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Abstract
Large language models learn both statistical patterns that make text fluent and factual associations between specific
tokens that represent knowledge information. The complexity of natural language interweaving linguistic patterns
and factual content challenges a systematic study of this capability. To address this, we introduce a Small-Scale
Data Model (SSDM) designed to disentangle these components. The SSDM consists of a statistical stream of
generic tokens, endowed with designated positional information, which composes with a separate factual stream of
source-target token pairs representing knowledge. Partitioning the generating distribution of the statistical stream
into sub-distributions, which we term templates, allows us to: (i) Independently vary the format of the templates
(i.e., contextual structure) and the frequency with which facts appear within each template during training (i.e.,
contextual diversity); (ii) Measure both in-distribution and out-of-distribution generalization; and (iii) Distinguish
between statistical, structural, and factual aspects of language model generalization. We demonstrate the flexibility
of the SSDM by reporting example findings concerning: (a) the potentially catastrophic impact of low contextual
diversity on either factual recall, statistical generalization, or both, contingent on the contextual structure; (b)
observed stage-wise learning dynamics; and (c) hallucination.

1. Introduction
Natural language sequences carry two intertwined components. On one hand, they follow statistical and linguistic patterns
– the syntax and word co-occurrence regularities that make sentences coherent and flow smoothly. On the other hand, they
encode facts and relationships about the world – for example, that Maryam Mirzakhani won a Fields Medal. These
two ingredients differ fundamentally: structural patterns govern the coherency of language, while factual content embeds
knowledge. However, in natural text, these aspects, are tightly interlaced: each sentence simultaneously obeys linguistic
patterns while conveying specific information. This distinction becomes evident when we consider statements like The
capital of France is Berlin, which is structurally well-formed, yet contains incorrect factual information.
Conversely, Paris France capital is of the contains factually correct information but lacks statistical
coherence – demonstrating how these two components can vary independently while both are necessary for natural language.

Modern transformer-based (Vaswani et al., 2017) language models (LMs) are trained on massive corpora of such natural text
sequences with one deceptively simple training objective: given a sequence of tokens, predict the next token (Radford et al.,
2019). Through this next-token prediction training alone, LMs not only learn to generate contextually plausible sequences,
but also learn significant amount of real-world knowledge: the model’s parameters effectively become an implicit knowledge
base that can rival structured knowledge bases in question-answering and recall tasks (Petroni et al., 2019; Roberts et al., 2020;
Dai et al., 2021; Allen-Zhu & Li, 2023; Akyürek et al., 2022; Yang et al., 2024; Meng et al., 2023; Mallen et al., 2023). This
factual recall capability is remarkable precisely because the model receives no explicit fact supervision: it never encounters
knowledge graphs or labeled facts or any other form of explicit differentiation between general and fact-related tokens. How
can a simple next-token prediction objective guide models to distinguish and simultaneously learn these distinct types of
information? Moreover, are there inherent trade-offs between acquiring linguistic structure versus factual knowledge?

Intuitively, the repetition of factual information across varying linguistic contexts during training—essentially appearing
as paraphrases of the same underlying facts—likely plays a key role in facilitating factual recall from pure next-token
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Figure 1: Proposed testbed and summary of key findings. (Top) Our data model combines a statistical stream (templates with generic
tokens and placeholder positions) and a factual stream (atomic source-target pairs), which together generate the training sequences.
(Bottom Left) Visualization of three types of contextual structure—how templates vary along statistical and positional dimensions:
MC10POS1 (maximum statistical variability), MC1POS10 (maximum positional variability), and MC10POS10 (both statistical and
positional variability). (Bottom Middle) Sample exposure matrix for contextual diversity DIV, with purple dots marking which templates
each fact appears in. (Bottom Right) Summary of key findings: Low diversity impairs generalization—whether factual or statistical
depends on structure—while high diversity enables both, with varying efficiencies (indicated by the intensity of the colored boxes.).

prediction supervision. But how frequently must a model encounter a fact during training to reliably learn it, and how
does this depend on the diversity of linguistic contexts (paraphrases) in which the fact appears? If learning truly means
isolating factual associations from linguistic structures, under what conditions is this possible? Moreover, is diversity only
possibly impacting factual recall, or can it also impact the model’s ability to learn statistical patterns?

The primary challenge in addressing these questions stems from the inherently complex nature of natural language data that
intricately interleaves linguistic patterns and factual content. To disentangle the two, we introduce a small-scale synthetic
model that isolates each component and lets us study their interaction under controlled conditions.

2. Small-scale data model (SSDM)
Our SSDM factorizes sequences into a statistical stream, representing linguistic patterns, and a factual stream, representing
knowledge information. Our design is inspired by the synthetic-biography corpus of Allen-Zhu & Li (2023), but further
abstracts the data to allow for the fine-grained control over both streams and their composition. See App. B for discussion.

Factual stream. We consider the factual stream as a set of K atomic facts K = {(ak 7→ bk)}Kk=1 each given as an ordered
source-target pair of distinct tokens from the vocabulary set V = {1, ..., V }. The union VK = A ∪ B of A = {ak}Kk=1 and
B = {bk}Kk=1 defines the fact vocabulary. We denote f : A → B the deterministic one-to-one mapping, so each source token
uniquely specifies its corresponding target f(ak) = bk. These facts represent abstract knowledge pieces with no inherent
linguistic structure on their own: they become part of a language sequence only when paired with a template realization.

