tions, our method directly learns ground—aerial image-plane correspondences us-
ing weak supervision from camera poses. The matched ground points are lifted
into BEV space with monocular depth predictions, and scale-aware Procrustes
alignment is then applied to estimate camera rotation, translation, and optionally
the scale between relative depth and the aerial metric space. This formulation is
lightweight, end-to-end trainable, and requires no pixel-level annotations. Exper-
iments show state-of-the-art accuracy in challenging scenarios such as cross-area
testing and unknown orientation. Furthermore, our method offers strong inter-
pretability: correspondence quality directly reflects localization accuracy and en-
ables outlier rejection via RANSAC, while overlaying the re-scaled ground layout
on the aerial image provides an intuitive visual cue of localization accuracy.

1 INTRODUCTION

Visual localization, a fundamental task in computer vision and mobile robotics, aims to estimate the
camera pose with respect to a representation of the environment (Thrun,[2002). In dense urban areas,
specialized positioning sensors, such as Global Navigation Satellite System (GNSS), have errors up
to tens of meters (Xia et al., [2021)). Fine-grained cross-view localization has recently emerged as a
promising complement. It estimates the 3 Degrees of Freedom (DoF) camera pose, i.e., 2D planar
location and yaw orientation, by comparing captured ground-level images to an aerial image of the
surroundings, identified using coarse GNSS measurements.

The key to cross-view localization is to establish associations between ground-level and aerial im-
ages. However, the extreme visual differences between the two views make it challenging for recent
advances in image matching (Leroy et al., 2024; [Sun et al., 2021} Wang et al., [2025) to produce
reliable correspondences, and there is no ground-aerial pixel-level ground truth to finetune these
methods. In practice, the majority of cross-view localization approaches seek global alignment be-
tween two views by matching global image descriptors (Xia et al., 2023)) or aligning ground-view
transformed bird’s-eye-view (BEV) features with aerial images (Fervers et al., 2023b; Wang et al.}
2024b). However, these methods offer limited interpretability, as they cannot explicitly identify
which objects in the ground view correspond to those in the aerial view.

Recently, FG? (Xia & Alahi, [2025) demonstrated the feasibility of establishing local feature cor-
respondences between ground and aerial images by propagating BEV point matches to the image
plane. However, performing the matching in BEV is suboptimal, since warping a ground image
into BEV inevitably introduces ray-directional distortions (Song et al., 2024) and discards informa-
tion along the height dimension (Xia & Alahi, 2025; [Wang et al.,|[2024a). This loss of information
hinders matching to aerial images and, as a result, degrades localization performance, especially in
challenging settings such as unknown camera orientation.

Therefore, we propose to establish correspondences directly between ground and aerial images. In-
stead of relying on pixel-level annotations (Leroy et al., 2024} [Wang et al.| |2025), our approach is
weakly supervised using only 3-DoF camera poses. To infer the pose from image-plane correspon-
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Figure 1: Loc?: Interpretable cross-view localization via local feature matching. Loc? establishes
accurate correspondences between aerial and ground views, with colors indicating distinct corre-
spondence regions. Using the estimated rotation, translation, and scale, the ground view is warped
onto the aerial image, providing a visual interpretation of localization quality.

dences, we lift the sampled ground points into the BEV space with the help of monocular depth
models (Yang et al.,[2024ab}, [Piccinelli et al., 2025} [Wang & Liu, [2024). In unseen environments,
usually only the non-metric relative depth prediction, i.e., depth up to an unknown scale, is reliable.
Therefore, our method supports both metric and relative depth, and jointly estimates the camera pose

and depth scale using scale-aware Procrustes alignment 1991).

As shown in Fig. [T} our method offers superior interpretability. Since the pose is computed analyt-
ically from the matches, the quality of local feature correspondences directly reflects localization
accuracy, and we find that the number of inlier correspondences shows a strong correlation with lo-
calization accuracy. Moreover, by overlaying the scaled, rotated, and translated ground BEV layout
onto aerial images, our method provides an additional visual cue of localization accuracy.

Concretely, our main contributions are: (1) We propose a simple and accurate fine-grained cross-
view localization method that matches local features across views. Our method achieves superior
localization accuracy under challenging conditions such as cross-area generalization and unknown
orientation. (2) Our method is highly interpretable. The pose is computed analytically from the
estimated correspondences, which also enable outlier filtering via RANSAC. When relative depth is
used at inference, our method estimates its scale, and the alignment between the re-scaled ground
layout and the aerial image further provides a visual cue of localization quality. (3) By leverag-
ing differentiable scale-aware Procrustes alignment, our local feature matching becomes end-to-end
trainable using only camera pose supervision, without requiring pixel-level annotations.

2 RELATED WORK

Fine-grained cross-view localization is challenging due to the drastic viewpoint differences and
asynchronous capture times between ground and aerial imagery. State-of-the-art approaches tackle
this domain gap primarily by learning a deep network for camera pose estimation. Global descriptor-
based methods (Xia et al., 2022} [Lentsch et al.}[2023} Xia et al.,[2023) leverage contrastive learning
to pull the ground and aerial features to a common representation space, and compare the ground im-
age descriptor to aerial descriptors extracted at different candidate poses. Geometry transformation-

based methods (Fervers et al.| 2023b;[Wang et al.,[2023} [Sarlin et al.} 2024} [Wang et al.,[20244
et al.,[2024; [Shi et al.| 2023 Wang et al.,[2024b; [Fervers et al.,[2023a; Xia & Alahi, 2025) first warp

the ground image into a BEV representation, and then either perform a sliding-window search over
the aerial image to find the best alignment (Sarlin et al., 2024} [Fervers et al.,[2023b} [Shi et al., [2023))
or estimate the relative pose by matching features between the BEV and aerial view (Song et al.,
2024} [Wang et al.| 2024b} 2023} 20244} [Xia & Alahi, [2023)). Despite the increasing localization ac-
curacy, most methods do not explicitly identify matched local features across views, offering limited
interpretability. A recent work (Xia & Alahi| 2025)) demonstrated, for the first time, the ability to
find ground-aerial local feature correspondences by defining a dense 3D point cloud and querying
image features for each point. However, this process is inefficient due to the sparse nature of 3D
space, and this method performs poorly when camera orientation is unknown.

Ground-view visual localization typically follows a highly interpretable pipeline (Sarlin et al.|
2019} [Sattler et al.} 2016), which involves finding local feature correspondences (Sarlin et al.| 2020;
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Figure 2: Overview of our proposed method. Our method first matches local features between
ground and aerial images. The matched ground points are then lifted to the BEV space using monoc-
ular depth priors. By aligning these correspondences using scale-aware Procrustes alignment, we
estimate the rotation, translation, and scale between the ground and aerial views.

Sun et al., 2021)) and then estimating camera pose using a geometry-based solver (Lepetit et al.,
2009). However, this pipeline becomes challenging in the cross-view setting due to the significant

domain gap and the lack of labeled correspondences. We propose to learn such correspondences for
cross-view localization using only camera pose supervision, facilitated by monocular depth priors.

3 METHODOLOGY

Fine-grained cross-view localization estimates the 3-DoF pose, i.e., the 2D metric location t € R2
and the yaw orientation o € [—m, 7), of a ground-level image GG by matching it to a geo-referenced
aerial image A covering the local area. As shown in Fig.[2] our method first establishes correspon-
dences between G and A (Sec. [3.I), then lifts the matched ground points to the BEV using the
predicted depth map D = D(G) from off-the-shelf monocular depth models, and finally computes
the 3-DoF pose via scale-aware Procrustes alignment (Sec. [3.2). This fully differentiable pipeline
enables end-to-end learning of image-plane matching under weak supervision from camera poses.

