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Abstract

Multi-triple extraction is a challenging task001
due to the existence of informative inter-triple002
correlations and consequently rich interactions003
across the constituent entities and relations.004
While existing works only explore cross-entity005
interactions, we propose to explicitly intro-006
duce relation representation, jointly represent007
it with entities, and novelly align them to iden-008
tify valid triples. We perform comprehensive009
experiments1 on document-level relation ex-010
traction and joint entity and relation extraction011
along with detailed ablations to demonstrate012
the advantage of the proposed method.013

1 Introduction014

Relation extraction aims at discovering struc-015

tured knowledge in the form of <subject-relation-016

object> triples from plain text. It is an essen-017

tial task towards constructing knowledge bases,018

which further supporting various applications such019

as search engines and question answering sys-020

tems. Although a lot of efforts have been made021

in building advanced relation extraction systems, it022

is still a challenging problem under certain practi-023

cal scenarios where multiple entities and relations024

are involved, e.g., document-level relation extrac-025

tion (Yao et al., 2019) and joint entity and rela-026

tion extraction (Riedel et al., 2010; Gardent et al.,027

2017).028

Existing works mostly take the entity perspec-029

tive that focuses on exploring cross-entity interac-030

tions (Xu et al., 2021; Zeng et al., 2020). They031

either treat relations as atomic labels specified in a032

final classifier (Xu et al., 2021; Zeng et al., 2020;033

Wang et al., 2020), or simply search for each indi-034

vidual relation its possible subjects and objects(Wei035

et al., 2020; Zheng et al., 2021). However, as an036

essential component, relations also interact with037

1The code will be available at https://github.com/
XXX/XXX

Figure 1: Different formulations for multi-triple extrac-
tion. 1) entity perspective constructs only entity rep-
resentation and feed them into a relation-specific clas-
sifier. 2) joint triple perspective constructs both en-
tity representation and relation representation to model
comprehensive correlations across all components.

entities and context, which jointly exhibit informa- 038

tive inter-triple correlations. e.g., the two relations 039

capital of and located at often co-occur between 040

the same pair of entities but with different probabil- 041

ities conditioned on specific contextual clues. As a 042

consequence, the capability to model and make full 043

use of rich interactions across relations, entities, 044

and context is crucial for the task. 045

In this paper, we advocate a novel joint triple 046

perspective for relation extraction (see Figure 1 for 047

illustration). Different from previous works that 048

only seek to represent entities, we propose EmRel 049

that creates, refines and leverages the Embedded 050

representations of Relations. Specifically, we first 051

explicitly create relation representations as embed- 052

ded vectors; then refine these relation (as well as 053

entity) representations by modeling rich relation- 054

entity-context interactions via an attention-based 055

fusion module; and finally identify valid triples by 056

aligning the representation of entities and relations 057

in a joint space, where a novel alignment function 058

based on Tucker Decomposition is designed to de- 059

liver such a purpose. This joint triple perspective 060

actually considers entities along with relations as 061

components of a small, context-dependent knowl- 062
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edge graph, and completes this graph by aligning063