Statistical stream (Templates). We model templates as a mixture of N sub-distributions D = D1 × · · · × DN , each
representing a syntactic pattern, over the background sequences z = (z1, . . . , zT ) into which facts will be embedded.
Sequence z consists of tokens from generic vocabulary VD := V \ VK with two positions reserved for the source/target fact
tokens. For concreteness, we represent Dn by a first-order Markov chain (MC) with transition matrix Pn ∈ ∆|VD|×|VD|1

and a placeholder position pair qn = (qn,a, qn,b), qn,a≤T/2 < qn,b. We sample sequence z ∼ Dn by drawing an MC
sequence of length T − 2 according to Pn to fill the T − 2 positions apart from positions qn reserved for the fact tokens.

The final sequences x = (x1, . . . , xT ) are generated by sampling a fact pair (ak, bk), k ∼ [K] and a template n with context
z ∼ Dn; we then insert the fact in the reserved positions by setting xqa =ak, xqb =bk, and xt = zt, ∀t /∈ {qa, qb}.

Our SSDM allows investigating generalization by precisely and independently varying: (a) contextual diversity—how many

1The choice of statistical n-gram generation in the form of MC is convenient for measuring statistical accuracy. One could adopt
variants of traditional MCs (e.g., the contextual bigram (Ren et al., 2024)) without affecting our main findings.
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(a) Statistical loss (b) Position accuracy (c) Factual accuracy
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Figure 2: Generalization dynamics for varying contextual diversity levels and structures. Heatmaps show (a) Lossstat (5), (b)
Accpos (1) and (c) Accfact (3) over training iterations (horizontal axis) and diversity level (vertical axis) for the three contextual structures
defined in Sec. 2. Metrics are evaluated over OOD fact–template pairs. Brighter colors denote higher loss for Lossstat and higher
accuracy for Accpos and Accfact. Increasing diversity slows convergence, whereas very low diversity leads to catastrophic statistical
or/and factual failure. See Sec. 3.1 and Apps. C and D for details.

different templates each fact appears in during training, (b) contextual structure—how template formats vary. See Fig. 1.

(a) Contextual diversity. Contextual diversity is controlled by a scalar DIV ∈ (0, 1]: each fact (ak, bk) is embedded
in exactly DIV · N of the N templates, so larger DIV gives richer contextual variety in the training set. These pairings
are captured in a binary in-distribution (ID) exposure mask Ein ∈ {0, 1}N×K with Ein[n, k] = 1 when fact k appears
in template n. The 1’s in the k-th column lists all ID templates in which fact k appears; while the zero entries mark its
out-of-distribution (OOD) template set.

(b) Contextual structure. Contextual structure defines how templates differ in the placeholders qn = (qn,a, qn,b) and
the transition matrix Pn. To study structure independently of diversity, we fix DIV and compare three structures, each
with N = 10 templates: (i) MC1POSN keeps a common transition matrix Pn =: P but assigns a distinct qn to every
template; (ii) MCNPOS1 fixes the position pair qn =: q across templates while giving each template a random Pn; and
(iii) MCNPOSN varies both Pn and qn across templates, which lets us test the model when both the positional and
contextual patterns shift simultaneously. See Fig. 1 for illustration of the two axes (statistical and positional) of variability.

We train transformer models on sequences drawn from the ID template-fact pairs specified by Ein and evaluate their
behavior on designed prompts: For a template n and fact (ak, bk), we feed the model a length T/2 prompt that contains
the source token ak at qn,a and the remaining (generic) tokens drawn from Pn, and let it autoregressively complete the
remaining T/2 tokens. We then score three aspects on the completion: (i) Factual recall (Accfact) checks whether the
model places the correct target bk = f(ak) at qn,b. (ii) Position accuracy (Accpos) verifies adherence to the composition
rule, i.e., fact tokens appear only at qn,b and that every other position in the completion is filled with a generic token.
(iii) Statistical loss (Lossstat) measures how closely the distribution of generic tokens matches the MC statistics of the
underlying template. We measure these separately for ID and OOD template–fact pairings. Formal definitions of the metrics
and experimental details are provided in Apps. C.2 and D.

3. Example Findings
3.1. Impacts of contextual diversity and structure (Fig. 2)

For ID sequences, all three metrics achieve perfect accuracy regardless of structure/diversity, which only affect convergence
speed. We defer the ID discussion to App. D and focus here on the more nuanced OOD performance (see Fig. 2):
(1) Improvements in Accpos during training slow down noticeably at low diversity (DIV≤ 0.2). However, once diversity is
moderate or high, Accpos converges to 1 at the same rate for any DIV value. With MC10POS1–where all templates share
the same placeholder positions–the impact of diversity on structural accuracy becomes negligible (but see item (2) below).
(2) Diversity is also critical for learning the underlying statistical component as measured by Lossstat: with DIV < 0.3,
late in the training, the model’s Lossstat starts growing (light bars, top-right of Fig.2-a). In MC1POS10, however, where
all templates share one transition matrix, Lossstat is largely insensitive to DIV (unlike factual recall–see item (3)).
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Figure 4: Stage-wise dynamics for DIV = 0.8. (Top) Statistical (blue), Position (orange), and factual-recall (green) losses. The model
first matches the MC statistics, then learns the structure by identifying the position for the generic vs fact tokens, and only finally learns
source–target mappings. (Bottom) Position accuracy for the target position (blue), memorization accuracy (orange), and factual accuracy
(green). See Secs. 3.2, 3.3 and C.2.

(3) Accfact shows the most intricate pattern: High diversity (DIV = 0.9), slows down improvements, while very low
diversity (DIV ≤ 0.2) leads to catastrophic factual errors. Contextual structure shapes the severity of these patterns: in
MC1POS10 the low-diversity collapse is severe and the high-diversity slowdown mild; in MC10POS1 the fixed positional
cue means low diversity merely delays progress without causing total failure. In MC10POS10, both the severe collapse at
low diversity and the slower convergence at high diversity are clearly apparent.