3.1 LOCAL FEATURE MATCHING

We estimate the 3-DoF metric camera pose by learning image-plane local feature correspondences
between ground and aerial images. Our model has two feature extraction branches that share the
same architecture. Each branch consists of a frozen DINOv2 feature extractor (Oquab et al.| [2024))
followed by our lightweight projection head, which is composed of several convolutional layers and
a self-attention layer (Vaswani et all 2017). The two branches map the aerial image A and the
ground image G to feature maps F 4 and F g, respectively.

Afterwards, we compute the pairwise matching scores M between F 4 and F ¢ using cosine similar-
ity, M = cosine(F 4, F¢)/7, where 7 is a temperature parameter. Following DeTone et al.|(2018);
Sarlin et al. (2020), we append a learnable dustbin to both the rows and columns of M, allowing
the model to reject uncertain or unmatched points. On this extended matching score matrix M *, we
apply dual softmax normalization over rows and columns to obtain a match probability matrix M*,
eMi; M

ME = _. _.
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Finally, we drop the dustbin row and column from M*, and sample N correspondences for subse-
quent pose estimation. We denote the matching probability of the sampled correspondences as w;,,
n € [1, ..., N], which will be used as the weight in the scale-aware Procrustes alignment.

3.2 CAMERA POSE ESTIMATION

Coordinate assignment: Given the N sampled correspondences, we leverage off-the-shelf monoc-
ular depth estimators to assign coordinates to these correspondences, which are then used to estimate
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the camera pose. Importantly, monocular depth prediction is a geometrically ill-posed problem, as
there is no unique mapping from a single image to absolute metric depth. State-of-the-art methods
either learn generalizable metric depth from diverse training data (Piccinelli et al., 2025} |Zhu et al.,
2024), or predict depth that is accurate only up to an unknown per-image scale (Wang & Liu} [2024;
Yang et al., 2024a). To generalize across diverse scenarios and image types, our method accom-
modates both metric and relative depth, and explicitly estimates a scale factor s to convert relative
depth into metric space|'| This scale estimation leverages the metric information, i.e., meters per
pixel, available in geo-referenced aerial imagery.

Specically, we denote the metric coordinates of the 2D point associated with the n-th aerial feature
as (z7},y7}), with the origin defined at the center of the aerial image. For the corresponding ground
feature, we retrieve its depth from D and use its associated ray direction to compute its 3D location
in space. The resulting 3D point is denoted as (&, y<, 2&) /s, with the origin defined at the ground
camera. Here, s is an unknown scale factor from the ground coordinate system to the aerial metric
space, and s = 1 when a reliable metric depth model is used. We retain all matched ground points
without explicitly selecting them based on their height (z-coordinate). Our ablation study will show

that explicitly selecting the topmost point does not improve performance.

Scale-aware Procrustes alignment: As shown in Fig. [2] right, once we have the point correspon-
dences {(z2,y), (25, 9%, 25) /s}, and their matching probabilities w,,, we can compute the rota-
tion R, translation t, and the scale s between the ground points and the metric space aerial points an-

alytically in a differentiable manner using 2D scale-aware Procrustes alignment (Umeyama, 1991)

For simplicity, we denote the planar coordinates’|of all ground points as P = P* /s, assuming they
differ from the metric coordinates, P* = {(z{,y%), ..., (z&,yS)}, by an unknown scale s. The
coordinates of all aerial points are denoted as Q. The objective is to estimate the scale s, rotation
matrix R and metric translation t that satisfy the transformation Q = s(R - P) + t.

First, we compute the weighted centroids of the aerial and ground point sets,

1 X I .l al
Q:an::l“’an P:W;w”P”’ with W=, wn. @

n=1

In Eq. [2| the better matched points will contribute more to the centroids of the point sets. Then, we
center the point sets and compute their covariance matrix C,

o= 3w (p) (@) o

where P,, and Qn are the n-th points in the centered point sets Q =Q - Qand P=P—P.The
covariance matrix C captures how the centered ground points relate to the centered aerial points,
encoding the direction and strength of their mutual variation.

Next, we perform Singular Value Decomposition (SVD) on C, where C = UXV ', and the optimal
rotation can be recovered as R = VU, which derives the estimated yaw orientation o. The scale
and translation from the ground points P to the aerial points Q is then computed as,
TI' (E) M * D
= N =2 t=Q-s"(R-P). “)
Zn:l Wn, P”

Recall that P = P*/s. Substituting this into Eq. 4] the estimated scale s* can be expressed using
the (unscaled) metric coordinates P*, with 3* being the singular value matrix computed from the
SVD between Q and P*:

'Recent work (Yu et all 2025) models relative depth using a scale and a shift. As our goal is not metric
depth prediction, we follow |[Eigen et al.|(2014); Ding et al.| (2024) and consider only the scale for simplicity.

’In Xia & Alahi| (2025); Barroso-Laguna et al. (2024), all coordinates are in metric space, so they use
orthogonal Procrustes (Gower, |1975) and ignore scale.

3We assume that the ground camera’s viewing direction is orthogonal to the gravity direction, since this can
be reliably calibrated (Veicht et al.,[2024) or obtained from an IMU or accelerometer.
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Since P* lies in the same metric space as the aerial points Q, and there is no scale difference between
~ 2
them, we have Tr(X) = ETJLI W, HP”H . This leads to s* = s, indicating that the ground points

P must be scaled by s to align them with the metric aerial points Q.

Practical implication: This derivation shows that, regardless of the unknown scale of the ground
points, scale-aware Procrustes alignment yields a consistent estimate of the camera pose and can
recover the scale s. Its differentiability makes it particularly well-suited for learning local feature
matching through pose supervision, while also enabling inference using only relative depth.

3.3 MODEL SUPERVISION

We follow [Xia & Alahi| (2025) to provide supervision on both the pose and correspondences. For
camera pose, we adopt the Virtual Correspondence Error (VCE) loss. Specifically, we define a set of
N, virtual points P, in a 2D metric space, where the hyperparameter [ controls the spatial extent of
the space. We apply both the ground-truth transformation, R, t,, and the estimated transformation,
R, t, to these virtual points. The loss Lycg then minimizes the mean Euclidean distance between
the corresponding transformed points,

1
LVCE = FD Z ”(Rgt : P/u + tgl) - (R ' PU + t)”z . (6)

When metric depth is available during training, we use the ground-truth pose to find, for the ground
points, their corresponding aerial points and compute an infoNCE loss (Oord et al. [2018), Lgos,
to encourage these correspondences. We also find, for the aerial points, their corresponding ground
points. However, multiple ground points may exist at different heights but share similar BEV loca-
tions. We select the ground point closest to the projected location and compute the Lg,g, using only
ground points outside a defined local neighborhood as negatives. The detailed formulation is pro-
vided in the Appendix. The total loss is then a weighted combination of the VCE loss and infoNCE
losses, £ = Lyce + B(Lacas + Ls26)/2.

4 EXPERIMENT

We first introduce the datasets and metrics, followed by implementation details. We then compare
our method with previous state-of-the-art vision-based methods and showcase our inference using
different monocular depth predictors. Next, we present qualitative results on local feature matching
and interpretable layout alignment, as well as an experiment on cross-dataset generalization and our
ablation study.

4.1 DATASETS AND EVALUATION METRICS

KITTI (Geiger et al.l 2013) provides forward-facing ground-level images with a limited field of
view. Aerial images for KITTI were collected by [Shi & Li (2022), who also split the dataset into
Training, Testl, and Test2 subsets. Testl includes images from the same region as the Training
set, while Test2 contains images from a different unseen region. We refer to Testl and Test2
as the same-area and cross-area test sets, respectively. We use the metric depth predictions from
DepthAnythingV2 (Yang et al.| 2024b)) for our experiments on KITTIL.

