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Abstract

Robustness to adversarial attacks is typically ob-
tained through expensive adversarial training with
Projected Gradient Descent. We introduce RO-
PUST, a remarkably simple and efficient method
to leverage robust pre-trained models and further
increase their robustness, at no cost in natural
accuracy. Our technique relies on the use of an
Optical Processing Unit (OPU), a photonic co-
processor, and a fine-tuning step performed with
Direct Feedback Alignment, a synthetic gradient
training scheme. We test our method on nine
different models against four attacks in Robust-
Bench, consistently improving over state-of-the-
art performance. We also introduce phase retrieval
attacks, specifically designed to target our own
defense. We show that even with state-of-the-art
phase retrieval techniques, ROPUST is effective.

1. Introduction

Adversarial examples (Goodfellow et al., 2015) threaten
the safety and reliability of machine learning models de-
ployed in the wild. Because of the sheer number of attack
and defense scenarios, robustness can be difficult to evalu-
ate (Bubeck et al., 2019). Standardized benchmarks, such as
RobustBench (Croce et al., 2020) with AutoAttack (Croce
& Hein, 2020b), have helped better evaluate progress in the
field. The development of defense-specific attacks is also
crucial (Tramer & Boneh, 2019). To date, one of the most ef-
fective defense techniques remains adversarial training with
Projected Gradient Descent (PGD) (Madry et al., 2018).
Adversarial training can be resource-consuming, but robust
networks pre-trained with PGD are now widely available,
motivating their use as a foundation for simple and widely
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applicable defenses that further enhance their robustness.

To this end, we introduce ROPUST, a drop-in replacement
for the classifier of already robust models. Our defense
leverages a photonic co-processor (the Optical Processing
Unit, OPU) for physical parameter obfuscation (Cappelli
et al., 2021): because the fixed random parameters are op-
tically implemented, they remain unknown at training and
inference time. Additionally, a synthetic gradient method,
Direct Feedback Alignment (DFA) (Ngkland, 2016), is used
to fine-tune the ROPUST classifier.

We evaluate our method against AutoAttack on nine dif-
ferent models in RobustBench, and consistently improve
robust accuracies over the state-of-the-art (Fig. 1). We also
develop a phase retrieval attack targeting our parameter
obfuscation, and show that ROPUST remains effective.

1.1. Related work

Attacks. Adversarial attacks have been framed in a variety
of settings: white-box, where the attacker is assumed to
have unlimited access to the model, including its parameters
(e.g. FGSM (Goodfellow et al., 2015), PGD (Madry et al.,
2018; Kurakin et al., 2016), Carlini & Wagner (Carlini &
Wagner, 2017)); black-box, assuming only limited access to
the network for the attacker, with methods attempting to es-
timate the gradients (Chen et al., 2017; Ilyas et al., 2018a;b),
or derived from genetic algorithms (Andriushchenko et al.,
2019; Meunier et al., 2019) and combinatorial optimization
(Moon et al., 2019); transfer attacks, where an attack is
crafted on a model that is accessible to the attacker, and
then applied to the target network (Papernot et al., 2016).
Automated schemes, such as AutoAttack (Croce & Hein,
2020b), have been proposed to autonomously select attacks
and tune their hyperparameters.

Defenses. Adversarial training adds adversarial robustness
as an explicit training objective (Goodfellow et al., 2015;
Madry et al., 2018), by incorporating adversarial examples
during the training. Theoretically grounded defenses have
been proposed (Lecuyer et al., 2018; Cohen et al.; Alexan-
dre Araujo & Negrevergne, 2020; Pinot et al., 2019; Wong
et al., 2018; Wong & Kolter, 2018), but these fail to match
the clean accuracy of state-of-the-art networks. Many empir-
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Figure 1. ROPUST systematically improves the test accuracy of already robust models. Transfer refers to the performance when
attacks are generated on the base model and transferred to the ROPUST model. Models from the RobustBench model zoo: Hendrycks,
2019 (Hendrycks et al., 2019), Sehwag, 2021 (Sehwag et al., 2021), Wu, 2020 (Wu et al., 2020), Zhang, 2020 (Zhang et al., 2020), Wong,
2020 (Wong et al., 2020), Ding, 2020 (Ding et al., 2020), Carmon, 2019 (Carmon et al., 2019), Gowal, 2020 (Gowal et al., 2020).

ical defenses have been criticized for providing a false sense
of security (Athalye et al., 2018; Tramer & Boneh, 2019),
by not evaluating on attacks adapted to the defense. Gra-
dient obfuscation, through the use of a non-differentiable
activation function, has been proposed as a way to protect
against white-box attacks (Papernot et al., 2017). However,
it can be easily bypassed by Backward Pass Differentiable
Approximation (BPDA) (Athalye et al., 2018), where the
defense is replaced by a differentiable relaxation. Parame-
ter obfuscation has been proposed with dedicated photonic
co-processor (Cappelli et al., 2021). However, by itself, this
kind of defense falls short of adversarial training.