Diversity pays off with time. Fig. 3 plots Accfact versus DIV at three training checkpoints. With short training budget,
intermediate diversity gives the best OOD recall. With long training, however, the most diverse setup catches up, while
low diversity setups never recover—except in the MC10POS1 that carries a strong positional cue for the facts. Thus, the
optimal DIV depends jointly on the training budget and the structure of the templates.

3.2. Stage-wise learning dynamics (Fig. 4-top)

In Fig. 4-(top row), we track the evolution of the statistical loss Lossstat, structural loss Losspos, and factual loss Lossfact

(see App. C.2 for definitions) during training. We focus on the high-diversity setting (DIV = 0.8) where along all three axes
the model can generalize with long enough training. The curves reveal a consistent three-phase trajectory (ID: dashed; OOD:
solid): the model first matches the MC statistics of generic tokens, then learns the position rule—faster in MC10POS1,
whose fixed placeholder gives a strong positional cue—and only after these two losses plateau does Lossfact start to slowly
drop, showing that the model is finally learning the correct source-to-target mapping f .

3.3. From hallucination to generalization (Fig. 4-bottom)

In Fig. 4-(bottom row), we examine more closely the model’s output at the reserved target position. We measure: 1) factual
accuracy Accfact (green), and 2) target-position accuracy Accpos,K (blue), which measures the model’s accuracy at placing
any fact (vs generic) token at the placeholder position (see App. C.2). Consistent wit Sec. 3.2, the blue curve rises sharply to
1, showing that the model quickly learns where to place a fact token. By this stage, the model has also reached statistical
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generalization as shown in Fig. 4-(top row). Yet Accfact remains low, meaning the model often inserts the wrong fact,
producing syntactically plausible but factually incorrect completions—i.e., a transient “hallucination” phase. Only after
extended training does Accfact increase, marking a transition from hallucination to factual generalization. We also track
memorization accuracy Accmem (orange) that measures the fraction of examples in which the reserved target position is
filled by only the fact tokens that had already appeared in this specific placeholder at the training stage (see App. C.2).
Shortly after hallucination begins, Accmem also increases but plateaus at this stage. Only with further training does the
plateau break–Accmem falls while Accfact rises.

4. Conclusion
We introduce a lightweight synthetic data framework that gives us granular control over different components of data
distribution, allowing us to study generalization of language models from different point-of-views. By varying contextual
diversity in the training set, we quantify its impact on three generalization dimensions: statistical, structural (position), and
factual accuracy. We defer details and complementary discussions to the App., where we discuss impact of model size on the
observed dynamics (App. E), outline preliminary sketches for future theoretical analysis (App. F), probe the learned internal
embeddings under varying diversity settings (App. G), and provide extended discussions on related works (App. B).
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Table 1: Table of notations.

Symbol Meaning

T Sequence length.
x = (x1, . . . , xT ) Token sequence produced by mixing two streams.
V = [V ] Global vocabulary.
Factual stream
K Number of atomic facts.
K = {(ak, bk)}Kk=1 Set of (source, target) pairs.
A = {ak}, B = {bk} Source and target vocabularies.
VK = A ∪ B Fact vocabulary.
f : A→B One-to-one mapping, f(ak) = bk.
Statistical stream (templates)
N Number of templates.
Dn Distribution of template n.
VD = V \ VK Generic vocabulary.
q = (qa, qb) Placeholder positions (qa ≤ T/2 < qb).
Pn Set of transition matrices of template n.
Qn Set of position pairs of template n.
Pn A transition matrix drawn from Pn.
Exposure and diversity
Ein ∈ {0, 1}N×K ID exposure mask: (n, k) entry is 1 if fact k occurs in template n during training.
DIV ∈ (0, 1] Diversity level: fraction of templates in which each fact appears.
Metrics
Accpos Structural (position) accuracy (Eq. 1).
Accpos,K position accuracy at the target position.
Accfact Factual accuracy (Eq. 3).
Lossstat Statistical loss (KL divergence to template MC – Eq. 5).
Losspos Negative log-prob of placing fact tokens in the target placeholder and generic tokens elsewhere (Eq (2)).
Lossfact Negative log-prob of the correct target token at the target placeholder (Eq (4)).

A. Overview of supplementary material
Notations. We denote matrices/vectors/scalars as A/a/a respectively. We view token-sequences as vectors and denote a≤t

the subsequence of length t. We denote A[i, j] the (i, j)-th entry of matrix A, and respectively for vectors. We let S(·)
denote the softmax map, ∆ the simplex, and KL(p1 ∥p2) the Kullback–Leibler (KL) divergence between probability vectors
p1,p2. We denote [N ] := {1, . . . , N} and use 1[C] for the indicator function (1 if condition C is satisfied, 0 otherwise).

Overview.. Section B presents a detailed comparison with relevant works in the literature. In Sections C and D we gather
the details omitted from the Secs 2 and 3 respectively. Section E provides additional experimental results and discussions.
Section F introduces a minimal toy setting as a starting point for a theoretical analysis. Finally, Section G examines the
model’s internal embeddings and how training diversity affects them.