VIGOR (Zhu et al.,|2021) is a widely used cross-view localization dataset, containing ground-level
panoramas and aerial images from four U.S. cities. It also provides same-area and cross-area splits.
In the same-area split, training and test images are collected from all four cities, while in the cross-
area split, the training and test sets come from two different cities. During training, we adopt a
recent metric depth model, Unik3D (Piccinell: et al., [2025), which has shown strong performance
on outdoor panoramic images. At test time, we report results using both Unik3D and relative depth
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models (Wang & Liul 2024} Jiang et al., 2021; |Wang et al.,[2022). Additionally, we include results
in the Appendix where both training and testing are performed using only relative depth.

Metrics: We report the mean and median localization and orientation errors. Following Xia et al.
(2023), we train and test with both known and unknown orientations on VIGOR, and apply orien-
tation noise sampled from +10° or £180° on KITTI. For KITTI, we also decompose localization
errors into longitudinal and lateral components based on the driving direction and report the per-
centage of samples within the defined error thresholds.

4.2 IMPLEMENTATION DETAILS

On both datasets, we use AdamW (Loshchilov & Hutter, 2019) with a learning rate of 1 x 104,
Training is conducted on a single H100 GPU with a batch size of 80 for VIGOR and 224 for KITTIL.
We follow the setting from Xia & Alahi (2025): the temperature parameter 7 in matching score
computation is set to 0.1, the aerial feature map F 4 is resized to generate 41 x 41 aerial points,
Lycg uses N, = 10 x 10 points, with [ set to 5m, and N = 1024 correspondences are sampled for
pose estimation. For Lg)g, negatives are 1 m away in planar distance from the projected location.
We use 5 = 1 for VIGOR and S = 0.1 for KITTI. RANSAC (Fischler & Bolles, |1981) is applied
on VIGOR, but omitted on KITTI as it did not yield improvements in localization accuracy. When
using metric depth, we apply a maximum depth threshold of 35 m for VIGOR and 40 m for KITTI,
setting the matching score of points exceeding this threshold to zero. For relative depth predictors,
we apply a fixed initial scale (identified by visually inspecting a few examples) to all relative depth
maps and then use the threshold to filter out matches corresponding to sky and distant objects.

4.3 QUANTITATIVE RESULTS

Table 1: KITTI test results. Best in bold. The ‘ori.” column shows orientation noise used in training
and testing, uniformly sampled within +10° or +180°.

Ori. Methods J Loc. (m) 1 Lateral (%) 1 Long. (%) J Orien. (°) 1 Orien. (%)
) Mean Median R@Im R@5m R@Im R@5m Mean Median R@1° R@5°
GGCVT - - 5772 91.16 14.15 4500 - - 98.98 100.00
CCVPE 9.16 3.33 4406 90.23 23.08 64.31 155 0.84 57.72 96.19

< OS HC-Net 8.47 457 75.00 97.76 5893 7646 322 1.63 33.58 83.78
S | DenseFlow 7.97 352 5419 9174 2310 6175 217 121 43.44 89.31
2 FG? 731 415 37.80 8565 2198 60.77 3.62 237 23.03 77.84
8 Ours 5.60 3.01 4529 9243 27.01 6826 332 212 26.03 80.68
%, SliceMatch 14.85 11.85 24.00 72.89 7.17 33.12  23.64 7.96 31.69 31.69

% CCVPE 13.94 1098 2342 6046 11.81 42.12 77.84 63.84 3.14 14.56

H  Ours 11.71 9.11 13.64 50.88 14.04 50.73 55.18 3323 253 1278
GGCVT - - 76.44 98.89 2354 62.18 - - 99.10 100.00

CCVPE 122 0.62 9735 9971 77.13 97.16 0.67 0.54 77.39 99.95

< 02 HC-Net 080 050 99.01 99.73 9220 99.25 045 033 91.35 99.84
£ 1 DenseFlow 1.48 047 9547 99.79 87.89 9478 049 0.30 89.40 99.31
g FG? 0.75 0.51 95.81 99.66 92.50 99.05 093 0.66 67.27 9891
3 Ours 1.13  0.77 93.59 9997 7151 98.17 197 1.43 36.68 92.84
%, SliceMatch 7.96 439  49.09 9852 1519 5735 412 3.65 1341 64.17

% CCVPE 6.88  3.47 5330 85.13 25.84 6849 1501 6.12 896 4275

H  Ours 185 131 62.18 97.80 59.37 9748 9.70 6.17 946 41.64

KITTI: We compare our method with both global descriptor-based methods, CCVPE (Xia
et al., [2023) and SliceMatch (Lentsch et al., 2023)), and geometry transformation-based methods,
GGCVT (Shi et al., 2023), HC-Net (Wang et al., 2024b)), DenseFlow (Song et al., |2024), and
FG? (Xia & Alahi, 2025). As shown in Tab. [I| our method sets a new state-of-the-art in mean
and median localization errors on the cross-area test under both £10° and +180° orientation noise.
On the same-area test, although our method has higher error under £10° noise, it shows a large
improvement over the previous state-of-the-art method in the more challenging +£180° setting, re-
ducing the mean error from 6.88 m to 1.85 m. For orientation prediction, our method is less accurate
than the state of the art. Since our method computes orientation analytically from local feature
correspondences, it cannot take full advantage of the prior that most ground images in KITTI are
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aligned with the road direction. Under £10° noise, our performance is comparable to FG2, while
under +180° noise, our method outperforms CCVPE but falls short of SliceMatch.

VIGOR: Overall, our method demonstrates strong and consistent performance in both localization
and orientation estimation on the same-area and cross-area test sets (see Tab. . For instance,
while FG? attains lower localization error when the orientation is known, our method significantly
outperforms it in the more challenging unknown orientation setting. Compared to the previous state
of the art under unknown orientation (Xia et al.,[2023), our method achieves comparable localization
accuracy, showing slightly higher mean error on the same-area test set but lower mean error on the
cross-area test set. Notably, for panoramic images, the richer matchable information between ground
and aerial views leads to substantial gains, with our method achieving the lowest mean orientation
error in both same-area and cross-area tests.

Table 2: VIGOR test results. Best in bold. Training uses metric depth from Unik3D (Piccinelli
et al., [2025). The row ‘ours’ reports results with metric depth from the same model, while ‘ours-
xxx’ shows results with different relative depth inputs. Relative depth predictors, BiFuse++ (Wang
et al.,|2022) and UniFuse (Jiang et al.,[2021]), are provided by (Wang & Liu}|2024). ‘Ours-Unik3Dy’
denotes the study where metric depth is manually scaled by an arbitrary factor.

Cross-area Same-area
Ori. Methods J Localization (m) | Orientation (°) | Localization (m) | Orientation (°)
Mean  Median Mean Median Mean  Median Mean  Median

SliceMatch 7.22 3.31 2597 451 6.49 3.13 2546  4.71
CCVPE 5.41 1.89 27.78 13.58 3.74 1.42 12.83  6.62

=  DenseFlow 7.67 3.67 17.63 294 4.97 1.90 11.20 1.59

% FG? 10.02  8.14 3141 545 8.95 7.32 15.02 294

£ Ours 4.23 2.09 11.67 2.21 3.94 1.78 9.54 2.00

5 Ours-BiFuse++ 4.43 2.26 1227 247 4.12 1.94 10.13 231
Ours-UniFuse 4.36 221 12.10 243 4.03 1.89 9.81 2.21
SliceMatch 5.53 2.55 - - 5.18 2.58 - -
CCVPE 4.97 1.68 - - 3.60 1.36 - -
GGCVT 5.16 1.40 - - 4.12 1.34 - -

=  DenseFlow 5.01 2.42 - - 3.03 0.97 - -

% HC-Net 3.35 1.59 - - 2.65 1.17 - -

g FG? 241 137 - - 195  1.08 - -
Ours 343 1.90 - - 3.06 1.59 - -
Ours-Unik3D,y  3.43 1.90 - - 3.06 1.59 - -
Ours-BiFuse++  3.56 2.02 - - 3.17 1.69 - -
Ours-UniFuse 3.54 2.01 - - 3.14 1.67 - -

Inference with relative depth: We evaluate the consistency of our pose estimation against different
depth predictors in inference through two additional experiments on VIGOR. The first one applies
arbitrary scale factors to the metric depth predicted by Unik3D. We vary the scale from 0.001 to
1000 and observe that the resulting variation in both mean and median localization error remains
below 1 cm (‘Ours-Unik3Dy,’ in Tab. @ demonstrating strong scale invariance. This robustness is
due to both the accurate correspondence matching and the spatial distribution of the matched points.