and reasoning to extract multiple valid triples.064

To demonstrate the advantage of the proposed065

EmRel framework, we conduct experiments on066

two specific scenarios of multi-triple extraction:067

document-level relation extraction(RE) and joint068

entity and relation extraction, with three popu-069

lar datasets including DocRED (Yao et al., 2019),070

NYT (Riedel et al., 2010) and WebNLG (Gardent071

et al., 2017). The results verify the superiority of072

the joint triple perspective over the traditional en-073

tity perspective in multi-triple extraction. We also074

provide further ablation study to show the effective-075

ness of our fusion module and alignment function.076

2 Related Works077

Document-level Relation Extraction Extract-078

ing multi-triples from document-level text has079

recently aroused increasing interests (Yao et al.,080

2019). Existing methods take the entity perspective081

that proposes various techniques to model entity in-082

teractions. Nan et al. (2020) and Zeng et al. (2020)083

construct an entity graph, and perform graph-level084

reasoning to refine the entity node representations.085

Xu et al. (2021) introduces entity structure as useful086

prior, and models such information within the trans-087

former attention layer. Zhang et al. (2021) utilizes088

a segmentation network to model the interdepen-089

dency among entity pairs. Therefore, inter-triple090

correlations are only captured at the entity level091

while relation-based ones are neglected.092

Joint Entity and Relation Extraction Joint en-093

tity and relation extraction is a popular task that094

extracts multi-triples along with their entities. Ex-095

isting works can be concluded into two frame-096

works: one that searches for each individual re-097

lation its possible subjects and objects ( Liu et al.,098

2020; Wang et al., 2020;Wei et al., 2020), and the099

other that directly see each word as a candidate100

entity and assign them with relation labels (Gupta101

et al., 2016; Zheng et al., 2021). Both formula-102

tions do not explicitly include inter-triple correla-103

tions. Very recently, Wu and Shi (2021) proposes to104

model the interdependencies between entity labels105

and relation labels, However, such correlation is106

constrained within a specific word position, while107

EmRel exploits the global correlations among all108

triples and across entities, context, and relations. Li109

et al. (2021) introduces a translation-based function110

that predicts object from subject and relation, while111

EmRel proposes a more expressive alignment func-112

Figure 2: The overall framework of EmRel. It explic-
itly introduces relations embedding, and jointly repre-
sents it with entities to identify all valid triples.

tion that models the ternary interaction of subject, 113

relation and object. 114

3 Methodology 115

3.1 Task Formulation 116

We first formulate the multi-triple extraction task to 117

suitably contains both document-level RE and joint 118

entity and relation extraction. Given a sequence of 119

text {wi}, a set of candidate entities E = {ei} and 120

the pre-defined relations R = {ri}, the candidate 121

triples can be derived as: 122

T = {< s, r, o > |s, o ∈ {ei}, r ∈ {ri}} (1) 123

the target is to assign each t in T a binary label that 124

discriminates its validity. The candidate entities 125

can either be pre-annotated, as in document-level 126

relation extraction, or be jointly recognized, as in 127

joint entity and relation extraction. In the latter sce- 128

nario, one prevailing solution is to directly see each 129

word as a candidate entity, such as tagging-based 130

methods (Wang et al., 2020) or table filling meth- 131

ods (Gupta et al., 2016). Here we follow Wang 132

et al. (2020) as our baseline, and thus formulate 133

both tasks under a unified framework that extracts 134

multi-triples from a given candidate entity set. 135

3.2 EmRel 136

EmRel consists of three modules: Representation 137

Construction for both entities and relations, Rep- 138

resentation Fusion that captures multi-triple cor- 139

relations by modeling the informative interactions 140

across entities, context and relations, and Repre- 141

sentation Alignment that leverages these represen- 142

tations to extract triples by aligning their ternary 143

structures (see Figure 2 for illustration). 144
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Method NYT∗ WebNLG∗ NYT WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CasRel (Wei et al., 2020) 89.7 89.5 89.6 93.4 90.1 91.8 - - - - - -
TPLinker (Wang et al., 2020) 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7

Baseline† 91.1 92.5 91.8 91.4 92.7 92.1 91.2 92.1 91.6 88.7 86.5 87.6
EmRel 91.7 92.5 92.1 92.7 93.0 92.9 92.6 92.7 92.6 90.2 87.4 88.7

Table 1: Results on NYT and WebNLG. ∗ denotes task settings that only annotate the last word. † denotes our
reproduced results of Wang et al. (2020) as the baseline. Best results in bold.