B. Additional Details on Related Works
LLMs have been observed to pack a substantial amount of knowledge in their parameters during pretraining, allowing
them to answer real-world questions without consulting external resources (Petroni et al., 2019; Roberts et al., 2020) raising
the question of whether they can replace conventional knowledge bases (Omar et al., 2023; Sun et al., 2023). A growing
body of mechanistic-interpretability work explores where LMs store knowledge (Meng et al., 2023; Dai et al., 2021; Geva
et al., 2020) and how they recall the correct fact (Geva et al., 2023; Lv et al., 2024). Other studies trace each learned fact
back to the pre-training data to investigate which corpus patterns enable its acquisition (Elazar et al., 2022; Akyürek et al.,
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2022; Li et al., 2022) and demonstrate that recall accuracy depends on the number of exposures to that fact in the pretraining
corpus (Kandpal et al., 2023; Allen-Zhu & Li, 2023). Studies on learning dynamics similarly find that different knowledge
types are learned at different rates (Liu et al., 2021). Chang et al. (2024) probe the factual recall dynamics by injecting
fictional facts during pre-training and tracking their probabilities over time, observing that knowledge accumulates through
many small “micro-updates” that gradually decay unless the fact is periodically reinforced to avoid forgetting.

Recent works have initiated systematic exploration of factual recall in language models using controlled synthetic setups.
Typically, these works model each fact as a triplet (source, relation, target) embedded in a context; the model is then probed
with a context containing a (source, relation) and must produce the corresponding target (Allen-Zhu & Li, 2023; Nichani
et al., 2024; Zucchet et al., 2025). We adopt a similar framework but omit the relation token. The simpler (source, target)
setup suffices for our purpose of studying how models acquire and recall factual associations along with other aspects of
generalization from first principles.

Allen-Zhu & Li (2023), use a controlled synthetic biography dataset with fixed-sentence templates to examine factual
recall: each biography entry is a multi-sentence paragraph about an individual, the source, where each sentence represents a
(relation, target) chosen from a set of fixed-sentence templates, e.g., “<Name> was born in <City>”. They specifically
consider question-answer (QA) formats for probing knowledge, e.g., “What is <Name>’s city of birth? <City>”, which
are shown at training time for only a subset of individuals. We treat these QA forms as just another template family and
evaluate by probing the model with any template that was unseen for a given fact during training. Focusing on factual recall
performance, Allen-Zhu & Li (2023) show that (i) when question templates are introduced only at the fine-tuning stage,
factual recall is impossible unless each fact was seen in diverse contexts, i.e., in several templates, during pre-training, and
(ii) even when questions are already present in pre-training data, more paraphrase diversity markedly boosts recall. In other
words, successful recall requires varied exposure to each fact, not mere repetition in a single template.

While our data-generation scheme draws on this core insight, our synthetic testbed offers a more abstracted and finely
controlled framework. By abstracting the biography setup further while retaining its template–fact structure, we gain more
fine-grained control over other aspects like the statistical and structural composition, which were fixed in their work. We
focus exclusively on pre-training experiments here, though the same abstract framework could be used to study fine-tuning
similar to them as well. Yet, we show that even without finetuning and even in minimal settings like those described in
App. F low-diversity can still be catastrophic for factual recall. Our analysis of the impacts of diversity on the statistical
aspects of generalization as well as the systematic categorization of different contextual structures are also unique to our
study compared to this prior work.

Contemporaneous work by Zucchet et al. (2025) analyzes the factual recall dynamics in the same synthetic biography
setup of Allen-Zhu & Li (2023), reporting a stage-wise dynamic as follows. By inspecting the model’s predictions at the
target position across training checkpoints, the model first restricts its choice to the fact vocabulary and only later learns
the correct mapping from the the specific (source, relation) present in the context to the correct target. This observation is
analogous to our stage-wise learning discussion in Sec. 3.2. Our evaluation, however, is broader: we probe the model with
an incomplete prompt and grade the entire completion from different aspects – whether the correct fact token appears in
the correct position, whether the remaining positions are filled with generic tokens, and whether those tokens follow the
template’s statistical pattern. As Zucchet et al. (2025) follow the same setup as Allen-Zhu & Li (2023), the unique and
distinctive characteristics of our setup mentioned above—particularly the explicit statistical stream enabling a joint study of
statistical and factual generalization aspects, alongside systematic control over contextual structure and diversity—apply
equally as differentiators here.

Both of the above referenced studies also vary the data distribution, exploring how “celebrity” entries – individuals whose
biographies appear in many templates during pre-training – affect factual recall for less-frequent entries and alter learning
dynamics. While our current work focuses only on overall context diversity, our flexible framework can readily accommodate
such experiments on the impact of data distribution by appropriately designing the template-fact exposure matrix Ein to
vary fact frequencies across templates. We leave this as interesting future work.

Perhaps the most closely-related work in terms of model abstraction, although coming from differing motivations, appears
in Nichani et al. (2024). While they focus on capacity and storage tradeoffs for factual recall, we investigate the impacts
of diversity and tradeoffs between statistical and factual accuracy. In their synthetic data setup, they sample the (source,
relation, target) mappings randomly by choosing them from a fact set. Each sequence is generated by placing the (source,
relation) at two random position, appending the target at the end and filling the remaining positions with tokens uniformly
drawn from a disjoint noise vocabulary (functionally identical to our generic tokens). Training then minimizes the loss at the
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target position, focusing on the fact storage capacity of the model. Within this abstract setting they prove theoretically that
a single-layer transformer can memorize facts if the model size scales appropriately and they quantify how the capacity
can be allocated between attention heads and MLP weights. Similarly in our setup, we preserve the separation of facts
from background tokens but introduce a structured statistical stream: generic tokens are generated by a Markov process
and fact placeholders occupy slots that can vary across different templates. This significantly richer design allows us to
introduce and systematically investigate how contextual structure and diversity affect performance, while extending the
analysis beyond factual recall to include statistical and structural generalization, aspects not explored by Nichani et al.
(2024). Through our effort to identify minimal toy settings where key tradeoffs, such as the impact of diversity on factual
recall, are maintained, it might be possible to leverage some of the theoretical ideas from Nichani et al. (2024) to analyze
our findings. However, this would require various non-trivial extensions, particularly incorporating the impact of diversity
and adapting for an autoregressive generation setting rather than their last-token prediction.