Second, we evaluate a practical scenario where only a relative depth model (Wang et al.|[2022; |Jiang
et al.,[2021; Wang & Liu, 2024) is available at inference. We plug in different relative depth models
with our estimated correspondences, without retraining or finetuning. As shown in the bottom two
rows of the known and unknown orientation entries in Tab. [2] relative depth increases localization
error by less than 0.2 m. This flexibility in depth predictors highlights the practicality and robustness
of our method for real-world deployment, especially when a compact depth predictor is required.

4.4 INTERPRETABILITY

Local feature matching: Since our pose is computed analytically from the estimated correspon-
dences, these correspondences directly reflect localization quality, an interpretability advantage ab-
sent in most prior cross-view localization methods. Although FG? also estimates correspondences,
its localization fails when the orientation is unknown, whereas our method remains accurate.
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Figure 3: Local feature matching results on the VIGOR same-area test set under unknown orienta-
tion. We visualize the top 50 correspondences, ranked by matching score.

As shown in Fig. [3] (a) and (b), when road markings are repetitive, e.g., on highways, our method
leverages other landmarks such as overhead road signs and streetlights for localization, demonstrat-
ing that the matching is not solely appearance-based but also reflects strong semantic understanding.
In (c), the partially occluded ‘bus’ marking is difficult even for humans to identify, yet our model
matches it correctly. In (d), both streetlights and road markings serve as anchors for localization,
while (e) shows that without restricting matches to object tops, our method aligns the upper facades
of buildings in the ground view with rooftops in the aerial view. Finally, (f) shows a failure case,
though interestingly our method predicts a more reasonable position aligned with the visible path,
whereas the ground truth appears erroneous. More VIGOR and KITTI results are in the Appendix.

Outlier detection: The ability to estimate correspondences makes our method well-suited for outlier
detection using RANSAC. For each test sample, we record the number of inlier correspondences and
use it for outlier detection. As shown in Fig. ] the pose error decreases sharply as the inlier ratio
rises from 10% to 50%, followed by a slower decline after 50%. This trend reveals a strong negative
correlation between inlier ratio and pose error, consistent with the expectation that more accurate
correspondences yield more accurate pose estimates.
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Figure 4: Outlier detection using RANSAC on VIGOR same/cross-area test sets.

Ground-aerial layout alignment: With a relative depth predictor (Wang et al.,[2022), our method
estimates both the camera pose and the scale between relative depth and the aerial metric space. As
shown in Fig. 5] the rotated, translated, and scaled ground layout can be overlaid onto the aerial
image, providing a clear and interpretable visual cue of localization quality. For example, (a) and
(b) show precise alignment of the projected intersection and building with those in the aerial view,
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corresponding to accurate localization. Interestingly, (c) also shows good alignment, revealing an
error in the ground-truth location: the vehicle should be in front of the zebra crossing rather than on
it. (d) shows a localization failure, which is easily identifiable from the misalignment. The strong
correlation between alignment and localization quality offers a powerful tool for interpretability.

L F o /
e

Figure 5: Ground layout overlaid on the aerial image after applying the predicted rotation, transla-
tion, and scale transformations. The alignment directly reflects localization quality: the first three
examples show successful localization, while the last one illustrates a failure case. Notably, the
alignment in example (c) helped us to identify the error in ground truth location.

4.5 CROSS-DATASET GENERALIZATION

Additionally, we demonstrate the strong generalization capability of our model by directly applying
the model trained on VIGOR to the CVACT dataset 2019). CVACT is a cross-view image
retrieval dataset collected in Canberra, Australia, where the rural and natural landscapes present a
significant domain gap compared to VIGOR. Notably, CVACT lacks precise localization labels (Shi
2022). Therefore, we provide local feature matching results and evaluate localization perfor-
mance by overlaying the transformed ground layout onto the aerial image.

In general, our model exhibits strong generalization capability across datasets collected in different
countries. As shown in Fig.|6] our model establishes reasonable feature correspondences. In sam-
ples (a) and (c), features extracted along trees in the ground view accurately match the corresponding
blobs in the aerial view. In samples (b) and (d), the curbs and road markings in the ground view are
correctly matched to those in the aerial view. Reliable feature matching leads to accurate localiza-
tion. As shown, the transformed ground layout consistently aligns well with the aerial image across
all samples. In (a) and (b), road markings and lane boundaries projected from the ground view form
seamless continuations of those in the aerial view. In (c¢) and (d), both ground-level structures (e.g.,
curbs) and above-ground objects (e.g., buildings and trees) exhibit strong alignment.

4.6 ABLATION STUDY

Our main ablation study focuses on two key design choices: (1) the coordinate assignment strategy
(Sec. [3.:2), comparing using all points within the depth range versus only the topmost points along
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Figure 6: Direct generalization to the CVACT dataset. We visualize the top 50 correspondences,
ranked by matching score, and overlay the ground layout on the aerial image after using the predicted
rotation, translation, and scale transformations. We use the metric depth prediction from Unik3D.

height; and (2) the effect of ignoring scale in Procrustes alignment (reducing our formulation to
the orthogonal Procrustes of [Xia & Alahi (2025); [Barroso-Laguna et al.| (2024)). As shown in
Tab. 3] explicitly selecting the topmost points does not improve localization accuracy. The side
view of an object’s top does not necessarily exhibit the most consistent semantics with the aerial
image. Therefore, enforcing the use of topmost points may hinder cross-view localization. For scale-
awareness, excluding scale forces the model to align features strictly to metric depth predictions,
which are imperfect. Allowing the model to also estimate scale from correspondences yields more
accurate and robust matching. Moreover, without modeling scale, the method cannot support relative
depth predictors, as orthogonal Procrustes assumes that all coordinates lie in the same scale space.
Additional ablation study on other hyperparameters in both inference and training is included in
Appendix. Sec. A.

Table 3: Ablation study on VIGOR same-area validation set with unknown ori. Best in bold.

Method design choices Mean loc. (m)  Median loc. (m) Mean ori. (°) Median ori. (°)
(1) Top points only 3.95 1.78 9.37 1.77
(2) Not consider scale 5.47 2.75 19.92 4.45
Ours (all points, scale-aware)  3.86 1.75 9.30 1.93

5 CONCLUSION

We propose a simple, accurate, and interpretable fine-grained cross-view localization method that
matches local features between ground and aerial images. Our method learns correspondences from
camera pose supervision and leverages monocular depth predictors with scale-aware Procrustes
alignment to estimate the camera pose and recover the scale of relative depth. Experiments demon-
strate state-of-the-art performance in challenging scenarios, including cross-area generalization and
unknown camera orientation. Furthermore, our local feature matching enhances interpretability,
enabling visual identification of erroneous predictions as well as RANSAC-based outlier detection.

10
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Reproducibility statement: Our method combines a deep learning model with a classic algorith-
mic component, scale-aware Procrustes alignment. The deep learning component is described in
Sec.[3.2] while the derivation of the scale-aware Procrustes alignment is detailed in Sec.[3.2]with a
complete proof provided in the Appendix, ensuring that the theoretical foundation of our approach
is transparent and verifiable. The implementation is lightweight and relies only on standard compo-
nents, with all hyperparameters and training settings fully described in Sec.[d.2] To further support
reproducibility, we will release our code together with configuration files and evaluation scripts,
enabling the community to reproduce all experiments and results reported in this paper.
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APPENDIX

Here we provide supplementary material to support the main paper:

A. Additional ablation study.

A.1. Ablation on inference settings.
A.2. Ablation on training settings.