Fine-tuning and analog computing. Previous work in-
troduced adversarial fine-tuning (Jeddi et al., 2020): fine-
tuning a non-robust model with an adversarial objective.
In this work instead we fine-tune a robust model without
adversarial training. Additionally, it was shown that robust-
ness improves transfer performance (Salman et al., 2020)
and that robustness transfers across datasets (Shafahi et al.,
2020). The advantage of non-ideal analog computations in
terms of robustness has been investigated in the context of
NVM crossbars (Roy et al., 2020).

1.2. Motivations and contributions

We propose to simplify and extend the applicability of
photonic-based parameter obfuscation defenses. The use of
dedicated hardware to perform the random projection phys-
ically guarantees parameter obfuscation (Cappelli et al.,
2021). Our defense, ROPUST, can be dropped-in to
supplement any robust pre-trained model and fine-tuning
its classifier is fast. In contrast with existing parameter-

obfuscation methods, it leverages pre-trained robust models,
and achieves state-of-the-art performance. Drawing inspi-
ration from the field of phase retrieval, we introduce a new
kind of attack against defenses relying on parameter ob-
fuscation, phase retrieval attacks. We show that ROPUST
remains robust even against state-of-the-art retrieval meth-
ods.

2. Methods

2.1. Automated adversarial attacks

We evaluate our model against the four attacks imple-
mented in RobustBench: APGD-CE and APGD-T (Croce &
Hein, 2020b), Square attack (Andriushchenko et al., 2019),
and Fast Adaptive Boundary (FAB) attack (Croce & Hein,
2020a). We describe these attacks more in detail in the
supplementary. In RobustBench, using AutoAttack, given
a batch of samples, these are first attacked with APGD-CE.
Then, the samples that were successfully attacked are dis-
carded, and the remaining ones are attacked with APGD-T.
This procedure continues with Square and FAB attack.

2.2. Our defense

Optical Processing Units. Optical Processing Units
(OPU)! are photonic co-processors dedicated to efficient
large-scale random projections (Ohana et al., 2020). As-
suming an input vector x, the OPU computes the following
operation using light scattering through a diffusive medium:

y = |Ux|? (1)
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Figure 2. ROPUST replaces the classifier of already robust models, enhancing their adversarial robustness. Only the ROPUST
classifier needs fine-tuning; the convolutional stack is frozen. Convolutional features first go through a fully-connected layer, before
binarization for use in the Optical Processing Unit (OPU). The OPU performs a non-linear random projection, with fixed unknown
parameters. A fully-connected layer is then used to obtain a prediction from the output of the OPU. Direct Feedback Alignment is used to

train the layer underneath the OPU.

With U a fixed complex Gaussian random matrix of size
up to 10% x 108, which entries are not readily known. In
the following, we sometimes refer to U as the transmission
matrix (TM). The input is binary and the output is in 8 bits.

The matrix U is physically implemented through the diffu-
sive medium. As only the non-linear intensity |Ux|? can
be measured, an attacker has to perform phase retrieval to
retrieve the coefficients of U. We develop such an attack
scenario in Section 4.

Direct Feedback Alignment. Because the fixed random
parameters implemented by the OPU are unknown, it is
impossible to backpropagate through it. We bypass this
limitation by training layers upstream of the OPU using
Direct Feedback Alignment (DFA) (Ngkland, 2016).