Finally, we review a growing body of recent works that have used Markov chains, as we do here to model the statistical
stream, to study various behavioral aspects of transformers in next-token prediction tasks. Makkuva et al. (2024) study
the loss landscape properties of a single-layer transformer trained on sequences drawn from a fixed order-1 Markov chain,
characterizing the influence of transition probabilities and architectural choices on the loss landscape. Edelman et al. (2024)
demonstrates that transformers trained on sequences generated from random order-1 Markov chains develop the ability
to perform in-context inference on unseen Markov chains by outputting bigram statistics inferred from the context. Park
et al. (2025) extend this framework by examining the regime where training sequences are drawn from a fixed, finite set of
Markov chains. Rajaraman et al. (2024) has analyzed the representational capacity of transformers for in-context learning of
order-k Markov chains. None of these works combines MCs with factual information, as we do here.

C. Additional details of Section 2
C.1. Model probing for ID and OOD evaluation

We use controlled sequence probing to evaluate how the model’s learning abilities evolve during training, with an emphasis
on assessment across varying contextual diversity and contextual structures. Concretely, we prompt the model with an
“incomplete” sequence prompt := x≤T/2 = (x1, ..., xT/2) of length T/2 that is sampled from a template n ∈ [N ] and
includes a source token a from a factual pair (a, b) ∈ K at position qn,a. We then allow the model to complete the sequence
by generating the remaining T/2 tokens auto-regressively. The task requires that (i) the generic tokens generated follow the
statistical pattern of Dn, and (ii) the correct target token b = f(a) appears exactly at position qn,b.2 For any given fact pair
(ak, bk), the prompt sequence can be generated from a template n that was either seen (ID) or unseen (OOD) during training.
We track performance separately on ID template-fact pairs (n, k) where Ein[n, k] = 1 and OOD pairs where Ein[n, k] = 0.

C.2. Evaluation metrics

Whether ID or OOD, we measure the model’s: (i) adherence to the composition rule between the two streams, (ii) accuracy
of factual recall, and (iii) ability to follow the statistical patterns of the background template. To distinguish generated tokens
at positions t > T/2 from prompt tokens at t ≤ T/2, denote (x̂T/2+1, . . . , x̂T ) the tokens of the generated completion.
Let ℓ̂t(·) ∈ RV be the model’s predicted logits at position t ≤ T conditioned on input (x1, . · · · , xT/2, x̂T/2+1, · · · , x̂t−1).
Also, let p̂t(·) ∈ ∆|V| be the softmax probability at this position. WLOG, assume the index of the generic tokens is [|VD|].

1. Position accuracy/loss: To obey the composition rule between the factual and statistical streams, the model’s generated
sequence should contain a token from the fact vocabulary VK only at the target position qn,b designated by the template,
and all other positions should contain tokens from the generic vocabulary VD. Formally, for each test sequence we define
position accuracy and loss as:

Accpos = 1[x̂qn,b
∈ VK] +

(∑T

t=T/2,t̸=qn,b

1[x̂t ∈ VD]
)
/(T/2− 1) , (1)

Losspos = − log(
∑
v∈VK

p̂qn,b
(v))− 1

T/2− 1

∑T

t=T/2,t̸=qb
log(

∑
v∈VD

p̂t(v))) . (2)

We also use Accpos,K to denote the first term in Accpos, i.e., Accpos,K := 1[x̂qn,b
∈ VK] that measures position accuracy

2The desired position depends on the template n from which prompt is sampled. Similarly, the target token also depends on the
source token in prompt. For simplicity, we write qn,b instead of qn(prompt),b(prompt).
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only at the fact placeholder position.

2. Factual accuracy/loss: We define factual accuracy as the correct prediction of the target at the position specified by
the template: Accfact := 1

[
x̂qn,b

= f(a)
]
. (3)

We can also accordingly define the factual loss as

Lossfact := − log
(
p̂qn,b

(f(a))
)
. (4)

3. Statistical loss: Denote Gn ⊆ [T/2 + 1, T ] the set of positions in the generated completion that are filled with generic
tokens from VD. For each such position t, we compare the model’s distribution over generic tokens with the ground-truth
MC distribution (Pn) of the template. Concretely, keep the first |VD| coordinates of the logit ℓ̃t = ℓt[VD] corresponding to
the generic tokens and compute the model’s distribution over VD as p̃t = S(ℓ̃t). Let p∗

t be the row of Pn that corresponds
to the preceding generic token of x̂t. We measure statistical loss as:

Lossstat :=
(∑

t∈Gn

KL
(
p̃t ∥p∗

t

))
/|Gn| . (5)

In Sec. 3.3, we measure an extra metric, memorization accuracy:

Accmem := 1[x̂qn,b
∈ VK,n],

where VK,n := {bk |Ein[n, k] = 1} is the set of targets that were paired with template n (of the prompt) in the training set.
This metric measures the fraction of examples in which the reserved target position is filled by any targets repeated in the
training set only. Note that for ID data, Accmem goes to one, if Accfact does so, since the correct target always belongs to
VK,n. However, this is not the case for OOD data.