. Test on non-road facing samples on KITTI.

. Additional local feature matching results.

. Additional results on cross-dataset generalization.

. Additional results on using relative depth in inference.

. Training and testing with relative depth.

. Additional proof for scale-aware Procrustes alignment.

. Additional details on infoNCE losses.

. Discussion of standard and true digital orthophoto maps.

. Runtime and memory usage.

. LLM usage statement.

A  ADDITIONAL ABLATION STUDY

We conduct additional ablation studies on the VIGOR same-area validation set with unknown ori-
entation, analyzing the effects of various hyperparameters in both inference and training.

During inference, we vary the number of sampled correspondences N, the number of aerial points,
the resolution (meters per pixel) of the input aerial image, and the use of RANSAC in our trained
model using the default settings.

During training, we investigate the influence of various hyperparameters, including the number of
sampled correspondences IV, the number of aerial points, the feature map resolution, and the temper-
ature parameter 7. Additionally, we compare our formulation (image-plane matching + scale-aware
Procrustes alignment) with two homography-based formulation: (1) Replacing image-plane match-
ing with BEV-plane matching by first transforming the ground images into a BEV, and then feed
it to the same feature extractor, matcher, and Procrustes alignment. (2) Replacing the scale-aware
Procrustes alignment with homography for pose estimation.

A.1 ABLATION STUDY ON INFERENCE SETTINGS

Number of sampled correspondences N: Our default setting uses N = 1024 (following Xia
& Alahi| (2025)) during inference. If RANSAC is used, we sample only 3 correspondences per
RANSAC loop to compute the pose and scale. In this case, we vary IV only in inference: a model
trained with N = 1024 is evaluated with N = 256, 512, 1024, and 2048 (without RANSAC).

As shown in Tab. ] the number of correspondences N does not have a strong impact on perfor-
mance. When varying N during inference, the difference in mean localization error is less than 0.2
m for N = 512,1024, 2048. The error increases more noticeably when a smaller IV, such as 256, is
used.

Number of aerial points: Next, we examine how the number of aerial points affects performance.
Our default setting, following Xia & Alahi|(2025), uses 41 x 41 aerial points for fair comparison. As
shown in Tab. [5] our model is robust to small variations in the number of aerial points. When more
than 36 x 36 points are used, the change in mean localization error is less than 0.2 m. However,
when the number of points is significantly reduced (e.g., 31 x 31), performance degrades noticeably.

Aerial image resolution: We also study the effect of varying aerial image resolution in inference.
As shown in Tab.[6] our model is robust to such variations. All aerial images are first processed by the
pre-trained DINOV2 feature extractor. Regardless of input resolution, we consistently sample a fixed
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Table 4: Ablation on the number of sampled correspondences V. Best in bold..

Localization (m) Orientation (°)

Mode N Mean| Median| Mean| Median |
ot 2048 4.66 2.88 11.13 3.92
§ 1024 (default) 4.60 2.81 11.19 4.04
qg 512 4.71 2.91 12.06 4.20
— 256 4.90 2.98 12.97 4.78

Table 5: Ablation on the number of aerial points. Best in bold.

. . Localization (m) Orientation (°)
Number of Aerial Points Mean | Median| Mean] Median |

31x31 4.27 2.16 10.01 2.49

36x 36 3.98 1.88 9.38 2.10

41x41 (default) 3.86 1.75 9.30 1.93

46x 46 3.86 1.72 9.31 1.91

51x51 3.82 1.70 9.18 1.90

56 x 56 391 1.68 9.61 1.97

41 x 41 grid of aerial points from the feature map. Since a downsampled aerial image still covers
the same geographic area, the sampled points correspond to the same geo-locations, independent of
resolution. Thus, any effect on pose estimation accuracy mainly stems from changes in DINOv2
features due to downsampling in lower-resolution inputs.

Table 6: Ablation on aerial image resolution. Best in bold.

Resolution Localization (m) Orientation (°)
Mean | Median| Mean| Median |
630x 630 (default) 3.86 1.75 9.30 1.93
574x574 3.77 1.71 9.52 1.95
518518 3.82 1.76 9.17 1.94
448 x448 3.90 1.77 9.49 1.97
392x392 3.99 1.84 10.22 2.13
336x336 4.17 1.96 10.36 2.28

RANSAC: Finally, we report results of in inference with or without RANSAC . As shown in Tab.[7]
using RANSAC yields a ~0.74 m reduction in mean localization error.

A.2 ABLATION STUDY ON TRAINING SETTINGS

We first investigate the impact of several hyperparameters involved in our local feature matching
during training, including the number of sampled correspondences, the number of aerial points, and
the temperature parameter. After this, we vary our formulation by using homography-transformed
inputs or a homography-based pose estimator.

Number of sampled correspondences N: Our default setting uses N = 1024 (following Xia &
Alahi (2025)) during training. In this case, we vary IV in both training and inference: validation
results (with RANSAC) of models trained with N = 256,512, 1024, and 2048. As shown in Tab.
the model remains robust to different N during training, as long as NV is not too small (e.g., N <
256).

Number of aerial points & Feature Map Resolution: We train additional models using 31 x 31,
36 x 36, 46 x 46, 51 x 51, 56 x 56 aerial points. Meanwhile, to investigate the impact of feature map
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Table 7: Ablation on RANSAC. Best in bold.

Localization (m) Orientation (°)

RANSAC Mean| Median| Mean| Median |
Without RANSAC 4.60 2.81 11.19 4.04
With RANSAC 3.86 1.75 9.30 1.93

Table 8: Ablation on the number of sampled correspondences /N. Best in bold..

Localization (m) Orientation (°)

Mode N Mean| Median| Mean| Median |
) 2048 3.91 1.76 9.25 1.73
‘g 1024 (default) 3.86 1.75 9.30 1.93
3 512 4.12 1.80 9.71 1.80
= 256 4.31 1.90 11.27 2.17

resolution, we also trained a model that upsamples the aerial DINO feature map from its original
45 x 45 resolution to 180 x 180 using two stages of bilinear interpolation followed by convolutional
layers. We then sample a 41 x 41 grid of points from this higher-resolution feature map.

As shown in Tab. [9] higher resolution of aerial points provides only a modest improvement in per-
formance (0.16 meters reduction in mean localization error). However, such setting substantially
increases memory usage and training time. Notably, Tab. [I0]indicates that this marginal improve-
ment mainly comes from RANSAC, which benefits from a larger pool of correspondences. When
inferring without RANSAC, the 41 x 41 setting even performs slightly better. By contrast, upsam-
pling the feature maps does not lead to any measurable performance improvement.

Table 9: Ablation on different resolution configurations. Best in bold.

Number of aerial points (/V) Mean loc. (m)  Median loc. (m) Mean ori. (°) Median ori. (°)
31 x 31 4.22 1.90 9.68 1.99
36 x 36 4.01 1.82 9.42 1.91
41 x 41 (default) 3.86 1.75 9.30 1.93
41 x 41 (upsampled feature)  4.55 1.94 11.46 1.96
46 x 46 3.90 1.72 9.07 1.72
51 x 51 3.75 1.67 8.76 1.73
56 x 56 3.70 1.65 8.75 1.69

Temperature Parameter 7: This parameter directly affects the matching score matrix M*. Fol-

lowing [Barroso-Laguna et al.| (2024)); [Sun et al. (2021); [Xia & Alahi (2025), we adopt the com-
monly used setting 7 = 0.1. To further investigate its impact, we perform a grid search over

7 € 0.5,0.1,0.05,0.01. As shown in Tab.[TT} 7 = 0.1 and 7 = 0.05 yield very similar perfor-
mance, while both larger and smaller values lead to a noticeable degradation in accuracy.