In a fully connected network, at layer ¢ out of IV, neglecting
biases, with W, its weight matrix, f; its non-linearity, and
h; its activations, the forward pass can be written as a; =
W;h;_1,h; = fi(a;). hg = X is the input data, and
hy = f(ay) = ¥ are the predictions. A task-specific cost
function L(¥,y) is computed to quantify the quality of the
predictions with respect to the targets y. The weight updates
are obtained through:
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where © is the Hadamard product. With DFA, the gradient
signal WZTHcSaiH of the (i+1)-th layer is replaced with a
random projection of the gradient of the loss at the top layer
da,—which is the error e = § —y for the cross-entropy loss:
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ROPUST We propose to replace their classifier with the

ROPUST module to enhance the adversarial robustness of
pretrained robust models (Fig. 2). We use robust models

Natural accuracy on CIFAR-10

EEE Base
N ROPUST

Figure 3. Our ROPUST defense comes at no cost in natural ac-
curacy. In some cases, natural accuracy is even improved. The
model from Zhang, 2020 (Zhang et al., 2020) is an isolated excep-
tion. The papers related to each model are cited in Fig. 1.

from the RobustBench model zoo, extracting and freezing
their convolutional stack. The robust convolutional features
go through a fully connected layer and a sign function,
preparing them for the OPU. The OPU then performs a non-
linear random projection, with fixed unknown parameters.
The predictions are obtained through a final fully-connected
layer. While the convolutional layers are frozen, we train
the ROPUST module on natural data using DFA to bypass
the non-differentiable photonic hardware.

Attacking ROPUST. Previous work has shown that meth-
ods devoid of weight transport are not effective in generating
compelling adversarial examples (Akrout, 2019). Therefore,
we use backward pass differentiable approximation (BPDA)
in place of DFA when attacking our defense: we relax non-
differentiable layers to a differentiable version. For the
binarization function, we simply use the derivative of tanh
in the backward pass, while we approximate the transpose
of the obfuscated parameters with a different fixed random
matrix drawn at initialization of the module.

3. Evaluating ROPUST on RobustBench

All of the attacks are performed on CIFAR-10 (Krizhevsky,
2009), using a differentiable backward pass approximation
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Figure 4. Performance of an APGD-CE attack with a retrieved
matrix in place of the, otherwise unknown, transpose of the
transmission matrix. A better knowledge of the transmission
matrix correlates with the success of the attack, with a sharp phase
transition. It may seem that even a coarse-grained knowledge
of the TM can help the attacker. However, even state-of-the-art
phase retrieval methods operate only in the white contoured region,
where the robustness is still greater than the Base models. We
highlighted the accuracies achieved under attack in this region.

(Athalye et al., 2018) as explained in Section 2.2. For our ex-
periments, we use OPU input size 512 and output size 8000.
We use the Adam optimizer (Kingma & Ba, 2014), with
learning rate 0.001, for 10 epochs. The process typically
takes 10 minutes on a single NVIDIA V100 GPU.

We show our results on nine different models in Robust-
Bench in Fig. 1. The performance of the original pretrained
models from the RobustBench leaderboard is reported as
Base. ROPUST represents the same models equipped with
our defense. Finally, Transfer indicates the performance of
attacks created on the original model and transferred to fool
the ROPUST defense. For all models considered, ROPUST
improves the robustness significantly, even under transfer.
For transfer, we also tested crafting the attacks on the Base
model while using the loss of the ROPUST model for the
learning rate schedule of APGD. We also tried to use the
predictions of ROPUST, instead of the base model, to re-
move the samples that were successfully attacked from the
next stage of the ensemble; however, these modifications
did not improve transfer performance. We remark that the
robustness increase typically comes at no cost in natural
accuracy; we show the accuracy on natural data of the Base
and the ROPUST models in Fig. 3. We ablate our defense
against white-box attacks in the supplementary.

4. Phase retrieval attack

Our defense leverages parameter obfuscation to achieve ro-
bustness. Yet, however demanding, it is still technically
possible to recover the parameters through phase retrieval
schemes (Gupta et al., 2019; 2020). To provide a thorough
and fair evaluation of our attack, we study in this section

phase retrieval attacks. We first consider an idealized set-
ting, and then confront this setting with a real-world phase
retrieval algorithm from (Gupta et al., 2020).

Ideal retrieval model. We build an idealized phase re-
trieval attack, where the attacker knows a certain fraction of
columns, up to a certain precision. We model the retrieved
matrix U’ as a linear interpolation of the real transmission
matrix U and a completely different random matrix R. In
practice, this model is valid only for a certain fraction of
columns, and the remaining ones are modeled as indepen-
dent random vectors. We can model this with a Boolean
mask matrix M, so our retrieval model in the end is:

U=aU0M+ (1-a)R 4)

In this setting, we vary the knowledge of the attacker from
the minimum to the maximum by varying « and the percent-
age of retrieved columns, and we show how the performance
of our defense changes in Fig. 4. In this simplified model
only a crude knowledge of the parameters seems sufficient,
given the sharp phase transition. We now need to chart
where state-of-the-art retrieval methods are on this graph to
estimate their ability to break our defense.