D. Additional details of Section 3
Experimental setup. In all experiments we use a 4-layer decoder-only Transformer (Radford et al., 2018) trained auto-
regressively with the standard next-token prediction loss. Each training sequence has length T = 50. We use a template pool
of size N = 10 and a fact set K of K = 100 source-target pairs. For the MC, we let generic vocabulary set of size |VD| = 3.
We sweep diversity DIV from 0.1− 0.9 and train the model for 50k iterations with AdamW (Loshchilov & Hutter, 2017)
and a fixed learning rate of 10−4. Unless otherwise noted, metrics are averaged over three random initializations over both
model’s initialization and data splits. Models were trained on a single Tesla V100-SXM2 GPU (16GB memory).

Impact of diversity on ID performance. Across the three contextual structures and the full range of diversity levels, the
model ultimately reaches perfect ID performance on all three metrics. Yet, the rate at which this happens varies. As Fig. 5
show, both statistical loss (Lossstat) and position accuracy (Accpos) converge to 0 and 1 respectively at nearly the same
rate, largely unaffected by diversity level DIV. In contrast, factual recall (Accfact), is sensitive to diversity: the more
templates in which a fact appears in training, the longer the model requires to disentangle the correct source–target mapping
from contextual patterns. Fig. 5-(c) illustrates this delay clearly: as DIV increases (lower rows in heat map), the yellow band
marking perfect recall shifts rightward requiring additional training to reach full accuracy.

E. Additional discussion
E.1. MC10POS10: Structural-OOD data

The MC10POS10 setup enables us to evaluate a particularly challenging form of generalization beyond standard ID/OOD
splits: structural-OOD templates that test pure compositional reasoning.

Recall that in MC10POS10, each of the N = 10 templates is uniquely specified by a transition matrix and position pair:
(Pn,qn) for n ∈ [N ]. As in our other contextual structure settings, we define ID and OOD templates for a given fact (a, b)
based on whether they appeared with this fact pair during training.

The distinctive feature of MC10POS10 is that it allows us to test pure compositional generalization by forming new
templates through pairing each Pn with a position pair qn′ , for n ̸= n′. Specifically, in this case, each mixed template
combines a Markov chain and position both familiar in isolation but never jointly encountered, and the model must combine
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(a) Statistical loss (b) Position accuracy (a) Factual accuracy
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Figure 5: Generalization dynamics for varying contextual diversity levels and structures. Same as Fig. 2 with metric evaluated on
both ID and OOD data.
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Figure 6: Structural-OOD performance in the MC10POS10 setup. (a) Lossstat, (b) Accpos and (c) Accfact for the experimental
setup of Fig. 2 on sequences drawn from structural-OOD templates, defined in Sec. E.1. Panel (d) replots Accfact versus DIV, at three
training checkpoints as in Fig. 3.

these familiar subcomponents to generalize to the structural-OOD sequences. We call sequences generated from such
templates structural-OOD sequences.

Fig. 6 plots Lossstat, Accpos and Accfact on structural-OOD sequences in the same experimental setup of Fig. 2. The
qualitative trends mirror our standard OOD findings – under low diversity levels, factual recall fails catastrophically;
mid-training, optimal performance is achieved with intermediate diversity levels; and high diversity helps recovering the
performance in long training regimes–but the absolute value of the metrics remains markedly lower than on the original
OOD split, hinting the model needs even longer training to master completely novel template combinations. Position
accuracy shows a similar pattern—sharp failure at low diversity, but little sensitivity to diversity elsewhere. Interestingly,
Lossstat is hit hardest by these novel template compositions at test time. We leave a deeper investigation for future work,
In panel (d), we further visualize, as in Fig. 3, that extended training uncovers the long-term benefits of high diversity, even
though it may slow progress during the intermediate phase.
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E.2. Impact of model size

Here, we repeat our main experiments – originally with 4-layer transformer – this time with 1-layer and 10-layer models. In
Fig. 7, we gather heatmaps of (a) Lossstat, (b) Accpos, and (c) Accfact on OOD sequences for each model size.

Across all model sizes, the impact of diversity level and training duration is identical. For example, in terms of factual recall,
low diversity causes a failure, moderate diversity is best for intermediate training length, and high diversity achieves optimal
performance only after long training. The primary impact of depth is on the convergence speed – at any fixed iteration count,
the 10-layer model achieves higher accuracy than the 4-layer, which in turn outperforms the 1-layer. Notably, larger models
help slowly improving position accuracy even under low diversity (seen as brighter colors in the upper-right portions of
panel b). However, the factual recall failure at extreme low diversity persists across depths, highlighting that model capacity
alone cannot substitute for contextual variety in achieving robust OOD generalization.

F. Minimal setting to understand the impact of low diversity
Focusing on factual recall, we consider a minimal toy setting with N templates and K = N fact pairs with sequences of
length T = 2×N . For further simplicity compared to our other settings, we let the generic tokens VD to be drawn from
uniform distribution over the |VD| = 3 tokens. For the source-target pair, we define each template n ∈ [N ] by a position
pair qn = (n, n+N). We compare the performance on two diversity levels: low diversity DIV = 1/N and high diversity
DIV = (N − 1)/N .

Fig. 8 reports OOD factual recall in this setup for two diversity levels high (blue) and low (red) in three minimal settings: (a)
N = 3 with a 1-layer model, (b) N = 3 with a 4-layer model, (c) N = 5 with a 4-layer model. In all cases ID performance
reaches 100% by the end of training, so we only show the OOD results. As seen in panel (a), a 1-layer model is expressive
enough to achieve perfect factual recall performance on the task, as it achieves perfect OOD (and ID) factual recall when
trained with high diversity. However, with low diversity, the training algorithm fails to find this generalizing solution.
Instead it converges to a solution that generalizes for the ID templates, but does not necessarily perform well on OOD
templates. Increasing the model capacity roughly helps with the performance in the low-diversity case as shown in panel (b).
However, increasing the task complexity by simply increasing N , the same large model of panel (b), fails again at finding
the generalizing solution.