BEV-plane matching: Transforming ground images into BEV via a homography typically intro-
duces ray-directional distortions, which degrade correspondence quality when matching these BEV-
transformed views directly to the aerial image. To validate this, we construct a bird’s-eye-view
(BEV) variant of Loc? by first transforming the ground-level images into BEV representations and
then feeding the transformed images into the same feature extractor and matching head, followed by
scale-aware Procrustes alignment using the same loss functions. We adopted the BEV transforma-
tion from HC-Net (Wang et al., 2024b) with its default hyperparameters.

As shown in the Tab.[T2] the BEV variant yields substantially worse performance. The BEV transfor-
mation inevitably introduces distortions to elevated or above-ground structures. More importantly,
such structures often occupy a large portion of the input image, restricting matching to a small undis-
torted region or forcing the model to match features on distorted objects, which ultimately degrades
performance (see Fig. [7).
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Table 10: Different resolution configurations (inference without RANSAC). Best in bold.

Number of aerial points (N)  Mean loc. (m)  Median loc. (m)  Mean ori. (°) Median ori. (°)
41 x 41 (default) 4.60 2.81 11.19 4.04
51 x 51 4.70 2.89 11.38 4.03
56 x 56 4.68 291 11.59 3.92

Table 11: Different values for the temperature parameter. Best in bold.

Temperature 7 Mean loc. (m)  Median loc. (m)  Mean ori. (°) Median ori. (°)
0.5 9.58 6.18 39.03 15.33

0.1 (default) 3.86 1.75 9.30 1.93

0.05 3.78 1.80 9.25 2.17

0.01 4.58 2.46 13.70 4.78

Homography-based pose estimation: We next replace our pose estimation module with a
homography-based formulation instead of a 2D similarity transformation. Specifically, we use the
sampled correspondences to estimate a homography matrix and supervise it through translation and
orientation, following a strategy similar to HC-Net (Wang et al.,|2024b).

As shown in the Tab.[I2] the homography-based formulation leads to a significant drop in localiza-
tion accuracy. A homography has eight degrees of freedom and, beyond translation and rotation, can
model anisotropic scaling and shear. As a result, it can disregard the contour and shape information
encoded in the (relative) depth prior. Meanwhile, it also reduces interpretability: the inferred ground
layout may become skewed or non-uniformly scaled across different directions in order to satisfy
the point correspondences in the aerial view.

B TEST ON NON-ROAD FACING SAMPLES ON KITTI

In Sec.[d.3] we noted that our method computes orientation from correspondences, making it difficult
to exploit the prior that most ground images in KITTI are aligned with the road direction. Here,
we provide an additional quantitative comparison between our method and CCVPE on manually
selected KITTI samples that are not aligned with the road direction, denoted as non-road.

As shown in Tab. our method consistently outperforms CCVPE (which directly regresses orien-
tation and can easily capture the road-facing bias). This setting better reflects real-world scenarios,
where the orientation can be arbitrary and no pre-processing (such as rotating the aerial image for
rough alignment) is required. When comparing the “non-road” subset to the full test set (Tab. [I)),
both CCVPE and our method exhibit increased orientation errors. However, the increase is signifi-
cantly smaller for our method, indicating greater robustness to challenging viewpoints. Interestingly,
we observe that localization errors in the non-road subset are lower than those on the full set. This is
likely due to reduced location ambiguity at intersections compared to the more monotonous structure
of road-aligned scenes.

C ADDITIONAL LOCAL FEATURE MATCHING RESULTS

First, we present additional results on local feature matching. Fig. [8]shows success cases where the
pose estimation is accurate, while Fig. [T0] presents failure cases.

Success cases: Fig. presents results on VIGOR. In (a)—(f), we demonstrate that our model effec-
tively matches various types of road markings across views, including painted text (a)—(d) and lines
(e)—(f). In general, road markings are distinctive across views, and accurately matching them signif-
icantly aids localization. Besides road markings, our method also leverages other landmarks, such
as overhead road signs and streetlights, to help anchor the keypoint locations.(Fig. |§| (g)-(h)). In ur-
ban areas, there is typically rich visual information available for matching across ground and aerial
views (Fig. |§| (1)—(1)), including buildings, zebra crossings, and lane lines. Our model effectively
exploits all of these cues for localization.
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Table 12: Comparison between the proposed Loc? and its BEV variant. Best in bold.

Method design choices Mean loc. (m)  Median loc. (m)  Mean ori. (°) Median ori. (°)
BEV-plane matching 9.49 8.20 53.42 31.84
Homography pose estimation ~ 14.46 13.43 90.98 91.17

Ours 3.86 1.75 9.30 1.93

]
BEV variant |

" 'd

A GT

|
BEV variant | BEV variant
— {

Figure 7: Matching results of the BEV variant of our method on the VIGOR same-area test set under
unknown orientation. We visualize the top 50 correspondences, ranked by matching score.

Fig.[9]presents results on KITTL Our method primarily leverages structures such as roads, sidewalks,
and fences in front of the vehicle to establish correspondences with the aerial view.

Failure cases: Typical failure cases are shown in Fig.[L0] When there is dense vegetation (Fig. [L0]
(a),(b)), the matchable information across views is very limited, making precise localization ex-
tremely challenging, even for humans. Interestingly, in Fig. (b), our method still correctly
matches the gap between two buildings in the ground view to the corresponding gap in the aerial
view. In Fig.[I0](c), the two narrow roads with trees and a zebra crossing in front appear visually
similar. At the true location, a tree partially blocks the zebra crossing in the aerial view, making it
harder to distinguish. As a result, our method matches the zebra crossing to an incorrect one, lead-
ing to an erroneous location estimate. In Fig.[I0|(d), it is nearly impossible to determine the exact
location over the water due to the lack of distinctive features. Finally, Fig. me)—(h) shows that
occlusions from dense high-rise buildings make cross-view matching more difficult. Importantly,
we believe these scenarios represent common challenges for most cross-view localization methods,
rather than limitations specific to our approach. Furthermore, our local feature matching frame-
work provides strong interpretability, enabling straightforward identification of such failure cases
and supporting RANSAC-based outlier filtering.

D ADDITIONAL RESULTS ON CROSS-DATASET GENERALIZATION.

In addition to Sec.[4.5] we present more qualitative results on cross-dataset generalization. As shown
in Fig. [TT} our model can establish reliable correspondences on buildings (a), road markings (b, c,
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Table 13: Test on non-road facing samples on KITTI. Best in bold.

Ori . Setting Localization (m) Orientation (°)
rientation
Test Set Method Mean| Median| Mean| Median |
§ Cross-area (non-road) CCVPE 8.33 5.99 89.78 93.97
S Cross-area (non-road) Ours 7.04 5.00 58.97 47.98
- Same-area (non-road) CCVPE 3.19 1.81 26.10 16.88
-} Same-area (non-road) Ours 1.17 1.01 9.79 8.00

Figure 8: Success cases for localization on the VIGOR same-area test set under unknown orientation.
We visualize the top 50 correspondences, ranked by matching score.

g, ), and trees (d, e). The layout alignments also demonstrate our superior localization quality with
recovered rotation, translation and scale.

E ADDITIONAL RESULTS ON USING RELATIVE DEPTH IN INFERENCE

We conduct additional experiments on using relative depth at inference time for our model (trained
with metric depth predictions from UniK3D (Piccinelli et al., 2025)). Specifically, we use Bi-

Fuse++ 2022)) as our relative depth predictor for these experiments.
19
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Figure 9: Success cases for localization on the KITTI same-area test set under +10° orientation
noise. We visualize the top 50 correspondences, ranked by matching score

Figure 10: Failure cases for localization on the VIGOR same-area test set under unknown orienta-
tion. We visualize the top 50 correspondences, ranked by matching score.