Representation Construction The entity repre-145

sentation is constructed similar to existing practices.146

We employ a text encoder, e.g., pretrained language147

models like BERT (Devlin et al., 2019), to obtain148

the contextualized representation:149

(h1, h2, ...hn) = encoder(w1, w2, ...wn) (2)150

which we denote as H. Then we construct each en-151

tity representation ei ∈ Rde by applying a pooling152

operation on its corresponding mention positions,153

and further map it into respective subject and object154

representation esi , eoi .155

We embed the target relations R into an embed-156

ding matrix R ∈ R|R|×dr , where each row Ri,:157

represents a vectorized relation ri. This matrix158

is maintained as part of the model parameter and159

trained accordingly.160

Representation Fusion In order to jointly repre-161

sent entities and relations in a shared knowledge162

representation space, we fuse them to be aware of163

each other. We adopt the attention network (Bah-164

danau et al., 2015) to model inter-component in-165

teractions, which has proven to be very successful166

in modeling rich interactions across contexts (Yu167

et al., 2018) or modalities (Lu et al., 2016). Specifi-168

cally, we employ the canonical multi-head attention169

(MHA) network (Vaswani et al., 2017). Given the170

target representation XQ and the source represen-171

tation XS , each head of MHA operates them as:172

173

X̂Q =Att(XQW
Q,XSW

K ,XSW
V )

=softmax(
(XQW

Q)(XSW
K)

T

√
dk

)XSW
V

(3)174

where X̂Q is the updated representation of XQ175

w.r.t. XS , all heads operate in parallel and will be176

concatenated together.177

In EmRel, to exploit the comprehensive inter-178

actions across all components, we first construct179

Method Dev Test
IgnF1 F1 IgnF1 F1

BERT-TS - 54.42 - 53.92
CorefBERT 55.32 57.51 54.54 56.96
LSR 52.43 59.00 56.97 59.05
SSAN 57.03 59.19 55.84 58.16

Baseline† 56.45±0.47 58.56±0.44 55.84 58.15
EmRel 57.23±0.15 59.30±0.10 57.27 59.66

Table 2: Results on DocRED. † denotes our repro-
duced results of the baseline implementation in Xu et al.
(2021). All results are produced with multiple runs us-
ing different random seeds. Best results in bold.

entity/context-aware relation representation: 180

R̂s =Atts2r(RW
Q,EsWK ,EsWV )

R̂o =Atto2r(RW
Q,EoWK ,EoWV )

R̂c =Attc2r(RW
Q,HWK ,HsWV )

(4) 181

which are then aggregated together using layer nor- 182

malization: 183

R̂ = LayerNorm(R̂s + R̂o + R̂c) (5) 184

we symmetrically construct relation-aware entity 185

representation: 186

Ês =Attr2s(E
sWQ,RWK ,RWV )

Êo =Attr2o(E
oWQ,RWK ,RWV )

(6) 187

s, o, c are abbreviations for subject, object and 188

context. Each attention module is wrapped with 189

residual connection, feedforward layer, layer nor- 190

malization, and is instantiated with different pa- 191

rameters of WQ, WK , WV to model distinguished 192

attending patterns. The outputs of fusion module 193

are refined representations R̂, Ês, Êo for relations, 194

subjects and objects. 195

Representation Alignment EmRel extracts 196

triples by aligning their ternary components R̂, Ês, 197

and Êo. In order to fully leverage their expressive- 198

ness, we propose factorization-based alignment 199

3



Method Dev Test
IgnF1 F1 IgnF1 F1

EmRel 57.23±0.15 59.30±0.10 57.27 59.66
−Fusion 57.02±0.20 59.12±0.19 56.66 58.92
−Alignment 56.45±0.47 58.56±0.44 55.84 58.15

Table 3: Ablation results on EmRel modules.