Real-world retrieval performance. State-of-the-art
phase retrieval methods seek to maximize output correlation,
i.e. the correlation on y in Eq. 1, in place of the correlation
with respect to the parameters of the transmission matrix,
ie. Uin Eq. 1. We find this is a significant limitation
for attackers. In Fig. 4, following numerical experiments,
we highlight with a white contour the operating region of
a state-of-the-art phase retrieval algorithm (Gupta et al.,
2020), showing that it can manage to only partially reduce
the robustness of ROPUST.

5. Conclusion

We introduced ROPUST, a drop-in module to enhance the
adversarial robustness of pretrained already robust models.
Our technique relies on parameter obfuscation guaranteed
by a photonic co-processor, and a synthetic gradient method:
it is simple, fast and widely applicable.

We thoroughly evaluated our defense on nine different mod-
els in the standardized RobustBench benchmark, reaching
state-of-the-art performance. In light of these results, we
encourage to extend RobustBench to include parameter ob-
fuscation methods.

Finally, we developed a new kind of attacks, phase retrieval
attacks, specifically suited to parameter obfuscation defense
such as ours, and we tested their effectiveness. We found
that the typical precision regime of even state-of-the-art
phase retrieval methods is not enough to completely break
ROPUST.
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Figure 5. Removing either parameter obfuscation or DFA
from our defense causes a large drop in accuracy. Robustness
is given by the inability to efficiently generate attacks in a white-
box settings when the parameters are obfuscated, and DFA is
capable of generating partially robust features. Even though the
non-linearity |.|* does not contribute to robustness, it is key to ob-
fuscation, preventing trivial retrieval. Transfer performance does
not change much when removing components of the defense. The
performance of the Base is shown for comparison.
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Appendix
Description of the attacks in AutoAttack

APGD-CE is a standard PGD where the step size is tuned
using the loss trend information, squeezing the best perfor-
mance out of a limited iterations budget. APGD-T, on top
of the step size schedule, substitutes the cross-entropy loss
with the Difference of Logits Ratio (DLR) loss, reducing
the risk of vanishing gradients. Square attack is based on
a random search. Random updates § are sampled from an
attack-norm dependent distribution at each iteration: if they
improve the objective function they are kept, otherwise they
are discarded. FAB attack aims at finding adversarial sam-
ples with minimal distortion with respect to the attack point.
With respect to PGD, it does not need to be restarted and it
achieves fast good quality results.

Ablation study: white-box setting

We perform an ablation study and find that the robustness
of our defense against white-box attacks comes from both
parameter obfuscation and DFA. We use the model from
(Wong et al., 2020) available in the RobustBench model
z00. It consists in a PreAct ResNet-18 (He et al., 2016),
pretrained with a “revisited” FGSM of increased effective-
ness. We conduct the ablation study by removing a single
component of our defense at a time in simulation: binariza-
tion, DFA, parameter obfuscation, and non-linearity H2 of
the random projection. To remove DFA, we also remove
the binarization step and train the ROPUST module with
backpropagation, since we have access to the transpose of
the transmission matrix in the simulated setting of the ab-
lation study. We show the results in Fig. 5: removing the
non-linearity |.|? and the binarization does not have an ef-
fect, with the robustness given by parameter obfuscation

and DFA.

Impact statement

Adversarial attacks have been identified as a significant
threat to applications of machine learning in-the-wild. De-
veloping simple and accessible ways to make neural net-
works more robust is key to mitigating some of the risks and
making machine learning applications safer. More robust
models would enable a wider range of business applications,
especially in safety-critical sectors. We do not foresee neg-
ative societal impacts of our work, beyond the risk of our
defense being broken by future developments in adversar-
ial attacks. A limit of our work is that we prove increased
robustness only empirically and not theoretically. However,
theoretically grounded defense methods typically fall short
of other techniques more used in practice. We rely on pho-
tonic hardware accessible by anyone, similarly to GPUs or
TPUs on commercial cloud providers. We performed all of
our experiments on single-GPU nodes with NVIDIA V100,
and an OPU, on a cloud provider. We estimate a total of
~ 500 GPU hours was spent.