Initial scale and maximum depth threshold: As mentioned in Sec. when using relative depth,
we apply an initial scaling factor to all relative depth maps to bring the values into a reasonable depth
range, determined by visually inspecting a few examples. We then apply a predefined maximum
depth threshold, the same one used for the metric depth model, to filter out matches corresponding to
sky and distant objects. In practice, the initial scale and maximum depth threshold can be determined
for each dataset by visually inspecting a few examples. Here, we study how consistent the model’s
predictions are when these settings are varied.

First, we evaluate the model’s robustness against different scales of the relative depth. We apply
an additional scaling factor on top of the initial scale. To ensure the same objects are kept for pose
estimation, the same scaling factor is also applied to the maximum depth threshold. As shown in
Fig.[12] the test errors remain stable across different scaling factors during inference. This observa-
tion is consistent with our findings on applying scaling factors to metric depth in Sec.[4.3] Therefore,
in practice, when using relative depth, people do not need to carefully select an initial scale.

We then evaluate the effect of different maximum depth thresholds. Our default setting uses a
threshold of 35 m, and we additionally test thresholds of 25 m and 45 m. Note that although a 35 m
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Figure 11: Direct generalization to the CVACT dataset. We visualize the top 50 correspondences,
ranked by matching score, and overlay the ground layout on the aerial image after using the predicted
rotation, translation, and scale transformations.

threshold is used during training with metric depth, applying the same 35 m threshold to relative
depth does not select exactly the same set of objects, as our initial scale estimate only roughly maps
the relative depth values to a reasonable range. As shown in Tab. 4] the impact of the maximum
depth choice is minor, less than 0.2 m difference in localization errors. Since our feature matching
is accurate, including or excluding relatively distant objects has little effect on pose estimation.
Combined with the method’s robustness to the initial scale, this makes our approach highly practical,
as users do not need to carefully select an initial scale or a depth cutoff for accurate pose estimation.

Ground-aerial layout alignment: Next, we present additional results on ground—aerial layout
alignment. We visualize the bird’s-eye view ground layout after applying our estimated pose and
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Figure 12: VIGOR test errors when different scaling factors are applied to the relative depth during
inference. We use the model trained with metric depth from UniK3D (Piccinelli et al., 2025), with
unknown orientation. At inference time, we use relative depth from BiFuse++ (Wang et al.,2022).

Table 14: Robustness to different maximum depth thresholds. We apply different maximum depth
thresholds during inference to remove sky and distant objects (after applying the initial scale to
the relative depth from BiFuse++ (Wang et al., 2022)). Best results are shown in bold. During
training, we use metric depth predictions from UniK3D(Piccinelli et al., 2025), with a maximum
depth threshold of 35 m.

Same-area Cross-area
Max depth J Localization (m) | Orientation (°) | Localization (m) | Orientation (°)
Mean  Median Mean Median Mean  Median Mean  Median
25m 4.04 1.90 991 2.27 4.39 2.23 12.17 246
45 m 4.20 1.97 1046  2.35 4.47 2.27 1230  2.51
35 m (default) 4.12 1.94 10.13  2.31 4.43 2.26 1227  2.47

scale. As shown in Fig.[T3] the quality of alignment directly reflects localization accuracy: when the
alignment is precise, the estimated pose is accurate; when the alignment is off, as in the last exam-
ple, localization also fails. This interpretability provides a practical means of identifying potentially
erroneous predictions.

F TRAINING AND TESTING WITH RELATIVE DEPTH

As mentioned in Sec.[4.3] we also experimented with training and testing using only relative depth.
This setup is more challenging, since inducing correct correspondences on the BEV plane requires
both ground-truth pose and scale (i.e., metric depth). As a result, the infoNCE loss cannot be directly
applied and we lack direct supervision of the correspondences during training. We then explored
two settings. (1) Training without infoNCE losses, i.e., setting the weight 5 = 0. (2) With pseudo
ground truth for infoNCE losses: At each training iteration, we estimate the scale and use it to
generate pseudo ground-truth positive matches for the infoNCE losses.

As expected, using relative depth during training leads to worse performance than using metric depth
(see Tab. [I3)). When the orientation is known, finding correct correspondences between ground and
aerial images is easier. In this setting, the estimated scale may quickly converge to a reasonable
range, and using it to supervise correspondences (8 = 1) results in better performance compared
to not using it (3 = 0). In contrast, when the orientation is unknown, identifying correct matches
becomes significantly more difficult, making it hard to recover the correct scale. In this case, in-
corporating the infoNCE loss (5 = 1) can introduce conflicting gradients to the pose supervision:
correspondences derived from an inaccurate scale may reinforce incorrect matches, thereby degrad-
ing pose estimation performance.

As shown in Fig|14} without explicit supervision on the correspondences (8 = 0), our model still
learns to establish accurate local feature matches across views. It demonstrates strong semantic
understanding. For example, in Fig[I4[d), different points on the streetlight in the ground view are
correctly matched to the corresponding BEV of the streetlight in the aerial view.
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Figure 13: Ground layout overlaid on the aerial image after applying the predicted rotation, trans-
lation, and scale transformations. The alignment directly reflects localization quality: the first three
examples show successful localization, while the last one illustrates a failure case. Relative depth is

obtained from BiFuse++ (Wang et al.l, 2022).

Table 15: VIGOR test results. Best in bold. (1) and (2): Training and testing with relative depth
predicted by BiFuse++(Wang et al., [2022). For reference, we also include the model trained and
tested with metric depth from Unik3D(Piccinelli et al., [2023)), as well as the model trained with
metric depth and tested with relative depth.

Same-area Cross-area
Ori. Settings J Localization (m) | Orientation (°) | Localization (m) | Orientation (°)
Mean  Median Mean Median Mean  Median Mean  Median

= (OB=0 3.85 2.33 - - 4.37 2.74 - -
% Qp=1 3.34 1.99 - - 3.92 2.39 - -
Q Metric 3.06 1.59 - - 343 1.90 - -

Metric + rel. 3.17 1.69 - - 3.56 2.02 - -
§ MHp=0 5.86 3.83 23.09 9.29 6.72 4.57 2944 12.77
g @p=1 6.25 431 33.40 16.05 7.28 4.96 41.05 20.44
<  Metric 3.94 1.78 9.54 2.00 4.23 2.09 11.67 2.21
= Metric + rel. 4.12 1.94 10.13  2.31 4.43 2.26 1227 247

G ADDITIONAL PROOF FOR SCALE-AWARE PROCRUSTES ALIGNMENT

As discussed in Sec. 3.2 of the main paper, we estimate pose and scale using scale-aware Procrustes

alignment (Umeyamal, 1991) from local correspondences. Let {(P,,, Q,., w,,) })_; denote weighted

correspondences between ground points P and aerial points Q with weights w,, > 0and ) w, =
1. We denote the weighted centroids as P and Q, and the centered point sets as P = P — P and
Q = Q — Q. The objective is to find the optimal rotation R, translation t, and scale s satisfying,

Q=sR-P)+t. @)

Below we provide proofs for two key steps:
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256 Figure 14: Local feature matching results on the VIGOR same-area test set under unknown orienta-
1257  tion. We visualize the top 50 correspondences, ranked by matching score. The model train and test
1255 with relative depth.

1259

1260 . . . . o T

1261 (1) The optimal rotation from ground points to aerial pointsis R = VU '.

1262 (2) When ground and aerial points lie in the same metric space, i.e., there is no scale difference
~ 2

1263 between them, we obtain Tr() = > w,, [P,

1264

1265

(1) Rotation computation: The optimal rotation between the ground and aerial points is indepen-
1266 dent of their relative scale and translation. Therefore, it is computed using only the centered point

1267 gsets, Q and P. We express the objective function as:
1268

2
1269 R* = argmin Z W,
R n

R -P,-Q, ®)

1270
1271
1272
1273
Ezg [rE. - @[ = (RP.-Q.) " (RP. - Q)

1277 - ((ﬁ")TRT N (Q”)T) (Rf)" B Q")

1278 2) R'TRP, — (Q,)"RP, — (P,)'R"Q, + (Q.) Q.