using Tucker decomposition (Tucker et al., 1964).200

We introduce a core tensor Z ∈ Rde∗dr∗de , and the201

validity for each < si, rk, oj > is scored as:202

φ(si, rk, oj) = σ(Z ×1 ê
s
i ×2 r̂k ×3 ê

o
j + bk) (7)203

where êsi = Ês
i,:, r̂k = R̂k,:, êoi = Êo

j,:, and ×n204

indicates tensor product along the n-th mode, σ205

denotes sigmoid function. We compute φ for all206

triples in parallel using batched tensor product, and207

train them using cross-entropy loss:208

L =

T∑
<si,rk,oj>

[−1True(< si, rk, oj >) log φ(si, rk, oj)

− 1
False(< si, rk, oj >) log(1− φ(si, rk, oj))]

(8)209

where 1 indicates the ground truth validity.210

4 Experiments211

4.1 Main Results212

We conduct comprehensive experiments on213

document-level RE dataset DocRED (Yao et al.,214

2019) and joint entity and relation extrac-215

tion dataset NYT (Riedel et al., 2010) and216

WebNLG (Gardent et al., 2017). The specifics217

about these datasets and our implementation de-218

tails can be referred to Appendix. We provide our219

reproduced results of TPLinker (Wang et al., 2020)220

and the baseline system of Xu et al. (2021). Both221

are competitive baselines based on the entity per-222

spective, and are directly comparable with EmRel.223

The results (see Table 1 and Table 2) show that224

EmRel universally outperforms its baselines on all225

datasets. Respectively, +0.3 F1 for NYT∗, +0.8226

F1 for WebNLG∗, +1.0 F1 for NYT and +1.1 F1227

for WebNLG. On DocRED, EmRel improves the228

baseline by +0.95 Dev F1, +1.47 Test F1, and229

also outperforms several previous studies includ-230

ing BERT-TS (Wang et al., 2019), CorefBERT (Ye231

et al., 2020), LSR (Nan et al., 2020), and SSAN (Xu232

et al., 2021).233

4.2 Ablation Studies234

This section gives ablation studies on DocRED.235

Figure 3: Ablation on dimensions of relation represen-
tation.

On EmRel Modules We first varify the design 236

of EmRel modules. Table 3 shows that both fusion 237

and alignment module contribute to the improve- 238

ments. We also observe that EmRel has more robust 239

performance across multiple runs. This can be at- 240

tributed to our alignment function, which, once 241

removed, would result in an increased standard 242

deviation from ±0.20 to ±0.47. 243

On the Dimensionality of Relation Representa- 244

tions We investigate the effects of choices for dr 245

in Fig 3. First of all, the advantage of EmRel is gen- 246

eral across variant choices comparing to the base- 247

line. As we gradually set a higher dr from 64 to 248

1024, we get improved performance for its stronger 249

expressive capability. While we further increase 250

dr to 2048, the performance starting to degrades, 251

which might attribute to overfitting. Overall, the 252

optimal dimension lies within [512, 2048], which is 253

quite robust and also computationally acceptable. 254

5 Conclusion 255

In this paper, we propose EmRel for multi-triple 256

extraction. Distinguished from existing works, Em- 257

Rel explicitly creates, refines, and leverages the 258

embedded representation of relations. Notably, we 259

design a novel alignment function that discrimi- 260

nates triple validity by aligning its components in 261

a joint representation space. We conduct experi- 262

ments on both document-level relation extraction 263

and joint entity and relation extraction, to demon- 264

strate the advantage of EmRel over its baselines. 265

EmRel also provides a new joint triple perspec- 266

tive, where multi-triple extraction is formulated as 267

completion of a small, context-dependent knowl- 268

edge graph, with candidate entities and relations as 269

its components. In the future, we think more intri- 270

cate techniques e.g., graph-based reasoning, can be 271

explored following such formulation. 272
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A Benchmarks421