We can formally think of this failure under low-diversity as follows. Following the notation in Sec.2, the ultimate learning
goal is to find model parameters θ∗ that minimize the next-token prediction (NTP) loss over the complete distribution over
the choice of the templates and facts, i.e.,

θ∗ ∈ argmin
θ

{
Ltot (θ) :=

∑
k∈[K]

∑
n∈[N ]

Ex∼{Dk
n}ℓNTP (x; θ)

}
,

where Dk
n is the distribution over sequences drawn form the n-th template with the fact placeholders filled with the k-th

fact (ak, bk), and ℓNTP is the NTP loss on sequence x parameterized by model parameters θ. Note here that the total loss
averages over all N templates. We assume henceforth that the model is sufficiently expressive such that Ltot(θ

∗) attains the
loss lower bound (over all possible parameterization). This is the case in all our settings.

We can now decompose this loss into two components as Ltot (θ) = LID (θ) + LOOD (θ), where LID(·) aggregates the ID
templates and the complement LOOD(·) term contains the OOD templates for each fact. Concretely, let

LID (θ) :=
∑

k∈[K]

∑
n :Ein[n,k]=1

Ex∼{Dk
n}ℓNTP (x; θ) ,

LOOD (θ) :=
∑

k∈[K]

∑
n :Ein[n,k]=0

Ex∼{Dk
n}ℓNTP (x; θ) .

During training, where we only get access to a subset of facts-template pairs (k, n) for which Ein[n, k] = 1, we are
essentially minimizing LID(θ). Intuitively this is the case because recall that we train the model such that at each iteration
we see a fresh sequence x sampled from the ID templates and thus in the long run of many iterations, the training loss closely
approximates the ID population loss LID(θ). This is also empirically verified, since with sufficiently long training we always
reach 100% ID accuracies. Thus, during training we find model parameters θID that minimize the ID population risk, i.e.,

θID ∈ argmin
θ

LID(θ) .
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(b) Position Accuracy
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(c) Factual Accuracy
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Figure 7: Impact of model size. Replication of the experiments in Sec. 3 (4-layer) with smaller (1-layer) and larger (10-layer) models on
OOD sequences. With increased model capacity, we need fewer iterations to achieve the same level of performance. However, model
capacity alone cannot alleviate the failure of factual recall at low diversity levels.

13



Stats or Facts: Decomposing Generalization in Language Models

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Accfact
Accpos,
DIV=0.67
DIV=0.34

N = 3, 1-layer

iteration
0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

Accfact
Accpos,
DIV=0.67
DIV=0.34

N = 3, 4-layer

iteration
0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

Accfact
Accpos,
DIV=0.80
DIV=0.20

N = 5, 4-layer

iteration

Figure 8: Minimal setup to replicate the impact of diversity. Factual recall Accfact (solid) and target-position accuracy Accpos,K
(dashed). See App. F for discussion.

We remark that the set of minimizers can possibly contain multiple solutions (and we shortly argue that it does!). Also note
that in the assumed setting of Ltot(θ

∗) attaining the total-loss lower bound, a minimizer θ∗ of Ltot is certainly a minimizer
of the ID risk.

The interesting question is: Does training find model parameters θID that not only minimize the ID risk, but additionally
minimize the OOD risk? If that is the case, then θID = θ∗, i.e., θID is a minimizer of the total loss Ltotal.

Our experiments (both in the original setup of Fig. 2 and even more evidently in the minimal setup of this section) reveal a
compelling diversity-dependent dichotomy: On the one hand, under low-diversity, training converges to non-generalizing
solutions that while they minimize LID(θ), they do not minimize the OOD risk LID(θ). Thus, θID is a minimizer of the ID
risk LID(θ) but a different one than the total loss minimizer θ∗. On the other hand, as diversity increases, training finds
generalizing solutions, i.e. θID is now a minimizer of both the ID and the total loss.

This dichotomy admits two possible explanations. With increasing diversity, either (1) the non-generalizing solutions are
removed from the set of global optimizers of the ID loss LID, or (2) the landscape of the ID loss becomes more benign
around the generalizing solutions (aka θ∗), which in turn makes it easier for the model to find them. Fig. 8-(b) also suggests
that increased model capacity can partially help with making the ID landscape more benign.

Precisely characterizing how the context diversity and model capacity reshape the ID loss landscape is an exciting direction
for future work. We believe the minimal setup and intuitions introduced in this section can serve as a starting point for
such analysis.

G. Representation Analysis
To analyze the structure of the model’s internal representations, for a given sequence drawn from the n-th template and
carrying fact (ak, bk), we probe hidden layer representations (for any layer ℓ) at fact position qn,a and test whether the
transformer encodes a template-invariant representations of each fact (ak, bk).

For every (fact, template) pair (both ID and OOD), we first sample M sequences. For each sequence, we collect hidden
vectors h

(qn,a)
ℓ at fact position qn,a from the ℓ-th transformer layer. For each layer ℓ, we then stack the vectors into

H(ℓ) ∈ RP×d and keep the top d′ = min(30, d, P ) principal components, where d denotes the dimensionality of the hidden
layer representations, and P = M ×N ×K denotes the total number of hidden vectors extracted per layer. This gives us a
PCA-reduced matrix H̃(ℓ)∈RP×d′

where h̃(ℓ)
i , i ∈ [P ] denotes the PCA-reduced representation at fact position for the i-th

sequence. Recall that N denotes the number of templates, and K denotes the number of atomic facts. We set M to 250 in
our experiments.