P
1279 R
[Pl + @

2

The term HR ‘P, - Qn can be rewritten as (for simplicity, we omit the explicit dot product):

2 - -
1280 —2Q, RP,.
1281
1282 B 2 5 2
1283 Note that HP" and HQn

1284 QI RP,,. Hence, the objective in Eq. E which sums over all correspondences, can be written in

1285 matrix form as:
1286

1287

1288 R”
1289

1290 = argmax Tr((Q 'RPW) (10)
1291 R

1292 = argmax Tr(R(PWQ")). (11)
1293 R

1294 5 _
1295  where W is a diagonal matrix with entrie W, ,, = w,. In Eq. the matrix product PWQT
constructs a 2 x 2 square matrix C, which can be decomposed using singular value decomposition

are fixed, so the optimal rotation depends only on the inner product

2(Q.) TRP, 9
arg;gaxj%j(ur(cz ) ) ©)
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(SVD) as C = UXV . Accordingly, the objective function in Eq. can be reformulated as:

R* = argmax Tr(R(UXV ")) (12)
R

= argmax Tr(XV 'RU). (13)
R

Since X is a 2 x 2 diagonal matrix with nonnegative elements, the optimal rotation is achieved when
VTRU =1, where R = VUT.

2) Scale~com~putati0n: As mentioned above, the 2 x 2 square matrix C obtained from the matrix
product PWQ T can also be formulated as:

N T
c=> w, (Pn) (Q) =UzVv'. (14)
n=1

The centered target points Q.. can be obtained by rotating and scaling the centered source points
P,,, satisfying Q,, = sRP,,. With estimated rotation R = VU, Eq. can be formulated as

N T
W (P,) (sVUTP,) =UZV', (15)
S (B (vUTR)
N
s> w, (Pnf’IUvT) —uUsvT, (16)
n;l
s w, (UTPnPZU) - (17)
n=1
Then we take the trace of both sides of Eq.[I7]as
N
sTe(> w, (UTPnﬁIU)) — Ti(®), (18)
n;l
sTe(> w, (PnPZUUT)) = Tr(S). (19)

n=1

The trace of f’nls;[ is equivalent to the norm of P,,. Thus, the scale s can be computed by

N
$ Y wy||Py|* = Tr(%), (20)

n=1

P.(0) N 21

< —.
2n=1wnl[Pa|l?
2

N

Hence, when s = 1, we have Tr(X) = >, wy, P,

H ADDITIONAL DETAILS ON INFONCE LOSSES

Here, we provide details on the applied infoNCE losses, Lgas and Lgyg. These losses encourage
correspondences that align with the ground-truth pose while discouraging incorrect matches.

Given the sampled N corresponding ground points P and aerial points QQ, we compute the true
aerial correspondences for P as Q = s(Ry - P) + tg, the true ground correspondences for Q as
P= R; -((Q —tg)/s), and s = 1 when we use metric depth during training. Then, we find in the
pairwise matching score matrix M for the scores for these correspondences, denoting as M*Q and

M Qvf’, which will serve as the positives in the infoNCE loss.
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Assuming there are Np valid scores in M9 (excluding points whose correspondences fall outside
the aerial image), and denoting the n-th score as M Q, the loss Lgys is computed as:

JRALS M ®
Lo = —— log—=—+ 22
G2S Np ; OgZeMi’ (22)

where M is the i-th column correspond to the current ground point in the pairwise matching score
matrix M. Essentially, Lg,s encourages each sampled ground point to match the aerial point found
by the ground-truth pose and scale, while discouraging matches to all other aerial points.

For Lgg, we do not simply encourage the matching score M QP while discouraging all other
matches. This is because multiple ground points may share similar planar coordinates but differ
in height (i.e., the z coordinate). As described in Section 3.3 of the main paper, we define a local
neighborhood and use only matching scores correspond to ground points outside this neighborhood
as negatives. The loss Lg,g is then computed as:

1
Lo =~ 3o > log = 3 (23)

where Ngq is the number of valid scores in M QP and Meq are the negatives for each sampled
aerial point.

I DISCUSSION OF STANDARD AND TRUE DIGITAL ORTHOPHOTO MAPS

A standard Digital Orthophoto Map (DOM) is an aerial or satellite image that has been orthorecti-
fied using a Digital Elevation Model (DEM), which typically represents only the bare-earth terrain.
Unlike raw aerial photographs, a DOM has a uniform scale and corrected geometric distortions, en-
abling it to serve as a metrically accurate base map for overlaying additional geospatial information.
The aerial imagery in datasets such as VIGOR (Zhu et al., |2021)) and KITTI (Sh1 & Li, [2022])) falls
into this category, as these images provide uniform scale, they still contain building facades and
occlusions due to the absence of above-ground structures in the underlying DEM.

A True Digital Orthophoto Map (TDOM), in contrast, is generated using a Digital Surface Model
(DSM) that captures both the terrain and above-ground objects such as buildings and vegetation.
As a result, a TDOM removes facade distortions and yields an image that is geometrically much
closer to a true nadir (top-down) projection. Our formulation estimates a similarity transformation
(rotation, translation, and scale) between ground-level and aerial points, implicitly assuming that the
aerial image behaves like a TDOM.

Despite this approximation, our method mitigates the resulting geometric inconsistencies through
two key mechanisms: (1) Deep feature representations, which encode not only local appearance
but also contextual information aggregated over large receptive fields, making them less sensitive to
small misalignments between aerial and ground views; and (2) Confidence-based correspondence
sampling, applied during both training and inference, which ensures that pose estimation relies
primarily on high-quality matches. As illustrated in the main paper Fig. 3(c), the model avoids
unreliable points on building facades and instead focuses on stable cues such as road markings.
Likewise, in examples (a) and (d), streetlights are matched via the pole base to their aerial footprint
rather than the poles themselves, which is more susceptible to perspective distortion.

J RUNTIME AND MEMORY USAGE

Next, we report the runtime and memory usage of our method on VIGOR in Tab. [I6]

Runtime: On a single HI00 GPU, our method achieves 14.74 FPS without RANSAC (Fischler
& Bolles, [1981) (0.03s for our model and 0.04s for the depth predictor Unik3D (Piccinelli et al.,
2025))) and 0.42 FPS with RANSAC. This is faster than the previous local feature matching method
FG? (Xia & Alahi, 2025), which runs at 9.26 FPS without RANSAC and 0.32 FPS with it. Notably,
when prioritizing speed, omitting RANSAC results in only a small increase in localization error,
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Runtime (FPS)

Method ) RANSAC ~ With RANSAC Memory Usage
FG2 9.26 0.32 811.52 MB

726.74 MB (base) + 1368.81 MB (Unik3D)
Ours 14.74 0.42 726.74 MB (base) + 117.44 MB (UniFuse)

726.74 MB (base) + 200.23 MB (BiFuse++)

Table 16: Runtime and memory usage comparison.

e.g., on VIGOR same-area test set with known orientation the mean error increases from 3.06 m to
3.29 m. Furthermore, one can use a faster depth predictor to further reduce inference time.

Memory: our model uses 726.74 MB, with 580.54 MB for the frozen DINOv2 (Oquab et al.,|2024),
while the metric depth predictor Unik3D (Piccinelli et all [2025) uses 1368.81 MB. Notably, as
shown in Tab. |2| our method is also compatible with more lightweight depth models, such as Uni-
Fuse Jiang et al.|(2021) and BiFuse++ |Wang et al.|(2022)).

K LLM USAGE STATEMENT

We used a large language model (LLM) exclusively for text polishing, limited to minor grammar
corrections, wording refinements, and improvements in readability. The LLM was not involved in
the design of the method, the implementation of experiments, the analysis of results, or the gen-
eration of any scientific content. All technical ideas, experiments, and conclusions presented in
this work are entirely the authors’ own. The role of the LLM was purely editorial, comparable to
language editing support.
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