We introduce the benchmarks used in this work.422

Table 4 gives their detailed statistics. DocRED is423

constructed from Wikipedia document. It provides424

comprehensive human annotations for entity men-425

tions, entity types, relational triples, along with426

their supporting evidences. Each document is a427

semantically integrate unit that centers in one con-428

cept (the title of the wiki page), resulting multiple429

triples with rich correlations. NYT is constructed430

from New York Times news articles and annotated431

through distant supervision. WebNLG is origi-432

nally created for natural language generation task,433

and the sentences are written by humans to cover434

given triples. Both datasets have the other ver-435

sion denoted as NYT∗ and WebNLG∗. The texts in436

NYT and WebNLG are much shorter than DocRED437

documents. These two datasets also feature in mul-438

tiple triples. Specifically, previous studies have439

concluded multi-triples into three specific cases:440

EPO: triples overlap with both subjects and objects, 441

SEO: triples overlap with subject or object, and 442

Normal: without any overlapping. In this paper, we 443

solve all three datasets under a unified multi-triple 444

extraction formulation with EmRel. 445

B Implementation Details 446

To provide comparable results, we set hyper- 447

parameters following previous works (Wang et al., 448

2020; Xu et al., 2021). On NYT / WebNLG, we set 449

learning rate as 5e-5, batch size as 24 / 6, and epoch 450

as 100. On DocRED, we set learning rate as 3e-5, 451

batch size as 4, and search epochs in {40, 60, 80, 452

100}. To produce more robust results, we further 453

perform multiple searches using different seeds, re- 454

sulting a grid search on both epochs and random 455

seeds. The mean and standard deviation results 456

across different seed are reported on development 457

set. We also provide our reproduced baseline re- 458

sults, i.e., TPLinker Wang et al. (2020) and the 459

baseline system of Xu et al. (2021). The former 460

further adopts a hand-shaking strategy to decode 461

entity spans. The dimension of embedded rela- 462

tion representation is set as 768 for DocRED, 128 463

for NYT / WebNLG2, and the number of attention 464

heads in the fusion module is set as 4. BERT-Base- 465

Cased (Devlin et al., 2019) is used as the context 466

encoder. All experiments are conducted on a single 467

NIVDIA V100 or A100 GPU machine. 468

C Grouped Alignment 469

The WebNLG dataset has up to 216 relations, 470

which requires increased computational cost. In- 471

spired by (Zheng et al., 2019), we split the align- 472

ment tensors into N groups across its dimensions 473

to reduce the computational overhead, and re-write 474

Eq. 7 as: 475

φ(si, pk, oj) =
N∑

n=1

Zn ×1 ê
s,n
i ×2 r̂

n
k ×3 ê

o,n
j + bk (9) 476

477
ês,n
i =Ês

i,[(n−1) de
N

:n de
N

]

r̂nk =R̂
k,[(n−1) dr

N
:n dr

N
]

êo,n
i =Êo

j,[(n−1) de
N

:n de
N

]

(10) 478

We set group N to 4 for WebNLG, and 1 for other datasets 479
(that is, without further spliting). 480

2768 is identical with BERT Base hidden size, and we
use 128 in NYT/WebNLG to reduce computational footprints
because these two datasets involve more candidate entities.
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Dataset
No. of Instances w.r.t. Split

Entities (Avg.) Relations
No. of Instances w.r.t. Multi-triples

Train Dev Test N = 1 1 < N <= 5 5 < N <= 25 N > 25

DocRED 3053 1000 1000 19.5 96 48 561 3171 234
NYT∗ 56195 4999 5000 2.15 24 43397 22207 590 NA
WebNLG∗ 5019 500 703 3.15 171 2189 3969 64 NA
NYT 56196 5000 5000 2.16 24 43358 22237 601 NA
WebNLG 5019 500 703 3.26 216 2277 3862 83 NA

Table 4: Statistics of used datasets. ∗ denotes task settings that only annotate the last word. N denotes the number
of valid triples within an instance. We can see that these selected benchmarks all involve multiple triples, thus pose
significant challenge for relation extraction systems.
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