For every layer ℓ, we take the PCA-reduced matrix H̃(ℓ)∈RP×d′
and evaluate clustering quality of the vector embeddings

hen they are labeled in two different ways: 1) each vector tagged with the fact index k, and 2) each vector tagged with the
template index n. We measure the clustering quality with silhouette_score (SKLEARN). For a given hidden layer ℓ,
and every representation h̃

(ℓ)
i , i ∈ [P ], we compute 1) e(ℓ)i , the average Euclidean distance to all other vectors that share its

label and 2) f (ℓ)
i , the smallest average distance to a group with a different label. Formally, if Ci is the set of indices with the

same label, then

e
(ℓ)
i =

1

|Ci| − 1

∑
j∈Ci, j ̸=i

∥∥h̃(ℓ)
i − h̃

(ℓ)
j

∥∥
2
, f

(ℓ)
i = min

C ̸=Ci

1

|C|
∑
j∈C

∥∥h̃(ℓ)
i − h̃

(ℓ)
j

∥∥
2
.

14



Stats or Facts: Decomposing Generalization in Language Models

Figure 9: Clustering quality (see Sec. G) of hidden representations as a function of training diversity (DIV) for the MC1POS10
template type. Top: Clustering scores when representations are labelled based on factual identity k. Bottom: Clustering scores when
representations are labeled based on template identity n. Left shows computation of score using representations of ID (template, fact)
pairs. Right shows the clustering score using representations of both ID and OOD (template, fact) pairs. Fact clustering dominates:
In both “Fact” panels (top row) every layer’s curve sits well above the corresponding “Template” curves (bottom row). Hidden vectors
therefore cluster primarily by the underlying fact rather than by the template. Strong fact clustering persists on unseen templates:
The two fact curves—one computed on seen (ID-only) pairs, the other on the full ID + OOD set are roughly similar. Vectors for unseen
fact–template combinations land in the same clusters as their seen counterparts, showing that the model abstracts the fact beyond the
specific templates it saw during training. Template invariance improves with diversity: Moving from low to high diversity the template
scores drift toward (or below) 0, while the fact scores remain roughly stable. This widening gap indicates that training on a broader mix of
templates gradually removes template details from the representations while still keeping the facts separated.

Using these two metrics, the score for each vector embedding h̃
(ℓ)
i is defined as

s
(ℓ)
i =

f
(ℓ)
i − e

(ℓ)
i

max{f (ℓ)
i , e

(ℓ)
i }

∈ [−1, 1], i ∈ [P ].

The silhouette value attains 1 when h̃
(ℓ)
i lies well inside a compact cluster whose members share the same label, drops to 0

when clusters of different labels overlap, and becomes negative if the vector is closer to another label’s cluster than to its
own. The layer-level score s(ℓ) is the average of these values across all vectors in the layer, i.e., s(ℓ) = 1

P

∑
i∈[P ] s

(ℓ)
i . To

differentiate the two labeling schemes, we denote the score as s(ℓ)fact when clusters are labeled using factual indices k, and as
s
(ℓ)
tmpl when template indices n are used as labels. If s(ℓ)fact is high, it indicates that the representations are template-invariant:

the hidden representations learned for any given fact a only depends on the fact itself and not the context template it appears
in during training. In turn, if s(ℓ)tmpl is high, it suggests that the fact hidden representations from the same template cluster
together even when the facts differ.

Figure 9 reveals three consistent trends in the clustering structure of hidden representations as training diversity grows.
First, factual identity is always the dominant organizing principle: across layers the fact curves sit well above the template
curves, indicating stronger clustering by fact than by surface form. Second, this fact-centric structure generalizes to unseen
pairings—the ID-only and ID+OOD fact curves roughly remain similar, showing that vectors from unseen fact–template
combinations fall into the same clusters as their seen counterparts. Third, greater template diversity progressively weakens
template-based structure while fact-based structure remains intact, so the gap between the two widens.

Fact Heads To better understand how factual knowledge is stored across attention heads, we compute a per-fact head
attribution heatmap. For each fact, we iteratively ablate individual heads (by zeroing their contribution) and measure the
drop in the model’s confidence for the correct token qb. This is averaged over multiple in-distribution contexts where the
fact appears, yielding a (fact × head) matrix of logit drops. Figure 10 shows these heatmaps for a model trained under low

15



Stats or Facts: Decomposing Generalization in Language Models

Figure 10: Per-fact head importance heatmaps in the factual recall task for the MC1POS10 template type. Each row corresponds to a
different fact, and each column to a specific attention head (indexed as layer.head). The color indicates the average change in the logit of
the correct answer token bi when the corresponding head is ablated, averaged over multiple in-distribution sequences for that fact. Left:
model trained with low diversity (DIV = 0.1). Right: model trained with high diversity (DIV = 0.9). In the low diversity regime, head
importance is diffuse and uniform across heads, suggesting no clear specialization. In contrast, at high diversity, certain heads become
more consistently important for specific facts, indicating emergent specialization and more structured factual encoding.

diversity (left) and high diversity (right). In the low diversity case, head importance is broadly distributed, with no head
clearly emerging as critical for any fact. By contrast, in the high diversity regime, certain heads show strong and localized
importance for specific facts, suggesting that the model has developed specialized storage heads. This points to a more
structured encoding strategy that emerges only when the model sees the same fact across various different templates.
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